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Against the backdrop of explosive growth in digital music data, traditional music classification methods 

suffer from high cost of manual feature extraction and poor generalization, while existing deep learning 

methods lack optimization of music time-frequency two-dimensional features and face the challenge of 

high cost of large-scale data annotation. This study addresses four core research questions: how to design 

a time-frequency dual stream network (using two layers of LSTM to capture rhythm dynamics for the time 

stream and two 5 × 5 convolutional layers+two sampling layers to extract timbre harmonic features for 

the frequency stream) and an effective feature fusion strategy to improve the classification accuracy of 

complex music; Which music specific data augmentation strategies and hyperparameter optimization 

enhance the generalization of SimCLR contrastive learning in unlabeled data scenarios; There are 

differences between these two methods in terms of adapting to data volume, genre complexity, and 

annotation constraints when executing across datasets (small-scale tagging GTZAN and large-scale 

MSD) (GTZAN outperforms SimCLR in terms of time-frequency collaboration, while SimCLR slightly 

outperforms MSD with no significant difference between the two). Its key indicators include classification 

accuracy, recall, and F-value (for example, time-frequency dual stream achieves 82.4% accuracy, 81.7% 

recall, and 82.0% F-value on GTZAN, with the best accuracy of 86.5% for pop music classification; 

SimCLR achieved an accuracy of 79.5%, a recall of 78.8%, and an F-value of 79.1% on MSD, and 

designed a time-frequency dual stream model with two layers of LSTM (time stream), two convolutional 

layers+two sampling layers (frequency stream), and an intermediate fusion module; SimCLR with data 

augmentation (time stretching, pitch adjustment, random cropping, reverberation, etc.), CNN encoder, 

and InfoNCE loss function is used to verify their effectiveness in music classification through 5-fold cross 

validation. This scheme complements each other's advantages and provides technical support for music 

classification and related applications. 

Povzetek: Študija predstavi časovno-frekvenčni dvo-tokovni model (LSTM + CNN) in SimCLR s 

podatkovnimi augmentacijami, ki skupaj izboljšata klasifikacijo glasbe (npr. 82,4 % na GTZAN in 79,5 

% na MSD) ter pokažeta komplementarnost nadzorovanega in nenadzorovanega pristopa. 

 

1 Introduction 
Under the impact of the digital age, music data is 

showing an unprecedented explosive growth trend. 

Authoritative statistical data shows that mainstream 

music platforms alone add millions of new songs every 

year, and the vast music resources are like a vast sea of 

smoke [1]. In this context, how to efficiently classify and 

manage massive music resources has become a challenge 

[2]. The importance of music classification is self-evident. 

It not only helps users quickly locate their favorite works 

in the complex music world, significantly improving the 

user experience of music platforms, but also plays a 

cornerstone role in copyright management, 

recommendation system optimization, market analysis 

and other important aspects of the music industry. 

Reviewing traditional music classification methods, 

it mainly relies on manual feature extraction and machine  

 

learning algorithms [4]. However, when faced with 

complex and diverse music data, these methods reveal  

many drawbacks [5]: the labor and time cost of manual 

feature extraction is huge, and the extraction process is 

difficult due to the complexity and subjectivity of music 

features; In practical applications, machine learning 

algorithms have limited generalization capabilities and 

are difficult to adapt to changing musical styles and forms, 

resulting in unsatisfactory classification performance [6], 

which echoes the limitation of "insufficient 

generalization ability of a single model in existing 

advanced methods" mentioned above. With its strong 

learning ability and adaptability, deep learning has 

gradually become a hot spot in music classification 

research, bringing new opportunities for solving this 

problem. Among them, time-frequency dual-stream 

network and SimCLR comparative learning, as cutting-

edge technologies in the field of deep learning, have 
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shown advantages in music classification research [7]--

the former compensates for the one-sidedness of 

traditional manual feature extraction by extracting time-

domain temporal correlation and frequency-domain 

frequency distribution features through dual-branch 

collaboration, while the latter reduces the dependence on 

annotation with the help of unsupervised comparative 

learning, which just solves the problem of high demand 

for data volume by machine learning algorithms. 

Robustness and other aspects are better than existing 

methods, further highlighting the breakthrough of 

cutting-edge technology to the limitations of traditional 

methods. 

The time-frequency dual stream network cleverly 

utilizes the dual characteristics of audio data[7], It adopts 

a parallel network structure to extract and fuse features 

[8]. In the music, every piece of music contains rich 

rhythms and melodic changes. The time flow network is 

like a sensitive "time sensor" that can accurately capture 

time series features such as the ups and downs of rhythm 

and the alternation of beat strength in music [9]; The 

frequency stream network is like a dedicated 'sound 

anatomist', focusing on frequency features such as pitch 

changes and timbre characteristics of melodies [10]. 

Through this parallel and complementary feature 

extraction and fusion approach, time-frequency dual 

stream networks can more comprehensively and 

accurately grasp the essential features of music, 

providing more discriminative and discriminative feature 

representations for music classification [11]. 

SimCLR enhances data by constructing positive and 

negative sample pairs, and uses a contrastive loss 

function to learn the feature representation of samples 

without the need for manual labeling. Its unique learning 

mechanism is highly innovative [12]. It maps similar 

music to nearby positions in the feature space and 

dissimilar music to distant positions by constructing 

positive and negative pairs of data samples, thus learning 

powerful feature representations in unlabeled data [13]. 

In the current situation where music data annotation is 

costly and difficult, SimCLR contrastive learning can 

fully utilize large-scale unlabeled music data for pre 

training, greatly reducing reliance on manually annotated 

data and effectively reducing annotation costs [14]. At the 

same time, this self supervised learning method can 

explore the inherent feature patterns of data [15]. 

This study combines time-frequency dual stream 

network with SimCLR contrastive learning to explore its 

application in music classification. By constructing a 

multi-dimensional feature extraction and self supervised 

learning coupling model, not only is the ability to 

represent music features optimized, but it also aims to 

create a more accurate classification technology system 

for the music industry, thereby promoting the upgrading 

of intelligent recommendation applications and providing 

technical support for precise distribution of music content 

and improvement of user experience. 

Compared with the mainstream CRNN/dual-branch 

baseline model, it focuses on the characteristics of the 

time domain and frequency domain respectively through 

the dual-flow channel and realizes deep fusion, which 

effectively solves the problem that traditional models are 

prone to losing time-domain dynamic information or 

frequency-domain details during feature extraction. At 

the same time, compared with the established 

comparative audio framework, the introduced SimCLR 

comparative learning mechanism can learn more 

discriminant feature representations with the assistance 

of labelless data, which greatly improves the 

generalization ability and classification accuracy of 

music classification tasks in small samples and complex 

audio scenes, and fills the gap in the deep combination 

and application of time-frequency feature collaborative 

optimization and contrastive learning in music 

classification. 

This study hypothesizes that a time-frequency dual 

stream network with 16kHz and 3-second music signals 

(incorporating time-domain waveform and Mel 

spectrogram features) combined with SimCLR pre 

training (random time-frequency mask, 4-layer 

convolutional encoder, 2-layer projection head, τ=0.1, 

batch_2=128, Adam 1e-4 pre training 10000 times) can 

improve classification performance on less labeled data. 

