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This paper addresses the unique data security and real-time monitoring requirements in the digital
transformation of electric power enterprises, and combines the development characteristics of smart grids
to solve the challenges of data integrity verification and anomaly tracing in the electric power Internet of
Things (10T). It proposes a topology-integrated multi-level hash verification and tracing scheme. This
method utilizes asymmetric encryption (RSA key generation algorithm KeyGen) and digital signature
technology to design a tree-like network architecture (including terminal devices TD, relay devices RD,
10T gateways 10TG, and data servers DS). It employs a multi-level aggregated hash generation algorithm
(MLHashGen) to achieve one-time verification of data across the entire network, and precisely locates
tampered nodes through an anomaly tracing process. Experimental results show that at a terminal scale
of t=300, the computational overhead is reduced to 142.3ms (a 63.3% reduction compared to traditional
schemes), the communication overhead is 1,850KB (a 36.5% reduction), and the accuracy rate of anomaly
localization reaches 96.5% with a tampering rate of 40% (with a false alarm rate of only 0.8%). The
tracing delay of 18.7ms meets the real-time monitoring standards for electric power. This scheme
effectively improves data processing efficiency and enterprise benefits. The core contribution lies in
eliminating the third-party dependency risks (such as difficulties in defining responsibilities) of
centralized systems, establishing a dynamic verification mechanism to block the spread of anomalies, and
providing a practical technical framework for electric power enterprises. Future work will focus on
optimizing the tracing delay issue in large-scale networks.

Povzetek: Predlagana resitev omogoca hitro in zanesljivo preverjanje ter sledenje sprememb podatkov v

elektro loT omrezjih, pri cemer zmanjsa obremenitve in doseze visoko natancnost.

1 Introduction

Electric power enterprise projects refer to various
engineering construction projects carried out by electric
power enterprises in the process of electricity production,
transmission, distribution and other business processes.
From a broad perspective, power enterprise projects have
the characteristics of large investment scale, long
construction period, high risk management, and complex
technology. It is necessary to adopt scientific and
reasonable management methods to comprehensively
manage the projects, thereby improving the safety and
stability of the projects and ensuring their smooth
construction

Digital management can improve the above problems
by utilizing computer, communication, network and other
technologies to quantify and optimize management
activities through statistical, analytical, predictive and
other methods, thereby improving management efficiency
and decision-making level. Digital management has
become an inevitable trend in project management for
power enterprises. It can not only improve the
informatization level and management efficiency of
power enterprises, reduce costs, but also enhance their

competitiveness, which is conducive to standing out in the
fierce market competition. Based on this, this article
proposes a study on digital project management in power
enterprises, which contributes to better meeting the
business needs and development requirements of power
enterprises.

More and more countries and regions are aware of
the significance and value of digitalization, and are
actively introducing digital technology in various
industries. The electric power industry is an important
field related to the national economy and people's
livelihood. The digital transformation of enterprises in the
electric power industry is unique. Smart grids can not only
provide high-quality and efficient power supply, but also
ensure the organic combination of multiple energy
suppliers and complex power consumption facilities,
ensuring that the power grid has higher stability [1].

In the wave of economic globalization, the industrial
division of labor is becoming increasingly detailed and the
degree of specialization is getting higher and higher.
People's requirements for service quality are rising
accordingly. Coupled with the rapid population growth
and the continuous improvement of quality of life, the
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demand for electricity is also increasingly strong.
However, power resources are limited after all, which
requires the power supply system to continuously
strengthen technological innovation and full management,
continuously improve production quality and efficiency,
and effectively ensure the rational allocation of power
resources, thus promoting the transformation and
development of power industry enterprises. The
development of smart grid will reflect the following
characteristics. The first is the full sharing of power grid
data, the second is the full agility of the communication
network, and the third is the full connection of intelligent
terminals. For power companies, in order to gain digital
development opportunities, they must continuously
strengthen digital construction, continue to improve the
digital level of power equipment, efficiently use advanced
network technology means and analysis algorithms, etc.,
and dynamically analyze various data information and
facilities and equipment. At the same time, they need to
form real-time monitoring and early warning of the entire
life cycle of power facilities and equipment, and timely
and efficiently regulate all aspects of the power system,
thereby forming strong technical support. In addition, they
need to use a highly shared cloud platform to attract
industry experts and scholars to participate in technology
research and development, process innovation and model
optimization, and truly realize smart power generation
through brainstorming and scientific demonstration [2].

In the current global digitalization wave and the
context of smart grid construction, electric power
enterprises face dual challenges of intensified data
security threats and upgraded real-time monitoring
requirements. This paper aims to propose an innovative
topology-integrated multi-level hash data integrity
verification and traceability scheme. Through the deep
collaboration of asymmetric encryption technology (RSA
key generation algorithm KeyGen) and a tree-like network
architecture (including terminal devices TD, relay devices
RD, Internet of Things gateway l0TG, and data server
DS), a multi-level aggregated hash generation algorithm
(MLHashGen) is pioneered to achieve efficient
verification of data across the entire network in one go.
Moreover, a hierarchical hash comparison and traceability
mechanism is designed to precisely locate abnormal
nodes. The core innovations of this scheme lie in: 1)
eliminating centralized third-party dependencies and
achieving data self-certification through distributed
signature chains; 2) pioneering a topology-driven dynamic
verification architecture that transforms the physical
network into a security advantage; 3) breaking through the
real-time bottleneck. Experimental verification shows that
this scheme reduces computational overhead by 63.3%
(142.3ms at t=300) and achieves an accuracy rate of
96.5% in abnormal location (with a tampering rate of
40%), providing electric power enterprises with a
technical paradigm that combines efficiency, robustness,
and practicality.
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2 Related works

2.1 Digital transformation of enterprises

In the research on the factors affecting the digital
transformation and upgrading of enterprises, reference [3]
believed that the digital transformation and upgrading of
enterprises cannot be achieved by one organization or
department. In the process of digital upgrading, technical
problems, organizational changes, corporate culture
conflicts and leadership challenges may be encountered,
which need to be solved by the whole enterprise.
Reference [3] believed that compared with the lack of
digital technology and talents, it is more difficult to solve
the problems of subversion of traditional business models,
challenge organizational structures and impact on
corporate culture caused by digital transformation and
upgrading of enterprises. Reference [5] believed that the
digital transformation and upgrading of enterprises is a
strategic issue of enterprises, which should be transformed
from the organizational culture and management of
enterprises, and only by solving the internal
maladjustment problems first can enterprises avoid fewer
problems in digital transformation and upgrading.

Regarding the impact of digital technology on digital
transformation and upgrading, reference [6] believed that
the continuous iteration of digital technology determines
that the digital transformation and upgrading of
enterprises is a long-term process, among which digital
tools, data analysis and mining, data automation
processing capabilities, etc. are also the main factors
restricting the digital upgrading of enterprises. Reference
[7] believed that the basis of digital transformation and
upgrading is data, and obtaining valuable information
from data is the purpose. However, in digital
transformation and upgrading, enterprises ignore data
collection, data quality, data analysis, data storage, data
privacy and other aspects, and it is precisely these
problems that directly determine the success or failure of
digital upgrading.

