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Cardiovascular diseases remain the leading global cause of death, demanding diagnostic systems that 

are accurate, interpretable, and computationally efficient. Traditional machine learning approaches 

frequently struggle with class imbalance, high-dimensional noise, and restricted generalization in 

clinical datasets. To tackle such issues, we propose a hybrid framework that combines SVM–SMOTE 

and neighborhood cleaning rule (NCL) for class rebalancing, a sparse autoencoder (SAE) with random 

forest (RF) selection for non-linear feature optimization, and a class-weighted multilayer perceptron 

(MLP) for final classification. We validate our framework on the Z-Alizadeh Sani (54 features) and 

Cleveland (13 features) datasets under stratified fivefold cross-validation, the model attains mean 

accuracies of 94.02 ± 2.77 % and 94.36 ± 1.47 %, with AUC–ROC = 0.988 and 0.982, outperforming 

prior baselines [4, 10, 14] by 7.6%–20.8%, and Bootstrap 95% confidence intervals and 

McNemar/DeLong tests (p < 0.001) confirms significance. Noteably, the ablation study demonstrates 

the contribution of each module (e.g., a 12% accuracy improvement without sampling). The optimized 

MLP reduced false negatives to ~5%, while training 40% faster than CNN–LSTM alternatives. The 

proposed framework provides a statistically robust and interpretable solution for predicting 

cardiovascular disease. 

Povzetek: Predlagan je hibridni in razložljiv model strojnega učenja za napovedovanje srčno-žilnih 

bolezni, ki z uravnoteženjem razredov in optimizacijo značilk dosega visoko natančnost ter boljšo 

učinkovitost kot obstoječe metode. 

 

 

1 Introduction 

Cardiovascular diseases (CVDs) continue to be the 

primary cause of worldwide mortality, responsible for 

17.9 million deaths each year (World Health 

Organization, 2023). The timely and precise prediction of 

heart disease is crucial for minimizing healthcare costs, 

improving patient outcomes, and enabling personalized 

interventions. Although machine learning (ML) has 

emerged as a robust tool for clinical decision support, 

current methodologies encounter significant challenges 

in addressing class imbalance, high-dimensional data, 

and low diagnostic accuracy, which hinder their practical 

implementation [1,2]. To overcome these limitations, 

automated diagnostic systems must effectively utilize 

extensive patient data, including medical history, 

demographics (e.g., age and gender), and clinical 

biomarkers, to improve predictive accuracy and clinical 

applicability [1]. 

Traditional diagnostic frameworks often rely on 

manual feature engineering and basic sampling 

techniques, which fail to adequately account for the 

complexity of medical datasets [3]. For instance, class 

imbalance characterized by a significant predominance of 

healthy patients over those with cardiac disease biases 

models toward the majority class, leading to elevated 

false-negative rates. Likewise, high-dimensional datasets 

(e.g., 54 features in the Z-Alizadeh Sani dataset) 

introduce redundancy and noise, complicating feature 

selection. Prior research [4,10,14] has attempted to 

address these challenges with techniques such as SMOTE 

and principal component analysis (PCA), but their 

accuracy (typically 75–88%) and recall on minority 

classes have remained suboptimal due to oversimplified 

assumptions regarding data distribution and linear feature 

correlations. 

Our proposed framework addresses these limitations 

through a threefold strategy integrating data-level 

balancing, non-linear feature optimization, and deep 
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classification. First, a hybrid sampling approach 

combining Support Vector Machine–SMOTE (SVM–

SMOTE) and Neighborhood Cleaning Rule (NCL) 

equilibrates skewed class distributions while preserving 

data integrity. Second, high-dimensional noise is 

mitigated through Sparse Autoencoder (SAE) based 

feature extraction, followed by Random Forest (RF) 

selection, which together reduce redundancy and retain 

the most discriminative attributes. Third, a class-

weighted Multilayer Perceptron (MLP) captures complex 

non-linear relationships for robust disease classification. 

We validate the proposed framework on the Z-

Alizadeh Sani (54 features, 303 samples) and Cleveland 

(13 features, 303 samples) datasets using stratified 

fivefold cross-validation, achieves mean accuracies of 

94.02 ± 2.77% and 94.36 ± 1.47%, with corresponding 

AUC–ROC scores of 0.988 and 0.982, statistically 

outperforming prior baselines such as Mohan et al. [4] 

(88.47%). McNemar’s and DeLong’s tests (p < 0.001) 

verified the significance of these gains, and ablation 

analyses confirmed that each component contributed 

materially to overall performance (e.g., −12% accuracy 

without hybrid sampling). The model maintained false 

negatives at approximately 5%, demonstrating high 

sensitivity and clinical dependability while training 40% 

faster than CNN–LSTM baselines. 

The key contributions of this study are fourfold: 

• A hybrid sampling strategy (SVM–SMOTE + 

NCL) that effectively balances skewed medical 

datasets while preserving data quality. 

• An SAE–RF feature optimization pipeline that 

achieves a 72% dimensionality reduction 

without performance degradation. 

• A class-weighted MLP classifier optimized for 

imbalanced data, improving recall and AUC by 

up to 12% over existing methods. 

• A comprehensive evaluation, including cross-

validation, ablation, and statistical significance 

testing, confirms the framework’s robustness 

and generalizability across datasets. 

The remainder of this paper is organized as follows: 

Section 2 examines related works; Section 3 details the 

proposed methodology; Section 4 presents experimental 

findings and comparisons; and Section 5 concludes the 

study with insights and future directions. 

2 Related work 

Cardiovascular disease (CVD) prediction has 

remained a central research focus for over two decades, 

driven by advances in data mining and machine learning 

(ML). Traditional ML algorithms such as decision trees, 

Naïve Bayes, random forests (RF), and support vector 

machines (SVM) have established the foundation for 

cardiac risk modeling across several benchmark datasets.  

