
https://doi.org/10.31449/inf.v49i25.10473                                                                                  Informatica 49 (2025) 347–360    347 

 

Multi-Objective Optimization of Rail Construction Project 

Management Using Immune Genetic Algorithms for Schedule, Cost, 

and Quality Trade-offs 

 

Xiao Liu 
Henan University of Urban Construction, Pingdingshan 467036, Henan, China 

E-mail: LiuXiao1215@outlook.com 

Keywords: track construction engineering, multi-objective optimization, immune genetic algorithm, project 

management  

Received: September 11, 2025 

We address railway construction project management as a multi-objective optimization over schedule, 

cost, and quality. The proposed approach reformulates the tri-objective problem via a weighted-sum 

fitness 𝐹 = ∑𝑘 ∈ {time,cost,quality}𝜔𝑘 𝑓𝑘 , where k  are AHP-derived weights and kf encode CPM-

based makespan, direct/indirect cost, and a composite quality index. Decision variables are real-coded 

(activity start/finish adjustments, resource allocations, and quality-critical process parameters). An 

Immune Genetic Algorithm (IGA) performs selection (roulette with elitism), single-point crossover with 

adaptive probability [0.6,0.9]cp  , non-uniform mutation with [0.02,0.08]mp  and gene-importance 

modulation, plus immune suppression with a decaying similarity threshold t . On a dataset of 28 railway 

projects (2.1k±0.7k activities), we compare against CPM+cost budgeting (baseline), PSO, and GA under 

identical constraints and weight settings. IGA achieves a schedule deviation of 8.5% (vs. 25.0% baseline, 

15.2% PSO, 18.7% GA), cost overrun 12.3% (vs. 30.0%, 20.1%, 25.3%), and quality compliance 88.6% 

(vs. 70.0%, 80.3%, 75.6%); resource utilization reaches 85.4% and overall satisfaction 7.8/10. Typical 

configuration uses population P=200, generations G=400; median wall-clock is 12.8 min single-threaded 

and 3.5–6.1 min with parallel fitness evaluation. Results demonstrate that IGA’s global search and 

diversity maintenance yield consistent gains over PSO/GA while remaining practical for daily replanning. 

Povzetek: Analizirano je vodenje železniških gradbenih projektov kot tri-kriterijska optimizacija časa, 

stroškov in kakovosti ter predlagan imunski genetski algoritem. Razvita metoda dosega manjše časovne 

zamike, nižje stroškovne prekoračitve in višjo skladnost kakovosti kot GA in PSO ter je uporabna za 

sprotno preplaniranje. 

 

1 Introduction 
Rail construction programs deploy vast human, 

material, and technological resources worldwide, with 

annual investments reaching hundreds of billions of US 

dollars [1]. Yet flagship projects still suffer major 

schedule slippage, budget escalation, and quality 

shortfalls; for example, a US$5 billion, 3-year project 

overran time by ~50% and cost by ~US$1 billion, with 

elevated post-handover maintenance [2]. These outcomes 

expose persistent weaknesses in coordinating multiple 

objectives in project management. 

Rail projects inherently couple schedule, cost, and 

quality (SCQ). However, traditional practices often 

optimize these dimensions in isolation and lack 

mechanisms to manage their trade-offs under uncertainty 

[3]. Evidence shows that about 60% of projects managed 

with such methods experience delay, cost drift, or quality 

non-conformance, undermining service delivery and 

public value [4,5]. 

Research has advanced schedule-planning models 

that improve time prediction but understate cost impacts 

[6], and cost-focused systems that compress budgets at the  

 

expense of schedule adherence and quality assurance [7].  

Dual-objective intelligent methods show promise, yet 

performance commonly degrades once quality and real- 

world disturbances (e.g., geology, weather, supply 

variability) are introduced. This study addresses these 

gaps by framing rail project management as a tri-objective 

optimization and proposing an immune genetic algorithm 

(IGA) to coordinate SCQ, targeting ≤10% schedule 

deviation, ≤15% cost overrun, and ≥85% quality 

compliance. 

Research questions. RQ1: Does the proposed IGA 

achieve superior schedule deviation, cost overrun, and 

quality compliance versus GA and PSO under identical 

constraints? RQ2: Is the superiority preserved under 

exogenous disturbances (geological variability, adverse 

weather, supply shocks)? RQ3: Is runtime compatible 

with daily or intra-shift replanning on commodity 

hardware? Hypotheses and success criteria. H1: IGA 

reduces schedule deviation to ≤10% and cost overrun to 

≤15% while raising quality compliance to ≥85% against 

GA/PSO (two-sided Wilcoxon signed-rank, α=0.05). H2: 

Under disturbance scenarios, IGA maintains statistically 
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significant advantages on all three objectives. H3: Median 

wall-clock ≤15 minutes on a single 16-core node for 2–3k-

activity projects, ≤6 minutes with parallel fitness 

evaluation. Secondary criteria include resource utilization 

≥83% and satisfaction ≥7.5/10. 

 

2  Literature review 
2.1 Analysis of traditional rail construction 

project management methods 
Traditional methods either focus on construction 

period or cost, lacking goal synergy. Linear programming 

models are subject to disturbances such as geological 

conditions, equipment, and material supply. The on-time 

completion rate is approximately 30%, with an average 

delay of about 20% [8,9]. The standard cost method can 

easily compress quality and project duration, with quality 

issues accounting for approximately 40% and causing 

delays of about 15% [10]. Under complex geological 

conditions, the deviation between the construction period 

and cost of CPM+ can reach 25% and 30% respectively, 

making it difficult to meet the three-objective 

management [11]. 

 

2.2 Application and shortcomings of 

intelligent algorithms in rail construction 

project management 
PSO can predict progress to approximately 70% in 

simple scenarios, but it drops below 50% in large multi-

objective scenarios, easily falling into local optimum [12-

15]. The error of NN on the cost side is less than 10% 

under ideal conditions and more than 30% in the landing 

environment [16,17]. GA can optimize the dual objectives 

of time and cost, but when extended to the triple objective 

including quality, the overall satisfaction rate is only about 

40%, with a sharp increase in search space and unstable 

convergence [18-20]. 

 

2.3 Development prospects of rail 

construction project management 

optimization method integrating multi-

objective-IGA 
IGA maintains diversity and inhibits precocious 

puberty through immunosuppression, and has stronger 

global search and robustness compared to traditional GA. 