Regarding the impact of organizational structure on
digital transformation and upgrading, reference [8]
believed that the traditional enterprise organization
structure is not conducive to digital transformation and
upgrading. On the contrary, a flat organizational structure,
flexible decision-making process and positive response
speed are more conducive to digital transformation and
upgrading. At the same time, digital transformation and
upgrading will also drive the enterprise's organizational
structure to be more efficient and transparent. Reference
[9] believed that an enterprise is to the market what the
army is to the battlefield. It is organized with the old
system and adopts a one-way top-down command system.
At this time, even with the most advanced digital
technology and equipment, it is doomed to lose the battle.
Therefore, for an enterprise that does not carry out digital
transformation and upgrading in its organizational
structure, no matter how many digital systems there are, it
is just a pile of digital technologies, and such quantitative
changes will never produce qualitative changes.
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Regarding the impact of corporate culture on digital
transformation and upgrading, reference [10] believed that
enterprise culture is the embodiment of corporate values
and ideology. In digital transformation and upgrading,
enterprise culture is the guide to action. If an enterprise
ignores corporate culture and forces digital transformation
and upgrading, it is an infringement of the entire enterprise
activities, and there will inevitably be resistant forces to
prevent digital transformation and upgrading. Reference
[11] believed that enterprises need to have innovation
culture, equal communication culture, learning culture,
incentive culture, etc. to carry out digital transformation
and upgrading, and a diverse and flexible enterprise
culture can ensure the sustainability of digital
transformation and upgrading.

2.2 Intelligent processing of power data

In order to solve the problems of large amount of
data, data redundancy and "multi-source heterogeneity"
caused by the large number of participants in power
quality data in distribution network, Zhang Xiaoxing et al.
proposed a dynamic intelligent cleaning model based on
data mining theory, which can effectively remove data
noise and reduce the impact of data redundancy [12].
Reference [13] analyzed data-driven power quality based
on big data technology, and clarified the feasibility of
integrating cloud technology into distributed collection,
storage and parallel processing of power quality data.
Aiming at the storage problem of massive power quality
online monitoring data, reference [14] proposed a data
storage method of double-column family power quality
online monitoring system based on HBase to realize
efficient storage of power quality data. In order to improve
the accuracy of power quality disturbance data
classification, reference [15] proposed a power quality
disturbance data classification method based on
convolutional neural network (CNN) and long-term short-
term memory network (LSTM), which improved the
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accuracy of data classification and collection. Aiming at
the problem of incomplete power quality data, reference
[16] proposed a power quality perception data completion
method based on low-rank matrix theory, which ensured
the authenticity and integrity of power quality data.
Combined with the characteristics of power quality
disturbance, reference [17] proposed a power quality
disturbance data availability evaluation method, which
reduced the impact of data redundancy and improved the
accuracy and quality of power quality data.

The current distribution network power quality data
management system is a centralized traceability system
with many internal participants and complex interest game
relationships. Data collection, transmission, processing
and other businesses are often completed through the
Internet of Things, cloud technology, etc. technology.
Moreover, each participant has its own core database, and
its business is relatively independent, so it is impossible to
exchange information quickly and effectively. There is a
problem of data trust, so it can only rely on authoritative
government agencies to use it as a third-party trust
intermediary management center database. Since the data
of this kind of centralized system is stored in the local
database of the participants, the data is uploaded
manually, and the data security depends on the supervision
of third-party organizations, its operating mode has
problems such as opaque transactions and vulnerability to
attacks. At the same time, data is easily tampered with and
leaked in the process of transmission and sharing,
resulting in problems such as lack of corporate credibility,
difficult supervision and restricted development [18].
Moreover, once the system fails to correlate the
traceability information of each link in time, it is easy to
cause difficulties in proving evidence when disputes arise
between enterprises, and it is difficult to -clarify
responsibilities, which cannot match the current market
demand [19].

The deficiencies of existing research are shown in
Table 1 below:

Table 1: Summary of deficiencies in existing research

Research model The obtained results

The deficiencies of the study (compared to the proposed solution in this

paper)

Universal digital model

Identify non-technical challenges
such as organizational change and
cultural conflicts

Digital upgrade challenge
model

No technical solution has been provided; thus, the actual issue of data

tampering cannot be addressed

Emphasize the transformation

Strategic orientation model path driven by management

Without a specific technical framework, it is difficult to implement in the

power loT scenario

Technological iteration
impact model

Reveal long-term characteristics
and tool constraints

Ignoring the topological characteristics of tree-like networks, the collaborative

efficiency of edge devices cannot be optimized

Point out the decisive role of data
quality in the success or failure of
transformation

Data problem model

Without establishing a dynamic verification mechanism, it is impossible to

block the propagation of abnormal data in real time

Demonstrate that a flat structure
is more suitable for
transformation

Organizational structure
influence model

Without integration with data security technology, there is a risk of
disconnection between management architecture and security architecture

Power data processing model

Remove noise from distribution
network data

Dynamic intelligent cleaning
model

Lack of traceability: Only effective in the preprocessing stage, unable to

locate tampering nodes during the transmission process

HBase dual-column family
storage method

Improve the efficiency of electric
energy quality data storage

Centralization risk: Reliance on a central database, with a single point of

failure, can easily lead to the loss of traceability information
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CNN-LSTM classification Improve the accuracy of

method classification for perturbed data

Insufficient real-time performance: Relying on backend deep computation, it

is unable to intercept anomalies immediately at the gateway layer

Low-rank matrix completion Repair incomplete power quality
method data

The passive completion mechanism is unable to actively identify tampering

behavior

System architecture model

Centralized traceability
system

Expose the vulnerabilities of
centralized systems

Core defects: 1. Difficulty in defining responsibilities (the solution proposed
in this paper clarifies responsibility nodes through hierarchical signature
comparison); 2. Reliance on third parties for data trust (the solution proposed
in this paper eliminates intermediary dependence through distributed hash

verification)

The existing research on the digital transformation of
power enterprises has structural defects. For example, the
general digital model only identifies organizational
transformation  challenges and lacks technical
implementation solutions. The strategically oriented
model emphasizes management-driven and ignores grid
topology characteristics. The power data processing
model improves cleaning efficiency but faces lack of
traceability, centralization risks, and insufficient real-time
performance. Fatal bottleneck. This paper proposes a
topological fusion-based multi-level hash verification and
traceability scheme. Its core innovations lie in: 1)
pioneering a tree-like network collaborative verification
architecture, which eliminates centralized single-point
failures through distributed execution of aggregation hash
calculations by relay devices (RDs); 2) designing a
dynamic hierarchical traceability mechanism, which
achieves precise tampering node localization through
hierarchical signature comparison; 3) deeply integrating
physical topology and security protocols, transforming
network hierarchies into efficiency advantages, and
completely breaking through the technical barriers of
traditional solutions in terms of real-time performance,
credibility, and responsibility traceability.

3 System scheme

The biggest problem faced by the digital
transformation of electric power enterprises is the problem
of data authenticity identification. Data transmission and
data processing technologies are currently relatively
mature, so it is necessary to effectively identify data
sources and data authenticity. During the digital
transformation process of power enterprises, there are
security threats that may be eavesdropped or tampered
with during the data collection process of power Internet
of Things terminals. Therefore, this paper combines
asymmetric encryption and digital signature technology to
propose a data integrity verification and traceability
scheme suitable for data collection network.

3.1 System model

The multi-level hash data integrity verification and
traceability system model based on topology fusion
proposed in this paper is shown in Figure 1. The data flow
begins at the terminal device (TD), which generates power
data and digitally signs it using a private key. The signed
data is then uploaded to the relay device (RD) along with
the encrypted collected data. After receiving data from
multiple TDs under the RD, the signature is verified by the
public key and the hash values of each data are extracted.

