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Against the backdrop of explosive growth in digital music data, traditional music classification methods
suffer from high cost of manual feature extraction and poor generalization, while existing deep learning
methods lack optimization of music time-frequency two-dimensional features and face the challenge of
high cost of large-scale data annotation. This study addresses four core research questions: how to design
a time-frequency dual stream network (using two layers of LSTM to capture rhythm dynamics for the time
stream and two 5 x 5 convolutional layers+two sampling layers to extract timbre harmonic features for
the frequency stream) and an effective feature fusion strategy to improve the classification accuracy of
complex music; Which music specific data augmentation strategies and hyperparameter optimization
enhance the generalization of SINCLR contrastive learning in unlabeled data scenarios; There are
differences between these two methods in terms of adapting to data volume, genre complexity, and
annotation constraints when executing across datasets (small-scale tagging GTZAN and large-scale
MSD) (GTZAN outperforms SimCLR in terms of time-frequency collaboration, while SimCLR slightly
outperforms MSD with no significant difference between the two). Its key indicators include classification
accuracy, recall, and F-value (for example, time-frequency dual stream achieves 82.4% accuracy, 81.7%
recall, and 82.0% F-value on GTZAN, with the best accuracy of 86.5% for pop music classification;
SimCLR achieved an accuracy of 79.5%, a recall of 78.8%, and an F-value of 79.1% on MSD, and
designed a time-frequency dual stream model with two layers of LSTM (time stream), two convolutional
layers+two sampling layers (frequency stream), and an intermediate fusion module; SimCLR with data
augmentation (time stretching, pitch adjustment, random cropping, reverberation, etc.), CNN encoder,
and InfoNCE loss function is used to verify their effectiveness in music classification through 5-fold cross
validation. This scheme complements each other's advantages and provides technical support for music
classification and related applications.

Povzetek: Studija predstavi casovno-frekvencni dvo-tokovni model (LSTM + CNN) in SimCLR s
podatkovnimi augmentacijami, ki skupaj izboljsata klasifikacijo glasbe (npr. 82,4 % na GTZAN in 79,5
% na MSD) ter pokazeta komplementarnost nadzorovanega in nenadzorovanega pristopa.

1 Introduction

Under the impact of the digital age, music data is
showing an unprecedented explosive growth trend.
Authoritative statistical data shows that mainstream
music platforms alone add millions of new songs every
year, and the vast music resources are like a vast sea of
smoke [1]. In this context, how to efficiently classify and
manage massive music resources has become a challenge

[2]. The importance of music classification is self-evident.

It not only helps users quickly locate their favorite works
in the complex music world, significantly improving the
user experience of music platforms, but also plays a
cornerstone  role  in  copyright  management,
recommendation system optimization, market analysis
and other important aspects of the music industry.
Reviewing traditional music classification methods,
it mainly relies on manual feature extraction and machine

learning algorithms [4]. However, when faced with
complex and diverse music data, these methods reveal

many drawbacks [5]: the labor and time cost of manual
feature extraction is huge, and the extraction process is
difficult due to the complexity and subjectivity of music
features; In practical applications, machine learning
algorithms have limited generalization capabilities and
are difficult to adapt to changing musical styles and forms,
resulting in unsatisfactory classification performance [6],
which  echoes the limitation of "insufficient
generalization ability of a single model in existing
advanced methods" mentioned above. With its strong
learning ability and adaptability, deep learning has
gradually become a hot spot in music classification
research, bringing new opportunities for solving this
problem. Among them, time-frequency dual-stream
network and SImCLR comparative learning, as cutting-
edge technologies in the field of deep learning, have
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shown advantages in music classification research [7]--
the former compensates for the one-sidedness of
traditional manual feature extraction by extracting time-
domain temporal correlation and frequency-domain
frequency distribution features through dual-branch
collaboration, while the latter reduces the dependence on
annotation with the help of unsupervised comparative
learning, which just solves the problem of high demand
for data volume by machine learning algorithms.
Robustness and other aspects are better than existing
methods, further highlighting the breakthrough of
cutting-edge technology to the limitations of traditional
methods.