Relevant studies show that the quality of the optimal 

solution can be improved by approximately 30% [14,15]. 

In the initial test of the railway scenario, IGA 

demonstrated the potential for collaborative optimization 

of the three goals: a construction period deviation of no 

more than 10%, a cost overrun of approximately 15%, and 

a quality compliance of over 85%.  

 

2.4 Summary of related work and gaps 
To substantiate the state of the art and clarify this 

paper’s contribution, Table 1 summarizes representative 

studies on construction/railway project optimization, the 

algorithms used, target objectives, outcomes, and 

observed gaps relevant to real-world deployment. 

 

Table 1: Prior work on project optimization: algorithms, objectives, outcomes, and gaps 

 
Study 

(Ref.) 
Algorithm Objectives Data/Setting Reported outcome Gaps vs. this work 

Zhan et al. 
[8] 

NSGA-III Time–Cost (primarily) 

Construction 

projects 
(simulated/empirical

) 

Pareto fronts, 

improved decision 

support 

Limited explicit quality 

modeling; robustness to 

site disturbances not central 

Zhao et al. 

[9] 
NSGA-II 

Multi-project HR 
scheduling 

(time/resource) 

Multi-project 

environments 

Better resource 
leveling and 

throughput 

Not tri-objective TCQ; no 

quality compliance metric 

Jia [11] Improved GA Schedule optimization Construction plans 
Faster convergence 

than basic GA 

Cost/quality not integrated; 
sensitivity to disruptions 

unreported 

Ghoroqi et 

al. [7] 

MOWOA + 

NSGA-II 
Time–Cost–Resource 

Construction 

scheduling 

Competitive time–cost 

trade-offs 

Quality dimension absent; 

limited field robustness 
analysis 

Guo & 

Zhang [14] 
Survey/Analysis — 

Project management 

optimization 

SOTA synthesis and 

future directions 

Identifies TCQ gap; no 

implemented tri-objective 
method 

Lotfi et al. 
[21] 

Robust multi-
criteria (TCQEE) 

Time–Cost–Quality–
Energy–Environment 

Bridge case study 
Robust trade-off 

schedules 

Method tailored to case; 

scalability/runtime not 

benchmarked vs. GA/PSO 

Dasovic et 
al. [20] 

Survey — 
Sustainable 

scheduling tools 
Tool–optimization 

integration map 

Lacks immune-based 

search and dynamic weight 

adaptation 

Elyasi et al. 
[15]/Varol 

et al. [4] 

Hybrid/Parallel 

GA 

Software architecture 

(methodological) 

Parallelization 

insights 

GA scalability 

improvements 

Not applied to TCQ in rail; 

no immune mechanisms 

Argumentation. Existing SOTA either omits an 

explicit quality objective, lacks tri-objective TCQ 

coupling, or provides limited robustness under real 

disturbances (geology, weather, supply shocks). Our IGA 

addresses these by (i) embedding a measurable quality 

index into the fitness, (ii) enabling dynamic weights to 

reflect stage-specific priorities, and (iii) maintaining 
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population diversity via immune suppression to avoid 

local optima when conditions shift. 

 

 

3  Research methods 
3.1 Fusion of multi-objective-IGA model 

construction 
In the field of rail construction project management, 

given that the coordinated optimization of multiple 

objectives such as construction period, cost, and quality is 

extremely critical, a management optimization model 

integrating multiple objectives - IGA (immune genetic 

algorithm) has been constructed. This model deeply 

integrates the advantages of multi-objective decision-

making theory and immune genetic algorithm, and strives 

to break the difficulties faced by traditional management 

methods and existing intelligent algorithms in multi-

objective processing. 

Track construction projects involve many complex 

objectives. Let the objective set be 1 2{ , , , }nO OO O=  

.in, 1O  Corresponding to the construction period target, 

the objective function can be constructed through the 

critical path method (CPM). Assume that the project 

includes m  Activities j  The duration is
jd  , the logical 

relationship between activities is expressed through the 

adjacency matrix A  express, 1ijA =  Indicates activity i  

Yes Activity j  The immediate preceding activities,

0ijA =  Then, Formula 1 represents the total duration of 

the project T . 

1

1 1

max
m m

m

k ij j ik

i j

T A d =

= =

=    (1) 

In Formula 1, ik  is the Kronecker function, when

i k=  hour, 1ik =  ;otherwise 0ik =  Therefore, the 

construction period objective function 1( )f x  Can be 

written as 1( ) ( )f x T x=  ,here x  It includes decision 

variables such as activity duration adjustment and activity 

time changes under the influence of resource allocation. 

2O  Represents the cost target. Cost is mainly 

composed of direct cost and indirect cost. Direct cost is 

related to resource input and resource unit price. l  The 

input of resources is lr  , unit price is lp  , then the direct 

cost
1

L

d l l

l

C r p
=

=  The indirect cost is related to the 

construction period. Let the indirect cost per unit time be

indc  , the construction period isT  , then the indirect cost

ind indc TC =  So the cost objective function is

2( ) ( ) ( )d indx C x Cf x= +  . 

For quality goals nO  , by building a quality 

assessment index system to quantify. For example, track 

laying accuracy 1q  , Structural strength compliance rate

2q  And other quality indicators, the comprehensive 

quality evaluation function is
1

S

s s

s

Q q
=

=  ,in s  is the 

weight of each quality indicator. Then the quality 

objective function ( ) ( )nf x Q x=  . 

In order to transform the multi-objective 

optimization problem into a single-objective optimization 

problem that is easy to solve, the linear weighted method 

is used to construct the comprehensive fitness function 

( )F x as shown in Formula 2 . 

1

( )( )
n

i i

i

F wx f x
=

=   (2) 

In Formula 2, iw  For the goal iO  The weight of

1

1
n

i

i

w
=

=  , 0 1iw  . Determine the weight iw  When 

using expert evaluation combined with the analytic 

hierarchy process (AHP), construct a judgment matrix M  

,element
ijM  Indicates the target iO  Relative to target

jO  

The importance of the weight vector is calculated by the 

eigenvector method
1 2 )( , , , T

nwW w w= , ensure that 

the fitness function meets the actual needs of the project. 