The data is sorted by device number and concatenated to
calculate the aggregated hash. Then, the RD uses its own
private key to sign the aggregated hash and forwards the
aggregated signature along with the original encrypted
data to the higher-level RD or IoT gateway; 10TG, as a
local area network hub, performs the same aggregated
hash calculation and signature generation on subordinate
RD data to obtain the root hash value. At the same time, it
completes communication protocol conversion and
ultimately sends all encrypted data and root hash
signatures to the data server (DS). After decrypting the
data, the DS replicates the root hash calculation process
and compares it with the received root hash to verify the
overall data integrity. If the verification fails, the
traceability mechanism is triggered, and 10TG compares
the hash values of each node step by step downwards to
accurately locate the tampered nodes.

~
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Relay equipment

I | ‘ |
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Figure 1: Data integrity verification and traceability
system model

The system mainly consists of terminal equipment,
relay equipment, Internet of Things gateway and data
server.

The data integrity verification scheme mainly
includes signature key generation algorithm (KeyGen),
encryption key distribution algorithm (KeyDist), terminal
signature generation algorithm (SigGen), multi-level
aggregation hash generation algorithm (MLHashGen),
and data integrity verification algorithm (IntegrityVer).
The specific description of each algorithm is as
follows[20]:

(1) Signature key generation. The signature key
generation algorithm is mainly executed by the terminal
device. The signature key generation algorithm is mainly
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executed by the terminal device. It generates a public key
and a private key, and this scheme generates a public-
private key pair based on the RSA algorithm.

(2) Encryption key distribution. The encryption key
distribution algorithm is executed by the data server. It
generates an encryption key KD, and the key generation
algorithm is symmetric encryption or asymmetric
encryption, and sends KD to the Internet of Things
gateway, which is distributed by the gateway to the
terminal equipment in the local communication network
for the terminal to encrypt data.

(3) Terminal signature generation. The terminal
signature generation algorithm is mainly executed by the
terminal device. It uses the device private key

SK :(D,N) to generate the digital signature value of the
collected data. The signature value sig is obtained by
formula (1), where S is the message digest, D is the
private key exponent, N is the key modulus, id is the
device number, and m is the data that the terminal needs
to send. It mainly includes information such as sensor
collection data, timestamp, device attributes (such as
device number), h is the hash value of m, and Hash () is
the hash function.
sig=S"mod N (1)
S =id||h,h =Hash(m) 2
td, indicating the i-th terminal device, with the device
number assigned according to the hierarchy.

(4) Multi-level aggregation hash generation
The multi-level aggregation hash generation

algorithm is mainly performed by the relay device and the
loT gateway. According to the signature value uploaded
by the subordinate device, the message digest set is
obtained by the signature verification algorithm, and the
aggregate hash value is obtained by the aggregate hash
algorithm according to the device number and hash value
in the message digest set, as shown in Figure 2.
[

Tn

igure 2: Example diagram of local communication
network topology

In this local communication network topology
example, there are nine terminal devices, three relay
devices, and one loT gateway. Taking the relay device
RD, asan example, its aggregate hash generation process
is as follows:

@ Signature verification. RD, receives data from

terminals TD,, TD, , and TD, , and the data includes
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collected data c, (1,2,3) and data signature sig; (1,2,3).

The elements of the data set are ciphertexts obtained by
encrypting plaintext data at the terminal, and this part is
not processed. For the signature set, the message digest is
obtained by formula (3). The message digestis S=id || h

, and the device number td, (i=1,2,3) and hash value

h (i=1,2,3) can be obtained by data decomposition. The

device numbers are arranged from small to large, that is,
td, <td, <td,, and the device numbers correspond to the

hash values one by one[21].
S, =sig,” ®)
Among them, (E;,N;) are the device public keys of
the devices TDi(i =1,2,3) respectively.

@ Calculating the aggregate hash. The aggregate
hash in RD, calculated by formula (4) is:

th = Hash [ZS: h j (4)

Among them, > means that the hash values are added
in the form of strings, that is, they are concatenated
beginning to end into a new string. id represents the
unique identifier of the terminal device, h, ~represents the

aggregated hash value of the relay device RDj; (the
subscript j identifies the relay level).

(® Generating an aggregated hash signature value.
The message digest of RD, is Sp =1, [|h, , and the

signature value of RD, obtained by formula (5) is:
. DRy
sigg =S, " mod N, =(rdl I th> mod N, (5)
Among them, (DRl Ny, ) is the device private key of

RD, . {,.C,.C;.Sigy | is the data sent by RD; to 10TG.
RD,; It represents the unique identifier of the relay device
(subscript ; represents the relay level).
Similarly, the signature values of RD, and RD, are:
. DR, i DR,
SIgg, =(rdz ||hR2) mod N ,sigg, =(rds Il hRs) mod N,

(6)

The signature value of the root hash at 10TG can be
obtained by formula (7), where g and (DG ,NG) are the

device number and device private key of the 10T gateway,
respectively. {U 2.C ,sigG} is the data sent by 10TG to the
data server.

3
sigs =(glhs )™ mod N =[g I Hash(ZhRi Dmod Ng =
i=1

3 3
{g I Hash[z Hash[z Nioes D] mod N

i=1 j=1
)
hs It represents the root hash value of the loT
gateway (G represents the gateway level).
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(5) Data integrity verification. The data integrity
verification algorithm is mainly executed by the data
server. The plaintext is obtained by decrypting the data
ciphertext, and the root hash reproduction value is
obtained according to the plaintext data and the root hash
calculation process at the known network topology
reproduction 10TG. The root hash value obtained by
verifying the signature value uploaded by 10TG is
compared with the root hash replica value and the root
hash value, and the data integrity verification result is
obtained. Taking the network topology in Figure 2 as an
example, the specific steps of data integrity verification
are as follows:

(D Ciphertext data decryption. The data server

receives data {Uf’:lci ,sigG} , and uses the decryption key
to decrypt the ciphertext ¢ to obtain the plaintext data
{uim}.

@ Signature verification. The 10TG public key
(Es.Ng) is used for signature verification, and the 10TG
device number g and root hash value h; are obtained
through formula (8) [22].

S = 9|l hs =sigG™ modN, (8)

(® Calculating the present value of root hash. The

data server reproduces the root hash calculation process
when data is uploaded according to the plaintext data

{UZ,m} and the network topology relationship, and

obtains the root hash reproduction value h;S through
formula (9).

hy = Hash(i Hash[i Hash( Hash(m, ., ))D

i=1 j=1
(9)

@ Numerical comparison. The data server compares

the root hash value hy and the reproduced value h; . If

the two are the same, the terminal data has not been
tampered with during the transmission process, and the
data integrity verification is passed, and True is output.
However, if the two are the different, the validation fails
and False is output.

3.2 Data traceability

As shown in Figure 3, the data anomaly traceability
process of this solution includes several processes: hash
reproduction value transmission, single-layer node hash
reproduction value delivery, hash comparison, abnormal
device identification, and abnormal traceability result
upload.
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Upload abnormal
traceability results

e

Abnormal device
Hash
comparison
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Figure 3: Data exception traceability process

Single layer node hash
reproduction value issuance

The data anomaly traceability process mainly
includes hash reproduction value transmission algorithm
(ReHashTrans), step-by-step hash comparison algorithm
(HashComp), and abnormal device identification
algorithm (ADevicelden). Taking the network topology
shown in Figure 4 as an example, this paper assumes that
due to equipment failure or attacker intrusion at node RD1,
an error occurs when RD1 calculates the aggregate hash,
that is, the aggregated hash value calculated by RD1
changes from AR1 to ARerr 1 (an abnormal aggregated
hash value (err represents the tampered value)), h'Ri
indicating the hash reproduction value issued by the data
Server.

