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We address railway construction project management as a multi-objective optimization over schedule,
cost, and quality. The proposed approach reformulates the tri-objective problem via a weighted-sum
fitness F = ¥ k € {time,cost,quality}w, fi, where @, are AHP-derived weights and fk encode CPM-
based makespan, direct/indirect cost, and a composite quality index. Decision variables are real-coded
(activity start/finish adjustments, resource allocations, and quality-critical process parameters). An
Immune Genetic Algorithm (IGA) performs selection (roulette with elitism), single-point crossover with
adaptive probability p <[0.6,0.9], non-uniform mutation with p <[0.02,0.08] and gene-importance
modulation, plus immune suppression with a decaying similarity threshold 7, . On a dataset of 28 railway
projects (2.1k+0.7k activities), we compare against CPM+cost budgeting (baseline), PSO, and GA under
identical constraints and weight settings. IGA achieves a schedule deviation of 8.5% (vs. 25.0% baseline,
15.2% PSO, 18.7% GA), cost overrun 12.3% (vs. 30.0%, 20.1%, 25.3%), and quality compliance 88.6%
(vs. 70.0%, 80.3%, 75.6%); resource utilization reaches 85.4% and overall satisfaction 7.8/10. Typical
configuration uses population P=200, generations G=400; median wall-clock is 12.8 min single-threaded
and 3.5-6.1 min with parallel fitness evaluation. Results demonstrate that IGA’s global search and
diversity maintenance yield consistent gains over PSO/GA while remaining practical for daily replanning.

Povzetek: Analizirano je vodenje Zelezniskih gradbenih projektov kot tri-kriterijska optimizacija casa,
stroSkov in kakovosti ter predlagan imunski genetski algoritem. Razvita metoda dosega manjse casovne
zamike, nizje stroskovne prekoracitve in visjo skladnost kakovosti kot GA in PSO ter je uporabna za

sprotno preplaniranje.

1 Introduction

Rail construction programs deploy vast human,
material, and technological resources worldwide, with
annual investments reaching hundreds of billions of US
dollars [1]. Yet flagship projects still suffer major
schedule slippage, budget escalation, and quality
shortfalls; for example, a US$5 billion, 3-year project
overran time by ~50% and cost by ~US$1 billion, with
elevated post-handover maintenance [2]. These outcomes
expose persistent weaknesses in coordinating multiple
objectives in project management.

Rail projects inherently couple schedule, cost, and
quality (SCQ). However, traditional practices often
optimize these dimensions in isolation and lack
mechanisms to manage their trade-offs under uncertainty
[3]. Evidence shows that about 60% of projects managed
with such methods experience delay, cost drift, or quality
non-conformance, undermining service delivery and
public value [4,5].

Research has advanced schedule-planning models
that improve time prediction but understate cost impacts
[6], and cost-focused systems that compress budgets at the

expense of schedule adherence and quality assurance [7].
Dual-objective intelligent methods show promise, yet
performance commonly degrades once quality and real-
world disturbances (e.g., geology, weather, supply
variability) are introduced. This study addresses these
gaps by framing rail project management as a tri-objective
optimization and proposing an immune genetic algorithm
(IGA) to coordinate SCQ, targeting <10% schedule
deviation, <15% cost overrun, and >85% quality
compliance.

Research questions. RQ1: Does the proposed IGA
achieve superior schedule deviation, cost overrun, and
quality compliance versus GA and PSO under identical
constraints? RQ2: Is the superiority preserved under
exogenous disturbances (geological variability, adverse
weather, supply shocks)? RQ3: Is runtime compatible
with daily or intra-shift replanning on commodity
hardware? Hypotheses and success criteria. H1: IGA
reduces schedule deviation to <10% and cost overrun to
<15% while raising quality compliance to >85% against
GAJ/PSO (two-sided Wilcoxon signed-rank, 0=0.05). H2:
Under disturbance scenarios, IGA maintains statistically
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significant advantages on all three objectives. H3: Median
wall-clock <15 minutes on a single 16-core node for 2—3k-
activity projects, <6 minutes with parallel fitness
evaluation. Secondary criteria include resource utilization
>83% and satisfaction >7.5/10.

2 Literature review
2.1 Analysis of traditional rail construction

project management methods

Traditional methods either focus on construction
period or cost, lacking goal synergy. Linear programming
models are subject to disturbances such as geological
conditions, equipment, and material supply. The on-time
completion rate is approximately 30%, with an average
delay of about 20% [8,9]. The standard cost method can
easily compress quality and project duration, with quality
issues accounting for approximately 40% and causing
delays of about 15% [10]. Under complex geological
conditions, the deviation between the construction period
and cost of CPM+ can reach 25% and 30% respectively,
making it difficult to meet the three-objective
management [11].

2.2 Application and shortcomings of
intelligent algorithms in rail construction
project management

PSO can predict progress to approximately 70% in
simple scenarios, but it drops below 50% in large multi-
objective scenarios, easily falling into local optimum [12-
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15]. The error of NN on the cost side is less than 10%
under ideal conditions and more than 30% in the landing
environment [16,17]. GA can optimize the dual objectives
of time and cost, but when extended to the triple objective
including quality, the overall satisfaction rate is only about
40%, with a sharp increase in search space and unstable
convergence [18-20].

2.3 Development prospects of rail
construction project management
optimization method integrating multi-
objective-IGA

IGA maintains diversity and inhibits precocious
puberty through immunosuppression, and has stronger
global search and robustness compared to traditional GA.
Relevant studies show that the quality of the optimal
solution can be improved by approximately 30% [14,15].
In the initial test of the railway scenario, IGA
demonstrated the potential for collaborative optimization
of the three goals: a construction period deviation of no
more than 10%, a cost overrun of approximately 15%, and
a quality compliance of over 85%.

2.4 Summary of related work and gaps

To substantiate the state of the art and clarify this
paper’s contribution, Table 1 summarizes representative
studies on construction/railway project optimization, the
algorithms used, target objectives, outcomes, and
observed gaps relevant to real-world deployment.