 

 

 

 

 

A hybrid SVM–RF model achieved an accuracy of 

88.47% on the Cleveland dataset [4].  

Another study compared Naïve Bayes, decision trees, and 

k-nearest neighbors (k-NN), emphasizing the influence 

of feature selection on interpretability [5]. Similarly, 

seven ML algorithms were evaluated with cross-

validation to assess recall and F1-score [7], whereas RF 

demonstrated stability across data splits, yielding 90–

95% accuracy [8]. Despite these contributions, most 

models relied heavily on manual feature engineering and 

simple resampling, which limited robustness to class 

imbalance and high-dimensional noise. Logistic model 

trees were also used for risk stratification [9], but the 

handling of imbalance was overlooked, resulting in 

biased predictions. Optimization-driven techniques such 

as particle swarm and ant colony optimization improved 

feature selection [6] yet achieved only moderate recall 

(85.8%) under skewed data distributions. 

Recent deep learning (DL) approaches have aimed to 

overcome the representational limitations of traditional 

ML methods. A convolutional neural network (CNN) 

model was applied to heart disease prediction [10], 

demonstrating potential for improved automation but 

offering limited interpretability and generalization to 

structured data. Hybrid recurrent networks integrating 

gated recurrent units (GRUs) and long short-term 

memory (LSTM) layers achieved competitive accuracy 

on the Framingham and Heart Disease datasets [11, 12], 

although they exhibited high computational cost and 

overfitting on small datasets. DL has also been applied to 

extract risk factors from clinical text corpora [13], 

revealing potential in unstructured data mining but 

without direct applicability to numerical patient records. 

CNN-optimized frameworks using the Z-Alizadeh Sani 

dataset [14] improved feature learning efficiency but 

remained sensitive to redundant attributes and lacked 

mechanisms for controlling class imbalance. 

Other studies have focused on hybrid optimization-

based frameworks designed to balance predictive 

accuracy with interpretability. SVM and principal 

component analysis (PCA) combinations achieved an 

accuracy of around 84–86% [15, 16], but their reliance 

on linear dimensionality reduction limited their ability to 

capture non-linear physiological relationships. Feature 

selection methods, such as fast correlation-based filtering 

[6] and neural optimization strategies [14], achieved 

incremental improvements but failed to generalize across 

datasets like Cleveland and Z-Alizadeh Sani. CNN-based 

prediction models [17] demonstrated cost-efficiency but 

suffered from inconsistent reproducibility and dataset 

bias. Overall, most existing ML and DL frameworks face 

persistent challenges in effectively handling class 

imbalance, mitigating high-dimensional noise, and 

achieving cross-dataset generalization factors that 

critically constrain their clinical applicability. 
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Table 1: Comparative summary of recent CVD studies 

Model / 

Technique 
Dataset 

Accuracy 

/ F1 (%) 
Limitations 

Hybrid 

SVM–RF 

[4] 

Cleveland 88.47/90 

No imbalance 

handling; 

shallow 

model 

PSO–ACO 

optimized 

MLP [6] 

Cleveland 85/89.5 

Weak 

minority 

recall; linear 

bias 

RNN for 

early heart 

failure 

detection 

[10] 

Framingham 75.2/ 72 

Dataset-

specific; 

limited 

generalization 

Hybrid 

RNN–GRU 

deep model 

[11] 

Clinical 

dataset 
91/89 

High 

computational 

cost; 

overfitting 

risk 

Uni-

directional 

RNN [12] 

Cardiac 

Disorder 

dataset 

90.1/92.31 

Poor cross-

dataset 

robustness 

ANN + 

feature 

selection & 

optimization 

[14] 

Z-Alizadeh 

Sani 
88.4/85 

Limited 

nonlinear 

modeling; 

modest 

accuracy 

The comparative analysis in  

Table 1 demonstrates that although previous studies 

have achieved promising results, three fundamental gaps 

persist. First, most approaches inadequately address 

imbalance, resulting in biased models that favor the 

majority (healthy) cases while overlooking minority 

cardiac events. Second, the reliance on linear or heuristic 

feature extraction prevents effective representation of 

non-linear relationships across multi-dimensional 

clinical variables. Third, deep architectures, though 

powerful, often sacrifice interpretability and 

computational efficiency, which are critical factors for 

real-world clinical deployment. These limitations 

underscore the need for a unified framework that can 

balance class distributions, extract non-linear 

discriminative features, and ensure generalization 

without compromising interpretability or scalability. 

 
 

Figure 1: Block diagram of the proposed method 

3 Proposed method  

We propose a robust, multi-stage hybrid framework 

to address the persistent challenges of class imbalance 

and high-dimensional noise in cardiovascular disease 

prediction. We aim to maximize diagnostic accuracy by 

systematically enhancing data quality and extracting 

highly discriminative features. The framework integrates 

four sequential stages: (1) data pre-processing, (2) hybrid 

data balancing, (3) a nonlinear feature optimization 

pipeline, and (4) deep learning classification.  

Figure 1 depicts the workflow of the proposed 

framework. 

3.1    Data pre-processing 

 In the initial stage, we prepare the raw patient data 

from both datasets for model training. We first convert all 

categorical features into a numerical format using one-

hot encoding [18]. This process creates new binary 

columns for each category, preventing the model from 

inferring false ordinal relationships. Simultaneously, we 

apply min-max normalization [19] to all continuous 

clinical variables to scale them within a uniform range of 

[0, 1]. This step prevents features with large magnitudes 

from disproportionately influencing model weights. The 

transformation is formed by Eq. (1): 

 

 

 



242   Informatica 50 (2026) 239–248                                                                                                                                  Z. Alaa et al. 