 

3.2 Application of immune genetic algorithm 

in the model 
As the core optimization driving force of the model, 

the immune genetic algorithm plays a pivotal role in the 

fusion multi-objective IGA model. It innovatively 

introduces the immune mechanism based on the 

traditional genetic algorithm, effectively avoids the risk of 

the algorithm falling into the local optimal solution, and 

significantly enhances the global search capability. 

Coding and initial population generation: Encoding 

is implemented for the decision variables of the rail 

construction project. Real number coding is used, for 

example, the time of each key node in the construction 

schedule is
jt  ( , ,1j m=  , m  is the number of key 

nodes) and the amount of resource allocation
lr  (

, ,1l L=  , L  The information (number of resource 

types) is encoded into chromosomes. Based on the actual 

situation of the project, the initial population is randomly 

generated. (0)P  , the population size is set to N  . Let the 

chromosome be
1 2, , , )( DxX x x=  , D  is the 

chromosome length,
ix  Corresponding to different 

decision variable coding values. 

Fitness calculation: based on the constructed 

comprehensive fitness function ( )F x  , for the initial 
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population (0)P  Each individual in
kX  ( , ,1k N=  ) 

to calculate the fitness. The higher the fitness value, the 

better the individual performs in multi-objective 

optimization.
kX  Fitness

1

)( ) (
n

k i i k

i

F w f XX
=

=  . 

Selection operation: Use roulette wheel selection 

method to select from the population ( )P t  Select 

individuals to enter the next generation population '( )P t  

The probability of an individual being selected is 

proportional to its fitness value. The higher the fitness, the 

greater the probability of being selected. i  The fitness of

iF  , then Formula 3 represents the probability of being 

selected 
ip . 

1

i
i N

j

j

p
F

F
=

=


   (3) 

To ensure the stability of the selection process, an 

elite retention strategy can be introduced, that is, directly 

copying several individuals with the highest fitness in the 

current population to the next generation population. 

Crossover operation: for the selected population

'( )P t  Perform crossover operation to generate new 

individuals. Use single-point crossover method and 

randomly select crossover points. c  ( 1    c D   ), 

exchange two parent individuals
1 2, , , )( DaA a a=  

and
1 2, , , )( DbB b b=  The gene fragment after the 

crossover point generates the offspring individual 'A  and

'B  . Offspring 'A  and 'B  The generation method of is 

shown in Formula 4 and Formula 5 . 

1 2 1 2, , , , , , , ]' [ c c c Da a bA ba b+ +=  (4) 

1 2 1 2, , , , , , , ]' [ c c c Db b aB ab a+ +=  (5) 

To improve the effectiveness of the crossover 

operation, the crossover probability can be dynamically 

adjusted according to individual fitness
cp  , the crossover 

probability of individuals with high fitness is relatively 

low to retain excellent genes, and the crossover probability 

of individuals with low fitness is relatively high to 

promote gene diversity. i  The fitness of
iF  The average 

fitness of the population is F  , then Formula 6 represents 

the crossover probability 
i

cp . 

max
min min

max

( )i i
c c cmax cp

F F
p p p

F F

−
= + −

−
 (6) 

In Formula 6,
mincp  and

cmaxp  are the minimum and 

maximum crossover probability, respectively. 

Mutation operation: To prevent the algorithm from 

converging prematurely, the population after crossover is 

mutated. A uniform mutation method is used with a 

mutation probability of
mp  Mutate the genes of 

individuals. Suppose the mutated individuals x  The 

location of the variant gene is l  , the variation range is

, ][ lmin lmaxx x  , then Formula 7 represents the gene value 

after mutation 
lx 

. 

( )l lmin lmax lminx xx x = + −   (7) 

In Formula 7,  for[0,1]  Similarly, to enhance the 

pertinence of the mutation operation, the mutation 

probability can be adjusted according to the importance of 

the gene location. For example, the mutation probability 

of the gene near the front of the chromosome representing 

the key decision variable is relatively low to ensure the 

stability of important genes. l  The importance coefficient 

is
l  ( 0 1l   ), then Formula 8 represents the 

mutation probability 
l

mp . 

0

l

m m lp p =    (8) 

In Formula 8,
0mp  is the basic mutation probability. 

Immune operation: Introduce immune mechanism to 

immunize the mutated population. By calculating the 

similarity between individuals, similar individuals in the 

population are identified and suppressed to maintain the 

diversity of the population. In formula 9, assume that 

individual i  and j  The similarity 
ijS . 

1

1

min( , )

max( , )

D

ik jk

k
ij D

ik jk

k

x x

S

x x

=

=

=



   (9) 

Like
ijS   (  is the similarity threshold), then the 

individual i  and j  Similar, the individuals with lower 

fitness are suppressed and replaced by new random 

individuals. To dynamically adjust the similarity threshold

  , gradually decreases as the number of iterations 

increases.   value to enhance the sensitivity of the 

algorithm to similar individuals in the later stage and 

accelerate the convergence speed. Assume the number of 

iterations is t  , the maximum number of iterations is
maxT  

, expressed by formula 10  . 

0 0( )min

max

t

T
   = − −    (10) 

In Formula 10,
0  is the initial similarity threshold,

min  is the minimum similarity threshold. 

Through the iterative operation of the above immune 

genetic algorithm, the population is continuously 

optimized until the termination conditions are met, such as 

reaching the maximum number of iterations or the fitness 

value has no obvious change for several consecutive 

generations, and the optimal solution to the multi-

objective optimization problem is obtained. 

We use real-coded chromosomes and roulette 

selection with elitism (elitist rate 5%). Unless otherwise 

noted, population size P=200, generations G=400, 
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adaptive single-point crossover with   cp ∈[0.60,0.90] 

initialized at 0.75, and non-uniform mutation with gene-

importance modulation   mp ∈[0.02,0.08] initialized at 

0.04. The immune module applies similarity suppression 

using cosine similarity with a linearly decaying threshold 

t 0.90→0.50. Feasibility repair enforces precedence and 

resource constraints; elite cloning preserves the top-k 

individuals each generation. 

 

3.3 Multi-objective collaborative 

optimization mechanism 
The key to the IGA model is to achieve the 

coordinated optimization of multiple objectives such as 

construction period, cost, quality, etc. In the model, the 

balance and coordination between multiple objectives are 

achieved through the interaction between the 

comprehensive fitness function and the immune genetic 

algorithm. 