Table 1: Prior work on project optimization: algorithms, objectives, outcomes, and gaps

(SFEI::); Algorithm Objectives Data/Setting Reported outcome Gaps vs. this work
Zhan et al Conrsgr:gtt;on Pareto fronts, Limited explicit quality
' NSGA-III Time—Cost (primarily) - prol - improved decision modeling; robustness to
[8] (simulated/empirical L
) support site disturbances not central
Multi-project HR Lo Better resource R )
M| nsea scheclling environments lvelingand | ance merc
(time/resource) throughput 4 P
Cost/quality not integrated;
Jia [11] Improved GA Schedule optimization Construction plans Faster convergence sensitivity to disruptions
than basic GA
unreported
. . s Quality dimension absent;
Ghorogi et MOWOA + Time_Cost_Resource Construction Competitive time—cost limited field robustness
al. [7] NSGA-II scheduling trade-offs -
analysis
Guo & . Project management SOTA synthesis and . |dentifies TCQ gap; no
Survey/Analysis — Lo R implemented tri-objective
Zhang [14] optimization future directions method
Lotfi et al. Robust multi- Time—Cost—Quality— id d Robust trade-off MetroquFalllored'to case;
[21] criteria (TCQEE) Energy—Environment Bridge case study schedules scalability/runtime not
benchmarked vs. GA/PSO
Dasovic et Sustainable Tool-optimization Lacks |mmune-_basec_i
Survey — - . . search and dynamic weight
al. [20] scheduling tools integration map -
adaptation
Elyasi et al. brid/Parallel | Soft hi llelizati GA scalabil lied to TCQ i rail;
[15)/\Varol Hybrid/Paralle oftware arc |t_ecture Parg e ization ( A scalability Not applie to TCQ in rail;
etal. [4] GA (methodological) insights improvements no immune mechanisms

Argumentation. Existing SOTA either omits an
explicit quality objective, lacks tri-objective TCQ
coupling, or provides limited robustness under real
disturbances (geology, weather, supply shocks). Our IGA

addresses these by (i) embedding a measurable quality
index into the fitness, (ii) enabling dynamic weights to
reflect stage-specific priorities, and (iii) maintaining
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population diversity via immune suppression to avoid
local optima when conditions shift.

3 Research methods
3.1 Fusion of multi-objective-IGA model
construction

In the field of rail construction project management,
given that the coordinated optimization of multiple
objectives such as construction period, cost, and quality is
extremely critical, a management optimization model
integrating multiple objectives - IGA (immune genetic
algorithm) has been constructed. This model deeply
integrates the advantages of multi-objective decision-
making theory and immune genetic algorithm, and strives
to break the difficulties faced by traditional management
methods and existing intelligent algorithms in multi-
objective processing.

Track construction projects involve many complex

objectives. Let the objective setbe O ={O,,0,,---,0,}

.in, Ol Corresponding to the construction period target,

the objective function can be constructed through the
critical path method (CPM). Assume that the project

includesm Activities ] The duration isd; , the logical
relationship between activities is expressed through the
adjacency matrix A express, AJ. =1 Indicates activity i
Yes Activity | The immediate preceding activities,
A; =0 Then, Formula 1 represents the total duration of

the project T

T=maxg, > > Ad;-&, @)

i1 j-L

In Formula 1, é‘ik is the Kronecker function, when
i =K hour, 5, =1 ;otherwise 5, =0 Therefore, the
construction period objective function f,(X) Can be

written as f,(X) =T (X) ,here X It includes decision

variables such as activity duration adjustment and activity
time changes under the influence of resource allocation.

02 Represents the cost target. Cost is mainly

composed of direct cost and indirect cost. Direct cost is
related to resource input and resource unit price. | The

input of resources isI; , unit price is P, , then the direct

L

cost C, :ZI’, P, The indirect cost is related to the
1=1

construction period. Let the indirect cost per unit time be

Ci,q » the construction period isT , then the indirect cost

C,.4=C.T So the cost objective function is

fz (X) = Cd (X) + Cind (X) .

Informatica 49 (2025) 347-360 349

For quality goals On , by building a quality
assessment index system to quantify. For example, track
laying accuracy (, , Structural strength compliance rate

g, And other quality indicators, the comprehensive

s

quality evaluation function isQ = Z:ozsqS Jina is the
s=1

weight of each quality indicator. Then the quality

objective function f_(X) =Q(X) .

In order to transform the multi-objective
optimization problem into a single-objective optimization
problem that is easy to solve, the linear weighted method
is used to construct the comprehensive fitness function

F (X) as shown in Formula 2 .
n
F(x)= ZWi fi (X) )
i=1
In Formula 2, W, For the goal Oi The weight of

n
Zwi =1,0<w, <1. Determine the weight W, When
i=1
using expert evaluation combined with the analytic
hierarchy process (AHP), construct a judgment matrix M
.element M i Indicates the target Oi Relative to targetOj
The importance of the weight vector is calculated by the
eigenvector methodW = (Wl,WZ,---,Wn)T, ensure that

the fitness function meets the actual needs of the project.

3.2 Application of immune genetic algorithm

in the model

As the core optimization driving force of the model,
the immune genetic algorithm plays a pivotal role in the
fusion multi-objective IGA model. It innovatively
introduces the immune mechanism based on the
traditional genetic algorithm, effectively avoids the risk of
the algorithm falling into the local optimal solution, and
significantly enhances the global search capability.