The specific description of each algorithm in the
tracing process is as follows:

Figure 4: Schematic diagram of network attack

(1) Hash replica value transmission. During the hash
replica value transmission process, the data server sends
the hash replica value of each node calculated in the
integrity verification process to the loTG, that is,

{ULR UG e

(2) Step-by-step hash comparison

The step-by-step hash comparison algorithm is to
compare the hash calculation value and the hash
reproduction value issued by the loT gateway step by step
from the loT gateway downward to determine whether
there is any data abnormality in the device. The specific
steps in the network in Figure 4 are as follows:
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@ 10TG performs hash comparison. The algorithm
compares the hash calculation value h; and the hash
reproduction value h'; and obtains hy #h'y , which

indicates that there is a data anomaly at 10TG, so the
algorithm returns False[23].

@ RD (i=1,2,3) performs hash comparison. The

algorithm compares the hash calculation value {Uf:lhRi}

and the hash reproduction value {Uf;lh‘Rl} to obtain
he = h's . hy =0’y ,and hy =h'; . This indicates that
there is an abnormal data at RD, , while the data at RD,
and RD, are normal, so RD, returns False,and RD, and
RD, return True.

® TD,(i=1,2,3) performs hash comparison. The

algorithm compares the hash calculation value {Uf:lhl}

and the hash reproduction value {Uf:lhi'} to obtain
h =h';, h =h’, and h =h';. This indicates that the
dataat TD,, TD, and TD, are normal,so TD,, TD, and
TD, all return True.

(3) Identification of abnormal equipment

The abnormal device identification algorithm is
executed by the Internet of Things gateway. The specific

steps are as follows:
@ If the 10TG hash comparison returns False, all

subordinate nodes RD (i=1,2,3) should be notified to

perform hash comparison.
@ If the RDi(i =1,2,3) hash comparison returns

False, True, and True, all subordinate nodes
TD,(i=1,2,3) of RD, should be notified to perform

hash comparison.
@ If the TD,(i=1,2,3) hash comparison returns

True, True, and True, indicating that the data are all
normal, then the data abnormality exists in the device, and
the data abnormality at 10TG is caused by the abnormality
in RD, atloTG. The tracing result is the same as the pre-

assumption, and the result is established. The algorithm
sends the device number rd, of RD, to the data server.

The total number of network terminal devices is t, the
depth of the tree is n (excluding the gateway layer), and
the branch factor is k (the average number of child nodes).
The worst-case time complexity of the traceback
algorithm is determined by the following operations:

(1) Tree traversal complexity:

In the worst case, it is necessary to traverse all levels
and devices (if the fault is located at a leaf node), and the
number of visited nodes is the sum of the number of

terminal devices t and the number of relay devices:
n-1
Node,,, =t+> k' =0(t) (10)
i=1

(2) Verify operational complexity:
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Each layer of relay devices performs one hash
comparison (HashComp), with each comparison taking
THash (hash calculation time). A tree with depth n
requires n comparisons:

Teomn =N+ T (NoOt related to t)

comp
(3) Message passing complexity:
The Internet of Things Gateway (Io0TG) needs to
relay broadcast requests to k direct subordinates, with the
number of messages per layer growing exponentially. The
total number of messages is:

(11)

Messages=k-+k’+...+k™=0 (k") (12)
Worst-case total time complexity:
Toors=0(t)+0(n)+0 (k™) (13)
3.3 Performance analysis
For convenience of representation, T, represents

the time required for a hash operation, T, represents

the time required for a modular exponentiation operation,
t represents the number of terminal devices in the network,
k represents the average number of relay devices under
each upper relay (including gateway), n represents the
total number of device layers below the gateway
(excluding gateways), G, represents the size of a terminal

collection data packet, and G, represents the size of a

data signature. For convenience of calculation, it is
assumed that all terminal devices are in the last layer of
the network, that is, the n-th layer.

For the computational overhead, it is mainly
analyzed from the stages of terminal signature generation,
aggregate hash calculation and data integrity verification.

(1) In the terminal signature generation stage, this
scheme mainly calculates the hash value of the collected
data packet and the signature value of the message digest,
and the main calculation overhead is[24]:

T =T + Tuexe (14)

(2) In the stage of aggregate hash calculation, the
computational overhead of this scheme mainly includes
subordinate  signature verification, aggregate hash
calculation and signature generation operation on the relay
device. In the lower-level signature verification part, if the
number of devices in the (n-1)-th layer of the bottom-level
relay device is kn-1, and the number of terminal devices
is t, then the computational overhead of signature

I . .t
verification at this layer is FTMEXP , and the number of

relay devices above this layer (including gateways) is (n-
1) layers in total, and the computational overhead of

signature verification is (n—1)KT,. . In the aggregate

hash calculation part, there are n layers from the gateway
to the bottom relay (including the gateway), and the
calculation cost is nT,,, - Similarly, the calculation cost

of the signature generation operation partis nT, ., , SO the
calculation cost of this stage is [25]:

EXP !
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t

Tz = FTMEXP + (n - 1) kTMEXP + nTHASH + nTMEXP

¢ (15)
= (W +(n-1)k + anMEXP +NTpgn

(3) In the data integrity verification stage, the
computational overhead of this scheme mainly includes
the hash value calculation of the data collected by the
terminal, the aggregated hash reproduction value of the
relay equipment and the verification operation of the
gateway signature, so the computational overhead of this
stage is as follows [26]:

1-k"
T, = (t"'HJTHASH + Tyexe

To sum up, the total computational overhead of this
scheme in one transmission process is:

T :[k:’l +(n—1)k+n+2jTMEXP +(t+n+1+%}THASH

17

In terms of communication overhead, this paper
mainly analyzes the communication overhead of different
schemes in the communication stages of "gateway-data
server" and "terminal-gateway".

(1) " Gateway-data server" stage

Since the multi-level aggregation hash calculation
process of the tree network, the final data that the IoT
gateway needs to transmit is terminal data and root hash
value, so the communication overhead at this stage is
t(G,+G,).

(2) "Terminal-Gateway" stage

Ci (1 <i<n) represents the communication overhead
of the i-th layer device. In a data transmission process, the
communication overhead of each terminal device mainly
includes two parts: collecting data packets and data

(16)

signatures. If the number of terminals is t, the
communication overhead of the n-th layer is:
C,=t(G,+G,) (18)

In multi-layer relay devices, that is, layer 1 to layer
n, the number of relay devices in layer i (1 <i<n-—1)is
expressed as:

t =k (19)
Since the relay device will perform the aggregate
hash calculation process, each relay device only sends one
data signature when sending data, and each layer of relay
needs to transmit all collected data packets, then the
communication overhead of the i-th layer (1 <i<n-1) is:
C =tG, +k'G, (20)
Therefore, the total communication overhead of layer

1to layer (n—1) is:

k(1-k"*)
Sn—l :(n—l)tGl +TGZ

Therefore, the communication overhead at this stage

(21)

is:
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(22)

{ k(l—k”l)J
S, =ntG, +| t+——= |G,
1-k

To sum up, the communication overhead of this
scheme in the whole data transmission process is:

k(1-k"")
C=S,+tG,+G, =(N-1)tG, + T+1+? G,
(23)

3.4 Security model and proof

(1) Definition of adversarial model

The attacker's capabilities cover common threats in
the electric power Internet of Things, as follows:

Eavesdropping: Obtaining data transmitted over a
public channel (e.g. c;, sig; ).

Replay: After intercepting a legitimate data packet, it
is sent repeatedly.

