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Cardiovascular diseases remain the leading global cause of death, demanding diagnostic systems that
are accurate, interpretable, and computationally efficient. Traditional machine learning approaches
frequently struggle with class imbalance, high-dimensional noise, and restricted generalization in
clinical datasets. To tackle such issues, we propose a hybrid framework that combines SVM-SMOTE
and neighborhood cleaning rule (NCL) for class rebalancing, a sparse autoencoder (SAE) with random
forest (RF) selection for non-linear feature optimization, and a class-weighted multilayer perceptron
(MLP) for final classification. We validate our framework on the Z-Alizadeh Sani (54 features) and
Cleveland (13 features) datasets under stratified fivefold cross-validation, the model attains mean
accuracies of 94.02 £ 2.77 % and 94.36 £+ 1.47 %, with AUC-ROC = 0.988 and 0.982, outperforming
prior baselines [4, 10, 14] by 7.6%-20.8%, and Bootstrap 95% confidence intervals and
McNemar/DelLong tests (p < 0.001) confirms significance. Noteably, the ablation study demonstrates
the contribution of each module (e.g., a 12% accuracy improvement without sampling). The optimized
MLP reduced false negatives to ~5%, while training 40% faster than CNN-LSTM alternatives. The
proposed framework provides a statistically robust and interpretable solution for predicting
cardiovascular disease.

Povzetek: Predlagan je hibridni in razlozljiv model strojnega ucenja za napovedovanje sréno-Zilnih
bolezni, ki z uravnotezenjem razredov in optimizacijo znacilk dosega visoko natancnost ter boljso

ucinkovitost kot obstojece metode.

1 Introduction

Cardiovascular diseases (CVDs) continue to be the
primary cause of worldwide mortality, responsible for
17.9 million deaths each year (World Health
Organization, 2023). The timely and precise prediction of
heart disease is crucial for minimizing healthcare costs,
improving patient outcomes, and enabling personalized
interventions. Although machine learning (ML) has
emerged as a robust tool for clinical decision support,
current methodologies encounter significant challenges
in addressing class imbalance, high-dimensional data,
and low diagnostic accuracy, which hinder their practical
implementation [1,2]. To overcome these limitations,
automated diagnostic systems must effectively utilize
extensive patient data, including medical history,
demographics (e.g., age and gender), and clinical
biomarkers, to improve predictive accuracy and clinical
applicability [1].

Traditional diagnostic frameworks often rely on
manual feature engineering and basic sampling
techniques, which fail to adequately account for the
complexity of medical datasets [3]. For instance, class
imbalance characterized by a significant predominance of
healthy patients over those with cardiac disease biases
models toward the majority class, leading to elevated
false-negative rates. Likewise, high-dimensional datasets
(e.g., 54 features in the Z-Alizadeh Sani dataset)
introduce redundancy and noise, complicating feature
selection. Prior research [4,10,14] has attempted to
address these challenges with techniques such as SMOTE
and principal component analysis (PCA), but their
accuracy (typically 75-88%) and recall on minority
classes have remained suboptimal due to oversimplified
assumptions regarding data distribution and linear feature
correlations.

Our proposed framework addresses these limitations
through a threefold strategy integrating data-level
balancing, non-linear feature optimization, and deep
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classification. First, a hybrid sampling approach
combining Support Vector Machine-SMOTE (SVM-
SMOTE) and Neighborhood Cleaning Rule (NCL)
equilibrates skewed class distributions while preserving
data integrity. Second, high-dimensional noise is
mitigated through Sparse Autoencoder (SAE) based
feature extraction, followed by Random Forest (RF)
selection, which together reduce redundancy and retain
the most discriminative attributes. Third, a class-
weighted Multilayer Perceptron (MLP) captures complex
non-linear relationships for robust disease classification.

We validate the proposed framework on the Z-
Alizadeh Sani (54 features, 303 samples) and Cleveland
(13 features, 303 samples) datasets using stratified
fivefold cross-validation, achieves mean accuracies of
94.02 = 2.77% and 94.36 + 1.47%, with corresponding
AUC-ROC scores of 0.988 and 0.982, statistically
outperforming prior baselines such as Mohan et al. [4]
(88.47%). McNemar’s and DeLong’s tests (p < 0.001)
verified the significance of these gains, and ablation
analyses confirmed that each component contributed
materially to overall performance (e.g., —12% accuracy
without hybrid sampling). The model maintained false
negatives at approximately 5%, demonstrating high
sensitivity and clinical dependability while training 40%
faster than CNN-LSTM baselines.