In the comprehensive fitness function ( )F x  The 

weights of different objectives
iw  Determines the relative 

importance of each goal in the optimization process. 

During the project implementation, the weight value is 

dynamically adjusted according to the actual situation of 

the project and changes in demand. For example, in the 

early stage of the project, due to the high requirements for 

the construction period, the weight of the construction 

period goal can be appropriately increased.
1w  . Assume 

that the weight adjustment factor in the early stage of the 

project is
1  , then the adjusted duration target weight

1 1 1w w =  ,and
1

1
n

i

i

w 

=

=  In the later stage of the 

project, in order to ensure the quality of the project, the 

weight of the quality target can be increased.
nw  , let the 

weight adjustment factor be
n  , adjusted quality target 

weight
n n nw w  =  , also need to meet

1

1
n

i

i

w 

=

=  . 

During the search process, the immune genetic 

algorithm continuously adjusts the genes of individuals, 

that is, the decision variables such as the construction 

schedule and resource allocation plan, to optimize the 

comprehensive fitness function value. In the selection, 

crossover, mutation and immune operation process, the 

association and constraint relationship between multiple 

objectives are fully considered. For example, when 

performing crossover operations, it is necessary not only 

to pay attention to the fitness value of the offspring 

individuals, but also to ensure the rationality of the 

offspring individuals in terms of construction period, cost, 

quality, etc. If the construction period of the offspring 

individuals is too short, it may lead to a significant 

increase in cost or a decrease in quality, so the offspring 

individuals should be corrected or regenerated. Suppose 

the construction period of the offspring individuals is 'T  

,like '   minT T  (
minT  is the shortest acceptable 

construction period), and the cost increment C  

Exceeding the acceptable range
maxC  , or quality 

indicators 'Q  Below acceptable standards
minQ  , then by 

readjusting the construction schedule (such as 

appropriately increasing the duration of key activities) and 

resource allocation (such as increasing the input of key 

resources) to correct the offspring individuals so that they 

meet the multi-objective constraints and find the optimal 

project management solution that meets the actual needs 

of the project. 

Beyond offline optimization, the proposed multi-

objective-IGA can be coupled with emerging Digital Twin 

and BIM ecosystems to support closed-loop, “twin-in-the-

loop” project control. Chromosome variables (e.g., 

activity start/finish times, resource allocations, and 

quality-critical process parameters) are mapped to BIM 

entities and schedules (4D) and linked to cost objects (5D) 

through standard interfaces (e.g., IFC- and CDE-based 

exchanges). Field telemetry from the twin—progress 

states, equipment telemetry, and inspection results—feeds 

the fitness function in near-real time by updating duration 

distributions, indirect-cost clocks, and quality indicators. 

The immune mechanism then re-optimizes under 

refreshed weights when the twin signals regime shifts 

(e.g., weather, geotechnical surprises, or supply 

disruptions). Conversely, IGA outputs write back to the 

twin to trigger look-ahead simulations, clash/space 

checks, crew-path feasibility, and procurement pulls. This 

two-way coupling improves decision latency and 

adoption: stakeholders visualize trade-offs in the 

BIM/twin dashboard, while the optimizer continuously 

adapts to site dynamics without discarding prior high-

fitness solutions. 

Weights 
time cost quality{ , , }   =  are derived via 

AHP from a seven-member expert panel (two schedulers, 

three cost engineers, two quality supervisors). Pairwise 

matrices satisfy CR<0.08. The nominal aggregate weights 

are (0.40,0.35,0.25); stage-aware adjustments are applied 

as (0.45,0.30,0.25) in early planning and (0.30,0.30,0.40) 

in late execution. All runs report results under the nominal 

setting unless stated. 

 

4  Experimental evaluation 
4.1 Experimental design 

This experiment aims to comprehensively evaluate 

the performance of the rail construction project 

management optimization method integrating multi-

objective-IGA. The experiment selected a comprehensive 

dataset from multiple actual rail construction projects, 

covering project information of different scales, 

construction environments and complexities, including 

project duration, cost input, resource allocation details, 

and quality inspection indicators. 

The experimental baseline indicators were set as the 

project management performance under the traditional 

critical path method combined with the cost budget 

management model [21], including the schedule deviation 



352 Informatica 49 (2025) 347–360 X. Liu et al. 

 

rate, cost overrun rate, and quality compliance rate. The 

experimental group adopted the management optimization 

method of integrating multi-objective-IGA proposed in 

this paper, and the control group selected the particle 

swarm optimization algorithm (PSO) for rail construction 

project management [22] and the genetic algorithm (GA) 

for rail construction project multi-objective optimization. 

By comparing the running results of the experimental 

group and the control group on the same data set, the 

performance of each method in multi-objective 

optimization was analyzed. 

We evaluate on 28 real railway projects (2.1k ± 0.7k 

activities; ≈6k precedence links), spanning 

urban/suburban/remote sites and normal/complex geology. 

A leave-projects-out protocol is used: 20 projects for 

calibration, 8 for held-out testing; weights ωk are fixed by 

AHP from a panel of 7 experts and normalized to sum to 

1. Each method (IGA/GA/PSO, plus CPM+cost baseline) 

is run 30 independent trials per test project with distinct 

seeds. Hyperparameters: population P∈{150,200}, 

generations G∈{300,400}; adaptive crossover cp

∈[0.6,0.9]; mutation mp ∈[0.02,0.08]with gene-

importance modulation; immune similarity threshold t  

decays linearly from 0.9 to 0.5. GA/PSO use matched 

P,GP,GP,G and identical feasibility repair and penalty 

rules. Fitness evaluation implements CPM over |V|,|E| 

plus cost/quality aggregation. We report mean ± SD across 

runs and projects; significance is assessed via paired 

Wilcoxon; effect sizes by Cliff’s delta. Hardware: 16-core 

3.5 GHz CPU, 64 GB RAM; software: Python 3.11, 

NumPy 1.26. 