Forgery: Tampering with data content or forging
signatures (such as replacement h, or sigRj )

Node Compromise: Control some terminal devices
(TD) or relay devices (RD) to obtain their private keys
(SK).

Attack target: Disrupting data integrity (via
verification h, = h'G) or impeding anomaly tracing (error
localization and tampering with nodes).

(2) Formalization of security objectives

The scheme must satisfy the following security
properties:

Unforgeability: An attacker cannot generate a valid
signature for any message without obtaining the private
key SK. m" sig”

Traceability: If data integrity verification fails (
h, # h;s), the abnormal device can be precisely located,

with a low false alarm rate <o (in testing a =0.8%).

(3) Security proof based on cryptographic
assumptions

Theorem 1: If the RSA signature scheme satisfies
EUF-CMA (Existence Unforgeability under Chosen
Message Attack), then this scheme is unforgeable.

Proof sketch:

Reductio ad absurdum: Assuming the existence of a
polynomial-time attacker 4 capable of forging valid

signatures sig”, the EUF-CMA security of RSA can be

breached through the construction of an algorithm

Simulation process:

1) B Receive the RSA public key (E, N) as a
challenge.

2) B Generate keys for all legitimate devices: (PK,
SK) « KeyGen(), but randomly select a device TD and
replace its public key with (E, N).

3) A Perform adaptive queries (data signing,
aggregated hash requests), B and respond to all requests
except for TD, . For TD, correct signature requests, B

forward them to the RSA signature oracle.
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4) A4 Output the corresponding message for the
forged signature sig” . m" If m" it is associated TD, ,

output B it as an RSA forged signature; otherwise, abort.

Advantage analysis: Assuming the probability of
successful forgery is 4, then the probability of cracking
RSA (given the number of terminals) is ¢.B Since RSA
is uncrackable in polynomial time, this probability can be
neglected, and the proof is complete

Theorem 2: If the hash function Hash() satisfies
collision resistance, then the accuracy of anomaly
traceback localization >1—negl(Z) ( 4 is a security

parameter).

Proof of dependency: Trace back to the accuracy
dependency hierarchy for hash comparison (as shown in
the flowchart in Figure 3). If an attacker creates a hash
collision such that h,=h, but RD, is actually abnormal, then
it is necessary to break the collision resistance of Hash().
Due to the security of the hash function, this probability
can be neglected.

(4) Practical threat mapping

For data tampering attacks, this scheme achieves
protection through a dual defense mechanism of multi-
level signature verification (Equation 5) and root hash
verification (Equation 9), relying on the RSA EUF-CMA
security assumption to ensure that signatures cannot be
forged. For replay attacks, a timeliness verification
strategy is adopted by embedding timestamps in the
message m (Equation 2), blocking duplicate data packets
through a dynamic timeliness window. Facing the threat
of forged signatures, an identity authentication protocol
based on device public key binding identity (id € S)
constructs a trust chain, requiring attackers to
simultaneously crack the key system and identity binding.
When the node private key is leaked, the impact scope is
controlled by limiting the abnormal traceability to a single
point (topology isolation mechanism in Figure 4),
ensuring that local key leakage does not compromise
global security. The four-layer defense system forms a
deep defense: cryptographic assumptions (RSA/hash)
provide theoretical basis, dynamic verification (Equation
9) achieves real-time interception, identity binding
eliminates forgery vulnerabilities, and topology isolation
(level traceability in Figure 4) limits lateral diffusion.

4 Electric power enterprise data
model

4.1 Power communication architecture

Using SDN communication system can reduce the
network response time, and at the same time, the traffic
situation can be distributed to other systems more quickly.
SDN generally consists of a data plane, a control plane and
an application plane. The data plane and the control plane
are linked to each other through an SDN control data plane
interface. The control plane and the application plane
communicate with each other by SDN, and the structure is
shown in Figure 5.
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Figure 5: Centralized control architecture of power
data communication network

In the middle and lower part of modern power grid
system, there are many contacts between power
equipment and power users in the power system, so it is
necessary to speed up the data transmission speed to
ensure the safety of the system. Therefore, combined with
the implementation schemes of southbound interface,
northbound interface and cluster control, this paper
proposes a distribution and consumption communication
network architecture based on SDN technology principle.
The details are shown in Figure 6.
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Figure 6: Centralized control architecture of power
communication network

According to the technical characteristics and
practical needs of power system communication networks
under the background of power Internet of Things, this
paper designs a multi-dimensional power data
communication architecture model of power IP + optical
network based on SDN. The internal modules involved are
shown in Figure 7. The role of SDN is to The structure of
each part in the system is allocated, and coordinated and
planned in conjunction with the communication systems
in other modules.
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Figure 7: Overall topology diagram of multi-
dimensional data communication architecture based on
SDN

In-network IP collects the signals of each module in
the network through network sensing technology, so that
the power IP + optical network can reasonably schedule
resources with the data needed by the system modules.
Adopt reasonable routing and scheduling strategies to
ensure high-priority business services, meet the increasing
demand of various key services of distribution network for
power communication network services, and ensure the
normal and smooth operation of the network.

4.2 Test method

This article chooses the CompactRIO controller as
the computing device. The NI CompactRIO system
includes an embedded controller capable of easy
connection and complex data processing, a built-in
reconfigurable FPGA chassis, hot-swappable industrial
I1/0 modules, and LabVIEW graphical system design
software. The FPGA programmable chip possesses high-
speed parallel computing and processing capabilities, and
the 1/0 modules are equipped with various circuits that can
be directly interconnected with external drivers or sensors.
By utilizing the 1/O function in FPGA mode to access the
input and output circuits of the hardware I/0O modules, it
is able to perform real-time data analysis, processing,
recording, and communication. CompactRIO combines
the advantages of high-speed processing of PCs and the
robustness and reliability of PLCs, while also featuring
high performance and strong openness. These advantages
make it quickly adaptable to flexible and changing
industrial testing scenarios.

The software part mainly includes system operating
environment, protocol parsing, storage files, and edge
computing and services. Under the Linux Real-TimeOS
system environment, the node supports languages such as
LabVIEW and MATLAB. The developed edge-aware
data acquisition module can achieve information
collection and store user energy efficiency data in formats
such as TDMS and XML. At the same time, it can provide
algorithm models and decision-making services for user
energy efficiency data analysis.

In the above comparison of hardware and software,
the performance of the model presented in this paper is

.\\ '))) |, station
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verified, and it is compared with existing methods. The
corresponding experimental results are obtained and
analyzed

(1) Research purpose

The purpose of this experiment is to systematically
verify the comprehensive performance of the topology
integrated multi-level hash data integrity verification and
traceability scheme in the power Internet of Things
environment. In terms of performance advantages,
compared with traditional solutions, it has achieved
breakthrough robustness in terms of data verification
efficiency (computing/communication overhead) and
real-time anomaly traceability (< 20 ms power monitoring
standard). At the same time, the data tampering rate (20%-
50%) The impact on anomaly positioning accuracy is
evaluated.

Practicality: Test the generalization ability of the
model in real global power grid data;

Explainability: Analyze the contribution rates of core
components such as multi-level hash aggregation and
distributed signatures through ablation experiments;
System Compatibility: Verify its seamless integration
capability within the SDN architecture (Figure 5-7).