Coding and initial population generation: Encoding
is implemented for the decision variables of the rail
construction project. Real number coding is used, for
example, the time of each key node in the construction

schedule ist; ( j=21---,m ,m is the number of key
nodes) and the amount of resource allocation I, (

I=1---,L , L The information (number of resource

types) is encoded into chromosomes. Based on the actual
situation of the project, the initial population is randomly

generated. P(0) , the population size issetto N . Let the
chromosome be X =(X,X,,--*,X;) , D is the
chromosome length, X; Corresponding to different

decision variable coding values.
Fitness calculation: based on the constructed
comprehensive fitness function F(X) , for the initial
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population P(0) Each individual in X, (k=1,---,N )

to calculate the fitness. The higher the fitness value, the
better the individual performs in multi-objective

n
optimization. X, Fitness F (X, ) = Z:Wi f.(X,) .
i-1
Selection operation: Use roulette wheel selection
method to select from the population P(t) Select
individuals to enter the next generation population P '(t)

The probability of an individual being selected is
proportional to its fitness value. The higher the fitness, the
greater the probability of being selected. i The fitness of

F, . then Formula 3 represents the probability of being
selected ;.
F

- i
2F
j=1

To ensure the stability of the selection process, an
elite retention strategy can be introduced, that is, directly
copying several individuals with the highest fitness in the
current population to the next generation population.

Crossover operation: for the selected population
P'(t) Perform crossover operation to generate new
individuals. Use single-point crossover method and
randomly select crossover points. C (1 < ¢ < D),

exchange two parent individuals A=(a1,a2,---,aD)
and B=(b,b,,---,b,) The gene fragment after the

crossover point generates the offspring individual A" and
B' . Offspring A' and B' The generation method of is
shown in Formula 4 and Formula 5 .

A=[a, 8, a,0,,0.5, 0+ bp] ()
B'=[b,b,,--, 0, 81,850+, 85] )

To improve the effectiveness of the crossover
operation, the crossover probability can be dynamically

adjusted according to individual fitness p, , the crossover

P = (3)

probability of individuals with high fitness is relatively
low to retain excellent genes, and the crossover probability
of individuals with low fitness is relatively high to

promote gene diversity. i The fitness of F. The average

fitness of the population is F |, then Formula 6 represents
the crossover probability p, .
i F . —F

= Py + —— -p..) (6
pC pleﬁ Fmax _ F (pcmax pcmln) ( )

In Formula 6, p. .., and P, are the minimum and

maximum crossover probability, respectively.

Mutation operation: To prevent the algorithm from
converging prematurely, the population after crossover is
mutated. A uniform mutation method is used with a

mutation probability of p_~ Mutate the genes of
individuals. Suppose the mutated individuals X The
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location of the variant gene is| , the variation range is
(X x,max] , then Formula 7 represents the gene value

after mutation X, .

X0 = Kimin +5(X|max - lein) (7
In Formula 7,0 for[0,1] Similarly, to enhance the

pertinence of the mutation operation, the mutation
probability can be adjusted according to the importance of
the gene location. For example, the mutation probability
of the gene near the front of the chromosome representing
the key decision variable is relatively low to ensure the

stability of important genes.| The importance coefficient
is f (0<f <1 ), then Formula 8 represents the

mutation probability pr'n .
P = Pro ®)

In Formula 8, p,, is the basic mutation probability.
Immune operation: Introduce immune mechanism to
immunize the mutated population. By calculating the
similarity between individuals, similar individuals in the
population are identified and suppressed to maintain the
diversity of the population. In formula 9, assume that

individuali and j The similarity S;; .

min(xik'Xjk)

(9)

Il
D[z

max (X, Xjk)

=
1
LN

Like S; > & (6 is the similarity threshold), then the

individual i and J Similar, the individuals with lower

fitness are suppressed and replaced by new random
individuals. To dynamically adjust the similarity threshold

6 , gradually decreases as the number of iterations
increases. & value to enhance the sensitivity of the

algorithm to similar individuals in the later stage and
accelerate the convergence speed. Assume the number of

iterations ist , the maximum number of iterations isTmax
, expressed by formula 10 6.
t
0=06,- T (G,

max

- emin) (10)

In Formula 10, §; is the initial similarity threshold,

0., is the minimum similarity threshold.

Through the iterative operation of the above immune
genetic algorithm, the population is continuously
optimized until the termination conditions are met, such as
reaching the maximum number of iterations or the fitness
value has no obvious change for several consecutive
generations, and the optimal solution to the multi-
objective optimization problem is obtained.

We use real-coded chromosomes and roulette
selection with elitism (elitist rate 5%). Unless otherwise
noted, population size P=200, generations G=400,
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adaptive single-point crossover with . €[0.60,0.90]
initialized at 0.75, and non-uniform mutation with gene-
importance modulation P, €[0.02,0.08] initialized at

0.04. The immune module applies similarity suppression
using cosine similarity with a linearly decaying threshold

7,0.90—0.50. Feasibility repair enforces precedence and
resource constraints; elite cloning preserves the top-k

individuals each generation.

3.3 Multi-objective collaborative

optimization mechanism

The key to the IGA model is to achieve the
coordinated optimization of multiple objectives such as
construction period, cost, quality, etc. In the model, the
balance and coordination between multiple objectives are
achieved through the interaction between the
comprehensive fitness function and the immune genetic
algorithm.

In the comprehensive fitness function F(X) The

weights of different objectives w; Determines the relative

importance of each goal in the optimization process.
During the project implementation, the weight value is
dynamically adjusted according to the actual situation of
the project and changes in demand. For example, in the
early stage of the project, due to the high requirements for
the construction period, the weight of the construction

period goal can be appropriately increased. w, . Assume

that the weight adjustment factor in the early stage of the
project is y, , then the adjusted duration target weight

n
W, =Wy, .and Zwi’ =1 In the later stage of the
i=1
project, in order to ensure the quality of the project, the
weight of the quality target can be increased. w,, , let the

weight adjustment factor be y, , adjusted quality target

n
weightw,, =W 5. , also need to meetZWi, =1.
i=1
During the search process, the immune genetic
algorithm continuously adjusts the genes of individuals,
that is, the decision variables such as the construction
schedule and resource allocation plan, to optimize the
comprehensive fitness function value. In the selection,
crossover, mutation and immune operation process, the
association and constraint relationship between multiple
objectives are fully considered. For example, when
performing crossover operations, it is necessary not only
to pay attention to the fitness value of the offspring
individuals, but also to ensure the rationality of the
offspring individuals in terms of construction period, cost,
quality, etc. If the construction period of the offspring
individuals is too short, it may lead to a significant
increase in cost or a decrease in quality, so the offspring
individuals should be corrected or regenerated. Suppose

the construction period of the offspring individuals is T '

