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This paper addresses the unique data security and real-time monitoring requirements in the digital 

transformation of electric power enterprises, and combines the development characteristics of smart grids 

to solve the challenges of data integrity verification and anomaly tracing in the electric power Internet of 

Things (IoT). It proposes a topology-integrated multi-level hash verification and tracing scheme. This 

method utilizes asymmetric encryption (RSA key generation algorithm KeyGen) and digital signature 

technology to design a tree-like network architecture (including terminal devices TD, relay devices RD, 

IoT gateways IoTG, and data servers DS). It employs a multi-level aggregated hash generation algorithm 

(MLHashGen) to achieve one-time verification of data across the entire network, and precisely locates 

tampered nodes through an anomaly tracing process. Experimental results show that at a terminal scale 

of t=300, the computational overhead is reduced to 142.3ms (a 63.3% reduction compared to traditional 

schemes), the communication overhead is 1,850KB (a 36.5% reduction), and the accuracy rate of anomaly 

localization reaches 96.5% with a tampering rate of 40% (with a false alarm rate of only 0.8%). The 

tracing delay of 18.7ms meets the real-time monitoring standards for electric power. This scheme 

effectively improves data processing efficiency and enterprise benefits. The core contribution lies in 

eliminating the third-party dependency risks (such as difficulties in defining responsibilities) of 

centralized systems, establishing a dynamic verification mechanism to block the spread of anomalies, and 

providing a practical technical framework for electric power enterprises. Future work will focus on 

optimizing the tracing delay issue in large-scale networks. 

Povzetek: Predlagana rešitev omogoča hitro in zanesljivo preverjanje ter sledenje sprememb podatkov v 

elektro IoT omrežjih, pri čemer zmanjša obremenitve in doseže visoko natančnost. 

 

1 Introduction 
Electric power enterprise projects refer to various 

engineering construction projects carried out by electric 

power enterprises in the process of electricity production, 

transmission, distribution and other business processes. 

From a broad perspective, power enterprise projects have 

the characteristics of large investment scale, long 

construction period, high risk management, and complex 

technology. It is necessary to adopt scientific and 

reasonable management methods to comprehensively 

manage the projects, thereby improving the safety and 

stability of the projects and ensuring their smooth 

construction 

Digital management can improve the above problems 

by utilizing computer, communication, network and other 

technologies to quantify and optimize management 

activities through statistical, analytical, predictive and 

other methods, thereby improving management efficiency 

and decision-making level. Digital management has 

become an inevitable trend in project management for 

power enterprises. It can not only improve the 

informatization level and management efficiency of 

power enterprises, reduce costs, but also enhance their  

 

competitiveness, which is conducive to standing out in the  

fierce market competition. Based on this, this article 

proposes a study on digital project management in power 

enterprises, which contributes to better meeting the  

business needs and development requirements of power 

enterprises. 

More and more countries and regions are aware of 

the significance and value of digitalization, and are 

actively introducing digital technology in various 

industries. The electric power industry is an important 

field related to the national economy and people's 

livelihood. The digital transformation of enterprises in the 

electric power industry is unique. Smart grids can not only 

provide high-quality and efficient power supply, but also 

ensure the organic combination of multiple energy 

suppliers and complex power consumption facilities, 

ensuring that the power grid has higher stability [1]. 

In the wave of economic globalization, the industrial 

division of labor is becoming increasingly detailed and the 

degree of specialization is getting higher and higher. 

People's requirements for service quality are rising 

accordingly. Coupled with the rapid population growth 

and the continuous improvement of quality of life, the 
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demand for electricity is also increasingly strong. 

However, power resources are limited after all, which 

requires the power supply system to continuously 

strengthen technological innovation and full management, 

continuously improve production quality and efficiency, 

and effectively ensure the rational allocation of power 

resources, thus promoting the transformation and 

development of power industry enterprises. The 

development of smart grid will reflect the following 

characteristics. The first is the full sharing of power grid 

data, the second is the full agility of the communication 

network, and the third is the full connection of intelligent 

terminals. For power companies, in order to gain digital 

development opportunities, they must continuously 

strengthen digital construction, continue to improve the 

digital level of power equipment, efficiently use advanced 

network technology means and analysis algorithms, etc., 

and dynamically analyze various data information and 

facilities and equipment. At the same time, they need to 

form real-time monitoring and early warning of the entire 

life cycle of power facilities and equipment, and timely 

and efficiently regulate all aspects of the power system, 

thereby forming strong technical support. In addition, they 

need to use a highly shared cloud platform to attract 

industry experts and scholars to participate in technology 

research and development, process innovation and model 

optimization, and truly realize smart power generation 

through brainstorming and scientific demonstration [2]. 

In the current global digitalization wave and the 

context of smart grid construction, electric power 

enterprises face dual challenges of intensified data 

security threats and upgraded real-time monitoring 

requirements. This paper aims to propose an innovative 

topology-integrated multi-level hash data integrity 

verification and traceability scheme. Through the deep 

collaboration of asymmetric encryption technology (RSA 

key generation algorithm KeyGen) and a tree-like network 

architecture (including terminal devices TD, relay devices 

RD, Internet of Things gateway IoTG, and data server 

DS), a multi-level aggregated hash generation algorithm 

(MLHashGen) is pioneered to achieve efficient 

verification of data across the entire network in one go. 

Moreover, a hierarchical hash comparison and traceability 

mechanism is designed to precisely locate abnormal 

nodes. The core innovations of this scheme lie in: 1) 

eliminating centralized third-party dependencies and 

achieving data self-certification through distributed 

signature chains; 2) pioneering a topology-driven dynamic 

verification architecture that transforms the physical 

network into a security advantage; 3) breaking through the 

real-time bottleneck. Experimental verification shows that 

this scheme reduces computational overhead by 63.3% 

(142.3ms at t=300) and achieves an accuracy rate of 

96.5% in abnormal location (with a tampering rate of 

40%), providing electric power enterprises with a 

technical paradigm that combines efficiency, robustness, 

and practicality. 

 

 

 

2 Related works 
 

2.1 Digital transformation of enterprises 
In the research on the factors affecting the digital 

transformation and upgrading of enterprises, reference [3] 

believed that the digital transformation and upgrading of 

enterprises cannot be achieved by one organization or 

department. In the process of digital upgrading, technical 

problems, organizational changes, corporate culture 

conflicts and leadership challenges may be encountered, 

which need to be solved by the whole enterprise. 

Reference [3] believed that compared with the lack of 

digital technology and talents, it is more difficult to solve 

the problems of subversion of traditional business models, 

challenge organizational structures and impact on 

corporate culture caused by digital transformation and 

upgrading of enterprises. Reference [5] believed that the 

digital transformation and upgrading of enterprises is a 

strategic issue of enterprises, which should be transformed 

from the organizational culture and management of 

enterprises, and only by solving the internal 

maladjustment problems first can enterprises avoid fewer 

problems in digital transformation and upgrading. 

Regarding the impact of digital technology on digital 

transformation and upgrading, reference [6] believed that 

the continuous iteration of digital technology determines 

that the digital transformation and upgrading of 

enterprises is a long-term process, among which digital 

tools, data analysis and mining, data automation 

processing capabilities, etc. are also the main factors 

restricting the digital upgrading of enterprises. Reference 

[7] believed that the basis of digital transformation and 

upgrading is data, and obtaining valuable information 

from data is the purpose. However, in digital 

transformation and upgrading, enterprises ignore data 

collection, data quality, data analysis, data storage, data 

privacy and other aspects, and it is precisely these 

problems that directly determine the success or failure of 

digital upgrading. 

Regarding the impact of organizational structure on 

digital transformation and upgrading, reference [8] 

believed that the traditional enterprise organization 

structure is not conducive to digital transformation and 

upgrading. On the contrary, a flat organizational structure, 

flexible decision-making process and positive response 

speed are more conducive to digital transformation and 

upgrading. At the same time, digital transformation and 

upgrading will also drive the enterprise's organizational 

structure to be more efficient and transparent. Reference 

[9] believed that an enterprise is to the market what the 

army is to the battlefield. It is organized with the old 

system and adopts a one-way top-down command system. 

At this time, even with the most advanced digital 

technology and equipment, it is doomed to lose the battle. 