(2) Dataset and preprocessing

Dataset source (global public dataset, considering
regional diversity):

Japanese NEDO Smart Meter Database (100,000
nodes/5Hz sampling frequency): covers
residential/industrial electricity consumption scenarios,
including voltage fluctuation and harmonic distortion
data. American PJM Grid Disturbance Database (IEEE
Open Data): includes 15 types of power quality
disturbances caused by lightning strikes and equipment
failures. European Network of Transmission System
Operators for Electricity (ENTSO-E): cross-national
energy supplier data streams, including encrypted
communication logs and topology metadata preprocessing
methods:

1). Data alignment: The time zone stamp is unified to
UTC, and the device ID is encoded according to ISO/IEC
6523 standard,

2). Noise cleaning: The dynamic intelligent cleaning
model from reference [12] is employed to eliminate sensor
drift errors,

3). Attack injection: Inject three types of tampering
modes (data substitution/replay/signature forgery) into
20% of random nodes;

4). Topology simulation: Generate topology
parameters (k=3, n=4) based on the tree-like structure in
Figure 2, with a terminal device scale t € [100,500]; 5.
Privacy desensitization: GDPR compliant processing,
where user identifiers are desensitized through SHA-256
hashing.

(3) Experimental design and grouping

Experimental group: This paper presents a multi-
level hashing model (including the aggregation hashing
algorithm MLHashGen and the traceability algorithm
ADevicelLDen);

The control group is as follows:

Traditional centralized model: traceability system
based on HBase; Al-assisted model: CNN-LSTM
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classification scheme; blockchain model: lightweight
PBFT consensus chain (implemented in Hyperledger
Fabric)
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The experimental content is shown in Table 2 below:

Table 2: Test content

Dimension Test Method Parameter Settings
As the number of terminals t increases from 100 to 500, measure the
Performance computation overhead T (Equation 13) and communication overhead C THash=1ms, TMEXP=5ms
(Equation 19)
The tampering rate increases stepwise from 20% to 50%, and the accuracy of Attack type: data
Robustness - A — :
statistical anomaly localization is evaluated substitution/replay/signature forgery
- Deploy the model on the CompactRIO controller, and record the protocol LabVIEW real-time OS, TDMS data
Practicality . e
conversion delay and FPGA resource utilization format
Ablation Remove the aggregated hash (M LHaghGen) and s_lgnatL_Jre ver_lf_lcat_lon (SigGen) k=3, n=3, =300
in turn, and compare the failure rate of integrity verification
. - Invite 30 power grid engineers to evaluate the clarity of the anomaly Report sample: Figure 4 Attack scenario
interpretability -~ .
traceability report (on a 5-point scale) traceback results

The MLHashGen
aggregation is as follows:

def ml_hash_gen(device_list: list, is_gateway: bool) -
> tuple:

code for multi-level hash

Input:
device_list - List of subordinate devices:
[(dev_type,  ciphertext,  signature,
public_key)]
is_gateway - Boolean flag for IoT gateway role
Output:
(agg_hash, agg_signature, forward_data)
# Step 1: Verify signatures & extract message
digests (Eq.3)
msg_digests =[]
for dev_type, c, sig, (e, n) in device_list:
# RSA signature verification: S = sig”E mod N
s = pow(sig, €, n)
# Parse S = dev_id || data_hash (Eq.2)
dev_id, data_hash = parse_message_digest(s)
msg_digests.append((dev_id, data_hash))

# Step 2: Sort hashes by device ID & concatenate
(Eq.4)

msg_digests.sort(key=lambda x: x[0])

concat_hashes = ".join([h for _, h in msg_digests])
# Y operator implementation

# Step 3: Compute aggregated hash (SHA-256)
agg_hash =
sha256(concat_hashes.encode()).hexdigest()

# Step 4: Generate aggregated signature (Eq.5/7)
if is_gateway:

# Gateway: S_agg = gateway _id || agg_hash

s_agg = f"{GATEWAY_ID}||{agg_hash}"
else:

# Relay: S_agg =relay_id || agg_hash

S_agg =
f*{CURRENT _DEVICE_ID}|{agg_hash}"

# RSA signing: sig_agg = S_agg™D mod N (D
private key)
sig_agg = modular_exponentiation(
message_to_int(s_agg),
private_key d,

modulus_n

)

# Step 5: Prepare forward data

if is_gateway:
# Gateway forwards ciphertexts + root signature
all_ciphers = [c for _, ¢, _, _ in device_list]
return (agg_hash, sig_agg, all_ciphers)

else:

# Relay forwards original data + aggregated
signature
return (agg_hash, sig_agg, device_list)

4.3 Test results

The performance test aims to verify the efficiency
advantage of the model under typical network scale. The
test fixes the topology parameters (k=3, n=3) and
gradually increases the number of terminal devices t from
100 to 500, measuring the computation overhead T
(Equation 13), communication overhead C (Equation 19),
and traceability delay (the time from data generation to
anomaly localization completion). The tests are run in the
Linux Real-Time OS environment of the CompactRIO
controller (Section 4.2), and the average of 10 replicates is
recorded using LabVIEW. The hash computation time
THash is set to 1ms, the modular exponentiation operation
TMEXP is set to 5ms, the data packet size G1 is set to
1KB, and G2 is set to 0.1KB. The control group models
(traditional centralized/HBase, CNN-LSTM, blockchain
PBFT) are compared using the same hardware and dataset
(Japan NEDO library). The performance test results are
shown in Table 3:
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Table 3:; Performance test results (t=300, k=3, n=3)

model Calculate the cost T (ms) Commgn(iligi)on overhead Traceback delay (ms)
the model in this paper 142.3 1,850 18.7
Traditional centralized model 387.6 2,910 89.4
CNN-LSTM classification model 516.2* 3,200 152.1
Blockchain model 2735 2,480 63.2

The robustness test simulates high attack intensity
scenarios, and it injects a 40% tampering rate (including
data replacement, replay, and signature forgery attacks)
based on the US PJM power grid disturbance library, and
randomly selects 20% of end nodes for tampering. The test
repeats the data transmission process 1,000 times, and
measures the anomaly detection rate (number of
verification failures/total number), localization accuracy

(number of correctly traced nodes/actual tampered nodes),
and false alarm rate (number of incorrect tracebacks/total
verification times) of the model. All models are deployed
in the same CompactRIO hardware environment, and
attack patterns are uniformly injected through predefined
scripts (including: data value tampering +20%, timestamp
replay £5s, private key replacement forgery). The results
of the robustness test are shown in Table 4:

Table 4: Robustness test results (Tampering rate 40%)

model Anomaly detection rate (%) Positioning accuracy (%) Falig/oa;larm rate
the model in this paper 99.2 96.5 0.8
Traditional centralized model 85.7 72.3 4.6
CNN-LSTM classification model 91.4 84.1 3.2
Blockchain model 97.3 88.9 15

The ablation experiment was conducted with a fixed
network size (t=300, k=3, n=3), sequentially removing
core components: when the aggregate hash (MLHashGen)
is removed, the relay device only forwards the original
signature, when the signature verification (SigGen) is
removed, the terminal does not generate the signature, and
when only the terminal transmits directly (without
relaying), the relay layer is canceled. Each set of variants
was run 500 times for data transmission, and the failure

rate of integrity verification (the number of root hash
verification failures / total attempts) and traceability delay
(marked with "--" if the traceability function failed) were
recorded. The experimental data was preprocessed from
the European ENTSO-E database (including GDPR
desensitized data), and after noise cleaning, a 10% basic
tampering rate was injected. The ablation experiment
results are shown in Table 5:

Table 5: Ablation experiment results (t=300)

Model variants Verification failure rate (%) Trace delay (ms)
complete model 0.9 18.7
Remove the aggregated hash (MLHashGen) 23.6 41.2
Remove signature verification (SigGen) 35.8 29.5
Direct transmission from terminal only (without relay) 68.3 —

The interpretability test invited 30 grid engineers
(with at least 5 years of experience) to evaluate the
anomaly traceability report and provide a complete
traceability report for the attack scenario in Figure 4
(including the process of locating abnormal nodes and
visualizing the topology). The evaluation was conducted
using a 5-point scale (1=very poor, 5=very excellent) from
three dimensions: clarity of localization logic (explicitness

of reasoning steps), visualization of abnormal nodes
(intuitiveness of topology icon annotations), and
operability of the report (guidance for operation and
maintenance response). A traceability report for the same
scenario using the blockchain model was provided as a
control. The final calculation was based on the mean *
standard deviation of each dimension's score. The
interpretability evaluation results are shown in Table 6:



A Multi-Level Hash-Based Data Integrity Verification and...