Informatica 49 (2025) 347-360 351

Jdike T' < T (T, Iis the shortest acceptable

increment AC
or quality

construction period), and the cost
Exceeding the acceptable range AC

max '’
indicators Q"' Below acceptable standardsQ, .., then by

readjusting the construction schedule (such as
appropriately increasing the duration of key activities) and
resource allocation (such as increasing the input of key
resources) to correct the offspring individuals so that they
meet the multi-objective constraints and find the optimal
project management solution that meets the actual needs
of the project.

Beyond offline optimization, the proposed multi-
objective-IGA can be coupled with emerging Digital Twin
and BIM ecosystems to support closed-loop, “twin-in-the-
loop” project control. Chromosome variables (e.g.,
activity start/finish times, resource allocations, and
quality-critical process parameters) are mapped to BIM
entities and schedules (4D) and linked to cost objects (5D)
through standard interfaces (e.g., IFC- and CDE-based
exchanges). Field telemetry from the twin—progress
states, equipment telemetry, and inspection results—feeds
the fitness function in near-real time by updating duration
distributions, indirect-cost clocks, and quality indicators.
The immune mechanism then re-optimizes under
refreshed weights when the twin signals regime shifts
(e.g., weather, geotechnical surprises, or supply
disruptions). Conversely, IGA outputs write back to the
twin to trigger look-ahead simulations, clash/space
checks, crew-path feasibility, and procurement pulls. This
two-way coupling improves decision latency and
adoption: stakeholders visualize trade-offs in the
BIM/twin dashboard, while the optimizer continuously
adapts to site dynamics without discarding prior high-
fitness solutions.

Weights @ ={,

AHP from a seven-member expert panel (two schedulers,
three cost engineers, two quality supervisors). Pairwise
matrices satisfy CR<0.08. The nominal aggregate weights
are (0.40,0.35,0.25); stage-aware adjustments are applied
as (0.45,0.30,0.25) in early planning and (0.30,0.30,0.40)
in late execution. All runs report results under the nominal
setting unless stated.

imes Deostr Dyualivy } @r€ derived via

4 Experimental evaluation

4.1 Experimental design

This experiment aims to comprehensively evaluate
the performance of the rail construction project
management optimization method integrating multi-
objective-IGA. The experiment selected a comprehensive
dataset from multiple actual rail construction projects,
covering project information of different scales,
construction environments and complexities, including
project duration, cost input, resource allocation details,
and quality inspection indicators.

The experimental baseline indicators were set as the
project management performance under the traditional
critical path method combined with the cost budget
management model [21], including the schedule deviation
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rate, cost overrun rate, and quality compliance rate. The
experimental group adopted the management optimization
method of integrating multi-objective-IGA proposed in
this paper, and the control group selected the particle
swarm optimization algorithm (PSO) for rail construction
project management [22] and the genetic algorithm (GA)
for rail construction project multi-objective optimization.
By comparing the running results of the experimental
group and the control group on the same data set, the
performance of each method in multi-objective
optimization was analyzed.

We evaluate on 28 real railway projects (2.1k £ 0.7k
activities; ~6k  precedence links), spanning

urban/suburban/remote sites and normal/complex geology.

A leave-projects-out protocol is used: 20 projects for
calibration, 8 for held-out testing; weights wy are fixed by
AHP from a panel of 7 experts and normalized to sum to
1. Each method (IGA/GA/PSO, plus CPM+cost baseline)
is run 30 independent trials per test project with distinct

seeds. Hyperparameters: population Pe{150,200},
generations G€{300,400}; adaptive crossover [,
€[0.6,0.9]; mutation P, €[0.02,0.08]with  gene-

importance modulation; immune similarity threshold 7,

decays linearly from 0.9 to 0.5. GA/PSO use matched
P,GP,GP,G and identical feasibility repair and penalty
rules. Fitness evaluation implements CPM over |V| |E|
plus cost/quality aggregation. We report mean + SD across
runs and projects; significance is assessed via paired
Wilcoxon; effect sizes by Cliff’s delta. Hardware: 16-core
3.5 GHz CPU, 64 GB RAM; software: Python 3.11,
NumPy 1.26.

X. Liuetal.

To ensure cross-project comparability
(small/medium/large), we normalize inputs as follows: (i)
activity durations divided by project baseline makespan
(CPM critical path length); (ii) direct costs divided by
project approved budget; (iii) indirect-cost clock divided
by baseline makespan; (iv) quality sub-indices (track
flatness, structural strength, weld quality) scaled to [0,1]
using standard limits; (v) resource quantities per activity
scaled by project-level maxima. Fitness components are
thus unitless and commensurate across scales.

Each method is executed 30 independent runs per test
project with distinct seeds. Normality is screened by
Shapiro-Wilk; when violated, we use paired Wilcoxon
signed-rank tests (0=0.05). We report mean = SD and 95%
Cls via bias-corrected bootstrap (10k resamples). Effect
sizes are summarized with Cliff’s 8.

We evaluate on 28 railway projects executed during
2015-2023. Geographic spread includes East/Central
China (17), Southeast Asia (6), and Eastern Europe (5).
Data sources are owner and EPC archives under NDA, the
dataset is private, but we release a schema, derived
features, and summary statistics. Input features are
harmonized across projects: activity attributes (duration,
crew type, resource needs), precedence links, cost
breakdowns (direct/indirect), and quality inspection
records. A consolidated Table S1 (Appendix) lists per-
project size, environment, geology, contract form, and
baseline KPlIs.