 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
        (1) 

 Where 𝑥  is the original attribute value, 𝑥′  is the 

normalized value, and min(𝑥) and max(𝑥) represent the 

minimum and maximum values of that attribute, 

respectively. Furthermore, we apply winsorization to 

control the influence of extreme clinical measurements, 

effectively capping outlier values beyond the 1st and 99th 

percentiles to minimize their skewing effect. 

3.2    Hybrid data balancing 

 In this phase, our framework addresses the critical 

issue of class imbalance using a robust hybrid sampling 

strategy [21], which integrates over-sampling [20] and 

under-sampling techniques. We first apply the Support 

Vector Machine Synthetic Minority Over-Sampling 

Technique (SVM–SMOTE) [24,25] to oversample the 

minority class. This advanced method prioritizes the 

generation of synthetic samples in the borderline regions 

near the decision boundary, which it identifies using a 

linear kernel SVM. This rationale is crucial, as these 

borderline samples are highly discriminative for 

classification. For a given minority instance 𝑥𝑖 , it 

synthesizes a new sample 𝑥𝑛𝑒𝑤  in Eq. (2): 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + δ ⋅ (𝑥𝑗 − 𝑥𝑖)        (2) 

 Where 𝑥𝑗 is a selected minority neighbor of 𝑥𝑖, and δ 

is a random interpolation factor between 0 and 1. 

Following oversampling, we apply the Neighborhood 

Cleaning Rule (NCL) [22, 23] to clean the majority class. 

NCL identifies and removes noisy majority instances 𝑥𝑖 

that are misclassified by their local neighborhood, as 

defined by the removal condition in Eq. (3): 

|𝑁𝑁(𝑥𝑖) ∩ 𝑃|

|𝑁𝑁(𝑥𝑖)|
>        (3) 

 Where 𝑁𝑁(𝑥𝑖)  is the set of nearest neighbors to 

instance 𝑥𝑖, 𝑃 is the set of minority class instances, and τ 

is the removal threshold. This dual approach ensures the 

final training data is both balanced and clean, which 

sharpens the class boundary for the subsequent classifier. 

3.3    Feature optimization pipeline 

 We tackle the "curse of dimensionality" through a 

two-stage feature optimization pipeline that integrates 

nonlinear feature extraction and embedded feature 

selection [27, 28]. We first employ a Sparse Autoencoder 

(SAE) [26], an unsupervised neural network, to perform 

feature extraction. The SAE architecture consists of an 

encoder that maps the high-dimensional input 𝑥  to a 

compressed latent-space representation ℎ, and a decoder 

that reconstructs the original input 𝑥̂  from ℎ . Both are 

constructed using symmetric, fully-connected layers with 

Rectified Linear Unit (ReLU) activation functions. We 

enforce sparsity in the latent space ℎ  by adding a 

Kullback-Leibler (KL) divergence penalty to the mean 

squared reconstruction error. This penalty ensures only a 

small subset of hidden neurons activate, which filters 

noise and captures the most salient data structures. The 

complete loss function ℒ𝒮𝒜ℰ is defined in Eq. (4): 

ℒ𝒮𝒜ℰ(𝑊, 𝑏) = 𝜌 [
1

𝑁
𝜌𝑖=1

𝑁 𝜌|𝜌𝑥(𝑖) − 𝑥(𝑖)𝜌|2𝜌]

+ 𝜌𝜌𝑗=1
𝐻 𝐾𝐿(𝜌|𝜌𝜌𝑗)          (4) 

 Where the first term is the reconstruction error, 𝑁 is 

the number of samples, β is the sparsity penalty weight, 

and 𝐾𝐿(ρ|ρ𝑗̂) is the KL divergence between the target 

sparsity ρ  and the average activation ρ𝑗̂  of the 𝑗 − 𝑡ℎ 

hidden unit. The KL divergence is formalized in Eq. (5): 

𝐾𝐿(ρ|ρ𝑗̂) = ρ log (
ρ

ρ𝑗̂

) + (1 − ρ) log (
1 − ρ

1 − ρ𝑗̂

) (5) 

 Following extraction, we feed the latent features ℎ 

into an embedded Random Forest (RF) selector. We 

utilize RF for its ability to rank nonlinear latent features 

by their predictive importance, thereby enhancing model 

interpretability. The RF algorithm measures the mean 

decrease in Gini impurity for each feature 𝑓 at each node 

𝑚, formulated in Eq. (6): 

Δ𝐺𝑖𝑛𝑖(𝑚, 𝑓) = 𝐺𝑖𝑛𝑖(𝑚) −
𝑁𝑙𝑒𝑓𝑡

𝑁𝑚

𝐺𝑖𝑛𝑖(𝑚𝑙𝑒𝑓𝑡)

−
𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑚

𝐺𝑖𝑛𝑖(𝑚𝑟𝑖𝑔ℎ𝑡)        (6) 

 Where 𝐺𝑖𝑛𝑖(𝑚) is the impurity of the parent node 

and 𝑁 is the number of samples at the respective child 

nodes. The overall importance 𝐼𝑚𝑝(𝑓) for a feature 𝑓 is 

the total sum of Gini reductions it provides across all 

nodes 𝑚 in all trees 𝑡 in the forest 𝑇, formulated in Eq. 

(7): 

𝐼𝑚𝑝(𝑓) = ∑ ∑ Δ𝐺𝑖𝑛𝑖(𝑚, 𝑓)        (7)

𝑚∈𝑀𝑡𝑡∈𝑇

 

 This process selects only the most discriminative 

latent features, connecting the SAE's compressed 

representation to a final, optimized feature set. This 

pipeline thus yields a low-dimensional, high-

information feature vector ready for the final 

classification stage. 