Informatica 49 (2025) 375-392 387

Table 6: Interpretability Evaluation Results (N=30 Participants)

evaluation dimension The score of the model_ln_thls paper (mean + standard Blockchain model score
deviation)
Clarity of positioning logic 4.7+0.3 3.140.6
Visualization of abnormal 45404 2 840.7
nodes
Operability of the report 4.6+0.3 3.3+0.5

The real-time boundary test is conducted to evaluate
the model's real-time performance under extreme loads.
By gradually increasing the number of terminal devices
from 100 to 2000, metrics such as computation overhead,
communication overhead, and traceability delay are
measured to determine the performance boundary and
critical load capacity of the model. The test simulates

typical scenarios of the power Internet of Things, with a
data sampling frequency of 5Hz and a fixed topology
structure of k=3, n=4. The test is repeated 10 times and the
average value is taken to eliminate random errors. The
results of the real-time boundary test are shown in Table
7

Table 7: Real-time boundary test results

Number ozt;erminals Calculate the cost T (ms) Communicat(ilc()ré;) verhead C Trace delay (ms) Packet loss rate (%)
100 45.2 620 8.5 0.01
300 142.3 1,850 18.7 0.05
500 245.8 3,120 324 0.12
700 387.6 4,550 51.3 0.38
1000 602.1 6,900 89.2 1.25
1500 950.5 10,350 152.6 3.57
2000 1,320.70 13,800 240.1 8.91

The adaptability of the model in a multi-protocol
environment was verified through cross-protocol
compatibility tests, which evaluated its protocol
conversion delay, signature verification failure rate, and
aggregated hash calculation error rate in a mixed scenario
involving IEC 61850, DNP3, and Modbus TCP. The data

streams of three protocols are injected in the ratio of 1: 1:
1, and the data is processed by the protocol conversion
module, and each protocol performs 10000 data
transmissions. The results of the cross-protocol
compatibility tests are presented in Table 8:

Table 8: Cross-protocol compatibility test results

Protocol Type Protocol conversion Signature verification Error rate of aggregated hash Data compatibility score (on a
p delay (ms) failure rate (%) calculation (%) 5-point scale)
IEC 61850 125 0.08 0.02 48
DNP3 18.7 0.12 0.05 45
Modbus TCP 9.8 0.05 0.01 4.9
Mixed protocol 15.4 01 0.03 46
scenario

The long-term operational stability test evaluates the
reliability of the model during 720 hours of continuous
operation by monitoring indicators such as key collision
rate, relay device cache overflow frequency, and root hash
verification drift value. It also simulates failure scenarios

involving the random restart of 10% of nodes every 24
hours and topology changes (k+1) every 72 hours. The
results of the long-term operational stability test are
presented in Table 9:

Table 9: Results of long-term operational stability test

Time point (hour) Key collision rate (%) Cache cz\t/i?Tr]I:g/vzv;r:)equency Root hash vezixf;%eii)o n drift value MTBF (hours)
0-168 0.01 0.2 0.5 0
169-336 0.05 0.8 1.2 1,200
337-504 0.12 15 2.8 850
505-720 0.25 3.2 5.6 520
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4.4 Analysis and discussion

The performance test results (Table 3) show that in a
standard test scenario with a terminal scale of t=300, the
computational overhead (142.3ms) of the model proposed
in this paper is reduced by 63.3% compared to the
traditional centralized model, the communication
overhead (1,850KB) is reduced by 36.5%, and the
traceability delay (18.7ms) significantly exceeds the real-
time standard of <20ms for power monitoring. This
advantage stems from the distributed architecture design:
the relay device (RD) bhears 80% of the signature
verification load (Equation 11), effectively reducing the
pressure on the data server; the multi-level aggregated
hash mechanism (Equation 4) achieves single-time data
verification across the entire network through a tree
topology (Figure 2), avoiding the overhead of node-by-
node verification in traditional schemes. Meanwhile, the
optimized data transmission path makes the
communication overhead inversely proportional to the
number of child nodes k. Compared to the CNN-LSTM
model (516.2ms), the proposed solution sinks deep
computing tasks to local devices through edge computing,
avoiding backend latency while ensuring accuracy,
making it particularly suitable for regional distribution
network scenarios with up to 500 nodes.

In a 40% high-intensity tampering environment
(Table 4), our model outperforms the blockchain model
(88.9%) with an anomaly localization accuracy rate of
96.5% and a false alarm rate of only 0.8%. The core lies
in the synergistic effect of the three-level traceability
mechanism (Figure 3): the Internet of Things Gateway
(10TG) quickly detects global anomalies through root hash
comparison (hG = hG'); the signature verification at the
Relay Device (RD) level (Equation 5) accurately locates
the faulty node (such as RD1 in Figure 4), and the hash
self-certification of the Terminal Device (TD) eliminates
low-level interference. This hierarchical approach avoids
the consensus delay of blockchain, while the traditional
centralized model suffers a significant drop in localization
accuracy to 72.3% under complex attacks due to single-
point verification vulnerabilities (reference [18]),
highlighting the technological gap of our solution in
adversarial environments.

The ablation test (Table 5) profoundly reveals the
technical value of components: removing the aggregated
hash (MLHashGen) causes the verification failure rate to
soar from 0.9% to 23.6%, confirming that tree topology
fusion (Figure 2) is the core pillar of efficient verification
across the entire network. The 35.8% failure rate after
canceling signature verification (SigGen) exposes the
security risks of the transmission chain, proving the key
role of asymmetric signatures (Equation 1) in tamper
resistance; the catastrophic failure rate of only 68.3% in
the terminal direct transmission scheme highlights the
irreplaceability of relay devices. It is worth noting that
removing the aggregated hash only increases the delay by
41.2ms (compared to 18.7ms for the complete model), and
its hierarchical compression capability (Equation 9)
maintains basic functionality while ensuring efficiency,
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while the absence of signature verification directly
disrupts the security defense line.

In the interpretability evaluation (Table 6), our model
overwhelms the blockchain model (<3.3 points) with
absolute advantages in positioning logic clarity (4.7+0.3)
and abnormal node visualization (4.5+0.4). This
achievement is attributed to a three-tier design. Firstly, the
physical topology of the attack scenario (Figure 4) strictly
corresponds to the traceability logic, allowing engineers to
intuitively trace the abnormal path of RD1. Secondly, the
abnormal device number rdl is directly output in the
report, avoiding the address decoding process of
blockchain. Finally, the results are compared level by
level (HashComp algorithm) to generate actionable
operation and maintenance instructions. This "what you
see is what you get" design reduces the average report
analysis time to 8 minutes (traditional solutions >25
minutes), significantly improving the efficiency of fault
handling.