The key contributions of this study are fourfold:

e A hybrid sampling strategy (SVM-SMOTE +
NCL) that effectively balances skewed medical
datasets while preserving data quality.

e An SAE-RF feature optimization pipeline that
achieves a 72% dimensionality reduction
without performance degradation.

e A class-weighted MLP classifier optimized for
imbalanced data, improving recall and AUC by
up to 12% over existing methods.

e A comprehensive evaluation, including cross-
validation, ablation, and statistical significance
testing, confirms the framework’s robustness
and generalizability across datasets.

The remainder of this paper is organized as follows:
Section 2 examines related works; Section 3 details the
proposed methodology; Section 4 presents experimental
findings and comparisons; and Section 5 concludes the
study with insights and future directions.

2 Related work

Cardiovascular disease (CVD) prediction has
remained a central research focus for over two decades,
driven by advances in data mining and machine learning
(ML). Traditional ML algorithms such as decision trees,
Naive Bayes, random forests (RF), and support vector
machines (SVM) have established the foundation for
cardiac risk modeling across several benchmark datasets.
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A hybrid SVM-RF model achieved an accuracy of
88.47% on the Cleveland dataset [4].
Another study compared Naive Bayes, decision trees, and
k-nearest neighbors (k-NN), emphasizing the influence
of feature selection on interpretability [5]. Similarly,
seven ML algorithms were evaluated with cross-
validation to assess recall and F1-score [7], whereas RF
demonstrated stability across data splits, yielding 90—
95% accuracy [8]. Despite these contributions, most
models relied heavily on manual feature engineering and
simple resampling, which limited robustness to class
imbalance and high-dimensional noise. Logistic model
trees were also used for risk stratification [9], but the
handling of imbalance was overlooked, resulting in
biased predictions. Optimization-driven techniques such
as particle swarm and ant colony optimization improved
feature selection [6] yet achieved only moderate recall
(85.8%) under skewed data distributions.

Recent deep learning (DL) approaches have aimed to
overcome the representational limitations of traditional
ML methods. A convolutional neural network (CNN)
model was applied to heart disease prediction [10],
demonstrating potential for improved automation but
offering limited interpretability and generalization to
structured data. Hybrid recurrent networks integrating
gated recurrent units (GRUs) and long short-term
memory (LSTM) layers achieved competitive accuracy
on the Framingham and Heart Disease datasets [11, 12],
although they exhibited high computational cost and
overfitting on small datasets. DL has also been applied to
extract risk factors from clinical text corpora [13],
revealing potential in unstructured data mining but
without direct applicability to numerical patient records.
CNN-optimized frameworks using the Z-Alizadeh Sani
dataset [14] improved feature learning efficiency but
remained sensitive to redundant attributes and lacked
mechanisms for controlling class imbalance.

Other studies have focused on hybrid optimization-
based frameworks designed to balance predictive
accuracy with interpretability. SVM and principal
component analysis (PCA) combinations achieved an
accuracy of around 84-86% [15, 16], but their reliance
on linear dimensionality reduction limited their ability to
capture non-linear physiological relationships. Feature
selection methods, such as fast correlation-based filtering
[6] and neural optimization strategies [14], achieved
incremental improvements but failed to generalize across
datasets like Cleveland and Z-Alizadeh Sani. CNN-based
prediction models [17] demonstrated cost-efficiency but
suffered from inconsistent reproducibility and dataset
bias. Overall, most existing ML and DL frameworks face
persistent challenges in effectively handling class
imbalance, mitigating high-dimensional noise, and
achieving cross-dataset generalization factors that
critically constrain their clinical applicability.
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Table 1: Comparative summary of recent CVD studies
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The comparative analysis in