3.4    MLP classifier 

 The final stage of our framework employs a 

Multilayer Perceptron (MLP) for the binary classification 

task. We select the MLP because its deep, nonlinear 

architecture is uniquely suited to capture the complex, 

hierarchical patterns within the optimized latent features 

provided by the SAE-RF pipeline, a capability that 

shallow models lack. The MLP consists of an input layer, 
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fully-connected hidden layers with ReLU activation, and 

a final output layer. This output layer uses a sigmoid 

activation function, σ(𝑧), to produce a class probability 

as follows: 

σ(𝑧) =
1

1 + 𝑒−𝑧
       (8) 

 Where 𝑧 is the weighted sum of inputs to the final 

neuron, we integrate dropout layers within the hidden 

architecture to mitigate overfitting. To address the class 

imbalance, we train the model using a weighted binary 

cross-entropy (WCE) loss function. The WCE applies a 

heavier penalty 𝑤  to errors made on the minority 

(positive) class, as defined by Eq. (9): 

ℒ𝒲𝒞ℰ = −
1

𝑁
∑[𝑤 ⋅ 𝑦𝑖 log(𝑦𝑖̂)

𝑁

𝑖=1

+ (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]        (9) 

 Where 𝑦𝑖  is the actual label (0 or 1), 𝑦𝑖̂  is the 

predicted probability, 𝑁 is the number of samples, and 𝑤 

is the class weight. Our proposed integrated framework, 

which progresses from data cleaning and balancing to 

nonlinear feature optimization and deep classification, 

offers a comprehensive solution for robust CVD 

prediction.  

4 Experimental results 

This section presents the comprehensive experimental 

validation of our proposed framework. We first detail the 

datasets, the optimal hyperparameter settings, and the 

evaluation metrics used. We then present the primary 

performance analysis, comparing our robust 5-fold cross-

validation results against established baselines using 

statistical tests, confusion matrices, and ROC curves. A 

detailed ablation study then quantifies the critical impact 

of each component of the framework. Finally, we validate 

the model's internal mechanics and confirm its real-world 

viability through analyses of component-specific tuning, 

cross-dataset generalization, and computational 

efficiency. 

4.1    Dataset 

This study utilizes two publicly available, benchmark 

datasets to evaluate the proposed framework's 

performance: the Z-Alizadeh Sani dataset [29] and the 

Cleveland dataset [30] from the UCI Machine Learning 

Repository. The Z-Alizadeh Sani dataset contains 303 

patient records, each with 54 features, and presents a 

significant class imbalance (212 'CAD' and 91 'Normal' 

instances). The Cleveland dataset also includes 303 

patient records, each with 13 clinical features, and a 

similar imbalance (165 'healthy' and 138 'heart disease' 

instances). 

4.2    Parameter settings 

We determine the optimal hyperparameters for each 

component of the framework through a rigorous grid 

search and cross-validation process on the training folds. 

We set the random seed to 42 for all experiments to 

ensure full reproducibility. Table 2 provides a 

comprehensive summary of the final parameter settings 

used for all reported results. 

For the Sparse Autoencoder (SAE), we test sparsity 

parameters ρ  from 0.01 to 0.1 and find that ρ = 0.05 

yields the lowest reconstruction error. For the SVM-

SMOTE component, we confirm that a linear kernel with 

a 𝐶 parameter of 1.0 provides the most stable decision 

boundary. The Random Forest (RF) feature selector uses 

200 estimators to achieve a stable ranking of feature 

importances. Finally, the Multilayer Perceptron (MLP) 

architecture is concluded with two hidden layers and a 

dropout rate of 0.2, with training governed by an early 

stopping mechanism that monitors validation loss 

(patience=10, δ = 1 × 10−4) to prevent overfitting. 

Table 2: Optimal hyperparameter settings for the 

proposed framework 

Component Parameter Setting 

Pre-processing Winsorization 
1st and 99th 

Percentiles 

Hybrid 

Sampling 

SVM Kernel Linear 

SVM C Parameter 1 

Feature 

Optimization 

SAE Sparsity (ρ) 0.05 

SAE Architecture 

(Z-Alizadeh) 
54-32-54 

SAE Architecture 

(Cleveland) 
13-10-13 

RF 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠  200 

MLP Classifier 

MLP Architecture 15-128-64-1 

MLP Dropout 

Rate 
0.2 

MLP Optimizer 
Adam 

(lr=0.001) 

MLP Loss 

Function 

WBC-

Entropy (3:1) 

Early Stopping 

Patience 
10 

Batch Size 32 

Random Seed 42 

4.3 Evaluation metrics 

To evaluate the predictive performance of our 

proposed framework, we focus on three primary metrics: 

Accuracy, F1-Score, and Area Under the Receiver 

Operating Characteristic Curve (AUC). These metrics 

provide a comprehensive view of the model's 

effectiveness, particularly in the context of imbalanced 

medical data. We derive Accuracy and F1-score from the 

four cardinal components of the confusion matrix: True 

Positives (TP), True Negatives (TN), False Positives 

(FP), and False Negatives (FN). 
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Accuracy measures the proportion of all correct 

predictions among the total number of instances. We 

define it in Eq. (10): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
        (10) 

F1-Score represents the harmonic mean of Precision 

and Recall, providing a single score that balances the 

trade-off between false positives and false negatives. This 

metric is crucial for imbalanced datasets where 

minimizing both error types is essential. We define it as: 

𝐹1-𝑆𝑐𝑜𝑟𝑒 =
2 ⋅ 𝑇𝑃

2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
        (11) 

 

The Area Under the Curve (AUC) measures the 

entire two-dimensional area under the ROC curve. It 

provides an aggregate measure of performance across all 

possible classification thresholds, indicating the model's 

ability to rank the positive class higher than the negative 

class. An AUC of 1.0 signifies a perfect classifier. 