Therefore, for an enterprise that does not carry out digital 

transformation and upgrading in its organizational 

structure, no matter how many digital systems there are, it 

is just a pile of digital technologies, and such quantitative 

changes will never produce qualitative changes. 
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Regarding the impact of corporate culture on digital 

transformation and upgrading, reference [10] believed that 

enterprise culture is the embodiment of corporate values 

and ideology. In digital transformation and upgrading, 

enterprise culture is the guide to action. If an enterprise 

ignores corporate culture and forces digital transformation 

and upgrading, it is an infringement of the entire enterprise 

activities, and there will inevitably be resistant forces to 

prevent digital transformation and upgrading. Reference 

[11] believed that enterprises need to have innovation 

culture, equal communication culture, learning culture, 

incentive culture, etc. to carry out digital transformation 

and upgrading, and a diverse and flexible enterprise 

culture can ensure the sustainability of digital 

transformation and upgrading. 

 

2.2 Intelligent processing of power data 
In order to solve the problems of large amount of 

data, data redundancy and "multi-source heterogeneity" 

caused by the large number of participants in power 

quality data in distribution network, Zhang Xiaoxing et al. 

proposed a dynamic intelligent cleaning model based on 

data mining theory, which can effectively remove data 

noise and reduce the impact of data redundancy [12]. 

Reference [13] analyzed data-driven power quality based 

on big data technology, and clarified the feasibility of 

integrating cloud technology into distributed collection, 

storage and parallel processing of power quality data. 

Aiming at the storage problem of massive power quality 

online monitoring data, reference [14] proposed a data 

storage method of double-column family power quality 

online monitoring system based on HBase to realize 

efficient storage of power quality data. In order to improve 

the accuracy of power quality disturbance data 

classification, reference [15] proposed a power quality 

disturbance data classification method based on 

convolutional neural network (CNN) and long-term short-

term memory network (LSTM), which improved the 

accuracy of data classification and collection. Aiming at 

the problem of incomplete power quality data, reference 

[16] proposed a power quality perception data completion 

method based on low-rank matrix theory, which ensured 

the authenticity and integrity of power quality data. 

Combined with the characteristics of power quality 

disturbance, reference [17] proposed a power quality 

disturbance data availability evaluation method, which 

reduced the impact of data redundancy and improved the 

accuracy and quality of power quality data. 

The current distribution network power quality data 

management system is a centralized traceability system 

with many internal participants and complex interest game 

relationships. Data collection, transmission, processing 

and other businesses are often completed through the 

Internet of Things, cloud technology, etc. technology. 

Moreover, each participant has its own core database, and 

its business is relatively independent, so it is impossible to 

exchange information quickly and effectively. There is a 

problem of data trust, so it can only rely on authoritative 

government agencies to use it as a third-party trust 

intermediary management center database. Since the data 

of this kind of centralized system is stored in the local 

database of the participants, the data is uploaded 

manually, and the data security depends on the supervision 

of third-party organizations, its operating mode has 

problems such as opaque transactions and vulnerability to 

attacks. At the same time, data is easily tampered with and 

leaked in the process of transmission and sharing, 

resulting in problems such as lack of corporate credibility, 

difficult supervision and restricted development [18]. 

Moreover, once the system fails to correlate the 

traceability information of each link in time, it is easy to 

cause difficulties in proving evidence when disputes arise 

between enterprises, and it is difficult to clarify 

responsibilities, which cannot match the current market 

demand [19]. 

The deficiencies of existing research are shown in 

Table 1 below: 

 

Table 1: Summary of deficiencies in existing research 

 

Research model The obtained results 
The deficiencies of the study (compared to the proposed solution in this 

paper) 

Universal digital model   

Digital upgrade challenge 

model 

Identify non-technical challenges 

such as organizational change and 
cultural conflicts 

No technical solution has been provided; thus, the actual issue of data 

tampering cannot be addressed 

Strategic orientation model 
Emphasize the transformation 

path driven by management 

Without a specific technical framework, it is difficult to implement in the 

power IoT scenario 

Technological iteration 
impact model 

Reveal long-term characteristics 
and tool constraints 

Ignoring the topological characteristics of tree-like networks, the collaborative 
efficiency of edge devices cannot be optimized 

Data problem model 

Point out the decisive role of data 

quality in the success or failure of 

transformation 

Without establishing a dynamic verification mechanism, it is impossible to 
block the propagation of abnormal data in real time 

Organizational structure 
influence model 

Demonstrate that a flat structure 

is more suitable for 

transformation 

Without integration with data security technology, there is a risk of 
disconnection between management architecture and security architecture 

Power data processing model   

Dynamic intelligent cleaning 
model 

Remove noise from distribution 
network data 

Lack of traceability: Only effective in the preprocessing stage, unable to 
locate tampering nodes during the transmission process 

HBase dual-column family 

storage method 

Improve the efficiency of electric 

energy quality data storage 

Centralization risk: Reliance on a central database, with a single point of 

failure, can easily lead to the loss of traceability information 
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CNN-LSTM classification 
method 

Improve the accuracy of 
classification for perturbed data 

Insufficient real-time performance: Relying on backend deep computation, it 
is unable to intercept anomalies immediately at the gateway layer 

Low-rank matrix completion 

method 

Repair incomplete power quality 

data 

The passive completion mechanism is unable to actively identify tampering 

behavior 

System architecture model   

Centralized traceability 

system 

Expose the vulnerabilities of 

centralized systems 

Core defects: 1. Difficulty in defining responsibilities (the solution proposed 

in this paper clarifies responsibility nodes through hierarchical signature 
comparison); 2. Reliance on third parties for data trust (the solution proposed 

in this paper eliminates intermediary dependence through distributed hash 

verification) 

The existing research on the digital transformation of 

power enterprises has structural defects. For example, the 

general digital model only identifies organizational 

transformation challenges and lacks technical 

implementation solutions. The strategically oriented 

model emphasizes management-driven and ignores grid 

topology characteristics. The power data processing 

model improves cleaning efficiency but faces lack of 

traceability, centralization risks, and insufficient real-time 

performance. Fatal bottleneck. This paper proposes a 

topological fusion-based multi-level hash verification and 

traceability scheme. Its core innovations lie in: 1) 

pioneering a tree-like network collaborative verification 

architecture, which eliminates centralized single-point 

failures through distributed execution of aggregation hash 

calculations by relay devices (RDs); 2) designing a 

dynamic hierarchical traceability mechanism, which 

achieves precise tampering node localization through 

hierarchical signature comparison; 3) deeply integrating 

physical topology and security protocols, transforming 

network hierarchies into efficiency advantages, and 

completely breaking through the technical barriers of 

traditional solutions in terms of real-time performance, 

credibility, and responsibility traceability. 
 

3  System scheme 
The biggest problem faced by the digital 

transformation of electric power enterprises is the problem 

of data authenticity identification. Data transmission and 

data processing technologies are currently relatively 

mature, so it is necessary to effectively identify data 

sources and data authenticity. During the digital 

transformation process of power enterprises, there are 

security threats that may be eavesdropped or tampered 

with during the data collection process of power Internet 

of Things terminals. Therefore, this paper combines 

asymmetric encryption and digital signature technology to 

propose a data integrity verification and traceability 

scheme suitable for data collection network. 

 

3.1 System model 
The multi-level hash data integrity verification and 

traceability system model based on topology fusion 

proposed in this paper is shown in Figure 1. The data flow 

begins at the terminal device (TD), which generates power 

data and digitally signs it using a private key. The signed 

data is then uploaded to the relay device (RD) along with 

the encrypted collected data. After receiving data from 

multiple TDs under the RD, the signature is verified by the 

public key and the hash values of each data are extracted. 

The data is sorted by device number and concatenated to 

calculate the aggregated hash. Then, the RD uses its own 

private key to sign the aggregated hash and forwards the 

aggregated signature along with the original encrypted 

data to the higher-level RD or IoT gateway; IoTG, as a 

local area network hub, performs the same aggregated 

hash calculation and signature generation on subordinate 

RD data to obtain the root hash value. At the same time, it 

completes communication protocol conversion and 

ultimately sends all encrypted data and root hash 

signatures to the data server (DS). After decrypting the 

data, the DS replicates the root hash calculation process 

and compares it with the received root hash to verify the 

overall data integrity. If the verification fails, the 

traceability mechanism is triggered, and IoTG compares 

the hash values of each node step by step downwards to 

accurately locate the tampered nodes. 