4.2 Experimental results

Performance Comparison of Different Strategies

251

201

Deviation and Overrun Rates (%)

Cost Overrun Rate (%)
—&— Quality Compliance Rate (%)

304 .\ —e— Schedule Deviation Rate (%)

Resource Utilization Rate (%)
—¥— Comprehensive Satisfaction Score (1 - 10) —“‘———mf_,_,

3 = z

%)

Compliance, Utilization Rates (%) and Satisfaction Score

Strategies

Figure 1: Comparison of construction period deviation rate

As shown in Figure 1, in terms of the deviation rate
of the construction period, the fusion multi-objective-IGA

method performed best, only 8.5%. This is because the
global search capability of IGA enables it to find a better



Multi-Objective Optimization of Rail Construction Project...

solution in the complex construction schedule, effectively
balance various construction links, and reduce
construction  delays. Particle swarm optimization
algorithm (PSO) and genetic algorithm (GA) are prone to
fall into local optimality, and it is difficult to accurately
optimize the construction period when dealing with
complex projects, and the deviation rate is relatively high.
The traditional method has the most serious deviation in
the construction period due to the lack of multi-objective
collaborative consideration. In terms of cost overrun rate,
the fusion multi-objective-1GA is 12.3%, which is an
obvious advantage. IGA reduces unnecessary cost
expenditures through comprehensive optimization of
resource allocation and construction process. However,
PSO and GA are not effective in cost control, and
traditional methods have serious cost overruns due to the
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isolated treatment of cost, construction period and quality
goals. In terms of quality compliance rate, the fusion
multi-objective-IGA reached 88.6%, thanks to its
comprehensive consideration of quality goals in the
optimization process, which ensures construction quality.
Other methods have low quality compliance rates due to
insufficient coordination between quality and other goals.
In terms of resource utilization, the Fusion Multi-
Obijective-IGA is 85.4%, showing its efficient resource
allocation capability. PSO, GA and traditional methods
are not as good as the Fusion Multi-Objective-IGA in this
respect. In terms of comprehensive satisfaction score, the
Fusion Multi-Objective-IGA leads with 7.8 points,
reflecting its comprehensive advantages in multi-objective
optimization.

Kernel Density Plot of Schedule Deviation Rate by Algorithm

0.25 1

0.20 1

Density
=
o

0.10 1

0.05 1

0.00
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5 10 15

20 25 30 35

Schedule Deviation Rate (%)

Figure 2: Deviation rate of construction period for different project sizes

As shown in Figure 2, the deviation rate of the
construction period for different project sizes is compared.
In small projects, the deviation rate of the construction
period of the fusion multi-objective-IGA is only 7.2%,
which is an excellent performance. Small projects are
relatively simple, and the fusion multi-objective-IGA can
quickly and accurately optimize the construction progress.
Particle swarm optimization algorithm and genetic
algorithm also have certain performance in small projects,
but they are still not as good as the fusion multi-objective-
IGA. The traditional method has a large deviation because
its simple management mode is difficult to deal with
project details. In medium-sized projects, the deviation
rate of the fusion multi-objective-IGA is 8.8%, still
leading. As the project scale increases and the complexity

of the problem increases, the global search advantage of
the fusion multi-objective-IGA becomes more prominent.
The deviation of the particle swarm optimization
algorithm and the genetic algorithm in medium-sized
projects has increased significantly, and the deviation of
the traditional method has further deteriorated. In large
projects, the deviation rate of the fusion multi-objective-
IGA is 9.5%. Although it has increased, it is still
significantly superior to other methods. Large projects
involve many construction links and complex factors. The
immune mechanism and multi-objective collaborative
optimization capabilities of the fusion multi-objective-
IGA can better adapt, while other methods are difficult to
effectively handle complex situations [23].
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Cost Overrun Rate Distribution by Geological Condition and Algorithm
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Figure 3: Cost overrun rate under different geological conditions

As shown in Figure 3, the cost overrun rate under
different geological conditions is compared. Under normal
geological conditions, the cost overrun rate of fusion
multi-objective-IGA is 10.2%, which is excellent. Normal
geological conditions are relatively stable, and fusion
multi-objective-IGA can reasonably plan resources and
control costs. Particle swarm optimization algorithm and
genetic algorithm have high cost overruns under this
condition, and traditional methods perform poorly. Under
complex geological conditions, the cost overrun rate of

fusion multi-objective-IGA rises to 15.0%, but it is still
lower than other methods. Complex geology increases the
difficulty and uncertainty of construction. Fusion multi-
objective-IGA can cope with the problem of cost increase
to a certain extent by virtue of its dynamic adjustment of
multiple objectives and global search capabilities.
However, particle swarm optimization algorithm, genetic
algorithm and traditional methods have serious cost
overruns under complex geological conditions due to the
lack of effective response mechanisms [24].

Quality Compliance Rate Distribution by Quality Requirement Level and Algorithm

95

85

8

=

Quality Compliance Rate (%)

-
b

-
"

70

65

Algorithm
B Multi - objective IGA
[ Particle Swarm Optimization
B Genetic Algorithm
I Traditional Method

.

Low Qualily‘Requiremenr

Medium Qualit‘y Requirement

High Quality‘ Requirement

Quality Requirement Level

Figure 4: Quality compliance rate at different quality requirement levels

Figure 4, the quality compliance rates under different
quality requirement levels are compared. Under low
quality requirements, the quality compliance rate of fusion
multi-objective-IGA is as high as 92.0%. At this time, the
project quality requirements are relatively loose, and
fusion multi-objective-IGA can easily balance quality and

other goals to ensure high-quality completion. The quality
compliance rates of particle swarm optimization algorithm,
genetic algorithm and traditional methods are lower than
those of fusion multi-objective-IGA in this case. Under
medium quality requirements, the quality compliance rate
of fusion multi-objective-1GA is 89.0%, which is still
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leading. As quality requirements increase, fusion multi-
objective-IGA adjusts the optimization strategy to ensure
quality. Other methods have a significant decline in
quality compliance rates due to the difficulty in effectively
coordinating multiple objectives. Under high quality
requirements, the quality compliance rate of fusion multi-
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objective-IGA is 85.0%. Although it has declined, it has
significant advantages over other methods. High quality
requirements require refined management and resource
investment in the construction process. Fusion multi-
objective-IGA can better comprehensively consider
various factors and meet high quality requirements [25].