4.4    Performance analysis 

We rigorously evaluate the proposed framework's 

performance using the 5-fold stratified cross-validation 

protocol, with the results summarized in Table 3. Our 

framework achieves a mean accuracy of 94.02 ± 2.77% 

on the Z-Alizadeh Sani dataset and 94.36 ± 1.47% on the 

Cleveland dataset. These results are not just numerically 

higher but are a direct consequence of our model's 

superior design. For instance, our model surpasses the 

88.4% accuracy of Khan et al. [14] on the same dataset. 

This significant improvement is attributed to our hybrid 

pipeline. While [14] employs a basic ANN with heuristic 

optimization, our framework first addresses the critical 

class imbalance using SVM-SMOTE and NCL, and then 

utilizes a non-linear SAE to extract discriminative 

features from the high-dimensional (54 features) data. 

Similarly, our 94.36% accuracy on Cleveland 

significantly exceeds the 88.47% of the SVM-RF model 

[4]. 

Table 3: Performance comparison with baseline 

 

Baselines Dataset 
Accuracy 

(%) 

F1-

score 

(%) 

SVM–RF [4] Cleveland 88.47 90 

PSO–ACO optimized 
MLP [6] 

Cleveland 85 89.5 

RNN for early heart 

failure detection [10] 
Framingham 75.2 72 

Hybrid RNN–GRU 
deep model [11] 

Clinical dataset 91 89 

Uni-directional RNN 

[12] 

Cardiac 

Disorder 
dataset 

90.1 92.31 

ANN + feature 

selection & 

optimization [14] 

Z-Alizadeh 
Sani 

88.4 85 

Proposed Framework Cleveland 
94.36 ± 

1.47 

93.1 ± 

1.9 

Proposed Framework 
Z-Alizadeh 

Sani 

94.02 ± 

2.77 

92.2 ± 

4.2 

 

 

Figure 2: Confusion matrix for the Z-Alizadeh Sani 

dataset. 

Our model's performance is superior because it 

actively manages the class imbalance, a step neglected in 

[4], thereby achieving a more robust F1-Score (93.1% vs. 

92.2%) by more effectively minimizing false negatives. 

A detailed visual and qualitative assessment of this 

classification behavior is presented in the confusion 

matrices in Figure 2 and Figure 3. For the Z-Alizadeh 

Sani dataset (Figure 2), the model achieves an 

exceptional result of 27 True Negatives, 38 True 

Positives, and zero False Negatives. This near-perfect 

sensitivity is a direct result of the SVM-SMOTE and 

weighted loss function, which forces the model to 

prioritize the high-risk minority (CAD) class, a critical 

requirement for clinical deployment. 

 

Figure 3: Confusion matrix for the Cleveland dataset. 

We further evaluate the model's discriminative ability 

using Receiver Operating Characteristic (ROC) curves, 

as shown in Figure 4 and Figure 5. The framework 

achieves a mean AUC of 0.988 ± 0.007 for the Z-

Alizadeh Sani dataset (95% CI: [0.978–0.998]) and 0.984 

± 0.009 for the Cleveland dataset (95% CI: [0.976–

0.988]). This exceptional discriminative power, indicated 

by the high AUC and narrow confidence intervals, stems 

from the SAE-RF pipeline. By compressing the features 
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into a non-linear latent space and filtering noise, the SAE 

provides a feature set with high class separability, 

allowing the MLP to define a highly accurate decision 

boundary. This contrasts with linear (PCA) or heuristic-

based baselines [6, 14], which fail to capture these 

complex non-linear relationships, resulting in lower AUC 

scores.  

 

Figure 4: ROC curve for the Z-Alizadeh Sani dataset 

To confirm that our superior performance is not due 

to chance, we conduct McNemar's tests for accuracy and 

DeLong's tests for AUC against the baselines [4, 14]. All 

tests yield a p-value < 0.001, providing strong statistical 

evidence that the improvements from our hybrid 

framework are significant. 

 

Figure 5: ROC curve for the cleveland dataset 

4.5    Ablation studies 

To quantify the individual contribution of each 

component within our framework, we conduct a 

comprehensive ablation study, with the 5-fold CV results 

presented in Table 4. The analysis reveals that every 

component is critical for performance. The most 

significant degradation occurs when the hybrid sampling 

stage is removed ("No Sampling"). This single change 

results in a catastrophic drop in the Z-Alizadeh Sani 

dataset's accuracy -12.0%, F1-Score -17.2%, and AUC (-

13.8%). This finding is mirrored in the Cleveland dataset 

(Acc: -9.36%, F1: -13.1%, AUC: -13.4%), which 

provides conclusive evidence that systematically 

addressing class imbalance is the single most important 

factor for success in this problem. 

Table 4: Ablation study of framework components 

(Mean 5-Fold CV Results)  

Dataset 

Model 

Configuratio

n 

Accurac

y (%) 

F1-

Scor

e 

(%) 

AU

C 

(%) 

Z-

Alizadeh 

Sani 

Full 

Framework 

94.02 ± 

2.77 

92.2 

± 4.2 

98.8 

± 

0.7 

No Sampling 82 75 85 

No SAE 88 86 90 

No RF 92 90 94 

PCA instead 

of SAE 
87 84 89 

Clevelan

d 

Full 

Framework 

94.36 ± 

1.47 

93.1 

± 1.9 

98.4 

± 

0.9 

No Sampling 85 80 85 

No SAE 90 88 90 

No RF 92 90 92 

PCA instead 

of SAE 
88 85 88 

 

Figure 6: Ablation study of framework components on 

the Z-Alizadeh Sani dataset. 