To ensure cross-project comparability 

(small/medium/large), we normalize inputs as follows: (i) 

activity durations divided by project baseline makespan 

(CPM critical path length); (ii) direct costs divided by 

project approved budget; (iii) indirect-cost clock divided 

by baseline makespan; (iv) quality sub-indices (track 

flatness, structural strength, weld quality) scaled to [0,1] 

using standard limits; (v) resource quantities per activity 

scaled by project-level maxima. Fitness components are 

thus unitless and commensurate across scales. 

Each method is executed 30 independent runs per test 

project with distinct seeds. Normality is screened by 

Shapiro–Wilk; when violated, we use paired Wilcoxon 

signed-rank tests (α=0.05). We report mean ± SD and 95% 

CIs via bias-corrected bootstrap (10k resamples). Effect 

sizes are summarized with Cliff’s δ. 

We evaluate on 28 railway projects executed during 

2015–2023. Geographic spread includes East/Central 

China (17), Southeast Asia (6), and Eastern Europe (5). 

Data sources are owner and EPC archives under NDA; the 

dataset is private, but we release a schema, derived 

features, and summary statistics. Input features are 

harmonized across projects: activity attributes (duration, 

crew type, resource needs), precedence links, cost 

breakdowns (direct/indirect), and quality inspection 

records. A consolidated Table S1 (Appendix) lists per-

project size, environment, geology, contract form, and 

baseline KPIs. 

 

4.2 Experimental results 

 
 

Figure 1: Comparison of construction period deviation rate 

 

As shown in Figure 1, in terms of the deviation rate 

of the construction period, the fusion multi-objective-IGA 

method performed best, only 8.5%. This is because the 

global search capability of IGA enables it to find a better 
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solution in the complex construction schedule, effectively 

balance various construction links, and reduce 

construction delays. Particle swarm optimization 

algorithm (PSO) and genetic algorithm (GA) are prone to 

fall into local optimality, and it is difficult to accurately 

optimize the construction period when dealing with 

complex projects, and the deviation rate is relatively high. 

The traditional method has the most serious deviation in 

the construction period due to the lack of multi-objective 

collaborative consideration. In terms of cost overrun rate, 

the fusion multi-objective-IGA is 12.3%, which is an 

obvious advantage. IGA reduces unnecessary cost 

expenditures through comprehensive optimization of 

resource allocation and construction process. However, 

PSO and GA are not effective in cost control, and 

traditional methods have serious cost overruns due to the 

isolated treatment of cost, construction period and quality 

goals. In terms of quality compliance rate, the fusion 

multi-objective-IGA reached 88.6%, thanks to its 

comprehensive consideration of quality goals in the 

optimization process, which ensures construction quality. 

Other methods have low quality compliance rates due to 

insufficient coordination between quality and other goals. 

In terms of resource utilization, the Fusion Multi-

Objective-IGA is 85.4%, showing its efficient resource 

allocation capability. PSO, GA and traditional methods 

are not as good as the Fusion Multi-Objective-IGA in this 

respect. In terms of comprehensive satisfaction score, the 

Fusion Multi-Objective-IGA leads with 7.8 points, 

reflecting its comprehensive advantages in multi-objective 

optimization. 

 

 
Figure 2: Deviation rate of construction period for different project sizes 

 

As shown in Figure 2, the deviation rate of the 

construction period for different project sizes is compared. 

In small projects, the deviation rate of the construction 

period of the fusion multi-objective-IGA is only 7.2%, 

which is an excellent performance. Small projects are 

relatively simple, and the fusion multi-objective-IGA can 

quickly and accurately optimize the construction progress. 

Particle swarm optimization algorithm and genetic 

algorithm also have certain performance in small projects, 

but they are still not as good as the fusion multi-objective-

IGA. The traditional method has a large deviation because 

its simple management mode is difficult to deal with 

project details. In medium-sized projects, the deviation 

rate of the fusion multi-objective-IGA is 8.8%, still 

leading. As the project scale increases and the complexity 

of the problem increases, the global search advantage of 

the fusion multi-objective-IGA becomes more prominent. 

The deviation of the particle swarm optimization 

algorithm and the genetic algorithm in medium-sized 

projects has increased significantly, and the deviation of 

the traditional method has further deteriorated. In large 

projects, the deviation rate of the fusion multi-objective-

IGA is 9.5%. Although it has increased, it is still 

significantly superior to other methods. Large projects 

involve many construction links and complex factors. The 

immune mechanism and multi-objective collaborative 

optimization capabilities of the fusion multi-objective-

IGA can better adapt, while other methods are difficult to 

effectively handle complex situations [23]. 
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Figure 3: Cost overrun rate under different geological conditions 

 

As shown in Figure 3, the cost overrun rate under 

different geological conditions is compared. Under normal 

geological conditions, the cost overrun rate of fusion 

multi-objective-IGA is 10.2%, which is excellent. Normal 

geological conditions are relatively stable, and fusion 

multi-objective-IGA can reasonably plan resources and 

control costs. Particle swarm optimization algorithm and 

genetic algorithm have high cost overruns under this 

condition, and traditional methods perform poorly. Under 

complex geological conditions, the cost overrun rate of 

fusion multi-objective-IGA rises to 15.0%, but it is still 

lower than other methods. Complex geology increases the 

difficulty and uncertainty of construction. Fusion multi-

objective-IGA can cope with the problem of cost increase 

to a certain extent by virtue of its dynamic adjustment of 

multiple objectives and global search capabilities. 

However, particle swarm optimization algorithm, genetic 

algorithm and traditional methods have serious cost 

overruns under complex geological conditions due to the 

lack of effective response mechanisms [24]. 

 
 

Figure 4: Quality compliance rate at different quality requirement levels 

 

Figure 4, the quality compliance rates under different 

quality requirement levels are compared. Under low 

quality requirements, the quality compliance rate of fusion 

multi-objective-IGA is as high as 92.0%. At this time, the 

project quality requirements are relatively loose, and 

fusion multi-objective-IGA can easily balance quality and 

other goals to ensure high-quality completion. The quality 

compliance rates of particle swarm optimization algorithm, 

genetic algorithm and traditional methods are lower than 

those of fusion multi-objective-IGA in this case. Under 

medium quality requirements, the quality compliance rate 

of fusion multi-objective-IGA is 89.0%, which is still 
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leading. As quality requirements increase, fusion multi-

objective-IGA adjusts the optimization strategy to ensure 

quality. Other methods have a significant decline in 

quality compliance rates due to the difficulty in effectively 

coordinating multiple objectives. Under high quality 

requirements, the quality compliance rate of fusion multi-

objective-IGA is 85.0%. Although it has declined, it has 

significant advantages over other methods. High quality 

requirements require refined management and resource 

investment in the construction process. Fusion multi-

objective-IGA can better comprehensively consider 

various factors and meet high quality requirements [25]. 