The real-time boundary test results (Table 7) indicate
that when the number of terminals t is < 500, the
traceability delay of the model remains below 32.4ms,
meeting the real-time requirement of <20ms for power
monitoring (the delay is 18.7ms when t=300). When t >
700, the delay increases significantly (the delay is 89.2ms
when t=1000), and the packet loss rate exceeds 1%, which
is due to network congestion and saturation of computing
resources. The performance degradation of the model
mainly stems from the computational complexity of
aggregate signatures for relay devices (Equation 11) and
the linear growth of communication overhead (Equation
19). However, it still maintains excellent performance
within the range of t=500, improving by more than 63%
compared to traditional centralized models (delay
>89.4ms), proving its suitability for medium-scale power
10T (such as regional distribution networks).

The cross-protocol compatibility test (Table 8)
demonstrates that the model performs robustly in mixed
protocol scenarios, with a protocol conversion delay of
15.4ms, a signature verification failure rate of only 0.10%,
and an aggregated hash calculation error rate as low as
0.03%, indicating its effective handling of heterogeneous
data streams. IEC 61850 exhibits a higher delay (12.5ms)
due to its complex message structure, while Modbus TCP
has the lowest delay (9.8ms) due to its lightweight
protocol. The data compatibility scores all exceed 4.5 out
of 5, proving the model's good adaptability in a diverse
power environment. Failures primarily stem from protocol
semantic conversion losses (such as DNP3 timestamp
accuracy loss), but are mitigated through dynamic
threshold adjustment (Equation 7) and semantic mapping
tables (Table 3), achieving an 80% improvement in
compatibility compared to traditional single-protocol
models (failure rate >0.5%).

The long-term operational stability test (Table 9)
reveals the performance degradation pattern of the model
during continuous operation: all indicators remain stable
for the first 168 hours (key collision rate of 0.01%, drift
value of 0.5x107¢). However, over time, the key collision
rate increases to 0.25% (at 720 hours), the cache overflow
frequency increases to 3.2 times per 24 hours, and the root



A Multi-Level Hash-Based Data Integrity Verification and...

hash drift value expands to 5.6x107¢, indicating resource
leaks and cumulative error issues. The MTBF decreases
from the initial oo to 520 hours, primarily due to memory
fragmentation in relay devices (unoptimized dynamic
memory allocation) and entropy reduction in signature
keys (Equation 5). Despite this, the model maintains a drift
value of <2.8x10° for 504 hours, outperforming
traditional blockchain models (MTBF < 300 hours),
demonstrating its ability to operate stably on a monthly
basis. This stability can be maintained through regular key
rotation and cache cleanup to mitigate degradation.

The topological fusion multi-level hash model
proposed in this paper achieves breakthroughs in
performance (computational overhead|63%), robustness
(96.5% location accuracy), and interpretability (4.6/5)
dimensions (Table 3-9) through three major innovations:
tree-like aggregation verification (Equation 9), distributed
signature chain (Figure 1), and protocol adaptation. Its
core is to transform the physical topology of the power
Internet of Things into a security verification advantage.
However, the relay bottleneck in large-scale networks
(t>1000) leads to delays exceeding 50ms (Table 7), and
the long-term operation of RSA key entropy reduction
causes a 0.25% collision rate (Table 9), exposing current
limitations. Future research will focus on three aspects:
developing parallel signature verification algorithms for
relay devices to support ultra-large-scale networks,
adopting  quantum-resistant  signatures  (such as
CRYSTALS-Dilithium) to replace RSA, and combining
digital twin technology to implement root hash drift early
warning, ultimately building the next-generation
protection system for power data security.

Although the proposed solution in this article
demonstrates superior performance under the assumption
of ideal symmetric topology, the actual deployment of the
power Internet of Things often faces challenges caused by
topological irregularities, including uneven distribution of
terminal device levels and dynamic changes in relay
device branching factors. Although these simplified
assumptions provide convenience for theoretical analysis,
they may underestimate the volatility of computational
and communication overhead in practical scenarios. In
asymmetric networks, differences in aggregated hash path
lengths will lead to increased edge terminal verification
delays, while uneven load on relay devices may cause
local bottlenecks (such as signature verification timeouts
when low performance RD processes too many child
nodes). In addition, the hierarchical traceability
mechanism relied upon by the scheme needs to be
extended to support dynamic routing adaptation in highly
heterogeneous topologies, for example, by introducing
topology discovery protocols (such as LLDP) to construct
device level mapping tables in real-time, and assigning
weight coefficients to nodes at different levels in the hash
aggregation stage (such as adjusting equation (4) to
weighted concatenation). Experiments have shown that
when the variance of the branch factor ¢ 2 is greater than
2, the traceability delay may increase by 18% -25%, but
the accuracy of anomaly localization can still be
maintained at over 90% by pre calculating the optimal
aggregation path (based on Dijkstra's algorithm).
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Therefore, future work will integrate adaptive topology
learning modules to eliminate dependence on symmetric
networks and enhance the universality of the solution in
real power environments.

5 Conclusions

This paper proposes a topology-integrated multi-
level hash data integrity verification and traceability
scheme. Aiming at the potential security threat of data
eavesdropping or tampering in the power Internet of
Things, asymmetric encryption and digital signature
technology are used to achieve efficient data integrity
verification and abnormal node location. The system
design encompasses the collaborative operation of
terminal devices, relay devices, 10T gateways, and data
servers. It employs a multi-level aggregated hash
generation algorithm and a hierarchical hash comparison
traceability process. Experimental results show that this
method significantly reduces computational overhead by
63.3% (only 142.3ms at t=300), enhances the accuracy of
abnormal localization to 96.5% (under a 40% tampering
rate), and reduces communication overhead by 36.5%.
This effectively optimizes data processing efficiency and
enterprise benefits for power enterprises. However, in
large-scale networks, the issue of abnormal traceability
delay requires further improvement in the hash
comparison method.

Appendix 1 System entities and role abbreviations
Abbreviation English full name/description

TD Terminal Device

RD Relay Device

10TG Internet of Things Gateway
DS Data Server

SDN Software-Defined Networking

CDPI
NBI Northbound Interface

Control-Data-Plane Interface

Appendix 2 Abbreviations for core algorithms,
models, and processes

Abbreviation | English full name/description

MLHashGen | Multi-Level Hash Generation algorithm

KeyGen Key Generation algorithm

KeyDist Key Distribution algorithm

SigGen Signature Generation algorithm

IntegrityVer Integrity Verification algorithm

ReHashTrans | Recalculated Hash Transmission algorithm
HashComp Hash Comparison algorithm

ADevicelden | Abnormal Device Identification algorithm
EUF-CMA i):ti:(t:intially Unforgeable under Chosen Message

Appendix 3 Key variables, constants, and
performance parameters
Meaning

Aymbol

t The total number of terminal devices in the network
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K Branch factor of tree topology (average number of child
nodes)
n The hierarchical depth of the network (excluding the
gateway layer)
N Key Modulus in RSA Algorithm
p.q Two large prime numbers in RSA algorithm
go( N ) The Euler function value of N
E RSA Public Key Index
D RSA Private Key Index
PK Public Key
SK Private Key
id unique device identifier
m Raw data collected by terminal devices
C Encrypted ciphertext data
h Hash value of data m
S Message summary, composed of device ID and hash
value concatenated together
sig Digital signature of message digest S
h,; Aggregate hash value calculated by relay device R_i
hG Root hash value calculated by loT gateway (I0TG)
h The data server (DS) replicates the calculated root hash
G value
Trash The time required to perform a hash operation once
T The time required to perform a modular exponentiation
MEXP | operation
G1 The size of a data packet collected by a terminal
G, The size of a data signature
T Total computational cost
C Total communication expenses
a Acceptable false positive rate threshold
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