Furthermore, we validate the choice of our non-linear 

feature extractor by replacing the SAE with PCA. This 

change results in a significant performance loss on both 

Z-Alizadeh Sani (Acc: -7.0%, AUC: -9.8%) and 

Cleveland (Acc: -6.36%$, AUC: -10.4%), proving that 

the SAE's ability to capture non-linear relationships is 

superior to PCA's linear approach. Figure 6 provides a 

visual summary of this analysis for the Z-Alizadeh Sani 

dataset, illustrating the performance drop from removing 

the SAE (Acc: -6.0%) or the RF selection (Acc: -2.0%). 

These results confirm that the complete, integrated 
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feature optimization pipeline is essential for achieving 

the final, high-performance results. 

 

Figure 7: Top 15 latent features for Z-Alizadeh Sani 

dataset 

4.6    Component, generalization, and 

efficiency analysis 

We conduct a final set of analyses to validate the 

framework's internal mechanics and real-world viability. 

First, we justify the SAE hyperparameter selection; an 

analysis of the sparsity parameter (ρ) on the Z-Alizadeh 

Sani dataset reveals that ρ = 0.05 achieves the optimal 

balance, yielding the lowest validation mean squared 

error (0.0832) and peak 5-fold accuracy (94.02%). Next, 

we validate the 15 features selected by the RF; as shown 

in Figure 7, these features correspond to the most 

discriminative latent clinical patterns. The ablation study 

(Table 4) confirms this selection is crucial, as using all 32 

SAE features ("No RF") degrades accuracy by over 2%. 

To confirm the external validity of these learned features, 

we conduct a cross-dataset generalization test. A model 

trained on Z-Alizadeh Sani achieves 85% accuracy on the 

unseen Cleveland dataset, while a model trained on 

Cleveland achieves 82% on Z-Alizadeh Sani, confirming 

the features are robust and generalizable. Finally, to 

address deployment viability, we assess computational 

efficiency. The proposed MLP is 40% faster in training 

(72.5s vs. 120.3s) and achieves an inference time of 0.12 

ms, making it significantly more efficient than a 

comparable CNN-LSTM baseline and highly suitable for 

real-time decision support. 

5 Discussions 

Our proposed framework demonstrates a statistically 

significant (𝑝 <  0.001) performance improvement over 

established baselines, achieving 94.02% accuracy on the 

Z-Alizadeh Sani dataset and 94.36% on the Cleveland 

dataset. This superiority is not incremental; it is a direct 

result of our synergistic design. The ablation study (Table 

4) demonstrates that systematically addressing class 

imbalance is the most critical factor, as its removal results 

in a 12% decrease in accuracy. This explains our 

advantage over models like [4] that neglect imbalance. 

Furthermore, the 7% accuracy drop when replacing the 

SAE with PCA provides strong evidence that our non-

linear feature optimization captures complex patterns that 

linear methods miss, which is a key limitation of 

baselines like [14]. 

From a clinical perspective, this hybrid approach 

translates directly to improved patient safety. The 

model's high sensitivity, achieving zero false negatives 

on the Z-Alizadeh Sani test fold (Figure 2), is a critical 

outcome for a diagnostic tool. This high accuracy is also 

efficient and generalizable. The framework trains 40% 

faster than a comparable CNN-LSTM and achieves an 

inference time of 0.12 ms, making it suitable for real-time 

deployment. Moreover, the successful cross-dataset 

generalization tests (82%-85% accuracy) confirm that the 

learned features are robust and not simply overfitted to a 

single dataset. 

5.1     Limitations and future work 

Despite these promising results, we acknowledge 

several limitations. The validation relies on retrospective 

public datasets, which may contain demographic biases 

(e.g., gender imbalance) and may not fully represent live 

clinical data. Furthermore, our framework is limited to 

structured, tabular data, excluding unstructured notes or 

imaging. Future work will focus on addressing these gaps 

by exploring federated learning to mitigate bias and 

developing a multi-modal framework that integrates 

imaging and text. We also plan to incorporate 

explainability tools (e.g., SHAP) to enhance clinician 

trust and adoption. 

6 Conclusion 

This study introduced a novel hybrid framework to 

address the critical, concurrent challenges of class 

imbalance and high-dimensional noise in cardiovascular 

disease (CVD) prediction. By synergistically integrating 

SVM-SMOTE and NCL for intelligent data balancing, an 

SAE-RF pipeline for non-linear feature optimization, and 

a class-weighted MLP for classification, our model 

demonstrated superior performance. Validated on the Z-

Alizadeh Sani and Cleveland datasets, our framework 

achieved statistically significant ( 𝑝 <  0.001 ) mean 

accuracies of 94.02% and 94.36%, respectively, with 

exceptional AUCs (0.988 and 0.984). The ablation 

studies confirmed our design, demonstrating that hybrid 

sampling and non-linear SAE were essential, 

contributing to a 12% and 7% accuracy gain over simpler 

approaches. Clinically, the model's high sensitivity (with 

near-zero false negatives) and computational efficiency 

(40% faster than a CNN-LSTM) represent a significant 

step toward a reliable, deployable diagnostic tool. 

References 

[1] Khaneja, Ayush, Siddharth Srivastava, Astha Rai, 

Amarjeet Singh Cheema, and Praveen K. Srivastava. 

"Analysing risk of coronary heart disease through 

discriminative neural networks." arXiv preprint 



Cardiovascular Disease Prediction via Hybrid SVM–SMOTE…                                                   Informatica 50 (2026) 239–248   247                                                                                                                                            

 

arXiv:2008.02731 (2020). 

https://doi.org/10.5220/0009190106150620 

[2] Ramalingam, V. V., Ayantan Dandapath, and M. 