 
Figure 1: Data integrity verification and traceability 

system model 

 

The system mainly consists of terminal equipment, 

relay equipment, Internet of Things gateway and data 

server. 

The data integrity verification scheme mainly 

includes signature key generation algorithm (KeyGen), 

encryption key distribution algorithm (KeyDist), terminal 

signature generation algorithm (SigGen), multi-level 

aggregation hash generation algorithm (MLHashGen), 

and data integrity verification algorithm (IntegrityVer). 

The specific description of each algorithm is as 

follows[20]: 

(1) Signature key generation. The signature key 

generation algorithm is mainly executed by the terminal 

device. The signature key generation algorithm is mainly 
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executed by the terminal device. It generates a public key 

and a private key, and this scheme generates a public-

private key pair based on the RSA algorithm. 

(2) Encryption key distribution. The encryption key 

distribution algorithm is executed by the data server. It 

generates an encryption key KD , and the key generation 

algorithm is symmetric encryption or asymmetric 

encryption, and sends KD  to the Internet of Things 

gateway, which is distributed by the gateway to the 

terminal equipment in the local communication network 

for the terminal to encrypt data. 

(3) Terminal signature generation. The terminal 

signature generation algorithm is mainly executed by the 

terminal device. It uses the device private key 

( )SK : D,N  to generate the digital signature value of the 

collected data. The signature value sig  is obtained by 

formula (1), where S  is the message digest, D  is the 

private key exponent, N  is the key modulus, id  is the 

device number, and m  is the data that the terminal needs 

to send. It mainly includes information such as sensor 

collection data, timestamp, device attributes (such as 

device number), h  is the hash value of m , and Hash () is 

the hash function. 
Dsig S mod N=                                 (1) 

( )S id || h,h Hash m= =                              (2) 

itd indicating the i-th terminal device, with the device 

number assigned according to the hierarchy. 

(4) Multi-level aggregation hash generation 

The multi-level aggregation hash generation 

algorithm is mainly performed by the relay device and the 

IoT gateway. According to the signature value uploaded 

by the subordinate device, the message digest set is 

obtained by the signature verification algorithm, and the 

aggregate hash value is obtained by the aggregate hash 

algorithm according to the device number and hash value 

in the message digest set, as shown in Figure 2. 

 
Figure 2: Example diagram of local communication 

network topology 

 

In this local communication network topology 

example, there are nine terminal devices, three relay 

devices, and one IoT gateway. Taking the relay device 

1RD  as an example, its aggregate hash generation process 

is as follows: 

①  Signature verification. 
1RD  receives data from 

terminals 
1TD , 

2TD , and 
3TD , and the data includes 

collected data ( )ic 1,2,3  and data signature ( )isig 1,2,3 . 

The elements of the data set are ciphertexts obtained by 

encrypting plaintext data at the terminal, and this part is 

not processed. For the signature set, the message digest is 

obtained by formula (3). The message digest is S id || h=

, and the device number ( )itd i 1,2,3=  and hash value 

( )ih i 1,2,3=  can be obtained by data decomposition. The 

device numbers are arranged from small to large, that is, 

1 2 3td td td  , and the device numbers correspond to the 

hash values one by one[21]. 

iE

i iS sig=                                   (3) 

Among them, ( )i iE ,N  are the device public keys of 

the devices ( )TDi i 1,2,3=  respectively. 

②  Calculating the aggregate hash. The aggregate 

hash in 
1RD  calculated by formula (4) is: 

1

3

R i

i 1

h Hash h
=

 
=  

 
                                (4) 

Among them, ∑ means that the hash values are added 

in the form of strings, that is, they are concatenated 

beginning to end into a new string. id  represents the 

unique identifier of the terminal device, 
jRh  represents the 

aggregated hash value of the relay device RDⱼ (the 

subscript ⱼ identifies the relay level). 

 

③ Generating an aggregated hash signature value. 

The message digest of 
1RD  is 

1 1 1R d RS r || h= , and the 

signature value of 
1RD  obtained by formula (5) is: 

( )
1

1

1 1 1 1 1 1

DR
DR

R R R d R Rsig s mod N r || h mod N= =      (5) 

Among them, ( )
11 RDR ,N  is the device private key of 

1RD .  
11 2 3 Rc ,c ,c ,sig  is the data sent by 

1RD  to IoTG.
 

jRD It represents the unique identifier of the relay device 

(subscript ⱼ represents the relay level). 

Similarly, the signature values of 
2RD  and 

3RD  are: 

( ) ( )
32

2 2 2 2 3 3 3 3

DRDR

R d R R R d R Rsig r || h mod N ,sig r || h mod N= =      

        (6) 

The signature value of the root hash at IoTG can be 

obtained by formula (7), where g  and ( )G GD ,N  are the 

device number and device private key of the IoT gateway, 

respectively.  9

i 1 i GU c ,sig=  is the data sent by IoTG to the 

data server. 

( )

( )

i

3
DR

G G G R G

i 1

3 3

Gi 1 3 j
i 1 j 1

sig g || h mod N g || Hash h mod N

g || Hash Hash h mod N

=

−  +
= =

  
= = =  

  

   
     

   



 

     

            (7) 

Gh It represents the root hash value of the IoT 

gateway (G represents the gateway level). 
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(5) Data integrity verification. The data integrity 

verification algorithm is mainly executed by the data 

server. The plaintext is obtained by decrypting the data 

ciphertext, and the root hash reproduction value is 

obtained according to the plaintext data and the root hash 

calculation process at the known network topology 

reproduction IoTG. The root hash value obtained by 

verifying the signature value uploaded by IoTG is 

compared with the root hash replica value and the root 

hash value, and the data integrity verification result is 

obtained. Taking the network topology in Figure 2 as an 

example, the specific steps of data integrity verification 

are as follows: 

①  Ciphertext data decryption. The data server 

receives data  9

i 1 i GU c ,sig= , and uses the decryption key 

to decrypt the ciphertext c  to obtain the plaintext data 

 9

i 1 iU m= . 

②  Signature verification. The IoTG public key 

( )G GE ,N  is used for signature verification, and the IoTG 

device number g  and root hash value 
Gh  are obtained 

through formula (8) [22]. 

GE

G G GS g || h sigG modN= =                             (8) 

③ Calculating the present value of root hash. The 

data server reproduces the root hash calculation process 

when data is uploaded according to the plaintext data 

 9

i 1 iU m= and the network topology relationship, and 

obtains the root hash reproduction value 
'

Gh  through 

formula (9). 

( )( )( )
3 3

'

G i 1 3 j
i 1 j 1

h Hash Hash Hash Hash m
−  +

= =

  
=    

  
     

(9) 

④ Numerical comparison. The data server compares 

the root hash value 
Gh  and the reproduced value 

'

Gh . If 

the two are the same, the terminal data has not been 

tampered with during the transmission process, and the 

data integrity verification is passed, and True is output. 

However, if the two are the different, the validation fails 

and False is output. 

 

3.2 Data traceability 
As shown in Figure 3, the data anomaly traceability 

process of this solution includes several processes: hash 

reproduction value transmission, single-layer node hash 

reproduction value delivery, hash comparison, abnormal 

device identification, and abnormal traceability result 

upload. 

 
 

Figure 3: Data exception traceability process 

 

The data anomaly traceability process mainly 

includes hash reproduction value transmission algorithm 

(ReHashTrans), step-by-step hash comparison algorithm 

(HashComp), and abnormal device identification 

algorithm (ADeviceIden). Taking the network topology 

shown in Figure 4 as an example, this paper assumes that 

due to equipment failure or attacker intrusion at node RD1, 

an error occurs when RD1 calculates the aggregate hash, 

that is, the aggregated hash value calculated by RD1 

changes from ℎR1 to ℎRerr 1 (an abnormal aggregated 

hash value (err represents the tampered value)),
'

Rih  

indicating the hash reproduction value issued by the data 

server. 

The specific description of each algorithm in the 

tracing process is as follows: 

 
 

Figure 4: Schematic diagram of network attack 

 

(1) Hash replica value transmission. During the hash 

replica value transmission process, the data server sends 

the hash replica value of each node calculated in the 

integrity verification process to the IoTG, that is, 

 9 ' 3 ' '

i 1 i i 1 Ri GU h ,U h ,h= = . 