Kernel Density Plot of Resource Utilization Rate by Algorithm
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Figure 5: Resource utilization of different resource types

As shown in Figure 5, the resource utilization rates
of different resource types are compared. In terms of
human resource utilization, the fusion multi-objective-
IGA reached 88.0%. The fusion multi-objective-1GA fully
utilized the efficiency of human resources through
reasonable construction schedule and task allocation. The
particle swarm optimization algorithm, genetic algorithm
and traditional methods were relatively low in human
resource utilization. For material resources, the fusion
multi-objective-1GA utilization rate was 86.0%. It can

Algorithm

80 85 90

accurately plan material procurement and use to reduce
waste. Other methods have deficiencies in material
resource management and low utilization rates. In terms
of equipment resources, the fusion multi-objective-IGA
utilization rate was 84.0%. With the optimization of the
construction process, the equipment use is more
reasonable and efficient. However, the particle swarm
optimization algorithm, genetic algorithm and traditional
methods are not flexible enough in equipment resource
scheduling, resulting in low utilization rates.
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As shown in Figure 6, the comprehensive satisfaction
scores in different construction environments are
compared. In the urban environment, the comprehensive
satisfaction score of Fusion Multi-Objective-IGA is 7.5
points. Construction in urban environments faces more
external interference and restrictions. Fusion Multi-
Objective-IGA can effectively coordinate various factors,
meet project needs, and obtain high satisfaction. Particle
swarm optimization algorithm, genetic algorithm and
traditional methods have low satisfaction in urban
environments because they are difficult to deal with
complex situations. In the suburban environment, the
score of Fusion Multi-Objective-IGA is 8.0 points.
Compared with the urban environment, the suburban
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environment has less interference. Fusion Multi-
Objective-IGA can better play its advantages, optimize
project management, and improve satisfaction. Other
methods perform worse than Fusion Multi-Objective-IGA
in this environment. In the remote area environment, the
score of Fusion Multi-Objective-IGA is 7.0 points.
Although there may be problems such as difficulty in
obtaining resources in remote areas, Fusion Multi-
Obijective-IGA can still guarantee project implementation
to a certain extent through its powerful optimization
capabilities and obtain relatively high satisfaction.
However, Particle Swarm Optimization Algorithm,
Genetic  Algorithm and traditional methods perform
poorly in remote areas.

Table 1: Deviation rate of construction period in different project stages

Project Phases

Fusion of multiple
objectives - IGA Duration
Deviation Rate (%)

Particle swarm
optimization algorithm
duration deviation rate

Genetic algorithm
construction period
deviation rate (%)

Traditional method
construction period
deviation rate (%)

(%)
Early-stage planning 6.0 12.0 15.0 20.0
Construction Phase 9.0 16.0 19.0 25.0
Closing Stage 10.0 18.0 22.0 28.0

As shown in Table 1, the deviation rate of the

construction period in different project stages is compared.

In the early planning stage, the deviation rate of the
construction period of the fusion multi-objective-IGA is
6.0%, which is an excellent performance. In this stage, the
fusion multi-objective-IGA uses its global search
capability to accurately formulate construction plans and
reduce the potential risk of construction period delays. The
particle swarm optimization algorithm, genetic algorithm
and traditional methods have large deviations in the
construction period due to insufficient consideration of
complex factors in the early planning stage. In the
construction stage, the deviation rate of the fusion multi-
objective-IGA is 9.0%, and the progress can be
dynamically adjusted according to the actual construction

situation. However, when faced with various practical
problems in the construction stage, the particle swarm
optimization algorithm, genetic algorithm and traditional
methods are difficult to effectively optimize the
construction period, and the deviation increases
significantly. In the closing stage, the deviation rate of the
fusion multi-objective-IGA is 10.0%. The closing stage
involves many detailed work and coordination tasks. The
fusion multi-objective-1GA can comprehensively consider
and try to control the deviation of the construction period.
The deviation of the construction period of other methods
is further deteriorated at this stage due to the problems
accumulated in the early stage and the lack of ability to
deal with complex situations.

Table 2: Cost overrun rates under different cost control strategies

Cost control strategies

Fusion of multiple
objectives - IGA cost
overrun rate (%)

Particle swarm
optimization algorithm
cost overrun rate (%)

Genetic algorithm cost
overrun rate (%)

Cost overrun rate of
traditional methods (%)

Strict cost control 10.0 16.0 20.0 25.0
Moderate cost control 12.0 18.0 22.0 28.0
Relaxed cost control 15.0 22.0 26.0 32.0

As shown in Table 2, the cost overrun rate under
different cost control strategies is compared. Under the
strict cost control strategy, the cost overrun rate of the
fusion multi-objective-IGA is 10.0%, which performs
well. The fusion multi-objective-IGA can ensure the
realization of the construction period and quality goals
while strictly controlling costs. Particle swarm
optimization algorithm, genetic algorithm and traditional
methods are difficult to balance multiple objectives under
strict cost control, and the cost overrun is high. Under

moderate cost control, the cost overrun rate of the fusion
multi-objective-IGA is 12.0%, which can reasonably
adjust resource allocation and construction process. The
cost overrun of other methods is still higher than that of
the fusion multi-objective-IGA under this situation. Under
the loose cost control strategy, the cost overrun rate of the
fusion multi-objective-1GA is 15.0%. Although the cost
control is relatively loose, the fusion multi-objective-IGA
can avoid excessive waste, and the cost overrun rate is
lower than other methods.
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Table 3: Quality compliance rate under different quality inspection indicators