 
Figure 5: Resource utilization of different resource types 

 

As shown in Figure 5, the resource utilization rates 

of different resource types are compared. In terms of 

human resource utilization, the fusion multi-objective-

IGA reached 88.0%. The fusion multi-objective-IGA fully 

utilized the efficiency of human resources through 

reasonable construction schedule and task allocation. The 

particle swarm optimization algorithm, genetic algorithm 

and traditional methods were relatively low in human 

resource utilization. For material resources, the fusion 

multi-objective-IGA utilization rate was 86.0%. It can 

accurately plan material procurement and use to reduce 

waste. Other methods have deficiencies in material 

resource management and low utilization rates. In terms 

of equipment resources, the fusion multi-objective-IGA 

utilization rate was 84.0%. With the optimization of the 

construction process, the equipment use is more 

reasonable and efficient. However, the particle swarm 

optimization algorithm, genetic algorithm and traditional 

methods are not flexible enough in equipment resource 

scheduling, resulting in low utilization rates. 

 

 
Figure 6: Comprehensive satisfaction scores under different construction environments 
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As shown in Figure 6, the comprehensive satisfaction 

scores in different construction environments are 

compared. In the urban environment, the comprehensive 

satisfaction score of Fusion Multi-Objective-IGA is 7.5 

points. Construction in urban environments faces more 

external interference and restrictions. Fusion Multi-

Objective-IGA can effectively coordinate various factors, 

meet project needs, and obtain high satisfaction. Particle 

swarm optimization algorithm, genetic algorithm and 

traditional methods have low satisfaction in urban 

environments because they are difficult to deal with 

complex situations. In the suburban environment, the 

score of Fusion Multi-Objective-IGA is 8.0 points. 

Compared with the urban environment, the suburban 

environment has less interference. Fusion Multi-

Objective-IGA can better play its advantages, optimize 

project management, and improve satisfaction. Other 

methods perform worse than Fusion Multi-Objective-IGA 

in this environment. In the remote area environment, the 

score of Fusion Multi-Objective-IGA is 7.0 points. 

Although there may be problems such as difficulty in 

obtaining resources in remote areas, Fusion Multi-

Objective-IGA can still guarantee project implementation 

to a certain extent through its powerful optimization 

capabilities and obtain relatively high satisfaction. 

However, Particle Swarm Optimization Algorithm, 

Genetic Algorithm and traditional methods perform 

poorly in remote areas.  

 

Table 1: Deviation rate of construction period in different project stages 

 
Project Phases Fusion of multiple 

objectives - IGA Duration 
Deviation Rate (%) 

Particle swarm 

optimization algorithm 
duration deviation rate 

(%) 

Genetic algorithm 

construction period 
deviation rate (%) 

Traditional method 

construction period 
deviation rate (%) 

Early-stage planning 6.0 12.0 15.0 20.0 

Construction Phase 9.0 16.0 19.0 25.0 

Closing Stage 10.0 18.0 22.0 28.0 

 

As shown in Table 1, the deviation rate of the 

construction period in different project stages is compared. 

In the early planning stage, the deviation rate of the 

construction period of the fusion multi-objective-IGA is 

6.0%, which is an excellent performance. In this stage, the 

fusion multi-objective-IGA uses its global search 

capability to accurately formulate construction plans and 

reduce the potential risk of construction period delays. The 

particle swarm optimization algorithm, genetic algorithm 

and traditional methods have large deviations in the 

construction period due to insufficient consideration of 

complex factors in the early planning stage. In the 

construction stage, the deviation rate of the fusion multi-

objective-IGA is 9.0%, and the progress can be 

dynamically adjusted according to the actual construction 

situation. However, when faced with various practical 

problems in the construction stage, the particle swarm 

optimization algorithm, genetic algorithm and traditional 

methods are difficult to effectively optimize the 

construction period, and the deviation increases 

significantly. In the closing stage, the deviation rate of the 

fusion multi-objective-IGA is 10.0%. The closing stage 

involves many detailed work and coordination tasks. The 

fusion multi-objective-IGA can comprehensively consider 

and try to control the deviation of the construction period. 

The deviation of the construction period of other methods 

is further deteriorated at this stage due to the problems 

accumulated in the early stage and the lack of ability to 

deal with complex situations.  

 

Table 2: Cost overrun rates under different cost control strategies 

 
Cost control strategies Fusion of multiple 

objectives - IGA cost 
overrun rate (%) 

Particle swarm 

optimization algorithm 
cost overrun rate (%) 

Genetic algorithm cost 

overrun rate (%) 

Cost overrun rate of 

traditional methods (%) 

Strict cost control 10.0 16.0 20.0 25.0 

Moderate cost control 12.0 18.0 22.0 28.0 

Relaxed cost control 15.0 22.0 26.0 32.0 

 

As shown in Table 2, the cost overrun rate under 

different cost control strategies is compared. Under the 

strict cost control strategy, the cost overrun rate of the 

fusion multi-objective-IGA is 10.0%, which performs 

well. The fusion multi-objective-IGA can ensure the 

realization of the construction period and quality goals 

while strictly controlling costs. Particle swarm 

optimization algorithm, genetic algorithm and traditional 

methods are difficult to balance multiple objectives under 

strict cost control, and the cost overrun is high. Under 

moderate cost control, the cost overrun rate of the fusion 

multi-objective-IGA is 12.0%, which can reasonably 

adjust resource allocation and construction process. The 

cost overrun of other methods is still higher than that of 

the fusion multi-objective-IGA under this situation. Under 

the loose cost control strategy, the cost overrun rate of the 

fusion multi-objective-IGA is 15.0%. Although the cost 

control is relatively loose, the fusion multi-objective-IGA 

can avoid excessive waste, and the cost overrun rate is 

lower than other methods.  
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Table 3: Quality compliance rate under different quality inspection indicators 

 
Quality inspection 

indicators 

Fusion of multiple 

objectives - IGA quality 

compliance rate (%) 

Particle swarm 

optimization algorithm 

quality compliance rate 
(%) 

Genetic algorithm quality 

compliance rate (%) 

Quality compliance rate 

of traditional methods 

(%) 

Track flatness 90.0 83.0 78.0 73.0 

Structural strength 88.0 81.0 76.0 71.0 

Welding quality 87.0 80.0 75.0 70.0 

 

As shown in Table 3, the quality compliance rates 

under different quality inspection indicators are compared. 