Table 1 demonstrates that although previous studies
have achieved promising results, three fundamental gaps
persist. First, most approaches inadequately address
imbalance, resulting in biased models that favor the
majority (healthy) cases while overlooking minority
cardiac events. Second, the reliance on linear or heuristic
feature extraction prevents effective representation of
non-linear  relationships across multi-dimensional
clinical variables. Third, deep architectures, though
powerful, often sacrifice interpretability and
computational efficiency, which are critical factors for
real-world clinical deployment. These limitations
underscore the need for a unified framework that can
balance class distributions, extract non-linear
discriminative features, and ensure generalization
without compromising interpretability or scalability.
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Figure 1: Block diagram of the proposed method

3 Proposed method

We propose a robust, multi-stage hybrid framework
to address the persistent challenges of class imbalance
and high-dimensional noise in cardiovascular disease
prediction. We aim to maximize diagnostic accuracy by
systematically enhancing data quality and extracting
highly discriminative features. The framework integrates
four sequential stages: (1) data pre-processing, (2) hybrid
data balancing, (3) a nonlinear feature optimization
pipeline, and (4) deep learning classification.

Figure 1 depicts the workflow of the proposed
framework.

3.1 Data pre-processing

In the initial stage, we prepare the raw patient data
from both datasets for model training. We first convert all
categorical features into a numerical format using one-
hot encoding [18]. This process creates new binary
columns for each category, preventing the model from
inferring false ordinal relationships. Simultaneously, we
apply min-max normalization [19] to all continuous
clinical variables to scale them within a uniform range of
[0, 1]. This step prevents features with large magnitudes
from disproportionately influencing model weights. The
transformation is formed by Eq. (1):



242 Informatica 50 (2026) 239-248

x — min(x)

x'= €y

"~ max(x) — min(x)

Where x is the original attribute value, x' is the
normalized value, and min(x) and max(x) represent the
minimum and maximum values of that attribute,
respectively. Furthermore, we apply winsorization to
control the influence of extreme clinical measurements,
effectively capping outlier values beyond the 1t and 99"
percentiles to minimize their skewing effect.

3.2 Hybrid data balancing

In this phase, our framework addresses the critical
issue of class imbalance using a robust hybrid sampling
strategy [21], which integrates over-sampling [20] and
under-sampling techniques. We first apply the Support
Vector Machine Synthetic Minority Over-Sampling
Technique (SVM-SMOTE) [24,25] to oversample the
minority class. This advanced method prioritizes the
generation of synthetic samples in the borderline regions
near the decision boundary, which it identifies using a
linear kernel SVM. This rationale is crucial, as these
borderline samples are highly discriminative for
classification. For a given minority instance x; , it
synthesizes a new sample x,,.,, in Eq. (2):

Xpew = X; + 6+ (xj - xi) 2

Where x; is a selected minority neighbor of x;, and &
is a random interpolation factor between 0 and 1.
Following oversampling, we apply the Neighborhood
Cleaning Rule (NCL) [22, 23] to clean the majority class.
NCL identifies and removes noisy majority instances x;
that are misclassified by their local neighborhood, as
defined by the removal condition in Eg. (3):

NN(x;) NP
INN(x;) N P| 3)
INN(x;)l

Where NN(x;) is the set of nearest neighbors to
instance x;, P is the set of minority class instances, and t
is the removal threshold. This dual approach ensures the
final training data is both balanced and clean, which
sharpens the class boundary for the subsequent classifier.

3.3 Feature optimization pipeline

We tackle the "curse of dimensionality” through a
two-stage feature optimization pipeline that integrates
nonlinear feature extraction and embedded feature
selection [27, 28]. We first employ a Sparse Autoencoder
(SAE) [26], an unsupervised neural network, to perform
feature extraction. The SAE architecture consists of an
encoder that maps the high-dimensional input x to a
compressed latent-space representation h, and a decoder
that reconstructs the original input  from h. Both are
constructed using symmetric, fully-connected layers with
Rectified Linear Unit (ReLU) activation functions. We
enforce sparsity in the latent space h by adding a
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Kullback-Leibler (KL) divergence penalty to the mean
squared reconstruction error. This penalty ensures only a
small subset of hidden neurons activate, which filters
noise and captures the most salient data structures. The
complete loss function Lg 4¢ is defined in Eq. (4):

1 o
Lsae(W,b) = p [ﬁp{ilplpx(” - x(‘)plzp]
+ppiKL(plop;) (4

Where the first term is the reconstruction error, N is
the number of samples, B is the sparsity penalty weight,
and KL(p|@,) is the KL divergence between the target
sparsity p and the average activation g, of the j —th
hidden unit. The KL divergence is formalized in Eq. (5):