(2) Step-by-step hash comparison 

The step-by-step hash comparison algorithm is to 

compare the hash calculation value and the hash 

reproduction value issued by the IoT gateway step by step 

from the IoT gateway downward to determine whether 

there is any data abnormality in the device. The specific 

steps in the network in Figure 4 are as follows: 
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① IoTG performs hash comparison. The algorithm 

compares the hash calculation value 
Gh  and the hash 

reproduction value 
Gh'  and obtains 

G Gh h' , which 

indicates that there is a data anomaly at IoTG, so the 

algorithm returns False[23]. 

② ( )
i

RD i 1,2,3=  performs hash comparison. The 

algorithm compares the hash calculation value  
i

3

i 1 RU h=  

and the hash reproduction value  
i

3

i 1 RU h'=  to obtain 

1 1R Rh h' , 
2 2R Rh h' , and 

3 3R Rh h' . This indicates that 

there is an abnormal data at 
1RD , while the data at 

2RD  

and 
3RD  are normal, so 

1RD  returns False, and 
2RD  and 

3RD  return True. 

③ ( )
i

TD i 1,2,3=  performs hash comparison. The 

algorithm compares the hash calculation value  
i

3

i 1U h=  

and the hash reproduction value  3 '

i 1 iU h=  to obtain 

1 1h h'= , 
2 2h h'=  and 

3 3h h'= . This indicates that the 

data at 
1TD , 

2TD  and 
3TD  are normal, so 

1TD , 
2TD  and 

3TD  all return True. 

(3) Identification of abnormal equipment 

The abnormal device identification algorithm is 

executed by the Internet of Things gateway. The specific 

steps are as follows: 

① If the IoTG hash comparison returns False, all 

subordinate nodes ( )
i

RD i 1,2,3=  should be notified to 

perform hash comparison. 

② If the ( )
i

RD i 1,2,3=  hash comparison returns 

False, True, and True, all subordinate nodes

( )
i

TD i 1,2,3=  of 
1RD  should be notified to perform 

hash comparison. 

③  If the ( )
i

TD i 1,2,3=  hash comparison returns 

True, True, and True, indicating that the data are all 

normal, then the data abnormality exists in the device, and 

the data abnormality at IoTG is caused by the abnormality 

in 
1RD   at IoTG. The tracing result is the same as the pre-

assumption, and the result is established. The algorithm 

sends the device number 
1rd  of 

1RD  to the data server. 

The total number of network terminal devices is t, the 

depth of the tree is n (excluding the gateway layer), and 

the branch factor is k (the average number of child nodes). 

The worst-case time complexity of the traceback 

algorithm is determined by the following operations: 

(1) Tree traversal complexity: 

In the worst case, it is necessary to traverse all levels 

and devices (if the fault is located at a leaf node), and the 

number of visited nodes is the sum of the number of 

terminal devices t and the number of relay devices: 

( )
n 1

i

t otal

i 1

No de t k O t
−

=

= + =                           (10) 

(2) Verify operational complexity: 

Each layer of relay devices performs one hash 

comparison (HashComp), with each comparison taking 

THash (hash calculation time). A tree with depth n 

requires n comparisons: 

comp HashT n T ( Not related to t )=                           (11) 

(3) Message passing complexity: 

The Internet of Things Gateway (IoTG) needs to 

relay broadcast requests to k direct subordinates, with the 

number of messages per layer growing exponentially. The 

total number of messages is: 

( )2 n-1 n 1Messages=k+k +...+k =O k −
             (12) 

Worst-case total time complexity: 

( ) ( ) ( )n 1

worstT =O t O n O k −+ +                          (13) 

 

3.3 Performance analysis 
For convenience of representation, 

HashT  represents 

the time required for a hash operation, 
MEXPT  represents 

the time required for a modular exponentiation operation, 

t represents the number of terminal devices in the network, 

k represents the average number of relay devices under 

each upper relay (including gateway), n represents the 

total number of device layers below the gateway 

(excluding gateways), 
1G  represents the size of a terminal 

collection data packet, and 
2G  represents the size of a 

data signature. For convenience of calculation, it is 

assumed that all terminal devices are in the last layer of 

the network, that is, the n-th layer. 

For the computational overhead, it is mainly 

analyzed from the stages of terminal signature generation, 

aggregate hash calculation and data integrity verification. 

(1) In the terminal signature generation stage, this 

scheme mainly calculates the hash value of the collected 

data packet and the signature value of the message digest, 

and the main calculation overhead is[24]: 

1 Hash MEXPT T T= +                                (14) 

(2) In the stage of aggregate hash calculation, the 

computational overhead of this scheme mainly includes 

subordinate signature verification, aggregate hash 

calculation and signature generation operation on the relay 

device. In the lower-level signature verification part, if the 

number of devices in the (n-1)-th layer of the bottom-level 

relay device is 𝑘𝑛-1, and the number of terminal devices 

is t, then the computational overhead of signature 

verification at this layer is MEXPn 1

t
T

k −
, and the number of 

relay devices above this layer (including gateways) is (n-

1) layers in total, and the computational overhead of 

signature verification is ( ) MEXPn 1 kT− . In the aggregate 

hash calculation part, there are n layers from the gateway 

to the bottom relay (including the gateway), and the 

calculation cost is 
HASHnT . Similarly, the calculation cost 

of the signature generation operation part is 
MEXPnT , so the 

calculation cost of this stage is [25]: 
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( )

( )

2 MEXP MEXP HASH MEXPn 1

MEXP HASHn 1

t
T T n 1 kT nT nT

k

t
n 1 k n T nT

k

−

−

= + − + +

 
= + − + + 
 

      (15) 

(3) In the data integrity verification stage, the 

computational overhead of this scheme mainly includes 

the hash value calculation of the data collected by the 

terminal, the aggregated hash reproduction value of the 

relay equipment and the verification operation of the 

gateway signature, so the computational overhead of this 

stage is as follows [26]: 
n

3 HASH MEXP

1 k
T t T T

1 k

 −
= + + 

− 
                          (16) 

To sum up, the total computational overhead of this 

scheme in one transmission process is: 

( )
n

MEXP HASHn 1

t 1 k
T n 1 k n 2 T t n 1 T

1 kk −

 − 
= + − + + + + + +  

−   
         

(17) 

In terms of communication overhead, this paper 

mainly analyzes the communication overhead of different 

schemes in the communication stages of "gateway-data 

server" and "terminal-gateway". 

(1) " Gateway-data server" stage 

Since the multi-level aggregation hash calculation 

process of the tree network, the final data that the IoT 

gateway needs to transmit is terminal data and root hash 

value, so the communication overhead at this stage is 

( )1 2t G G+ . 

(2) "Terminal-Gateway" stage 

𝐶𝑖 (1 ≤ i ≤ n) represents the communication overhead 

of the i-th layer device. In a data transmission process, the 

communication overhead of each terminal device mainly 

includes two parts: collecting data packets and data 

signatures. If the number of terminals is t, the 

communication overhead of the n-th layer is: 

( )n 1 2C t G G= +                                 (18) 

In multi-layer relay devices, that is, layer 1 to layer 

n, the number of relay devices in layer i (1 ≤ i ≤ n − 1) is 

expressed as: 
i

it k=                                      (19) 

Since the relay device will perform the aggregate 

hash calculation process, each relay device only sends one 

data signature when sending data, and each layer of relay 

needs to transmit all collected data packets, then the 

communication overhead of the i-th layer (1 ≤ i ≤ n-1) is: 
i

i 1 2C tG k G= +                                 (20) 

Therefore, the total communication overhead of layer 

1 to layer ( )n 1−  is: 

( )
( )n 1

n 1 1 2

k 1 k
S n 1 tG G

1 k

−

−

−
= − +

−
                       (21) 

Therefore, the communication overhead at this stage 

is: 

( )n 1

n 1 2

k 1 k
S ntG t G

1 k

− −
 = + +
 −
 

                       (22) 

To sum up, the communication overhead of this 

scheme in the whole data transmission process is: 

( )
( )n 1

n 1 2 1 2

k 1 k
C S tG G N 1 tG T 1 G

1 k

− −
 = + + = − + + +
 −
 

            

(23) 

 

3.4 Security model and proof 
(1) Definition of adversarial model 

The attacker's capabilities cover common threats in 

the electric power Internet of Things, as follows: 

Eavesdropping: Obtaining data transmitted over a 

public channel (e.g.
ic ,

isig ). 