The accuracy of datasets such as GTZAN is higher than 

that of single stream CNN and no pre training models; In 

the classification stage, 256-dimensional dual stream 

feature elements are fused at the element level and then 

connected to a two-layer fully connected classifier. The 

features are normalized to [0,1] and the configuration is 

reproducible. 

2 The basic theory of comparative 

learning between time-frequency 

dual stream network and SimCLR 

2.1 Time-frequency dual stream network 

Time frequency dual stream network is a deep 

learning architecture [16]. This network is mainly divided 

into three parts: time flow network, frequency flow 

network, and feature fusion module [17]. Among them, 

the time flow network focuses on capturing the temporal 

dynamic features in sequence data, while the frequency 

flow network is dedicated to analyzing the frequency 

domain characteristics of the data. The function of the 

feature fusion module is to effectively integrate the 

features extracted from the time flow and frequency flow, 

so that the model can comprehensively understand the 

data from both the time-frequency dimensions, improve 

the performance of the model, and enhance its ability to 

process complex information. 

Time stream networks focus on processing time-

series information of music signals. The time series is 

shown in formula (1.1): 

 

x = [x1, x2, … , xt](1.1) 

 

In the formula, T represents the time step, and 

xtrepresents the signal value at time t. At each time step 

t, the current input xt and the hidden state ht−1 from the 

previous time step are received, and the hidden state ht at 
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the current time step is obtained through a series of 

calculations. The detailed calculations are shown in 

formulas (1.2), (1.3), (1.4), (1.5), and (1.6): 

 
it = σ(Wixxt +Wihht−1 + bi) (1.2) 

 

ft = σ(Wfxxt +Wfhht−1 + bf) (1.3) 

 

ot = σ(Woxxt +Wohht−1 + bo) (1.4) 

 

ct = ft ⊙ ct−1 + it ⊙ tanh (Wixxt +Wihht−1 + bi)(1.5) 

 

ht = ot ⊙ tan h (ct)(1.6) 

 
Xt represents the input feature vector at time t, which 

is the raw data received by the network at that time step; 

Ht is the hidden state at time t, which integrates the 

sequence information up to the current time and passes it 

on to the next time; Wf is the weight matrix of the forget 

gate, used to regulate the retention ratio of the cell state 

at the previous moment; Bi is the bias term of the input 

gate, which assists in determining the update amplitude 

of new input information. These components together 

constitute the key mechanism for LSTM to process 

temporal data.In the formula, it、ft、ot  represents the 

activation values of the input gate, forget gate, and output 

gate, respectively; ct is the cellular state; σ is the sigmoid 

activation function; ⊙  represents element wise 

multiplication; W∗  is the weight matrix; b∗  is the bias 

vector. 

In the time-frequency dual-stream music 

classification network, the frequency stream network is 

responsible for extracting discriminant information from 

the frequency domain features such as the Merkel 

spectrogram and STFT spectrum, and provides a 

frequency domain basis for classification. Because 

convolutional neural networks (CNNs) can capture local 

patterns in the frequency domain through convolutional 

kernel sliding, they have become the mainstream 

structure. The core feature extraction process of 

frequency stream CNN can be described by Equation 

(1.7): 

 

O(i, j) = ∑ I(i + m, j + n)K(m, n)m,n   (1.7) 

 
In the formula, O(i, j) is the value of the convolution 

output at position (i, j); m and n are the indices of the 

convolution kernel; The input spectrogram is I, and the 

convolution kernel is K. 

The function of the feature fusion module is to fuse 

the features extracted by the time flow network and 

frequency flow network to obtain a more comprehensive 

representation of music features. As shown in formula 

(1.8): 

 

Fl = αFt
l + (1 − α)Ff

l  (1.8) 

 
In the formula, the output feature of the time flow 

network in layer l  is Ft
l , the output feature of the 

frequency flow network in the corresponding layer is Ff
l, 

α is the fusion weight, which is obtained through training 

and learning to adjust the relative importance of time 

domain and frequency domain features. 

2.2 SimCLR comparative learning theory 

SimCLR is a simple and effective contrastive 

learning framework [18]. The core process of SimCLR 

algorithm mainly includes data augmentation, encoder, 

contrastive loss function, etc [19].Convert audio into Mel 

spectrograms to construct a visual representation suitable 

for CNN, capture time-frequency features separately 

using a dual stream architecture, and apply data 

augmentation to the Mel spectrograms using the SimCLR 

framework to generate sample pairs, achieving self 

supervised learning to improve classification 

performance. 

In the data augmentation stage, SimCLR generates 

multiple different versions of enhanced samples by 

performing a series of transformation operations on the 

original music samples. These transformation operations 

include but are not limited to random cropping, 

reverberation addition, pitch adjustment, time stretching, 

etc. 

The encoder is responsible for mapping the 

enhanced music samples into the feature space. In 

SimCLR, deep neural networks are commonly used as 

encoders. If the encoder is f(. ), then after being processed 

by the encoder, xi  and xj  obtain feature representations 

hi = f(xi) and hj = f(xj) respectively. 

The core of the contrastive loss function is to 

measure the difference in similarity between samples. It 

optimizes the model by calculating the distance 

difference between positive and negative sample pairs. 

The higher the similarity between positive samples and 

the lower the similarity between negative samples, the 

smaller the loss. Commonly used in twin networks and 

other scenarios, it promotes the aggregation of similar 

samples in the feature space and the separation of 

heterogeneous samples, thereby enhancing the model's 

feature discrimination ability. As shown in formula (1.9): 

 

Li,j = − log
exp(sim(zi,zj) τ⁄ )

∑ exp(sim(zi,zj) τ⁄ )lk≠i
2N
k=1

  (1.9) 

 
In the formula, zi = g(hi)  and zj = g(hj)  are the 

feature vectors processed by the projection head g(. ) . 

The projection head is usually a multi-layer perceptron 

(MLP) used to map the features output by the encoder to 

a space more suitable for contrastive learning; sim(zi, zj) 

is the similarity function; τ is a temperature parameter 

used to adjust the difficulty of contrastive learning; Nis 

the number of samples in a batch, and 2Nrepresents the 

total number of samples containing positive sample pairs; 

lk≠i is an indicator function,  which is 1 when k ≠ i and 

0 otherwise, used to exclude self-comparison. 

In this study, the precise architecture and 

hyperparameter settings of the time-frequency dual-

stream network combined with SimCLR comparative 

learning are as follows: The time-frequency dual-stream 
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network includes a time flow network, a frequency flow 

network and a feature fusion module, in which the time 

flow network takes the gated loop unit that processes the 

music time series as the core, and completes the hidden 

state update according to Equation (1.2)-(1.6) through the 

activation values, cell states, weight matrix and bias 

vectors of the input gate, forgetting gate, and output gate. 

The frequency stream network uses a convolutional 

neural network (CNN) to process the frequency domain 

information according to Equation (1.7) (the 

convolutional output at the position, the convolutional 

kernel index, I the input spectrogram, and K the 

convolutional kernel). The feature fusion module 

combines the output features of the two layers of the 

network with the fusion weights obtained from training 

and learning according to Equation 1.8 to achieve feature 

fusion. The SimCLR comparative learning framework 

generates enhanced samples through random cropping, 

reverberation addition, pitch adjustment, time stretching 

and other data augmentation operations, and uses the 

deep neural network as the encoder to map the enhanced 

samples to the feature space (if it is a specific encoder, it 

outputs feature representation), and then uses the 

projection head (multi-layer perceptron) to map the 

encoder's output features to the space of adaptive contrast 

learning, combined with the contrast loss function 

(Equation (1.9), which is the feature vector processed by 

the projection head, which is the similarity function, and 

is the temperature parameter. The number of batch 

samples and the indicator function to exclude self-

comparison) to optimize the model to promote the 

aggregation of similar samples in the feature space and 

the separation of heterogeneous samples. 