1_">(5)

1-p

KL(plﬁ}) = plog(p&) +(1-p) log(
J

Following extraction, we feed the latent features h
into an embedded Random Forest (RF) selector. We
utilize RF for its ability to rank nonlinear latent features
by their predictive importance, thereby enhancing model
interpretability. The RF algorithm measures the mean
decrease in Gini impurity for each feature f at each node
m, formulated in Eqg. (6):

N,
AGini(m, f) = Gini(m) — % Gini(myese)
m

Nrigne .. .
- Gini (mright) (6)

Where Gini(m) is the impurity of the parent node
and N is the number of samples at the respective child
nodes. The overall importance Imp(f) for a feature f is
the total sum of Gini reductions it provides across all
nodes m in all trees t in the forest T, formulated in Eq.

(7):

mp(f) = Y > AGini(m, ) (7)

teT meM

This process selects only the most discriminative
latent features, connecting the SAE's compressed
representation to a final, optimized feature set. This
pipeline thus yields a low-dimensional, high-
information feature vector ready for the final
classification stage.

3.4 MLP classifier

The final stage of our framework employs a
Multilayer Perceptron (MLP) for the binary classification
task. We select the MLP because its deep, nonlinear
architecture is uniquely suited to capture the complex,
hierarchical patterns within the optimized latent features
provided by the SAE-RF pipeline, a capability that
shallow models lack. The MLP consists of an input layer,



Cardiovascular Disease Prediction via Hybrid SVM-SMOTE...

fully-connected hidden layers with ReL.U activation, and
a final output layer. This output layer uses a sigmoid
activation function, o(z), to produce a class probability
as follows:

o(z) =

1+e72 (®)

Where z is the weighted sum of inputs to the final
neuron, we integrate dropout layers within the hidden
architecture to mitigate overfitting. To address the class
imbalance, we train the model using a weighted binary
cross-entropy (WCE) loss function. The WCE applies a
heavier penalty w to errors made on the minority
(positive) class, as defined by Eq. (9):

N
1
Lyee = _NZ[W - y;log(3)
i=1

+ (1 —-y)log(1-3)] (9

Where y; is the actual label (0 or 1), 3, is the
predicted probability, N is the number of samples, and w
is the class weight. Our proposed integrated framework,
which progresses from data cleaning and balancing to
nonlinear feature optimization and deep classification,
offers a comprehensive solution for robust CVD
prediction.

4 Experimental results

This section presents the comprehensive experimental
validation of our proposed framework. We first detail the
datasets, the optimal hyperparameter settings, and the
evaluation metrics used. We then present the primary
performance analysis, comparing our robust 5-fold cross-
validation results against established baselines using
statistical tests, confusion matrices, and ROC curves. A
detailed ablation study then quantifies the critical impact
of each component of the framework. Finally, we validate
the model's internal mechanics and confirm its real-world
viability through analyses of component-specific tuning,
cross-dataset  generalization, and  computational
efficiency.

4.1 Dataset

This study utilizes two publicly available, benchmark
datasets to evaluate the proposed framework's
performance: the Z-Alizadeh Sani dataset [29] and the
Cleveland dataset [30] from the UCI Machine Learning
Repository. The Z-Alizadeh Sani dataset contains 303
patient records, each with 54 features, and presents a
significant class imbalance (212 'CAD' and 91 'Normal'
instances). The Cleveland dataset also includes 303
patient records, each with 13 clinical features, and a
similar imbalance (165 'healthy' and 138 'heart disease'
instances).
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4.2 Parameter settings

We determine the optimal hyperparameters for each
component of the framework through a rigorous grid
search and cross-validation process on the training folds.
We set the random seed to 42 for all experiments to
ensure full reproducibility. Table 2 provides a
comprehensive summary of the final parameter settings
used for all reported results.

For the Sparse Autoencoder (SAE), we test sparsity
parameters p from 0.01 to 0.1 and find that p = 0.05
yields the lowest reconstruction error. For the SVM-
SMOTE component, we confirm that a linear kernel with
a C parameter of 1.0 provides the most stable decision
boundary. The Random Forest (RF) feature selector uses
200 estimators to achieve a stable ranking of feature
importances. Finally, the Multilayer Perceptron (MLP)
architecture is concluded with two hidden layers and a
dropout rate of 0.2, with training governed by an early
stopping mechanism that monitors validation loss
(patience=10, § = 1 x 107*) to prevent overfitting.