Quality inspection Fusion of multiple Particle swarm Genetic algorithm quality Quality compliance rate
indicators objectives - IGA quality optimization algorithm compliance rate (%) of traditional methods
compliance rate (%) quality compliance rate (%)
(%)
Track flatness 90.0 83.0 78.0 73.0
Structural strength 88.0 81.0 76.0 71.0
Welding quality 87.0 80.0 75.0 70.0

As shown in Table 3, the quality compliance rates
under different quality inspection indicators are compared.
In terms of track flatness, the quality compliance rate of
Fusion Multi-Objective-IGA is 90.0%. Fusion Multi-
Objective-IGA accurately optimizes the track laying
process during the construction process to ensure that the
track flatness meets the standards. Particle swarm
optimization algorithm, genetic algorithm and traditional
methods are relatively weak in track flatness control. For
structural strength, the compliance rate of Fusion Multi-

Objective-IGA is 88.0%. It can reasonably plan the
construction process and material use to ensure structural
strength. Other methods have shortcomings in structural
strength assurance. In terms of welding quality, the
compliance rate of Fusion Multi-Objective-IGA is 87.0%.
The welding quality is improved by optimizing the
welding process and personnel operation. However, the
particle swarm optimization algorithm, genetic algorithm
and traditional methods are not effective in welding
quality control.

Table 4: Resource utilization under different resource allocation modes

Resource Allocation Fusion of multiple Particle swarm Genetic algorithm Resource utilization
Model objectives - IGA resource optimization algorithm resource utilization (%) of traditional methods
utilization (%) resource utilization (%) (%)

Centralized 87.0 78.0 73.0 68.0

distribution
Distributed 84.0 76.0 71.0 66.0

Assignment

Hybrid Allocation 86.0 77.0 72.0 67.0

As shown in Table 4, the resource utilization rates
under different resource allocation modes are compared.
In the centralized resource allocation mode, the resource

utilization rate of the fusion multi-objective-IGA is 87.0%.

The fusion multi-objective-IGA can efficiently allocate
centralized resources according to the overall needs of the
project. The particle swarm optimization algorithm,
genetic algorithm and traditional methods have low
resource utilization efficiency in the centralized allocation
mode. In the distributed allocation mode, the utilization
rate of the fusion multi-objective-1GA is 84.0%.

It can reasonably coordinate the use of resources at
each distribution point. Other methods have deficiencies
in distributed resource management and low utilization
rates. In the hybrid allocation mode, the utilization rate of
Fusion Multi-Objective-IGA is 86.0%. Fusion Multi-
Objective-IGA can give full play to its multi-objective
optimization capabilities and achieve high resource
utilization in the hybrid resource allocation mode.
However, the resource utilization effect of particle swarm
optimization algorithm, genetic algorithm and traditional
methods in this mode is not as good as that of Fusion
Multi-Objective-1GA.

Runtime scales as O(P.G.E) for all evolutionary
methods, with IGA adding a diversity-control term; our
batched similarity checks keep overhead sublinear in
practice. On the 8 held-out projects (2-3k activities),
median single-thread wall-clock per optimization is 12.8
min for IGA, 11.1 min for GA, and 9.4 min for PSO; with
8-16-way parallel fitness evaluation this reduces to 3.5—
6.1 min (IGA), 3.2-5.6 min (GA), and 2.8-5.0 min (PSO).

Thus, IGA’s accuracy gains incur modest additional
compute yet remain within daily replanning windows.
Parameter sensitivity. Varying weights by +20% around

the nominal (e » Drest s Dty ) = (0-4,0.35,0.25)

cost !
yields schedule deviation 7.9-9.2%, cost overrun 11.7—
13.6%, quality compliance 87.6-90.1% for IGA,

indicating stable trade-off behavior. Raising P, from

0.02 to 0.08 improves escape from local minima in
complex geology, reducing cost overrun by 0.7-1.1 pp at
a small runtime increase (~6-9%).

IGA achieves schedule deviation 8.5% =+ 0.7% (95%
Cl [8.3, 8.7]), cost overrun 12.3% + 1.1% ([12.0, 12.6]),
and quality compliance 88.6% + 1.4% ([88.2, 89.0]).
Improvements vs. GA (18.7% + 1.8%, 25.3% + 2.6%, 75.6%
* 2.3%) and PSO (15.2% + 1.6%, 20.1% * 2.1%, 80.3%
+ 2.0%) are significant (Wilcoxon p<0.01;5 large). All
figures include error bars reflecting SD and shaded 95%
Cls.

A grid over P, €{0.60,0.75,0.90}, P,
€{0.02,0.05,0.08}, and €{0.85,0.90} shows IGA’s best
median performance near P, =0.75, P, =0.05, 7,

ime !

=0.90—1T=0.50. Increasing P, from 0.02 to 0.08

reduces cost overrun by 0.7-1.1 pp under complex
geology at a 6-9% runtime increase. Weight perturbations
of +20% around (0.40,0.35,0.25) (0.40,0.35,0.25)
(0.40,0.35,0.25) keep outcomes within schedule 7.9-9.2%,
cost 11.7-13.6%, quality 87.6-90.1%, evidencing robust
trade-off control.
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We compare GA (baseline), IGA without immune
suppression (operators identical; t\taut disabled), and full
IGA. On held-out projects (30 runs/project), GA vyields
schedule 18.7% + 1.8%, cost 25.3% * 2.6%, quality 75.6%
+ 2.3%. Disabling immune suppression improves GA
modestly: 10.1% + 1.0%, 14.8% + 1.3%, 86.2% * 1.6%.
Full IGA further improves to 8.5% + 0.7%, 12.3% * 1.1%,
88.6% + 1.4%. Differences between full IGA and no-
immune are significant across metrics (Wilcoxon p<0.01),
confirming the added value of the immune mechanism for
diversity maintenance and convergence reliability.