3 Comparison of time-frequency 

dual stream network and SimCLR 

learning in music classification 

model construction 

3.1 Construction of time-frequency dual 

stream network model 

For the time-frequency dual-stream network, the 

parameters of the complete training formula are set as 

follows: the optimizer uses AdamW, the learning rate is 

initially set to 1e-4, and the cosine annealing learning rate 

scheduler is dynamically adjusted with the number of 

iterations during the training process to balance the 

convergence speed and generalization ability [27]; The 

batch size is set to 32 and the number of epochs is set to 

100 according to the input music feature dimension, and 

an early stop criterion is introduced - the training is 

terminated when the classification accuracy of the 

validation set is not improved for 15 consecutive epochs 

to avoid overfitting. In terms of regularization, L2 

regularization (weight attenuation value of 5e-5) 

combined with random dropout (dropout probability 0.3) 

was adopted, and the random seed was fixed at 42 to 

ensure experimental reproducibility. The hardware relies 

on a single NVIDIA RTX 4090 GPU with a 128GB 

memory server to ensure efficient feature extraction and 

network training. The time-frequency dual stream neural 

network and SimCLR self supervised learning are used 

for music genre classification. The two stream final 

convolutional layer features are weighted and fused, and 

the fusion weight α is learned by a single-layer 

perceptron. 

This study achieved collaborative mining and 

discriminative enhancement of deep features in music 

signals by constructing a music genre classification 

model based on time-frequency dual stream neural 

network and SimCLR self supervised learning. As shown 

in Figure 1, the time-frequency dual stream architecture 

extracts local details and global structural features from 

both time-domain waveforms and frequency-domain 

spectrograms, and enhances feature expression ability 

through cross stream fusion mechanism; Combining 

SimCLR's contrastive learning paradigm, positive and 

negative sample pairs are constructed on unlabeled data. 

By maximizing the similarity between positive samples 

and minimizing the similarity between negative samples, 

highly discriminative music representation vectors are 

learned, effectively alleviating the problem of high 

annotation costs in music data. The experiment shows 

that the joint model has significant advantages in spectral 

feature perception and representation learning, and can 

capture subtle differences between music styles, 

providing a new solution for music information retrieval 

tasks. 
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Figure 1: Algorithm flowchart of time-frequency dual stream network model 

 

The time flow network focuses on capturing the time 

series features of music signals, using long short-term 

memory networks (LSTM) as the main structure. LSTM 

can selectively remember and updating information at 

different time points through the synergistic effect of 

input gates, forget gates, and output gates. 

The time-domain branch captures temporal dynamic 

features such as rhythm and dynamics from the audio 

waveform, and the frequency-domain branch extracts 

frequency dimension information such as timbre and 

harmony based on features such as Mel spectrum [28-30]. 

The SimCLR method is implemented for the 

characteristics of music data: first, the original audio is 

enhanced with time clipping, volume scaling, slight noise 

and other data enhancements to generate positive and 

negative sample pairs, and then the sample input feature 

extraction network is obtained to obtain the 

representation vector, and the representation distance of 

different enhanced versions of the same sample is 

minimized and the representation distance of different 

samples is maximized through the comparison loss 

function, so as to optimize the network's ability to 

distinguish musical features and help improve the 

classification accuracy [31, 32]. 

In this study, the time flow network was equipped 

with two layers of LSTM layers. When dealing with rock 

music with complex rhythm changes, the first layer of 

LSTM can initially capture the basic rhythm change 

information, and the second layer further integrates and 

refines this information to extract more representative 

rhythm features. 

 

 

 

Figure 2: Convolutional neural network architecture 

 

As a core component dedicated to extracting 

frequency domain features of music signals, the 

frequency flow network is built on top of the 

convolutional neural network (CNN) architecture. With 

the characteristics of local connections and weight 

sharing, this architecture exhibits powerful feature 
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extraction capabilities when processing two-dimensional 

data, providing an efficient technical path for frequency 

domain feature analysis of music signals. Figure 2 shows 

a time-frequency dual stream convolutional neural 

network (CNN) architecture for music classification. Its 

core design analyzes the time-domain and frequency-

domain characteristics of music signals through two 

independent processing branches: the upper branch 

processes frequency-domain information, focusing on 

timbre and harmonic structure; The lower branch 

processes time-domain information, capturing rhythm 

and temporal patterns. The dual stream features are mid-

term fused through the Adapter module to achieve cross 

modal feature interaction and form a more discriminative 

joint representation. The deep layers of the network 

gradually extract features through convolution and 

pooling operations, and finally output classification 

results through fully connected layers. This structure 

effectively synergizes spatiotemporal features, 

improving the accuracy and robustness of music genre 

classification. 

The frequency flow network consists of two 

carefully designed convolutional layers and two sampling 

layers. Among them, the first convolutional layer adopts 

a 5 × 5 convolution kernel with a stride set to 1, which 

can scan music signals in detail and extract the 

fundamental frequency characteristics of different 

instruments; The second convolutional layer also uses a 

5 × 5 convolution kernel to further explore the 

combination relationship between these basic frequency 

features based on the extraction in the first layer, thereby 

revealing deeper frequency characteristics of the music 

signal. The two-layer sampling layer is equipped with 14 

× 14 and 5 × 5 sampling kernels, with a step size of 2. By 

reducing the dimensionality of the convolutional layer 

output, it not only effectively reduces the subsequent 

computational load, but also accurately preserves the key 

features that are crucial for music frequency analysis. 

This enables the frequency flow network to efficiently 

and accurately complete frequency domain feature 

extraction tasks when processing complex audio signals 

such as classical music with multiple instrument 

performances. 

 

 
Figure 3: Flow chart of feature fusion module 

 

Figure 3 shows the workflow of a feature fusion 

module used for processing note sequences. Its core is to 

achieve feature extraction and context modeling through 

the combination of convolution and recurrent neural 

networks: the input note feature matrix first passes 

through two parallel channels (a, b), where channel (b) 

performs convolution operation to extract local patterns; 

Subsequently, the data is merged into a convolutional 

layer for further fusion; Then, the Bidirectional GRU 

Layer is used to capture the temporal dependencies of the 

sequence; Finally, after being processed by an activation 

function, the reconstructed note sequence is output. This 

module achieves deep modeling and enhancement of 

music temporal features through a multi-layer cascaded 

neural network structure. 

Aiming at the problem of insufficient mining of the 

correlation between the time domain and the frequency 

domain features of music signals, a classification 

framework for the advantages of fusion dual networks is 

constructed, and the effectiveness of the key designs is 

verified through special ablation research: the 

performance differences of three fusion types: late fusion 

(splicing of time domain and frequency domain features 

after network processing), mid-stage fusion (interactive 

fusion of interlayer features of dual-stream network), and 

cross-attention fusion (dynamic capture of time-

frequency feature association based on attention 

mechanism), are compared. At the same time, the effects 

of learning fusion weight and non-learning fusion weight 

(using fixed weight allocation) on the classification 

accuracy are analyzed, and finally combined with the 

experimental results of the public music dataset, the 

optimal performance of the cross-attention fusion 

combined learning fusion weight scheme in terms of 

genres discrimination and noise robustness is clarified, 

which provides an empirical reference for the feature 

fusion strategy of music classification tasks. 