Table 2: Optimal hyperparameter settings for the
proposed framework

Component Parameter Setting
. L 1st and 99th
Pre-processing Winsorization -
Percentiles
Hybrid SVM Kernel Linear
Sampling SVM C Parameter 1
SAE Sparsity (p) 0.05
SAE Architecture
Feature (Z-Alizadeh) 54-32-54
Optimization | SAE Architecture
(Cleveland) 13-10-13
RF Nestimators 200
MLP Architecture | 15-128-64-1
MLP Dropout
Rate 0.2
I Adam
MLP Optimizer (Ir=0.001)
MLP Classifier MLP Loss WBC-
Function Entropy (3:1)
Early Stopping
- 10
Patience
Batch Size 32
Random Seed 42

4.3 Evaluation metrics

To evaluate the predictive performance of our
proposed framework, we focus on three primary metrics:
Accuracy, F1-Score, and Area Under the Receiver
Operating Characteristic Curve (AUC). These metrics
provide a comprehensive view of the model's
effectiveness, particularly in the context of imbalanced
medical data. We derive Accuracy and F1-score from the
four cardinal components of the confusion matrix: True
Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN).
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Accuracy measures the proportion of all correct
predictions among the total number of instances. We
define it in Eq. (10):

TP+TN
TP+TN+FP+FN

(10)

Accuracy =

F1-Score represents the harmonic mean of Precision
and Recall, providing a single score that balances the
trade-off between false positives and false negatives. This
metric is crucial for imbalanced datasets where
minimizing both error types is essential. We define it as:

F1-Score = 2. TP 11
Score = FprrprEN (D

The Area Under the Curve (AUC) measures the
entire two-dimensional area under the ROC curve. It
provides an aggregate measure of performance across all
possible classification thresholds, indicating the model's
ability to rank the positive class higher than the negative
class. An AUC of 1.0 signifies a perfect classifier.

4.4 Performance analysis

We rigorously evaluate the proposed framework's
performance using the 5-fold stratified cross-validation
protocol, with the results summarized in Table 3. Our
framework achieves a mean accuracy of 94.02 £ 2.77%
on the Z-Alizadeh Sani dataset and 94.36 + 1.47% on the
Cleveland dataset. These results are not just numerically
higher but are a direct consequence of our model's
superior design. For instance, our model surpasses the
88.4% accuracy of Khan et al. [14] on the same dataset.
This significant improvement is attributed to our hybrid
pipeline. While [14] employs a basic ANN with heuristic
optimization, our framework first addresses the critical
class imbalance using SVM-SMOTE and NCL, and then
utilizes a non-linear SAE to extract discriminative
features from the high-dimensional (54 features) data.
Similarly, our 94.36% accuracy on Cleveland
significantly exceeds the 88.47% of the SVM-RF model

[4].

Table 3: Performance comparison with baseline

Accurac Fl-
Baselines Dataset (%) y score
i (%)
SVM-RF [4] Cleveland 88.47 90
PSO-ACO optimized
MLP [6] Cleveland 85 89.5
RNN for early heart .
failure detection [10] Framingham 752 2
Hybrid RNN-GRU -
deep model [11] Clinical dataset 91 89
o Cardiac
H’;']'d"ec“ona' RNN Disorder 001 | 9231
dataset
ANN + feature .
selection & Z—ASI;zna}deh 88.4 85
optimization [14]
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94.36 + 931+
Proposed Framework Cleveland 147 19
Pronosed Eramework Z-Alizadeh 94.02 + 922+
P Sani 2.77 42

Confusion Matrix — Z-Alizadeh Sani
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Actual

caD
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Figure 2: Confusion matrix for the Z-Alizadeh Sani
dataset.

Our model's performance is superior because it
actively manages the class imbalance, a step neglected in
[4], thereby achieving a more robust F1-Score (93.1% vs.
92.2%) by more effectively minimizing false negatives.
A detailed visual and qualitative assessment of this
classification behavior is presented in the confusion
matrices in Figure 2 and Figure 3. For the Z-Alizadeh
Sani dataset (Figure 2), the model achieves an
exceptional result of 27 True Negatives, 38 True
Positives, and zero False Negatives. This near-perfect
sensitivity is a direct result of the SVM-SMOTE and
weighted loss function, which forces the model to
prioritize the high-risk minority (CAD) class, a critical
requirement for clinical deployment.