In terms of track flatness, the quality compliance rate of 

Fusion Multi-Objective-IGA is 90.0%. Fusion Multi-

Objective-IGA accurately optimizes the track laying 

process during the construction process to ensure that the 

track flatness meets the standards. Particle swarm 

optimization algorithm, genetic algorithm and traditional 

methods are relatively weak in track flatness control. For 

structural strength, the compliance rate of Fusion Multi-

Objective-IGA is 88.0%. It can reasonably plan the 

construction process and material use to ensure structural 

strength. Other methods have shortcomings in structural 

strength assurance. In terms of welding quality, the 

compliance rate of Fusion Multi-Objective-IGA is 87.0%. 

The welding quality is improved by optimizing the 

welding process and personnel operation. However, the 

particle swarm optimization algorithm, genetic algorithm 

and traditional methods are not effective in welding 

quality control.  

 

Table 4: Resource utilization under different resource allocation modes 

 
Resource Allocation 

Model 

Fusion of multiple 

objectives - IGA resource 

utilization (%) 

Particle swarm 

optimization algorithm 

resource utilization (%) 

Genetic algorithm 

resource utilization (%) 

Resource utilization 

of traditional methods 

(%) 

Centralized 
distribution 

87.0 78.0 73.0 68.0 

Distributed 

Assignment 

84.0 76.0 71.0 66.0 

Hybrid Allocation 86.0 77.0 72.0 67.0 

 

As shown in Table 4, the resource utilization rates 

under different resource allocation modes are compared. 

In the centralized resource allocation mode, the resource 

utilization rate of the fusion multi-objective-IGA is 87.0%. 

The fusion multi-objective-IGA can efficiently allocate 

centralized resources according to the overall needs of the 

project. The particle swarm optimization algorithm, 

genetic algorithm and traditional methods have low 

resource utilization efficiency in the centralized allocation 

mode. In the distributed allocation mode, the utilization 

rate of the fusion multi-objective-IGA is 84.0%. 

It can reasonably coordinate the use of resources at 

each distribution point. Other methods have deficiencies 

in distributed resource management and low utilization 

rates. In the hybrid allocation mode, the utilization rate of 

Fusion Multi-Objective-IGA is 86.0%. Fusion Multi-

Objective-IGA can give full play to its multi-objective 

optimization capabilities and achieve high resource 

utilization in the hybrid resource allocation mode. 

However, the resource utilization effect of particle swarm 

optimization algorithm, genetic algorithm and traditional 

methods in this mode is not as good as that of Fusion 

Multi-Objective-IGA. 

Runtime scales as O(P.G.E) for all evolutionary 

methods, with IGA adding a diversity-control term; our 

batched similarity checks keep overhead sublinear in 

practice. On the 8 held-out projects (2–3k activities), 

median single-thread wall-clock per optimization is 12.8 

min for IGA, 11.1 min for GA, and 9.4 min for PSO; with 

8–16-way parallel fitness evaluation this reduces to 3.5–

6.1 min (IGA), 3.2–5.6 min (GA), and 2.8–5.0 min (PSO). 

Thus, IGA’s accuracy gains incur modest additional 

compute yet remain within daily replanning windows. 

Parameter sensitivity. Varying weights by ±20% around 

the nominal 
time cost quality( , , ) (0.4,0.35,0.25)   =

yields schedule deviation 7.9–9.2%, cost overrun 11.7–

13.6%, quality compliance 87.6–90.1% for IGA, 

indicating stable trade-off behavior. Raising   mp  from 

0.02 to 0.08 improves escape from local minima in 

complex geology, reducing cost overrun by 0.7–1.1 pp at 

a small runtime increase (~6–9%). 

IGA achieves schedule deviation 8.5% ± 0.7% (95% 

CI [8.3, 8.7]), cost overrun 12.3% ± 1.1% ([12.0, 12.6]), 

and quality compliance 88.6% ± 1.4% ([88.2, 89.0]). 

Improvements vs. GA (18.7% ± 1.8%, 25.3% ± 2.6%, 75.6% 

± 2.3%) and PSO (15.2% ± 1.6%, 20.1% ± 2.1%, 80.3% 

± 2.0%) are significant (Wilcoxon p<0.01;δ large). All 

figures include error bars reflecting SD and shaded 95% 

CIs. 

A grid over cp ∈{0.60,0.75,0.90}, mp

∈{0.02,0.05,0.08}, and ∈{0.85,0.90} shows IGA’s best 

median performance near cp =0.75, mp =0.05, 0

=0.90→τT=0.50. Increasing mp  from 0.02 to 0.08 

reduces cost overrun by 0.7–1.1 pp under complex 

geology at a 6–9% runtime increase. Weight perturbations 

of ±20% around (0.40,0.35,0.25) (0.40,0.35,0.25) 

(0.40,0.35,0.25) keep outcomes within schedule 7.9–9.2%, 

cost 11.7–13.6%, quality 87.6–90.1%, evidencing robust 

trade-off control. 



358 Informatica 49 (2025) 347–360 X. Liu et al. 

 

We compare GA (baseline), IGA without immune 

suppression (operators identical; τ\tauτ disabled), and full 

IGA. On held-out projects (30 runs/project), GA yields 

schedule 18.7% ± 1.8%, cost 25.3% ± 2.6%, quality 75.6% 

± 2.3%. Disabling immune suppression improves GA 

modestly: 10.1% ± 1.0%, 14.8% ± 1.3%, 86.2% ± 1.6%. 

Full IGA further improves to 8.5% ± 0.7%, 12.3% ± 1.1%, 

88.6% ± 1.4%. Differences between full IGA and no-

immune are significant across metrics (Wilcoxon p<0.01), 

confirming the added value of the immune mechanism for 

diversity maintenance and convergence reliability. 