In order to evaluate the contribution of each stream 

in the time-frequency dual-stream network, an ablation 

experiment of "removing a single stream" is designed, 

which specifically tests the classification performance of 

the time-domain stream and frequency-domain stream 

time frame, and compares it with the performance of the 

complete dual-stream network to clarify the unique value 

and synergy of each stream in feature extraction. 

Secondly, the ablation experiment of "changing the 

fusion layer" is carried out around the fusion layer, the 

effect of the alternative fusion implementation scheme is 

evaluated, and different types of fusion layer structures 

such as fully connected fusion layer and convolutional 

fusion layer are introduced to replace it on the basis of the 

original fusion layer design, and the rationality of the 

original fusion layer design is verified by comparing the 

classification accuracy and feature fusion efficiency of 
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the framework under different fusion layer configurations. 

Thirdly, the "early, middle and late fusion strategies" are 

deeply compared, in which the early fusion strategy fuses 

the time domain and frequency domain features before 

the network extracts features, the mid-term fusion 

strategy interactively fuses the features between the 

layers of the dual-stream network, and the late fusion 

strategy splices the time-domain and frequency-domain 

features after independent processing of the dual-stream 

network. Finally, in order to prove the necessity of LSTM 

in the framework, the ablation experiment of "replacing 

LSTM with GRU or time CNN" is implemented, and the 

timing feature processing module using LSTM in the 

original framework is replaced with gated recurrent unit 

(GRU) and time-domain convolutional neural network 

(time CNN), respectively. Combined with the 

experimental results of public music datasets, it can be 

seen that the combination of cross-attention fusion and 

learning fusion weights achieves the best performance in 

both genre discrimination and noise robustness. This 

study not only verifies the effectiveness of the key 

designs in the framework through systematic ablation 

experiments, but also provides an empirical reference for 

the selection of feature fusion strategies and timing 

processing modules in music classification tasks. 

Table 1 lists six key audio enhancement techniques 

designed specifically for the application of SimCLR self 

supervised learning framework in music genre 

classification tasks, with a focus on concise parameter 

specifications and clear rules for generating positive and 

negative pairs. In terms of core parameters, each 

technology provides specific numerical ranges and key 

settings: pitch offset uses integer values ranging from -4 

to+4 semitones, combined with WSOLA interpolation 

algorithm; The factor range for time stretching is 0.8-1.2 

(with a step size of 0.05), and the audio length is fixed at 

3 seconds; The gain range of volume disturbance is 0.6-

1.4 (step size 0.1), and decibel normalization is 

performed; The time-domain mask and frequency-

domain mask (derived from the SpecAug method) both 

use a mask ratio of 0.05-0.15 and are continuous masks; 

The signal-to-noise ratio (SNR) range for background 

noise overlay is 10-30 decibels, and the noise is randomly 

selected from environmental noise. In terms of generating 

rules, each technique maintains consistency to ensure the 

effectiveness of self supervised learning: generating by 

applying "different parameter values of the same 

enhancement technique" to two views of the "same 

original audio sample"; Negative pairs are composed of 

views of "different original samples within the same 

batch", while strictly excluding duplicate parameter 

settings (such as repeated pitch offsets, the same mask) to 

avoid generating false negative samples. This design 

ensures both positive semantic consistency and 

introduces meaningful differences for negative pairs, 

thereby enhancing the model's ability to learn school 

discriminative features. 

 

Table 1: Data augmentation technology parameter table 

Augmentation 

Technique 
Core Parameters Positive Pairs Rule Negative Pairs Rule 

Pitch Shifting 
[-4,+4] semitones (int), 

WSOLA 

Same sample, different 

shifts 

Different samples (batch); no 

duplicate shifts 

Time Stretching 
[0.8,1.2] (step 0.05), 3s 

fixed 

Same sample, different 

factors 

Different samples (batch); no 

duplicate factors 

Volume Perturbation 
[0.6,1.4] gain (step 

0.1), dB norm 

Same sample, different 

gains 

Different samples (batch); no 

duplicate gains 

Time Masking 

(SpecAug) 

[0.05,0.15] ratio, 

continuous 

Same sample, different 

mask pos/length 

Different samples (batch); no 

identical masks 

Frequency Masking 

(SpecAug) 

[0.05,0.15] ratio, 

continuous 

Same sample, different 

mask pos/length 

Different samples (batch); no 

identical masks 

Background Noise 

Addition 

[10,30] dB SNR, 

random noise 

Same sample, different 

noise/SNR 

Different samples (batch); no 

identical noise 
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3.2 SimCLR comparative learning model 

construction 

Data enhancement introduces a more 

comprehensive enhancement distribution configuration, 

including time stretch factor 0.8-1.2, pitch semitone 

range - 2 to 2, SNR 5-20dB, and reverberation IRs in 

various scenes such as indoors and halls, which fully 

covers the variation of music signals compared with the 

original random cropping and volume disturbance. 

Parameter sensitivity analysis - the model's response to 

key parameters of SimCLR, such as temperature 

parameter τ (0.1-1.0), projection head width (64, 128, 256 

dimensions), and batch size (32 and 128 control groups 

were added on the basis of the original 64), and the 

sensitive range of each parameter to classification 

performance was elucidated. The training method 

compares the results of the new linear probe (trained 

classifier based only on pre-trained features) and end-to-

end fine-tuning (updating the entire network parameters), 

and verifies the SimCLR feature migritability and the 

performance improvement space after fine-tuning 

through accuracy and loss curves - at the same time, the 

basic training configuration of the SimCLR comparative 

learning model remains optimized: the optimizer selects 

AdamW (initial learning rate 3e-4, step attenuation is 

reduced to 1/10 of the original value every 30 epochs), 

batch size 64, training rounds 150. The early stop 

criterion is that the loss of the validation set is 20 

consecutive epochs without decreasing, retaining L2 

regularization (weight decay 3e-5) and combining the 

enhanced distribution enhancement effect, the random 

seed is set to 42, and two NVIDIA RTX 4090 GPUs are 

trained in parallel with 128GB of memory to meet the 

computing power requirements of large-scale sample 

processing. 

The structure of the music pre training model based 

on SimCLR is shown in Figure 4, which mainly includes 

a data augmentation module, an encoder network, and a 

contrastive loss calculation module.Comparative 

learning constructs a supervised signal by mining the 

intrinsic similarity and difference of data, which 

conforms to the characteristics of commonality and 

significant differences between different styles of music 

in music classification, which can effectively capture the 

deep structural characteristics of music and reduce the 

dependence on annotation data. On the basis of 

comparative learning, SimCLR uses a dual-branch 

network architecture, nonlinear projection head design, 

and temperature scaling loss function as innovations to 

adapt to the high-dimensional and dynamic changes of 

music data, and can learn music feature representation 

more accurately. In terms of SimCLR task-related 

enhancement options, the principle of enhancement 

methods such as time stretching and pitch offset is to 

simulate the speed and pitch changes in real music 

playback, increase data diversity while retaining the core 

semantic information of the music, and reduce model 

overfitting. Spectral masks and time domain masks force 

the model to focus on the global features of music rather 

than local noise by occluding local spectrum or time 

fragments, which can improve the generalization 

extraction ability of the model to musical features, and 

then optimize the performance of music classification. 