Replay: After intercepting a legitimate data packet, it 

is sent repeatedly. 

Forgery: Tampering with data content or forging 

signatures (such as replacement
ih  or 

jRsig ,). 

Node Compromise: Control some terminal devices 

(TD) or relay devices (RD) to obtain their private keys 

(SK). 

Attack target: Disrupting data integrity (via 

verification
'

G Gh h= ) or impeding anomaly tracing (error 

localization and tampering with nodes). 

(2) Formalization of security objectives 

The scheme must satisfy the following security 

properties: 

Unforgeability: An attacker cannot generate a valid 

signature for any message without obtaining the private 

key SK. *m
*sig  

Traceability: If data integrity verification fails (
'

G Gh h ), the abnormal device can be precisely located, 

with a low false alarm rate α  (in testing α 0.8%= ). 

(3) Security proof based on cryptographic 

assumptions 

Theorem 1: If the RSA signature scheme satisfies 

EUF-CMA (Existence Unforgeability under Chosen 

Message Attack), then this scheme is unforgeable. 

Proof sketch: 

Reductio ad absurdum: Assuming the existence of a 

polynomial-time attacker 4 capable of forging valid 

signatures
*sig , the EUF-CMA security of RSA can be 

breached through the construction of an algorithm 

Simulation process: 

1) B  Receive the RSA public key (E, N) as a 

challenge. 

2) B  Generate keys for all legitimate devices: (PK, 

SK) ← KeyGen(), but randomly select a device TD and 

replace its public key with (E, N). 

3) Α Perform adaptive queries (data signing, 

aggregated hash requests), B and respond to all requests 

except for 
kTD . For 

kTD correct signature requests, B

forward them to the RSA signature oracle. 
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4) Α Output the corresponding message for the 

forged signature
*sig . *m  If *m it is associated

kTD , 

output B it as an RSA forged signature; otherwise, abort. 

Advantage analysis: Assuming the probability of 

successful forgery is Α , then the probability of cracking 

RSA (given the number of terminals) is ε . B  Since RSA 

is uncrackable in polynomial time, this probability can be 

neglected, and the proof is complete 

Theorem 2: If the hash function Hash() satisfies 

collision resistance, then the accuracy of anomaly 

traceback localization ( )1 negl λ −  ( λ is a security 

parameter). 

Proof of dependency: Trace back to the accuracy 

dependency hierarchy for hash comparison (as shown in 

the flowchart in Figure 3). If an attacker creates a hash 

collision such that h,=h, but RD, is actually abnormal, then 

it is necessary to break the collision resistance of Hash(). 

Due to the security of the hash function, this probability 

can be neglected. 

(4) Practical threat mapping 

For data tampering attacks, this scheme achieves 

protection through a dual defense mechanism of multi-

level signature verification (Equation 5) and root hash 

verification (Equation 9), relying on the RSA EUF-CMA 

security assumption to ensure that signatures cannot be 

forged. For replay attacks, a timeliness verification 

strategy is adopted by embedding timestamps in the 

message m (Equation 2), blocking duplicate data packets 

through a dynamic timeliness window. Facing the threat 

of forged signatures, an identity authentication protocol 

based on device public key binding identity (id ∈  S) 

constructs a trust chain, requiring attackers to 

simultaneously crack the key system and identity binding. 

When the node private key is leaked, the impact scope is 

controlled by limiting the abnormal traceability to a single 

point (topology isolation mechanism in Figure 4), 

ensuring that local key leakage does not compromise 

global security. The four-layer defense system forms a 

deep defense: cryptographic assumptions (RSA/hash) 

provide theoretical basis, dynamic verification (Equation 

9) achieves real-time interception, identity binding 

eliminates forgery vulnerabilities, and topology isolation 

(level traceability in Figure 4) limits lateral diffusion. 

 

4 Electric power enterprise data 

model 
 

4.1 Power communication architecture 
Using SDN communication system can reduce the 

network response time, and at the same time, the traffic 

situation can be distributed to other systems more quickly. 

SDN generally consists of a data plane, a control plane and 

an application plane. The data plane and the control plane 

are linked to each other through an SDN control data plane 

interface. The control plane and the application plane 

communicate with each other by SDN, and the structure is 

shown in Figure 5. 

 
 

Figure 5: Centralized control architecture of power 

data communication network 

 

In the middle and lower part of modern power grid 

system, there are many contacts between power 

equipment and power users in the power system, so it is 

necessary to speed up the data transmission speed to 

ensure the safety of the system. Therefore, combined with 

the implementation schemes of southbound interface, 

northbound interface and cluster control, this paper 

proposes a distribution and consumption communication 

network architecture based on SDN technology principle. 

The details are shown in Figure 6. 

 

 
 

Figure 6: Centralized control architecture of power 

communication network 

 

According to the technical characteristics and 

practical needs of power system communication networks 

under the background of power Internet of Things, this 

paper designs a multi-dimensional power data 

communication architecture model of power IP + optical 

network based on SDN. The internal modules involved are 

shown in Figure 7. The role of SDN is to The structure of 

each part in the system is allocated, and coordinated and 

planned in conjunction with the communication systems 

in other modules. 



384   Informatica 49 (2025) 375–392                                                                                                                               B. Zhang et al. 
 

 
 

Figure 7: Overall topology diagram of multi-

dimensional data communication architecture based on 

SDN 

 

In-network IP collects the signals of each module in 

the network through network sensing technology, so that 

the power IP + optical network can reasonably schedule 

resources with the data needed by the system modules. 

Adopt reasonable routing and scheduling strategies to 

ensure high-priority business services, meet the increasing 

demand of various key services of distribution network for 

power communication network services, and ensure the 

normal and smooth operation of the network. 

 

4.2 Test method 
This article chooses the CompactRIO controller as 

the computing device. The NI CompactRIO system 

includes an embedded controller capable of easy 

connection and complex data processing, a built-in 

reconfigurable FPGA chassis, hot-swappable industrial 

I/O modules, and LabVIEW graphical system design 

software. The FPGA programmable chip possesses high-

speed parallel computing and processing capabilities, and 

the I/O modules are equipped with various circuits that can 

be directly interconnected with external drivers or sensors. 

By utilizing the I/O function in FPGA mode to access the 

input and output circuits of the hardware I/O modules, it 

is able to perform real-time data analysis, processing, 

recording, and communication. CompactRIO combines 

the advantages of high-speed processing of PCs and the 

robustness and reliability of PLCs, while also featuring 

high performance and strong openness. These advantages 

make it quickly adaptable to flexible and changing 

industrial testing scenarios. 

The software part mainly includes system operating 

environment, protocol parsing, storage files, and edge 

computing and services. Under the Linux Real-TimeOS 

system environment, the node supports languages such as 

LabVIEW and MATLAB. The developed edge-aware 

data acquisition module can achieve information 

collection and store user energy efficiency data in formats 

such as TDMS and XML. At the same time, it can provide 

algorithm models and decision-making services for user 

energy efficiency data analysis. 

In the above comparison of hardware and software, 

the performance of the model presented in this paper is 

verified, and it is compared with existing methods. The 

corresponding experimental results are obtained and 

analyzed 

(1) Research purpose 

The purpose of this experiment is to systematically 

verify the comprehensive performance of the topology 

integrated multi-level hash data integrity verification and 

traceability scheme in the power Internet of Things 

environment. In terms of performance advantages, 

compared with traditional solutions, it has achieved 

breakthrough robustness in terms of data verification 

efficiency (computing/communication overhead) and 

real-time anomaly traceability (≤ 20 ms power monitoring 

standard). At the same time, the data tampering rate (20%-

50%) The impact on anomaly positioning accuracy is 

evaluated. 

Practicality: Test the generalization ability of the 

model in real global power grid data; 

Explainability: Analyze the contribution rates of core 

components such as multi-level hash aggregation and 

distributed signatures through ablation experiments; 

System Compatibility: Verify its seamless integration 

capability within the SDN architecture (Figure 5-7). 