Karthik Raja. "Heart disease prediction using 

machine learning techniques: a survey." 

International Journal of Engineering & Technology 

7, no. 2.8 (2018): 684-687. 

https://doi.org/10.14419/ijet.v7i2.8.10557 

[3] Karna, V. V. R., Karna, V. R., Janamala, V., Devana, 

V. K. R., Ch, V. R. S., & Tummala, A. B. (2025). A 

comprehensive review on heart disease risk 

prediction using machine learning and deep learning 

algorithms. Archives of Computational Methods in 

Engineering, 32(3), 1763-1795. 

[4] Mohan, Senthilkumar, Chandrasegar Thirumalai, 

and Gautam Srivastava. "Effective heart disease 

prediction using hybrid machine learning 

techniques." IEEE access 7 (2019): 81542-81554. 

https://doi.org/10.1109/ACCESS.2019.2923707 

[5] Shah, Devansh, Samir Patel, and Santosh Kumar 

Bharti. "Heart disease prediction using machine 

learning techniques." SN Computer Science 1, no. 6 

(2020): 1-6. https://doi.org/10.1007/s42979-020-

00365-y 

[6] Khourdifi, Youness, and Mohamed Bahaj. "Heart 

disease prediction and classification using machine 

learning algorithms optimized by particle swarm 

optimization and ant colony optimization." 

International Journal of Intelligent Engineering and 

Systems 12, no. 1 (2019): 242-252. 

https://doi.org/10.22266/ijies2019.0228.24 

[7] Haq, Amin Ul, Jian Ping Li, Muhammad Hammad 

Memon, Shah Nazir, and Ruinan Sun. "A hybrid 

intelligent system framework for the prediction of 

heart disease using machine learning algorithms." 

Mobile Information Systems 2018 (2018). 

https://doi.org/10.1155/2018/3860146 

[8] Reddy, N. Satish Chandra, Song Shue Nee, Lim Zhi 

Min, and Chew Xin Ying. "Classification and feature 

selection approaches by machine learning 

techniques: heart disease prediction." International 

Journal of Innovative Computing 9, no. 1 (2019). 

https://doi.org/10.11113/ijic.v9n1.210 

[9] Motarwar, Pranav, Ankita Duraphe, G. Suganya, and 

M. Premalatha. "Cognitive Approach for Heart 

Disease Prediction using Machine Learning." In 

2020 International Conference on Emerging Trends 

in Information Technology and Engineering (ic-

ETITE), pp. 1-5. IEEE, 2020. 

https://doi.org/10.1109/ic-ETITE47903.2020.242 

[10] Choi, Edward, Andy Schuetz, Walter F. Stewart, 

and Jimeng Sun. "Using recurrent neural network 

models for early detection of heart failure onset." 

Journal of the American Medical Informatics 

Association 24, no. 2 (2017): 361-370. 

https://doi.org/10.1093/jamia/ocw112 

[11] Krishnan, Surenthiran, Pritheega Magalingam, and 

Roslina Ibrahim. "Hybrid deep learning model 

using recurrent neural network and gated recurrent 

unit for heart disease prediction." International 

Journal of Electrical & Computer Engineering 

(2088-8708) 11, no. 6 (2021). 

https://doi.org/10.11591/ijece.v11i6.pp5467-5476 

[12] Darmawahyuni, Annisa, Siti Nurmaini, Muhammad 

Naufal Rachmatullah, Firdaus Firdaus, and 

Bambang Tutuko. "Unidirectional-bidirectional 

recurrent networks for cardiac disorders 

classification." Telkomnika 19, no. 3 (2021): 902-

910. 

https://doi.org/10.12928/telkomnika.v19i3.18876 

[13] Chokwijitkul, Thanat, Anthony Nguyen, Hamed 

Hassanzadeh, and Siegfried Perez. "Identifying risk 

factors for heart disease in electronic medical 

records: A deep learning approach." In Proceedings 

of the BioNLP 2018 workshop, pp. 18-27. 2018. 

https://doi.org/10.18653/v1/W18-2303 

[14] Khan, Younas, Usman Qamar, Muhammad Asad, 

and Babar Zeb. "Applying feature selection and 

weight optimization techniques to enhance artificial 

neural network for heart disease diagnosis." In 

Proceedings of SAI Intelligent Systems 

Conference, pp. 340-351. Springer, Cham, 2019. 

https://doi.org/10.1007/978-3-030-29516-5_26 

[15] Alizadehsani, Roohallah, Mohamad Roshanzamir, 

Moloud Abdar, Adham Beykikhoshk, Mohammad 

Hossein Zangooei, Abbas Khosravi, Saeid 

Nahavandi, Ru San Tan, and U. Rajendra Acharya. 

"Model uncertainty quantification for diagnosis of 

each main coronary artery stenosis." Soft 

Computing (2019): 1-12. 

https://doi.org/10.1007/s00500-019-04531-0 

[16] M.S. Amin, Y.K. Chiam, and K.D. Varathan, 

“Identification of significant features and data 

mining techniques in predicting heart disease”, 

Telematics and Informatics, Vol.36, pp.82-93, 

2019. 

[17] Manur, M., Pani, A. K., & Kumar, P. (2020). A 

prediction technique for heart disease based on long 

short-term memory recurrent neural 

network. International Journal of Intelligent 

Engineering and Systems, 13(2), 31-39. 