 

 
 

Figure 4: Structure diagram of music pre training model based on SimCLR 

 

In the data augmentation stage, in order to 

effectively enhance the diversity of music data and help 

the model learn more generalized features, we 

comprehensively use multiple data augmentation 

strategies. By stretching and compressing the time, 

changing the playback speed of music, and generating 

new samples with different rhythms without changing the 

pitch; By utilizing pitch changes, adjust the pitch of 

music within a certain range to create audio versions with 

varying heights; Introducing noise injection technology 

to simulate background noise interference in real 

environments and enhance the model's adaptability to 
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complex audio environments; By using random cropping 

and concatenation methods, different audio segments are 

combined and reconstructed, breaking the structural 

pattern of the original audio and greatly enriching the 

form of the training data. 

The encoder network adopts the convolutional 

neural network (CNN) architecture, and its core task is to 

accurately map the enhanced music samples to the feature 

space. In the network structure, the convolutional layer 

extracts local features from audio data by designing 

convolutional kernels of different sizes and step sizes, 

which can effectively capture key information, for 

example music melody etc; The pooling layer reduces the 

dimensionality of data while preserving core features 

through downsampling operations, which not only 

reduces computational complexity but also prevents 

overfitting; The fully connected layer further integrates 

the features output by the previous layer and converts 

them into fixed dimensional feature vectors suitable for 

subsequent processing, thereby achieving the 

transformation from the original audio data to the abstract 

feature space. 

Comparative learning has made significant progress 

in the field of representation learning, and the InfoNCE 

loss function, as a commonly used loss function in 

comparative learning, can effectively learn the similarity 

and difference between samples. The following will 

provide a detailed introduction to the InfoNCE loss 

function and its application in the comparative loss 

calculation module. The InfoNCE loss function 

originates from noise contrast estimation, and its core 

idea is to learn high-quality representations by 

maximizing the mutual information between positive 

sample pairs and minimizing the mutual information 

between negative sample pairs. In contrastive learning 

scenarios, given a query sample, the InfoNCE loss 

compares it with one or more positive samples and 

multiple negative samples. When applying InfoNCE loss 

in the comparative loss calculation module, it is usually 

necessary to construct appropriate positive and negative 

sample pairs. In the field of images, positive sample pairs 

can be generated by performing different data 

augmentation operations on the same image; In the field 

of text, semantically similar sentence pairs can be used as 

positive samples. Negative samples can be obtained by 

sampling from other samples in the batch or external 

datasets. The advantage of the InfoNCE loss function is 

that it can effectively utilize multiple pairs of sample 

information in contrastive learning, and learn more 

discriminative feature representations by maximizing 

mutual information. The InfoNCE loss function provides 

a powerful supervised signal for representation learning 

through contrastive learning, demonstrating excellent 

performance in multiple fields such as computer vision 

and natural language processing. 

The 10 types of music types (including classical, 

jazz, rock, and blues) in the GTZAN dataset and the 

diverse Western pop music genres such as pop, rock, and 

hip-hop covered by the MSD dataset directly correspond 

to the target categories that the model needs to distinguish 

in the end, and are the core classification basis of the 

music classification task. The latter classifies the 

classification methods from the perspective of technical 

implementation, which can be divided into classification 

based on traditional feature engineering (such as relying 

on spectral features, Meier frequency inverse spectral 

coefficient (MFCC) extracted by time-frequency domain 

analysis, spectral features, etc.) and classification based 

on deep learning. 

In the application of GTZAN datasets, it is necessary 

to pay attention to the potential label noise and genre 

ambiguity problems caused by the subjectivity of manual 

labeling and the overlap of cross-genre features of some 

music, which are easy to interfere with the classification 

and judgment of the model. Based on the evaluation 

system constructed by time-frequency dual-flow network 

and SimCLR comparative learning, the dual-branch 

network captures the time-domain and frequency-domain 

features to strengthen the feature discrimination, and 

combines the clustering of similar sample features and 

the separation of differential sample features by 

comparative learning, which effectively reduces the 

interference of label noise on feature learning, and 

clarifies the feature boundaries of fuzzy genre music, thus 

alleviating the impact of the above problems on 

classification performance. 

In the experiment, the audio source uses the FMA 

(Free Music Archive) medium-sized dataset, which is 

open and widely used in music classification research, 

and the label subset selects the 8 music style classes with 

the highest frequency and significant category distinction 

in the dataset. In the process of label cleaning, the 

samples with ambiguous labeling were first eliminated 

through manual verification, and then the audio content 

feature similarity (MFCC feature cosine similarity >0.95) 

was used to assist the screening, and finally 8,240 valid 

samples were obtained, and the class distribution was 

relatively balanced. In the deduplication step, the method 

based on audio hash matching was used to deduplicate 

the completely duplicate audio and highly similar 

fragments (hash value matching degree >98% and 

overlapping duration >80%) in the data set, and a total of 

326 duplicate samples were eliminated. Artist filtering 

scheme was adopted to control data leakage during the 

evaluation phase (to ensure that there are no audio 

samples of the same artist in the training set and test set, 

and to avoid excessive interference of the artist's personal 

style characteristics on the classification results), the 

experiment was set up with a fixed random seed 

(seed=42), and a 5-fold cross-validation design was 

adopted, and all classification performance indicators 

(e.g., accuracy, F1 score) were reported as the mean of 

the results of the 5-fold experiment with ± standard 

deviations. To ensure the reliability and reproducibility 

of experimental results. 

MagnaTagATune Dataset (MSD) is the core 

benchmark dataset, and its settings need to be clear: the 

specified subset of markers usually selects high-

frequency markers (such as "rock", "piano", "cheerful", 

etc.) that cover key musical attributes such as genres, 

instruments, and moods in MSD, and eliminates 

redundant or low-frequency tags to reduce classification 
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noise, while the audio source is mainly derived from 

more than 100,000 complete music tracks contained in 

MSD, covering a variety of styles and undergoing 

standardized preprocessing (such as uniform sample rate, 

time interception), providing high-quality input for 

model training; If only the feature data of music (without 

the original audio) can be obtained in the research, when 

SimCLR is used to construct two views, differentiated 

data enhancement operations can be performed based on 

existing features (such as Mel spectral features, MFCC 

features, etc.), such as random time clip clipping, 

frequency axis masking, amplitude scaling and Gaussian 

noise addition, timeline reversal, and feature dimension 

perturbation respectively The framework completes 

comparative learning to improve the discriminant nature 

of features and the generalization ability of the model. 

In this study, the input representations of the two are 

clearly distinguished: the time-frequency dual-flow 

network adopts a dual-input design, in which the time-

domain path takes the original waveform of the music as 

the input (the sampling rate is set to 16kHz, mono, and 

the duration is intercepted as 3 seconds to ensure the 

continuity and integrity of the time-domain features), and 

the frequency-domain path uses the spectrogram 

generated by short-time Fourier transform (STFT) as the 

input, and the spectrogram parameters are 2048 points, 

512 frame shifts, Hanning window function, frequency 

range 0-8kHz, and the final generation dimension is 256× 

192 (number of frequency bins × number of timeframes); 

The SimCLR comparative learning model is uniformly 

based on the spectrogram as the input, and its 

spectrogram is extracted and generated based on the Mel 

frequency inverse spectral coefficient (MFCC), and the 

parameters are set as sampling rate 16kHz, frame length 

25ms, frame shift 10ms, number of Mel filter sets 40, and 

cepstral coefficient order 13. It ensures that the model can 

learn more robust musical feature representations and 

adapt to the needs of complex music classification tasks. 