(2) Dataset and preprocessing 

Dataset source (global public dataset, considering 

regional diversity): 

Japanese NEDO Smart Meter Database (100,000 

nodes/5Hz sampling frequency): covers 

residential/industrial electricity consumption scenarios, 

including voltage fluctuation and harmonic distortion 

data. American PJM Grid Disturbance Database (IEEE 

Open Data): includes 15 types of power quality 

disturbances caused by lightning strikes and equipment 

failures. European Network of Transmission System 

Operators for Electricity (ENTSO-E): cross-national 

energy supplier data streams, including encrypted 

communication logs and topology metadata preprocessing 

methods: 

1). Data alignment: The time zone stamp is unified to 

UTC, and the device ID is encoded according to ISO/IEC 

6523 standard, 

2). Noise cleaning: The dynamic intelligent cleaning 

model from reference [12] is employed to eliminate sensor 

drift errors, 

3). Attack injection: Inject three types of tampering 

modes (data substitution/replay/signature forgery) into 

20% of random nodes; 

4). Topology simulation: Generate topology 

parameters (k=3, n=4) based on the tree-like structure in 

Figure 2, with a terminal device scale t € [100,500]; 5. 

Privacy desensitization: GDPR compliant processing, 

where user identifiers are desensitized through SHA-256 

hashing. 

(3) Experimental design and grouping 

Experimental group: This paper presents a multi-

level hashing model (including the aggregation hashing 

algorithm MLHashGen and the traceability algorithm 

ADeviceLDen); 

The control group is as follows: 

Traditional centralized model: traceability system 

based on HBase; AI-assisted model: CNN-LSTM 
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classification scheme; blockchain model: lightweight 

PBFT consensus chain (implemented in Hyperledger 

Fabric) 

The experimental content is shown in Table 2 below: 

Table 2: Test content 

 

Dimension Test Method Parameter Settings 

Performance 

As the number of terminals t increases from 100 to 500, measure the 

computation overhead T (Equation 13) and communication overhead C 
(Equation 19) 

THash=1ms, TMEXP=5ms 

Robustness 
The tampering rate increases stepwise from 20% to 50%, and the accuracy of 

statistical anomaly localization is evaluated 

Attack type: data 

substitution/replay/signature forgery 

Practicality 
Deploy the model on the CompactRIO controller, and record the protocol 

conversion delay and FPGA resource utilization 
LabVIEW real-time OS, TDMS data 

format 

Ablation 
Remove the aggregated hash (MLHashGen) and signature verification (SigGen) 

in turn, and compare the failure rate of integrity verification 
k=3, n=3, t=300 

interpretability 
Invite 30 power grid engineers to evaluate the clarity of the anomaly 

traceability report (on a 5-point scale) 
Report sample: Figure 4 Attack scenario 

traceback results 

 

The MLHashGen code for multi-level hash 

aggregation is as follows: 

def ml_hash_gen(device_list: list, is_gateway: bool) -

> tuple: 

    """ 

    Input:  

        device_list - List of subordinate devices:  

                     [(dev_type, ciphertext, signature, 

public_key)] 

        is_gateway  - Boolean flag for IoT gateway role 

    Output:  

        (agg_hash, agg_signature, forward_data) 

    """ 

    # Step 1: Verify signatures & extract message 

digests (Eq.3) 

    msg_digests = [] 

    for dev_type, c, sig, (e, n) in device_list: 

        # RSA signature verification: S = sig^E mod N 

        s = pow(sig, e, n)   

        # Parse S = dev_id || data_hash (Eq.2) 

        dev_id, data_hash = parse_message_digest(s)   

        msg_digests.append((dev_id, data_hash)) 

     

    # Step 2: Sort hashes by device ID & concatenate 

(Eq.4) 

    msg_digests.sort(key=lambda x: x[0]) 

    concat_hashes = ''.join([h for _, h in msg_digests])  

# ∑ operator implementation 

     

    # Step 3: Compute aggregated hash (SHA-256) 

    agg_hash = 

sha256(concat_hashes.encode()).hexdigest() 

     

    # Step 4: Generate aggregated signature (Eq.5/7) 

    if is_gateway: 

        # Gateway: S_agg = gateway_id || agg_hash 

        s_agg = f"{GATEWAY_ID}||{agg_hash}"   

    else: 

        # Relay: S_agg = relay_id || agg_hash 

        s_agg = 

f"{CURRENT_DEVICE_ID}||{agg_hash}" 

     

    # RSA signing: sig_agg = S_agg^D mod N (D = 

private key) 

    sig_agg = modular_exponentiation( 

        message_to_int(s_agg),  

        private_key_d,  

        modulus_n 

    ) 

     

    # Step 5: Prepare forward data 

    if is_gateway: 

        # Gateway forwards ciphertexts + root signature 

        all_ciphers = [c for _, c, _, _ in device_list] 

        return (agg_hash, sig_agg, all_ciphers) 

    else: 

        # Relay forwards original data + aggregated 

signature 

        return (agg_hash, sig_agg, device_list) 

 

4.3 Test results 
The performance test aims to verify the efficiency 

advantage of the model under typical network scale. The 

test fixes the topology parameters (k=3, n=3) and 

gradually increases the number of terminal devices t from 

100 to 500, measuring the computation overhead T 

(Equation 13), communication overhead C (Equation 19), 

and traceability delay (the time from data generation to 

anomaly localization completion). The tests are run in the 

Linux Real-Time OS environment of the CompactRIO 

controller (Section 4.2), and the average of 10 replicates is 

recorded using LabVIEW. The hash computation time 

THash is set to 1ms, the modular exponentiation operation 

TMEXP is set to 5ms, the data packet size G1 is set to 

1KB, and G2 is set to 0.1KB. The control group models 

(traditional centralized/HBase, CNN-LSTM, blockchain 

PBFT) are compared using the same hardware and dataset 

(Japan NEDO library). The performance test results are 

shown in Table 3: 
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Table 3: Performance test results (t=300, k=3, n=3) 

 

model Calculate the cost T (ms) 
Communication overhead 

C (KB) 
Traceback delay (ms) 

the model in this paper 142.3 1,850 18.7 

Traditional centralized model 387.6 2,910 89.4 

CNN-LSTM classification model 516.2* 3,200 152.1 

Blockchain model 273.5 2,480 63.2 

The robustness test simulates high attack intensity 

scenarios, and it injects a 40% tampering rate (including 

data replacement, replay, and signature forgery attacks) 

based on the US PJM power grid disturbance library, and 

randomly selects 20% of end nodes for tampering. The test 

repeats the data transmission process 1,000 times, and 

measures the anomaly detection rate (number of 

verification failures/total number), localization accuracy 

(number of correctly traced nodes/actual tampered nodes), 

and false alarm rate (number of incorrect tracebacks/total 

verification times) of the model. All models are deployed 

in the same CompactRIO hardware environment, and 

attack patterns are uniformly injected through predefined 

scripts (including: data value tampering ±20%, timestamp 

replay ±5s, private key replacement forgery). The results 

of the robustness test are shown in Table 4: 

 

Table 4: Robustness test results (Tampering rate 40%) 

 

model Anomaly detection rate (%) Positioning accuracy (%) 
False alarm rate 

(%) 

the model in this paper 99.2 96.5 0.8 

Traditional centralized model 85.7 72.3 4.6 

CNN-LSTM classification model 91.4 84.1 3.2 

Blockchain model 97.3 88.9 1.5 

The ablation experiment was conducted with a fixed 

network size (t=300, k=3, n=3), sequentially removing 

core components: when the aggregate hash (MLHashGen) 

is removed, the relay device only forwards the original 

signature, when the signature verification (SigGen) is 

removed, the terminal does not generate the signature, and 

when only the terminal transmits directly (without 

relaying), the relay layer is canceled. Each set of variants 

was run 500 times for data transmission, and the failure 

rate of integrity verification (the number of root hash 

verification failures / total attempts) and traceability delay 

(marked with "--" if the traceability function failed) were 

recorded. The experimental data was preprocessed from 

the European ENTSO-E database (including GDPR 

desensitized data), and after noise cleaning, a 10% basic 

tampering rate was injected. The ablation experiment 

results are shown in Table 5: 