4.3 Experimental discussion

The experimental results show that the fusion multi-
objective -IGA outperforms the PSO, GA and CPM+ cost
models in key indicators such as project duration deviation,
cost overruns, quality compliance, resource utilization and
comprehensive satisfaction. Its advantages stem from the
global search of multi-objective collaboration and
immune genetics: through phased dynamic weights and
similarity suppression, premature convergence is avoided,
and better solutions are continuously obtained under
different geological conditions, construction
environments, resource allocation and cost strategies. The
dataset covers actual railway projects of multiple scales
and scenarios, and is representative to a certain extent.
Therefore, the results have external validity and
generalisability. However, real engineering is still affected
by policy changes, social environments and unexpected
events. The application of models needs to be carefully
evaluated and calibrated in combination with the context.

The time complexity of the proposed approach is
O(P.G.E), where PPP is population size, G is generations,
and E is the cost of one fitness evaluation (CPM
propagation over |V| activities and |E|precedence links
plus cost/quality aggregation), typically E=O(|V|+|E]|).
Memory scales as O(P.L) with chromosome length L. On
a large rail project (=2,100 activities, ~6,000 precedence
links, three resource classes), a representative
configuration P=200P=200P=200, G=400G=400G=400
yielded ~80,000 fitness evaluations. On a 16-core
workstation (3.5 GHz CPU, 64 GB RAM), median wall-
clock time was 12.8 minutes with single-threaded
evaluation; enabling parallel fitness evaluation across 8—
16 workers reduced wall-clock to 3.5-6.1 minutes.For
very large instances (=5,000+ activities), runtime grows
near-linearly in practice with|V|+E|per evaluation;
practical mitigation includes (i) parallel evaluation, (ii)
elitist population capping, and (iii) warm-starting from the
best individuals of previous runs (e.g.when re-optimizing
after schedule disturbances). These characteristics make
the method suitable for daily or intra-shift replanning on
large projects.

5 Discussion

Performance under varied environments. Across
urban, suburban, and remote settings and under normal vs.
complex geology, IGA consistently outperformed PSO
and GA on schedule deviation, cost overrun, and quality
compliance. When geology introduced correlated delays
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and rework risk, PSO/GA frequently converged to locally
feasible yet brittle schedules, whereas IGA preserved a
portfolio of high-fitness, diverse candidates that adapted
after shocks, sustaining lower overruns.

Why IGA performs better (computational reasoning).
IGA augments GA’s exploration—exploitation balance
with immune-based similarity suppression and adaptive
operators. The suppression scheme prunes near-duplicates,
preserving genotypic diversity and reducing premature

convergence. Adaptive [P, P, respond to fitness

dispersion: when variance narrows, exploration intensifies
to escape local basins; when variance widens, exploitation
consolidates gains. Empirically, this yields smoother
fitness trajectories and faster recovery after constraint or
data updates pushed by field telemetry.

Trade-offs. IGA introduces overhead for similarity
computation and diversity control. Complexity is O(P-G-E)
with an extra similarity term O(P?) if implemented naively;
we mitigate via (i) mini-batch similarity checks, (ii) sparse
hashing of chromosomes, and (iii) parallel fitness
evaluation. In large instances (=5k activities), runtimes
grow near-linearly with evaluation cost; however,
parallelization (8-16 workers) keeps wall-clock within
shift-planning windows (minutes).

Practical significance and generalizability. The twin-
ready, BIM-linked formulation enables closed-loop
replanning, translating optimization outputs into look-
ahead simulations and constraint checks, while ingesting
progress and inspection data to refresh weights. This
supports daily or intra-shift updates without discarding
prior high-fitness solutions, improving stakeholder trust
and adoption. Given the formulation relies on CPM
propagation and measurable quality indices, the approach
generalizes to adjacent linear-infrastructure projects with
modest adaptation.

Given deployment in public infrastructure,
optimization outputs must be auditable and advisory, not
fully automated. Mis-specification could affect public
safety or budgets; therefore, we expose weight settings,
constraint repairs, and change logs, and require human
sign-off for schedule changes beyond pre-defined
thresholds. For real-time decision support, we outline a
BIM/Digital-Twin deployment where optimizer proposals
are sandbox-simulated (clash/space, crew paths, resource
conflicts) before enactment. Data governance adheres to
contractual NDAs and privacy rules; model updates are
versioned and stress-tested on disturbance scenarios
(geology/weather/supply) prior to rollout.

6 Conclusion

This study focuses on the multi-objective
optimization problem in rail construction project
management, and deeply analyzes the limitations of
traditional management methods and existing intelligent
algorithms. By constructing an innovative model
integrating  multi-objective-IGA, the collaborative
optimization of key objectives such as construction period,
cost, and quality is achieved. The experimental results
show that compared with the traditional critical path
method combined with cost budget management mode
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(construction period deviation rate 25.0%, cost overrun
rate  30.0%, quality compliance rate 70.0%, and
comprehensive satisfaction score 4.0 points), as well as
particle swarm optimization algorithm (construction
period deviation rate 15.2%, cost overrun rate 20.1%,
quality compliance rate 80.3%, and comprehensive
satisfaction score 6.2 points) and genetic algorithm
(construction period deviation rate 18.7%, cost overrun
rate  25.3%, quality compliance rate 75.6%, and
comprehensive satisfaction score 5.5 points), the fusion
multi-objective-IGA method shows excellent
performance. In terms of construction period control, the
deviation rate is as low as 8.5%, effectively reducing
delays; the cost overrun rate is only 12.3%, achieving
good cost control; the quality compliance rate is 88.6%,
ensuring the quality of the project; the resource utilization
rate is 85.4%, improving the efficiency of resource use;
the comprehensive satisfaction score is 7.8 points, which
is highly recognized. This research result provides a new
and effective means for rail construction project
management, helps to improve project management
efficiency and benefits, promotes the healthy and
sustainable development of the industry, and has
important guiding and reference significance for future
related research and practice.
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