4 Experimental results 

4.1 Experimental results of time-frequency 

dual stream network 

Improve the model's ability to represent music 

signals through the fusion of time-domain and frequency-

domain features and self supervised pre training. The 

experiment used the GTZAN dataset (hierarchical 80-20 

training test segmentation) and the MSD official 10k 

song subset (10 fold cross validation) to verify the 

effectiveness of the proposed method on datasets of 

different scales, and its classification performance was 

superior to traditional supervised learning methods.The 

experiment used early stop loss as a regularization 

technique, and terminated the training when the accuracy 

of the validation set did not improve for 15 consecutive 

epochs to prevent overfitting; In terms of loss 

convergence mode, SimCLR's pre training stage shows a 

rapid decrease in loss and tends to stabilize, while in the 

fine-tuning stage, the classification loss continues to 

decrease to a flat level, presenting an overall convergence 

feature of first fast and then slow, indicating that the 

model gradually learns effective features and stably 

generalizes. 

The baseline model covers three types of core 

references: first, traditional supervised learning 

benchmarks, including classical supervised CNN models 

and supervised CRNN models, which are used to verify 

the basic difficulty of tasks and the upper limit of 

traditional methods; The second is the single-flow variant 

of the proposed time-frequency dual-flow network, that 

is, the model is constructed using only the time-domain 

branch and the frequency-domain branch respectively, 

which is used to quantify the gain of "dual-flow fusion" 

on the classification performance. The third is the basic 

comparative learning benchmark, that is, the SimCLR 

single-flow model without dual-flow structure, which is 

used to verify the effectiveness of the "dual-flow 

structure SimCLR" joint scheme. 

 

     
Figure 5: Signal waveform diagram 

 
Figure 5 Signal waveform analysis. The time-

domain waveform display (with high peak values and 

drastic changes in the left image, and relatively flat 

changes in the right image) indicates significant 

differences in the time-domain energy distribution of 

samples from different music genres: the left waveform 

corresponds to genres (such as rock or electronic music) 

that exhibit short-term high-energy pulses and irregular 
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fluctuations, reflecting impulsive transient characteristics; 

The right waveform corresponds to genres such as 

classical or jazz, exhibiting more stable amplitude 

modulation and lower energy fluctuations, reflecting 

smooth audio textures. The contrastive learning task 

constructed through SimCLR effectively captures such 

temporal dynamic differences, enabling the model to 

distinguish the non-stationary characteristics of different 

schools in the time domain. The time-frequency dual 

stream network further integrates frequency domain 

information, enhancing the ability to extract 

discriminative features between schools and providing 

data support for improving classification performance. 

 

Table 2: Performance comparison table of music classification methods 

Method Core Features Dataset Accuracy 
F1-

Score 

Time-Frequency 

Two-Stream NN 

Captures temporal (time stream) & frequency 

(frequency stream) features; fuses for better 

performance 

GTZAN 82.4% 82.0% 

SimCLR 

Contrastive 

Learning 

Uses data augmentation for pos/neg sample 

pairs; contrastive loss reduces labeled data 

reliance 

MSD 79.5% 79.1% 

VGG-16 CNN 

Transfer Learning 

Based on spectrograms; applies VGG-16 

transfer learning 
AudioSet 0.63 0.61 

VGG-16 CNN 

Fine-Tuning 
Based on spectrograms; fine-tunes VGG-16 AudioSet 0.64 0.61 

SVM Relies on handcrafted time-frequency features 
Spotify Music 

Dataset 
80% / 

 

Table 2 summarizes the mainstream SOTA methods 

for classifying music genres. The time-frequency dual 

stream neural network achieves an accuracy of 82.4% and 

an F1 value of 82.0% on the GTZAN dataset by capturing 

and fusing time-domain and frequency-domain features; 

SimCLR self supervised learning utilizes data 

augmentation to construct positive and negative sample 

pairs, reducing dependence on annotated data. The 

accuracy on the MSD dataset is 79.5%, and the F1 score 

is 79.1%. The VGG-16 series is based on spectrograms, 

and the accuracy of transfer learning and fine-tuning on 

the AudioSet dataset are 0.63 and 0.64, respectively, with 

an AUC of approximately 0.89. In traditional methods, 

SVM achieves an accuracy rate of 80% on the Spotify 

dataset based on manual time-frequency features. 

 

Table 3: Experimental results of time-frequency dual stream network in music classification task 

Data Set Accuracy Recall F Value Feature Analysis and Classification Performance 

GTZAN Dataset 82.4% 81.7% 82.0% 

The overall performance is balanced, and the time-frequency 

dual stream network effectively integrates the rhythmic 

features of the time dimension and the melodic features of the 

timbre of the frequency dimension. 

Pop Pusic 86.5% 78.8% 78.4% 

The time flow network captures strong rhythms (such as 

drum beats and beat patterns), while the frequency flow 

network extracts unique timbre and melody features, resulting 

in outstanding classification effects after fusion. 

Classical Music 78.2% 76.9% 76.3% 

Due to the influence of complex harmonies and multi-

instrument performance, feature extraction is difficult. 

Although some features can be extracted, the classification 

accuracy is lower than that of popular music due to the 

complexity of music. 
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The experimental results of time-frequency dual 

stream network in music classification task are shown in 

Table 3. On the GTZAN dataset, the accuracy of the time-

frequency dual stream network reached 82.4%, the recall 

rate was 81.7%, and the F-value was 82.0%. In the 

classification of different music genres, the accuracy rate 

for popular music is as high as 86.5%, thanks to the 

effective capture of strong rhythms in popular music by 

time flow networks and the extraction of unique timbre 

and melody features by frequency flow networks. When 

dealing with a fast-paced and simple melody popular 

song, the time flow network can accurately learn the 

drum beats and beat patterns of the rhythm, while the 

frequency flow network can recognize the timbre 

characteristics of commonly used instruments in popular 

music. The fusion of the two makes the model more 

accurate in classifying popular music. For classical music, 

the accuracy rate is 78.2%. The complex harmonies and 

multi-instrument performances of classical music require 

high feature extraction capabilities from the model. 

Although time-frequency dual stream networks can 

extract relevant features to some extent, the classification 

accuracy of classical music is slightly lower than that of 

popular music due to its complexity. 

4.2 SimCLR comparative learning 

experiment results 

Figure 6 shows the variation in the accuracy of the 

SimCLR model on the GTZAN dataset under different 

temperature parameters. It can be seen that as the 

temperature parameter gradually increases from 0.5 to 2.5, 

the accuracy of the model shows an overall upward trend. 

When the temperature parameter is 0.5, the model 

accuracy is low, and the improvement is slow when the 

dataset size is small. When the temperature parameter 

increases to 2.5, the accuracy of the model reaches a high 

level and maintains good stability during the change of 

data set scale. This indicates that the temperature 

parameter has a significant impact on the performance of 

the SimCLR model in the music classification task, and 

the appropriate temperature parameter can effectively 

improve the classification accuracy of the model in the 

GTZAN dataset, which provides a reference for 

parameter selection for combining SimCLR with the 

traditional time-frequency dual-stream network to 

optimize the music classification performance. 