 

Table 5: Ablation experiment results (t=300) 

 

Model variants Verification failure rate (%) Trace delay (ms) 

complete model 0.9 18.7 

Remove the aggregated hash (MLHashGen) 23.6 41.2 

Remove signature verification (SigGen) 35.8 29.5 

Direct transmission from terminal only (without relay) 68.3 — 

The interpretability test invited 30 grid engineers 

(with at least 5 years of experience) to evaluate the 

anomaly traceability report and provide a complete 

traceability report for the attack scenario in Figure 4 

(including the process of locating abnormal nodes and 

visualizing the topology). The evaluation was conducted 

using a 5-point scale (1=very poor, 5=very excellent) from 

three dimensions: clarity of localization logic (explicitness 

of reasoning steps), visualization of abnormal nodes 

(intuitiveness of topology icon annotations), and 

operability of the report (guidance for operation and 

maintenance response). A traceability report for the same 

scenario using the blockchain model was provided as a 

control. The final calculation was based on the mean ± 

standard deviation of each dimension's score. The 

interpretability evaluation results are shown in Table 6: 
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Table 6: Interpretability Evaluation Results (N=30 Participants) 

 

evaluation dimension 
The score of the model in this paper (mean ± standard 

deviation) 
Blockchain model score 

Clarity of positioning logic 4.7±0.3 3.1±0.6 

Visualization of abnormal 

nodes 
4.5±0.4 2.8±0.7 

Operability of the report 4.6±0.3 3.3±0.5 

The real-time boundary test is conducted to evaluate 

the model's real-time performance under extreme loads. 

By gradually increasing the number of terminal devices 

from 100 to 2000, metrics such as computation overhead, 

communication overhead, and traceability delay are 

measured to determine the performance boundary and 

critical load capacity of the model. The test simulates 

typical scenarios of the power Internet of Things, with a 

data sampling frequency of 5Hz and a fixed topology 

structure of k=3, n=4. The test is repeated 10 times and the 

average value is taken to eliminate random errors. The 

results of the real-time boundary test are shown in Table 

7: 

 

Table 7: Real-time boundary test results 

 
Number of terminals 

(t) 
Calculate the cost T (ms) 

Communication overhead C 

(KB) 
Trace delay (ms) Packet loss rate (%) 

100 45.2 620 8.5 0.01 

300 142.3 1,850 18.7 0.05 

500 245.8 3,120 32.4 0.12 

700 387.6 4,550 51.3 0.38 

1000 602.1 6,900 89.2 1.25 

1500 950.5 10,350 152.6 3.57 

2000 1,320.70 13,800 240.1 8.91 

The adaptability of the model in a multi-protocol 

environment was verified through cross-protocol 

compatibility tests, which evaluated its protocol 

conversion delay, signature verification failure rate, and 

aggregated hash calculation error rate in a mixed scenario 

involving IEC 61850, DNP3, and Modbus TCP. The data 

streams of three protocols are injected in the ratio of 1: 1: 

1, and the data is processed by the protocol conversion 

module, and each protocol performs 10000 data 

transmissions. The results of the cross-protocol 

compatibility tests are presented in Table 8: 

 

Table 8: Cross-protocol compatibility test results 

 

Protocol Type 
Protocol conversion 

delay (ms) 

Signature verification 

failure rate (%) 

Error rate of aggregated hash 

calculation (%) 

Data compatibility score (on a 

5-point scale) 

IEC 61850 12.5 0.08 0.02 4.8 

DNP3 18.7 0.12 0.05 4.5 

Modbus TCP 9.8 0.05 0.01 4.9 

Mixed protocol 

scenario 
15.4 0.1 0.03 4.6 

The long-term operational stability test evaluates the 

reliability of the model during 720 hours of continuous 

operation by monitoring indicators such as key collision 

rate, relay device cache overflow frequency, and root hash 

verification drift value. It also simulates failure scenarios 

involving the random restart of 10% of nodes every 24 

hours and topology changes (k±1) every 72 hours. The 

results of the long-term operational stability test are 

presented in Table 9: 

 

Table 9: Results of long-term operational stability test 

 

Time point (hour) Key collision rate (%) 
Cache overflow frequency 

(times/24h) 

Root hash verification drift value 

(×10⁻⁶) 
MTBF (hours) 

0-168 0.01 0.2 0.5 ∞ 

169-336 0.05 0.8 1.2 1,200 

337-504 0.12 1.5 2.8 850 

505-720 0.25 3.2 5.6 520 
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4.4 Analysis and discussion 
The performance test results (Table 3) show that in a 

standard test scenario with a terminal scale of t=300, the 

computational overhead (142.3ms) of the model proposed 

in this paper is reduced by 63.3% compared to the 

traditional centralized model, the communication 

overhead (1,850KB) is reduced by 36.5%, and the 

traceability delay (18.7ms) significantly exceeds the real-

time standard of ≤20ms for power monitoring. This 

advantage stems from the distributed architecture design: 

the relay device (RD) bears 80% of the signature 

verification load (Equation 11), effectively reducing the 

pressure on the data server; the multi-level aggregated 

hash mechanism (Equation 4) achieves single-time data 

verification across the entire network through a tree 

topology (Figure 2), avoiding the overhead of node-by-

node verification in traditional schemes. Meanwhile, the 

optimized data transmission path makes the 

communication overhead inversely proportional to the 

number of child nodes k. Compared to the CNN-LSTM 

model (516.2ms), the proposed solution sinks deep 

computing tasks to local devices through edge computing, 

avoiding backend latency while ensuring accuracy, 

making it particularly suitable for regional distribution 

network scenarios with up to 500 nodes. 

In a 40% high-intensity tampering environment 

(Table 4), our model outperforms the blockchain model 

(88.9%) with an anomaly localization accuracy rate of 

96.5% and a false alarm rate of only 0.8%. The core lies 

in the synergistic effect of the three-level traceability 

mechanism (Figure 3): the Internet of Things Gateway 

(IoTG) quickly detects global anomalies through root hash 

comparison (hG = hG'); the signature verification at the 

Relay Device (RD) level (Equation 5) accurately locates 

the faulty node (such as RD1 in Figure 4), and the hash 

self-certification of the Terminal Device (TD) eliminates 

low-level interference. This hierarchical approach avoids 

the consensus delay of blockchain, while the traditional 

centralized model suffers a significant drop in localization 

accuracy to 72.3% under complex attacks due to single-

point verification vulnerabilities (reference [18]), 

highlighting the technological gap of our solution in 

adversarial environments. 

The ablation test (Table 5) profoundly reveals the 

technical value of components: removing the aggregated 

hash (MLHashGen) causes the verification failure rate to 

soar from 0.9% to 23.6%, confirming that tree topology 

fusion (Figure 2) is the core pillar of efficient verification 

across the entire network. The 35.8% failure rate after 

canceling signature verification (SigGen) exposes the 

security risks of the transmission chain, proving the key 

role of asymmetric signatures (Equation 1) in tamper 

resistance; the catastrophic failure rate of only 68.3% in 

the terminal direct transmission scheme highlights the 

irreplaceability of relay devices. It is worth noting that 

removing the aggregated hash only increases the delay by 

41.2ms (compared to 18.7ms for the complete model), and 

its hierarchical compression capability (Equation 9) 

maintains basic functionality while ensuring efficiency, 

while the absence of signature verification directly 

disrupts the security defense line. 

In the interpretability evaluation (Table 6), our model 

overwhelms the blockchain model (≤3.3 points) with 

absolute advantages in positioning logic clarity (4.7±0.3) 

and abnormal node visualization (4.5±0.4). This 

achievement is attributed to a three-tier design. Firstly, the 

physical topology of the attack scenario (Figure 4) strictly 

corresponds to the traceability logic, allowing engineers to 

intuitively trace the abnormal path of RD1. Secondly, the 

abnormal device number rd1 is directly output in the 

report, avoiding the address decoding process of 

blockchain. Finally, the results are compared level by 

level (HashComp algorithm) to generate actionable 

operation and maintenance instructions. This "what you 

see is what you get" design reduces the average report 

analysis time to 8 minutes (traditional solutions ≥25 

minutes), significantly improving the efficiency of fault 

handling. 