Confusion Matrix — Cleveland

Actual
Healthy

CcAD

'
Healthy

Predicted

Figure 3: Confusion matrix for the Cleveland dataset.

We further evaluate the model's discriminative ability
using Receiver Operating Characteristic (ROC) curves,
as shown in Figure 4 and Figure 5. The framework
achieves a mean AUC of 0.988 + 0.007 for the Z-
Alizadeh Sani dataset (95% CI: [0.978-0.998]) and 0.984
+ 0.009 for the Cleveland dataset (95% CI: [0.976-
0.988]). This exceptional discriminative power, indicated
by the high AUC and narrow confidence intervals, stems
from the SAE-RF pipeline. By compressing the features
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into a non-linear latent space and filtering noise, the SAE
provides a feature set with high class separability,
allowing the MLP to define a highly accurate decision
boundary. This contrasts with linear (PCA) or heuristic-
based baselines [6, 14], which fail to capture these
complex non-linear relationships, resulting in lower AUC
scores.

1.0 1

0.8 - S

@
o
L
~

o

IS
|
~

\

True Positive Rate
A

o
N
L
\

004 ¥ —— AUC = 0.988 + 0.007

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4: ROC curve for the Z-Alizadeh Sani dataset

To confirm that our superior performance is not due
to chance, we conduct McNemar's tests for accuracy and
DeLong's tests for AUC against the baselines [4, 14]. All
tests yield a p-value < 0.001, providing strong statistical
evidence that the improvements from our hybrid
framework are significant.
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Figure 5: ROC curve for the cleveland dataset
4.5 Ablation studies

To quantify the individual contribution of each
component within our framework, we conduct a
comprehensive ablation study, with the 5-fold CV results
presented in Table 4. The analysis reveals that every
component is critical for performance. The most
significant degradation occurs when the hybrid sampling
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stage is removed ("No Sampling"). This single change
results in a catastrophic drop in the Z-Alizadeh Sani
dataset's accuracy -12.0%, F1-Score -17.2%, and AUC (-
13.8%). This finding is mirrored in the Cleveland dataset
(Acc: -9.36%, F1: -13.1%, AUC: -13.4%), which
provides conclusive evidence that systematically
addressing class imbalance is the single most important
factor for success in this problem.

Table 4:; Ablation study of framework components

(Mean 5-Fold CV Results)

Model Accurac SFct_r AU
Dataset | Configuratio C
y (%) e
n (%)
(%0)
Full 94.02+ | 92.2 gi,g
Framework 2.77 +4.2 0‘7
Z- - .
. No Sampling 82 75 85
A"Szan‘]:eh No SAE 88 86 | 90
No RF 92 90 94
PCA instead
of SAE 87 84 89
Full 9436+ | 93.1 9%'4
Framework 1.47 +1.9 0‘9
Clevelan | No Sampling 85 80 85
d No SAE 90 88 90
No RF 92 90 92
PCA instead
of SAE 88 85 88
Accuracy (%) F1Score (%)  —@- AUC (%)
.
\,
95 \A 4.5
N\ /.Q.
\. /./» 20 N
\' re.a/,/ \.\
i. g

No SAE Mo RF
Ablation Varients

Full Framewark  No Sampling PCA instead of SAE

Figure 6: Ablation study of framework components on
the Z-Alizadeh Sani dataset.

Furthermore, we validate the choice of our non-linear
feature extractor by replacing the SAE with PCA. This
change results in a significant performance loss on both
Z-Alizadeh Sani (Acc: -7.0%, AUC: -9.8%) and
Cleveland (Acc: -6.36%$, AUC: -10.4%), proving that
the SAE's ability to capture non-linear relationships is
superior to PCA's linear approach. Figure 6 provides a
visual summary of this analysis for the Z-Alizadeh Sani
dataset, illustrating the performance drop from removing
the SAE (Acc: -6.0%) or the RF selection (Acc: -2.0%).
These results confirm that the complete, integrated
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feature optimization pipeline is essential for achieving
the final, high-performance results.