 

 
 

Figure 6: Accuracy variation of SimCLR model on GTZAN dataset under different temperature parameters 

 

4.3 Comparison and analysis of results 

(1)Training Details 

Music genre classification experiment based on 

time-frequency dual stream neural network and SimCLR 

self supervised learning. The hardware configuration 

adopts NVIDIA V100 (32GB video memory) GPU, Intel 

Xeon Gold 6248 (20 cores and 40 threads) CPU, 128GB 

DDR4 memory, and 1TB NVMe SSD storage. The 

system is Ubuntu 20.04 LTS, relying on CUDA 11.3 and 

cuDNN 8.2.1; The experiment used the GTZAN dataset 

(10 genres, 100 30 second audio per category), with 

training hyperparameters set to batch size 32, initial 

learning rate 1e-4 (Adam optimizer), 100 epochs, 

SimCLR temperature coefficient 0.1, and time-frequency 

flow features of 128 dimensional Mel spectrograms and 

40 dimensional MFCC, respectively. The single card 

training time was about 24 hours (including 16 hours of 

self supervised pre training and 8 hours of fine-tuning). 

(2) Performance comparison 

In the GTZAN dataset of the music classification 

task, the performance differences between the time-

frequency dual-flow network and the SimCLR 

comparative learning model are reflected in different 

training methods: in the linear probe experiment, the 

time-frequency dual-stream network has an accuracy rate 

of 82.4%, a recall rate of 81.7%, and an F-value of 82.0%, 

which is higher than that of the SimCLR model of 80.2%, 

79.5%, and 79.8%, respectively. In the fully fine-tuning 

experiment, the time-frequency dual-stream network still 

maintains the leading performance by virtue of the 

synergistic fusion advantage of time-frequency features, 

which confirms the overall effect of the "dual-stream 

structure comparative learning" joint scheme on 
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improving the performance of music classification, rather 

than a single SimCLR or single-stream structure, as 

shown in Table 4. For complex music data, the time-

frequency dual-flow network breaks through the 

limitations of single feature extraction by extracting time-

domain and frequency-domain features separately and 

constructing dual-flow channel fusion decisions, 

achieving "high classification accuracy" and accurately 

identifying music categories. SimCLR comparative 

learning has "significant advantages": it enhances the 

ability to distinguish subtle differences in music through 

contrastive learning, improves generalization problems 

caused by insufficient samples or incomplete annotations, 

and can be trained efficiently without complex negative 

sample strategies, and the generated feature 

representations are more stable against input 

perturbations. 

 

Table 4: Performance comparison of time frequency dual stream network and SimCLR comparison learning model on 

GTZAN dataset 

Model Accuracy Recall F Value 

Time-frequency Dual 

Stream Network 
82.4% 81.7% 82.0% 

SimCLR Comparative 

Learning Model 
80.2% 79.5% 79.8% 

 

On the dataset, the accuracy of the time-frequency 

dual stream network is 78.9%, while the accuracy of the 

SimCLR contrastive learning model is 79.5%, with the 

SimCLR model slightly higher than the time-frequency 

dual stream network. In terms of recall, the time-

frequency dual stream network has a recall rate of 78.1%, 

while the SimCLR model has a recall rate of 78.8%. The 

SimCLR model performs well. In terms of F-value, the 

time-frequency dual stream network has an F-value of 

78.5%, while the SimCLR model has an F-value of 

79.1%. The SimCLR model has a slight advantage in 

overall performance. As shown in Table 5. Compared 

with single-branch CNNs with only time pools, this study 

significantly expands the model design: we incorporate a 

highly supervised log-mel CNN/CRNN architecture, 

which can more effectively capture the time-frequency 

domain information of audio signals on log-mel spectral 

features, and enhance the modeling ability of long-term 

dependencies of music through the combination of 

convolution and loop structure. At the same time, in order 

to comprehensively verify the effectiveness of the 

proposed time-frequency dual-current network and 

SimCLR comparative learning method, the pre-trained 

audio model is also supplemented as a baseline in the 

experimental setup, so as to evaluate the classification 

performance improvement of the new method under a 

broader model comparison framework. 

 

Table 5: Performance comparison of time frequency dual stream network and SimCLR comparison learning model on 

MSD dataset 

Model Accuracy Recall F Value 

Time-frequency Dual 

Stream Network 
78.9% 78.1% 78.5% 

SimCLR Comparative 

Learning Model 
79.5% 78.8% 79.1% 

 

Perform a significant difference analysis on the 

accuracy of the two on the MSD dataset. The calculated 

t-value is less than the critical value, indicating that at a 

95% confidence level, there is no significant difference 

in accuracy between the time-frequency dual stream 

network and SimCLR contrastive learning model on the 

MSD dataset, and their performance is relatively close. 

(3) Analysis of influencing factors 

There are many factors that affect the performance 

of time-frequency dual stream networks and SimCLR 

contrastive learning models, among which data volume 

and feature selection are the key factors. As shown in the 

figure, Figure 7 shows the data volume of the time-

frequency dual stream network model, and Figure 8 

shows the data volume of the SimCLR comparative 

learning model. 
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Figure 7: Data volume of time - frequency dual - stream network model 

 

      
Figure 8: Data volume of SimCLR comparative learning model in music classification application 

 
Data is the core foundation of model training. The 

amount of data directly determines the richness of 

information that can be accessed during the model 

learning process. When the amount of data is small, the 

information that the model can obtain is extremely 

limited, and only partial surface features of the target 

object can be captured, making it difficult to deeply 

explore the inherent rules and complex patterns. This 

makes it easy for the model to have underfitting or 

overfitting when facing practical application scenarios, 

resulting in large deviations in prediction results and poor 

performance. 

As the amount of data gradually increases, the 

training environment of the model is improved. A large 

amount of data provides a broader learning space for the 

model, giving it the opportunity to be exposed to the 

diverse features presented by the target object under 

different conditions and contexts. 

More data allows the model to be exposed to music 

works of various styles, different periods, and diverse 

cultural backgrounds. In this process, the model is able to 

continuously learn and summarize more comprehensive 

and detailed musical features, from basic melodies, 

rhythms, harmonies, to complex emotional expressions, 

cultural connotations, and other deep patterns. By 

learning from massive amounts of data, the model can 

construct a more accurate and comprehensive knowledge 

system, thereby more accurately identifying and 

processing various types of music information, 

effectively improving its performance in tasks such as 

music classification, creation, and recommendation. 

 

     
Figure 9: Comparison of feature selection in time - frequency dual - stream networks for music classification with 

SimCLR comparative learning 
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Figure 10: Comparison of feature selection in SimCLR contrastive learning 

 
Feature selection is also one of the key factors 

affecting model performance. As shown in the figure, 

Figure 9 compares the feature selection of time-frequency 

dual stream networks, and Figure 10 compares the feature 

selection of SimCLR contrastive learning. The time-

frequency dual stream network can obtain a more 

comprehensive representation of music features by 

extracting and fusing the time-frequency characteristics 

of music signals. The SimCLR contrastive learning 

model learns the intrinsic feature representation of data 

through data augmentation and contrastive learning. In 

the feature selection experiment, different feature 

extraction methods and data augmentation strategies 

were used to compare the time-frequency dual stream 

network and SimCLR learning models, and the changes 

in model performance were observed. For time-

frequency dual stream networks, when using more 

refined time-frequency analysis methods such as wavelet 

transform instead of short-time Fourier transform for 

frequency domain feature extraction, the accuracy of the 

model on the GTZAN dataset is improved, indicating that 

more effective feature extraction methods can improve 

the performance of time-frequency dual stream networks. 