[18] Duan, Baobin, Lixin Han, Zhinan Gou, Yi Yang, 

and Shuangshuang Chen. "Clustering Mixed Data 

Based on Density Peaks and Stacked Denoising 

Autoencoders." Symmetry 11, no. 2 (2019): 163. 

https://doi.org/10.3390/sym11020163 

[19] Khare, Neelu, Preethi Devan, Chiranji Lal 

Chowdhary, Sweta Bhattacharya, Geeta Singh, 

Saurabh Singh, and Byungun Yoon. "Smo-dnn: 

Spider monkey optimization and deep neural 

network hybrid classifier model for intrusion 

detection." Electronics 9, no. 4 (2020): 692. 

https://doi.org/10.3390/electronics9040692 

[20] Yap, Bee Wah, Khatijahhusna Abd Rani, Hezlin 

Aryani Abd Rahman, Simon Fong, Zuraida 

Khairudin, and Nik Nik Abdullah. "An application 

of oversampling, undersampling, bagging and 

boosting in handling imbalanced datasets." In 

Proceedings of the first international conference on 

advanced data and information engineering 

(DaEng-2013), pp. 13-22. Springer, Singapore, 

https://doi.org/10.5220/0009190106150620
https://doi.org/10.14419/ijet.v7i2.8.10557
https://doi.org/10.1109/ACCESS.2019.2923707
https://doi.org/10.1007/s42979-020-00365-y
https://doi.org/10.1007/s42979-020-00365-y
https://doi.org/10.22266/ijies2019.0228.24
https://doi.org/10.1155/2018/3860146
https://doi.org/10.11113/ijic.v9n1.210
https://doi.org/10.1109/ic-ETITE47903.2020.242
https://doi.org/10.1093/jamia/ocw112
https://doi.org/10.11591/ijece.v11i6.pp5467-5476
https://doi.org/10.12928/telkomnika.v19i3.18876
https://doi.org/10.18653/v1/W18-2303
https://doi.org/10.1007/978-3-030-29516-5_26
https://doi.org/10.1007/s00500-019-04531-0
https://doi.org/10.3390/sym11020163
https://doi.org/10.3390/electronics9040692


248   Informatica 50 (2026) 239–248                                                                                                                                  Z. Alaa et al. 

 

2014. 

https://doi.org/10.1007/978-981-4585-18-7_2 

[21] Galar, Mikel, Alberto Fernandez, Edurne 

Barrenechea, Humberto Bustince, and Francisco 

Herrera. "A review on ensembles for the class 

imbalance problem: bagging-, boosting-, and 

hybrid-based approaches." IEEE Transactions on 

Systems, Man, and Cybernetics, Part C 

(Applications and Reviews) 42, no. 4 (2011): 463-

484. 

https://doi.org/10.1109/TSMCC.2011.2161285 

[22] Laurikkala, Jorma. "Improving identification of 

difficult small classes by balancing class 

distribution." In Conference on Artificial 

Intelligence in Medicine in Europe, pp. 63-66. 

Springer, Berlin, Heidelberg, 2001. 

https://doi.org/10.1007/3-540-48229-6_9 

[23] Wilson, Dennis L. "Asymptotic properties of 

nearest neighbor rules using edited data." IEEE 

Transactions on Systems, Man, and Cybernetics 3 

(1972): 408-421. 

https://doi.org/10.1109/TSMC.1972.4309137 

[24] Nguyen, Hien M., Eric W. Cooper, and Katsuari 

Kamei. "Borderline over-sampling for imbalanced 

data classification." International Journal of 

Knowledge Engineering and Soft Data Paradigms 

3, no. 1 (2011): 4-21. 

https://doi.org/10.1504/IJKESDP.2011.039875 

[25] Tang, Yuchun, Yan-Qing Zhang, Nitesh V. Chawla, 

and Sven Krasser. "SVMs modeling for highly 

imbalanced classification." IEEE Transactions on 

Systems, Man, and Cybernetics, Part B 

(Cybernetics) 39, no. 1 (2008): 281-288. 

https://doi.org/10.1109/TSMCB.2008.2002909 

[26] Ng, Andrew. "Sparse autoencoder." CS294A 

Lecture notes 72, no. 2011 (2011): 1-19. 

[27] Jović, Alan, Karla Brkić, and Nikola Bogunović. "A 

review of feature selection methods with 

applications." In 2015 38th international convention 

on information and communication technology, 

electronics and microelectronics (MIPRO), pp. 

1200-1205. IEEE, 2015. 

https://doi.org/10.1109/MIPRO.2015.7160458 

[28] Liu, Zhipeng, Niraj Thapa, Addison Shaver, 

Kaushik Roy, Madhuri Siddula, Xiaohong Yuan, 

and Anna Yu. "Using embedded feature selection 

and cnn for classification on ccd-inid-v1-a new iot 

dataset." Sensors 21, no. 14 (2021): 4834. 

https://doi.org/10.3390/s21144834 

[29] Alizadehsani, Roohallah, Mohammad Hossein 

Zangooei, Mohammad Javad Hosseini, Jafar 

Habibi, Abbas Khosravi, Mohamad Roshanzamir, 

Fahime Khozeimeh, Nizal Sarrafzadegan, and 

Saeid Nahavandi. "Coronary artery disease 

detection using computational intelligence 

methods." Knowledge-Based Systems 109 (2016): 

187-

197.https://doi.org/10.1016/j.knosys.2016.07.004 

[30] UCI Machine Learning Repository. (2023). Heart 

Disease Dataset. Retrieved from 

http://archive.ics.uci.edu/ml/datasets/Heart+Diseas

e  

 

https://doi.org/10.1007/978-981-4585-18-7_2
https://doi.org/10.1109/TSMCC.2011.2161285
https://doi.org/10.1007/3-540-48229-6_9
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1504/IJKESDP.2011.039875
https://doi.org/10.1109/TSMCB.2008.2002909
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.3390/s21144834
https://doi.org/10.1016/j.knosys.2016.07.004