The real-time boundary test results (Table 7) indicate 

that when the number of terminals t is ≤ 500, the 

traceability delay of the model remains below 32.4ms, 

meeting the real-time requirement of ≤20ms for power 

monitoring (the delay is 18.7ms when t=300). When t > 

700, the delay increases significantly (the delay is 89.2ms 

when t=1000), and the packet loss rate exceeds 1%, which 

is due to network congestion and saturation of computing 

resources. The performance degradation of the model 

mainly stems from the computational complexity of 

aggregate signatures for relay devices (Equation 11) and 

the linear growth of communication overhead (Equation 

19). However, it still maintains excellent performance 

within the range of t=500, improving by more than 63% 

compared to traditional centralized models (delay 

≥89.4ms), proving its suitability for medium-scale power 

IoT (such as regional distribution networks). 

The cross-protocol compatibility test (Table 8) 

demonstrates that the model performs robustly in mixed 

protocol scenarios, with a protocol conversion delay of 

15.4ms, a signature verification failure rate of only 0.10%, 

and an aggregated hash calculation error rate as low as 

0.03%, indicating its effective handling of heterogeneous 

data streams. IEC 61850 exhibits a higher delay (12.5ms) 

due to its complex message structure, while Modbus TCP 

has the lowest delay (9.8ms) due to its lightweight 

protocol. The data compatibility scores all exceed 4.5 out 

of 5, proving the model's good adaptability in a diverse 

power environment. Failures primarily stem from protocol 

semantic conversion losses (such as DNP3 timestamp 

accuracy loss), but are mitigated through dynamic 

threshold adjustment (Equation 7) and semantic mapping 

tables (Table 3), achieving an 80% improvement in 

compatibility compared to traditional single-protocol 

models (failure rate ≥0.5%). 

The long-term operational stability test (Table 9) 

reveals the performance degradation pattern of the model 

during continuous operation: all indicators remain stable 

for the first 168 hours (key collision rate of 0.01%, drift 

value of 0.5×10⁻⁶). However, over time, the key collision 

rate increases to 0.25% (at 720 hours), the cache overflow 

frequency increases to 3.2 times per 24 hours, and the root 
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hash drift value expands to 5.6×10⁻⁶, indicating resource 

leaks and cumulative error issues. The MTBF decreases 

from the initial ∞ to 520 hours, primarily due to memory 

fragmentation in relay devices (unoptimized dynamic 

memory allocation) and entropy reduction in signature 

keys (Equation 5). Despite this, the model maintains a drift 

value of ≤2.8×10⁻⁶ for 504 hours, outperforming 

traditional blockchain models (MTBF ≤ 300 hours), 

demonstrating its ability to operate stably on a monthly 

basis. This stability can be maintained through regular key 

rotation and cache cleanup to mitigate degradation. 

The topological fusion multi-level hash model 

proposed in this paper achieves breakthroughs in 

performance (computational overhead↓63%), robustness 

(96.5% location accuracy), and interpretability (4.6/5) 

dimensions (Table 3-9) through three major innovations: 

tree-like aggregation verification (Equation 9), distributed 

signature chain (Figure 1), and protocol adaptation. Its 

core is to transform the physical topology of the power 

Internet of Things into a security verification advantage. 

However, the relay bottleneck in large-scale networks 

(t>1000) leads to delays exceeding 50ms (Table 7), and 

the long-term operation of RSA key entropy reduction 

causes a 0.25% collision rate (Table 9), exposing current 

limitations. Future research will focus on three aspects: 

developing parallel signature verification algorithms for 

relay devices to support ultra-large-scale networks, 

adopting quantum-resistant signatures (such as 

CRYSTALS-Dilithium) to replace RSA, and combining 

digital twin technology to implement root hash drift early 

warning, ultimately building the next-generation 

protection system for power data security. 

Although the proposed solution in this article 

demonstrates superior performance under the assumption 

of ideal symmetric topology, the actual deployment of the 

power Internet of Things often faces challenges caused by 

topological irregularities, including uneven distribution of 

terminal device levels and dynamic changes in relay 

device branching factors. Although these simplified 

assumptions provide convenience for theoretical analysis, 

they may underestimate the volatility of computational 

and communication overhead in practical scenarios. In 

asymmetric networks, differences in aggregated hash path 

lengths will lead to increased edge terminal verification 

delays, while uneven load on relay devices may cause 

local bottlenecks (such as signature verification timeouts 

when low performance RD processes too many child 

nodes). In addition, the hierarchical traceability 

mechanism relied upon by the scheme needs to be 

extended to support dynamic routing adaptation in highly 

heterogeneous topologies, for example, by introducing 

topology discovery protocols (such as LLDP) to construct 

device level mapping tables in real-time, and assigning 

weight coefficients to nodes at different levels in the hash 

aggregation stage (such as adjusting equation (4) to 

weighted concatenation). Experiments have shown that 

when the variance of the branch factor σ ² is greater than 

2, the traceability delay may increase by 18% -25%, but 

the accuracy of anomaly localization can still be 

maintained at over 90% by pre calculating the optimal 

aggregation path (based on Dijkstra's algorithm). 

Therefore, future work will integrate adaptive topology 

learning modules to eliminate dependence on symmetric 

networks and enhance the universality of the solution in 

real power environments. 

 

5 Conclusions 
This paper proposes a topology-integrated multi-

level hash data integrity verification and traceability 

scheme. Aiming at the potential security threat of data 

eavesdropping or tampering in the power Internet of 

Things, asymmetric encryption and digital signature 

technology are used to achieve efficient data integrity 

verification and abnormal node location. The system 

design encompasses the collaborative operation of 

terminal devices, relay devices, IoT gateways, and data 

servers. It employs a multi-level aggregated hash 

generation algorithm and a hierarchical hash comparison 

traceability process. Experimental results show that this 

method significantly reduces computational overhead by 

63.3% (only 142.3ms at t=300), enhances the accuracy of 

abnormal localization to 96.5% (under a 40% tampering 

rate), and reduces communication overhead by 36.5%. 

This effectively optimizes data processing efficiency and 

enterprise benefits for power enterprises. However, in 

large-scale networks, the issue of abnormal traceability 

delay requires further improvement in the hash 

comparison method. 

 

Appendix 1 System entities and role abbreviations 

Abbreviation English full name/description 

TD Terminal Device 

RD Relay Device 

IoTG Internet of Things Gateway 

DS Data Server 

SDN Software-Defined Networking 

CDPI Control-Data-Plane Interface 

NBI Northbound Interface 

 

Appendix 2 Abbreviations for core algorithms, 

models, and processes 

Abbreviation English full name/description 

MLHashGen Multi-Level Hash Generation algorithm 

KeyGen Key Generation algorithm 

KeyDist Key Distribution algorithm 

SigGen Signature Generation algorithm 

IntegrityVer Integrity Verification algorithm 

ReHashTrans Recalculated Hash Transmission algorithm 

HashComp Hash Comparison algorithm 

ADeviceIden Abnormal Device Identification algorithm 

EUF-CMA 
Existentially Unforgeable under Chosen Message 

Attack 

 

Appendix 3 Key variables, constants, and 

performance parameters 

Aymbol Meaning 

t  The total number of terminal devices in the network 
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k  
Branch factor of tree topology (average number of child 
nodes) 

n  
The hierarchical depth of the network (excluding the 

gateway layer) 

N  Key Modulus in RSA Algorithm 

p,q  Two large prime numbers in RSA algorithm 

( )φ N
 
 The Euler function value of N 

E  RSA Public Key Index 

D  RSA Private Key Index 

PK  Public Key 

SK  Private Key 

id  unique device identifier 

m  Raw data collected by terminal devices 

c  Encrypted ciphertext data 

h  Hash value of data m 

S  
Message summary, composed of device ID and hash 

value concatenated together 

sig  Digital signature of message digest S 

i

Rh  Aggregate hash value calculated by relay device R_i 

Gh  Root hash value calculated by IoT gateway (IoTG) 

'

Gh  
The data server (DS) replicates the calculated root hash 
value 

HashT  The time required to perform a hash operation once 

MEXPT  
The time required to perform a modular exponentiation 

operation 

1G  The size of a data packet collected by a terminal 

2G  The size of a data signature 

T  Total computational cost 

C  Total communication expenses 

α  Acceptable false positive rate threshold 
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