 

4.3 Experimental discussion 
The experimental results show that the fusion multi-

objective -IGA outperforms the PSO, GA and CPM+ cost 

models in key indicators such as project duration deviation, 

cost overruns, quality compliance, resource utilization and 

comprehensive satisfaction. Its advantages stem from the 

global search of multi-objective collaboration and 

immune genetics: through phased dynamic weights and 

similarity suppression, premature convergence is avoided, 

and better solutions are continuously obtained under 

different geological conditions, construction 

environments, resource allocation and cost strategies. The 

dataset covers actual railway projects of multiple scales 

and scenarios, and is representative to a certain extent. 

Therefore, the results have external validity and 

generalisability. However, real engineering is still affected 

by policy changes, social environments and unexpected 

events. The application of models needs to be carefully 

evaluated and calibrated in combination with the context. 

The time complexity of the proposed approach is 

O(P.G.E), where PPP is population size, G is generations, 

and E is the cost of one fitness evaluation (CPM 

propagation over |V| activities and |E|precedence links 

plus cost/quality aggregation), typically E=O(|V|+|E|). 

Memory scales as O(P.L) with chromosome length L. On 

a large rail project (≈2,100 activities, ≈6,000 precedence 

links, three resource classes), a representative 

configuration P=200P=200P=200, G=400G=400G=400 

yielded ~80,000 fitness evaluations. On a 16-core 

workstation (3.5 GHz CPU, 64 GB RAM), median wall-

clock time was 12.8 minutes with single-threaded 

evaluation; enabling parallel fitness evaluation across 8–

16 workers reduced wall-clock to 3.5–6.1 minutes.For 

very large instances (≈5,000+ activities), runtime grows 

near-linearly in practice with|V|+|E|per evaluation; 

practical mitigation includes (i) parallel evaluation, (ii) 

elitist population capping, and (iii) warm-starting from the 

best individuals of previous runs (e.g.when re-optimizing 

after schedule disturbances). These characteristics make 

the method suitable for daily or intra-shift replanning on 

large projects. 

 

5  Discussion 
Performance under varied environments. Across 

urban, suburban, and remote settings and under normal vs. 

complex geology, IGA consistently outperformed PSO 

and GA on schedule deviation, cost overrun, and quality 

compliance. When geology introduced correlated delays 

and rework risk, PSO/GA frequently converged to locally 

feasible yet brittle schedules, whereas IGA preserved a 

portfolio of high-fitness, diverse candidates that adapted 

after shocks, sustaining lower overruns. 

Why IGA performs better (computational reasoning). 

IGA augments GA’s exploration–exploitation balance 

with immune-based similarity suppression and adaptive 

operators. The suppression scheme prunes near-duplicates, 

preserving genotypic diversity and reducing premature 

convergence. Adaptive ,c mp p  respond to fitness 

dispersion: when variance narrows, exploration intensifies 

to escape local basins; when variance widens, exploitation 

consolidates gains. Empirically, this yields smoother 

fitness trajectories and faster recovery after constraint or 

data updates pushed by field telemetry. 

Trade-offs. IGA introduces overhead for similarity 

computation and diversity control. Complexity is O(P⋅G⋅E) 

with an extra similarity term O(P2) if implemented naively; 

we mitigate via (i) mini-batch similarity checks, (ii) sparse 

hashing of chromosomes, and (iii) parallel fitness 

evaluation. In large instances (≈5k activities), runtimes 

grow near-linearly with evaluation cost; however, 

parallelization (8–16 workers) keeps wall-clock within 

shift-planning windows (minutes). 

Practical significance and generalizability. The twin-

ready, BIM-linked formulation enables closed-loop 

replanning, translating optimization outputs into look-

ahead simulations and constraint checks, while ingesting 

progress and inspection data to refresh weights. This 

supports daily or intra-shift updates without discarding 

prior high-fitness solutions, improving stakeholder trust 

and adoption. Given the formulation relies on CPM 

propagation and measurable quality indices, the approach 

generalizes to adjacent linear-infrastructure projects with 

modest adaptation. 

Given deployment in public infrastructure, 

optimization outputs must be auditable and advisory, not 

fully automated. Mis-specification could affect public 

safety or budgets; therefore, we expose weight settings, 

constraint repairs, and change logs, and require human 

sign-off for schedule changes beyond pre-defined 

thresholds. For real-time decision support, we outline a 

BIM/Digital-Twin deployment where optimizer proposals 

are sandbox-simulated (clash/space, crew paths, resource 

conflicts) before enactment. Data governance adheres to 

contractual NDAs and privacy rules; model updates are 

versioned and stress-tested on disturbance scenarios 

(geology/weather/supply) prior to rollout. 

 

6  Conclusion 
This study focuses on the multi-objective 

optimization problem in rail construction project 

management, and deeply analyzes the limitations of 

traditional management methods and existing intelligent 

algorithms. By constructing an innovative model 

integrating multi-objective-IGA, the collaborative 

optimization of key objectives such as construction period, 

cost, and quality is achieved. The experimental results 

show that compared with the traditional critical path 

method combined with cost budget management mode 
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(construction period deviation rate 25.0%, cost overrun 

rate 30.0%, quality compliance rate 70.0%, and 

comprehensive satisfaction score 4.0 points), as well as 

particle swarm optimization algorithm (construction 

period deviation rate 15.2%, cost overrun rate 20.1%, 

quality compliance rate 80.3%, and comprehensive 

satisfaction score 6.2 points) and genetic algorithm 

(construction period deviation rate 18.7%, cost overrun 

rate 25.3%, quality compliance rate 75.6%, and 

comprehensive satisfaction score 5.5 points), the fusion 

multi-objective-IGA method shows excellent 

performance. In terms of construction period control, the 

deviation rate is as low as 8.5%, effectively reducing 

delays; the cost overrun rate is only 12.3%, achieving 

good cost control; the quality compliance rate is 88.6%, 

ensuring the quality of the project; the resource utilization 

rate is 85.4%, improving the efficiency of resource use; 

the comprehensive satisfaction score is 7.8 points, which 

is highly recognized. This research result provides a new 

and effective means for rail construction project 

management, helps to improve project management 

efficiency and benefits, promotes the healthy and 

sustainable development of the industry, and has 

important guiding and reference significance for future 

related research and practice. 
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