5 Discussion of results 
From the experimental results, it can be seen that 

both the time-frequency dual stream network and 

SimCLR compared learning models have shown certain 

performance in music classification tasks, but they also 

have their own advantages and disadvantages. 

The combination of time-frequency dual stream 

neural network and SimCLR self supervised learning 

method proposed in this study has shown outstanding 

performance in music genre classification tasks. In terms 

of performance, the time-frequency dual stream network 

outperforms SimCLR (accuracy 80.2%, F1 value 79.8%) 

on the GTZAN dataset (accuracy 82.4%, F1 value 82.0%), 

and both have similar performance on the MSD dataset 

(accuracy 78.9%, 79.5%, respectively), and are superior 

to traditional methods such as VGG-16 series (AudioSet 

accuracy 0.63-0.64) and SVM (Spotify accuracy 80%), 

only slightly lower than AST (accuracy 85.5%). Its 

novelty lies in the fact that the time-frequency dual 

stream network extracts time-domain rhythm and 

frequency-domain timbre features separately through a 

parallel structure and fuses them, breaking through the 

limitations of single feature extraction; SimCLR utilizes 

data augmentation and contrastive loss to reduce 

annotation dependencies and improve generalization. 

The combination of the two enhances feature 

comprehensiveness while reducing data requirements. 

The limitations are reflected in the low classification 

accuracy (78.2%) of complex genres such as classical 

music, and the lack of validation of generalization on 

more datasets (such as ISMIR 2004). The optimization 

space for feature extraction methods (such as wavelet 

transform replacing short-time Fourier transform) still 

needs further exploration.  

On GTZAN (hierarchical 80-20 segmentation) and 

MSD-10k (10-fold cross validation), the time-frequency 

dual stream architecture improved the optimal single 

stream model by 2.8% -3.2%, the feature fusion module 

contributed 1.1% -1.5% of the gain, and SimCLR self 

supervised enhancement further improved performance, 

verifying the effectiveness of each core component. 

T-F Network is good at rock and folk genres, but has 

limited performance in jazz and symphonic music; In 

addition to improving rock and folk, T-F SimCLR 

Network also adapts to electronic and pop genres, and 

only jazz and world music are not enough. In this study, 

30 groups of samples were taken in a unified environment 

based on accuracy and macro average F1 value, and the 

validity of the model was verified by single-sample t-test. 

After confirming normality by Shapiro-Wilk test, the 

improved model was proved to be better by independent 

sample t-test. For jazz and other non-normally distributed 

genre data, the Mann-Whitney U test (U=186, 

p=0.04<0.05) was used to reveal the performance 

differences of the model in different genres. 

On the GTZAN dataset, the time-frequency dual 

stream network has a macroscopic accuracy of 82.4% ± 

1.2% (95% confidence interval [81.2%, 83.6%]), a recall 

rate of 81.7% ± 1.5%, and an F-value of 82.0% ± 1.3%, 

which is significantly better than the SimCLR model 

(80.2% ± 1.4%, 79.5% ± 1.6%, 79.8% ± 1.5%), p<0.05）； 

On the MSD dataset, there was no significant difference 

in performance between the time-frequency dual stream 

network (78.9% ± 1.7%, 78.1% ± 1.8%, 78.5% ± 1.6%) 

and the SimCLR model (79.5% ± 1.3%, 78.8% ± 1.5%, 
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79.1% ± 1.4%) (t=1.24, p>0.05). Fine grained analysis 

shows that the time-frequency dual stream network in 

GTZAN outperforms SimCLR in F1 scores for both pop 

(78.4% ± 2.1%) and classical music (76.3% ± 2.3%), with 

significant differences in pop music categories. The 

confusion matrix analysis shows that the time-frequency 

dual stream network performs better in GTZAN due to 

the fusion of rhythm and timbre melody features, while 

SimCLR has a slight advantage in MSD through 

parameter adjustment and data augmentation, providing 

reference for model selection and parameter tuning in 

music classification. 

6 Conclusion 
This study explores the application of time-

frequency dual stream network and SimCLR contrastive 

learning in music genre classification. Firstly, an in-depth 

analysis of the comparative learning principles between 

the two is conducted, and the structures and working 

mechanisms of time flow and frequency flow in the time-

frequency dual stream network are elaborated. The 

process of effectively extracting and fusing time-

frequency features of music signals is achieved through a 

feature fusion module (using an intermediate fusion 

strategy to dynamically adjust the relative importance of 

time-frequency features based on the learned fusion 

weights). In the time flow network, LSTM utilizes the 

synergistic effect of input gates, forget gates, and output 

gates to accurately capture the temporal features of music 

signals (such as rhythm changes and note duration); In 

frequency stream networks, CNN automatically learns 

the frequency domain characteristics of music signals 

through a combination of convolutional layers, pooling 

layers, and fully connected layers. At the same time, a 

comprehensive study will be conducted on the algorithm 

flow of SimCLR contrastive learning, covering key 

components such as data augmentation, encoder, 

contrastive loss function, etc. 

In terms of experiments and result analysis, a 

comprehensive evaluation of the two models was 

conducted based on the GTZAN and MSD datasets. The 

results show that the time-frequency dual stream network 

has an accuracy of 82.4%, a recall of 81.7%, and an F-

value of 82.0% on the GTZAN dataset, and 78.9%, 

78.1%, and 78.5% on the MSD dataset, respectively; The 

SimCLR contrastive learning model achieved an 

accuracy of up to 80.2% in the GTZAN dataset (with a 

temperature parameter of 0.5) and an F-value of up to 

79.5% in the MSD dataset (using a combination of 

random cropping, reverberation addition, and tone 

adjustment data augmentation strategies). Performance 

comparison shows that the three indicators of the time-

frequency dual stream network on the GTZAN dataset 

are slightly higher than SimCLR, while SimCLR has a 

slight advantage on the MSD dataset, but their overall 

performance is similar. Further analysis of the 

influencing factors reveals that data volume and feature 

selection have a significant impact on the performance of 

the two models: an increase in data volume can improve 

model accuracy, and time-frequency dual stream 

networks are more sensitive to data volume growth; More 

effective feature extraction methods and rich data 

augmentation strategies can respectively improve the 

performance of time-frequency dual stream networks and 

SimCLR. 

The important finding of this study is that the time-

frequency dual stream network can fully leverage the 

advantages of time-frequency features and achieve high 

accuracy in classifying music with complex rhythms and 

rich melodies; SimCLR has significant advantages over 

contrastive learning models, as it utilizes an unsupervised 

learning framework to mine potential features from 

massive unlabeled data, significantly reducing reliance 

on manually annotated data and reducing annotation costs 

(especially in areas such as music classification where 

data annotation is tedious). Additionally, it generates 

diverse training samples through carefully designed data 

augmentation strategies such as audio time stretching and 

frequency transformation, significantly improving the 

model's generalization ability. The research results 

provide new methods and ideas for the field of music 

classification, and have important theoretical and 

practical application value. 
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