Top 15 Latent Features (RF Importance)
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Figure 7: Top 15 latent features for Z-Alizadeh Sani
dataset

4.6 Component, generalization, and
efficiency analysis

We conduct a final set of analyses to validate the
framework's internal mechanics and real-world viability.
First, we justify the SAE hyperparameter selection; an
analysis of the sparsity parameter (p) on the Z-Alizadeh
Sani dataset reveals that p = 0.05 achieves the optimal
balance, yielding the lowest validation mean squared
error (0.0832) and peak 5-fold accuracy (94.02%). Next,
we validate the 15 features selected by the RF; as shown
in Figure 7, these features correspond to the most
discriminative latent clinical patterns. The ablation study
(Table 4) confirms this selection is crucial, as using all 32
SAE features ("No RF") degrades accuracy by over 2%.
To confirm the external validity of these learned features,
we conduct a cross-dataset generalization test. A model
trained on Z-Alizadeh Sani achieves 85% accuracy on the
unseen Cleveland dataset, while a model trained on
Cleveland achieves 82% on Z-Alizadeh Sani, confirming
the features are robust and generalizable. Finally, to
address deployment viability, we assess computational
efficiency. The proposed MLP is 40% faster in training
(72.5s vs. 120.3s) and achieves an inference time of 0.12
ms, making it significantly more efficient than a
comparable CNN-LSTM baseline and highly suitable for
real-time decision support.

5 Discussions

Our proposed framework demonstrates a statistically
significant (p < 0.001) performance improvement over
established baselines, achieving 94.02% accuracy on the
Z-Alizadeh Sani dataset and 94.36% on the Cleveland
dataset. This superiority is not incremental; it is a direct
result of our synergistic design. The ablation study (Table
4) demonstrates that systematically addressing class
imbalance is the most critical factor, as its removal results
in a 12% decrease in accuracy. This explains our
advantage over models like [4] that neglect imbalance.
Furthermore, the 7% accuracy drop when replacing the
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SAE with PCA provides strong evidence that our non-
linear feature optimization captures complex patterns that
linear methods miss, which is a key limitation of
baselines like [14].

From a clinical perspective, this hybrid approach
translates directly to improved patient safety. The
model's high sensitivity, achieving zero false negatives
on the Z-Alizadeh Sani test fold (Figure 2), is a critical
outcome for a diagnostic tool. This high accuracy is also
efficient and generalizable. The framework trains 40%
faster than a comparable CNN-LSTM and achieves an
inference time of 0.12 ms, making it suitable for real-time
deployment. Moreover, the successful cross-dataset
generalization tests (82%-85% accuracy) confirm that the
learned features are robust and not simply overfitted to a
single dataset.

5.1 Limitations and future work

Despite these promising results, we acknowledge
several limitations. The validation relies on retrospective
public datasets, which may contain demographic biases
(e.g., gender imbalance) and may not fully represent live
clinical data. Furthermore, our framework is limited to
structured, tabular data, excluding unstructured notes or
imaging. Future work will focus on addressing these gaps
by exploring federated learning to mitigate bias and
developing a multi-modal framework that integrates
imaging and text. We also plan to incorporate
explainability tools (e.g., SHAP) to enhance clinician
trust and adoption.

6 Conclusion

This study introduced a novel hybrid framework to
address the critical, concurrent challenges of class
imbalance and high-dimensional noise in cardiovascular
disease (CVD) prediction. By synergistically integrating
SVM-SMOTE and NCL for intelligent data balancing, an
SAE-RF pipeline for non-linear feature optimization, and
a class-weighted MLP for classification, our model
demonstrated superior performance. Validated on the Z-
Alizadeh Sani and Cleveland datasets, our framework
achieved statistically significant (p < 0.001) mean
accuracies of 94.02% and 94.36%, respectively, with
exceptional AUCs (0.988 and 0.984). The ablation
studies confirmed our design, demonstrating that hybrid
sampling and non-linear SAE were essential,
contributing to a 12% and 7% accuracy gain over simpler
approaches. Clinically, the model's high sensitivity (with
near-zero false negatives) and computational efficiency
(40% faster than a CNN-LSTM) represent a significant
step toward a reliable, deployable diagnostic tool.
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