The time-frequency dual stream network cleverly
utilizes the dual characteristics of audio data[7], It adopts
a parallel network structure to extract and fuse features
[8]. In the music, every piece of music contains rich
rhythms and melodic changes. The time flow network is
like a sensitive "time sensor" that can accurately capture
time series features such as the ups and downs of rhythm
and the alternation of beat strength in music [9]; The
frequency stream network is like a dedicated ‘sound
anatomist', focusing on frequency features such as pitch
changes and timbre characteristics of melodies [10].
Through this parallel and complementary feature
extraction and fusion approach, time-frequency dual
stream networks can more comprehensively and
accurately grasp the essential features of music,
providing more discriminative and discriminative feature
representations for music classification [11].

SimCLR enhances data by constructing positive and
negative sample pairs, and uses a contrastive loss
function to learn the feature representation of samples
without the need for manual labeling. Its unique learning
mechanism is highly innovative [12]. It maps similar
music to nearby positions in the feature space and
dissimilar music to distant positions by constructing
positive and negative pairs of data samples, thus learning
powerful feature representations in unlabeled data [13].
In the current situation where music data annotation is
costly and difficult, SImMCLR contrastive learning can
fully utilize large-scale unlabeled music data for pre
training, greatly reducing reliance on manually annotated
data and effectively reducing annotation costs [14]. At the
same time, this self supervised learning method can
explore the inherent feature patterns of data [15].

This study combines time-frequency dual stream
network with SImCLR contrastive learning to explore its
application in music classification. By constructing a
multi-dimensional feature extraction and self supervised
learning coupling model, not only is the ability to
represent music features optimized, but it also aims to
create a more accurate classification technology system
for the music industry, thereby promoting the upgrading
of intelligent recommendation applications and providing
technical support for precise distribution of music content
and improvement of user experience.

Compared with the mainstream CRNN/dual-branch
baseline model, it focuses on the characteristics of the
time domain and frequency domain respectively through
the dual-flow channel and realizes deep fusion, which
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effectively solves the problem that traditional models are
prone to losing time-domain dynamic information or
frequency-domain details during feature extraction. At
the same time, compared with the established
comparative audio framework, the introduced SIimCLR
comparative learning mechanism can learn more
discriminant feature representations with the assistance
of labelless data, which greatly improves the
generalization ability and classification accuracy of
music classification tasks in small samples and complex
audio scenes, and fills the gap in the deep combination
and application of time-frequency feature collaborative
optimization and contrastive learning in music
classification.

This study hypothesizes that a time-frequency dual
stream network with 16kHz and 3-second music signals
(incorporating time-domain waveform and Mel
spectrogram features) combined with SimCLR pre
training (random time-frequency mask, 4-layer
convolutional encoder, 2-layer projection head, 1=0.1,
batch_2=128, Adam le-4 pre training 10000 times) can
improve classification performance on less labeled data.
The accuracy of datasets such as GTZAN is higher than
that of single stream CNN and no pre training models; In
the classification stage, 256-dimensional dual stream
feature elements are fused at the element level and then
connected to a two-layer fully connected classifier. The
features are normalized to [0,1] and the configuration is
reproducible.

2 The basic theory of comparative
learning between time-frequency
dual stream network and SimCLR

2.1 Time-frequency dual stream network

Time frequency dual stream network is a deep
learning architecture [16]. This network is mainly divided
into three parts: time flow network, frequency flow
network, and feature fusion module [17]. Among them,
the time flow network focuses on capturing the temporal
dynamic features in sequence data, while the frequency
flow network is dedicated to analyzing the frequency
domain characteristics of the data. The function of the
feature fusion module is to effectively integrate the
features extracted from the time flow and frequency flow,
so that the model can comprehensively understand the
data from both the time-frequency dimensions, improve
the performance of the model, and enhance its ability to
process complex information.

Time stream networks focus on processing time-
series information of music signals. The time series is
shown in formula (1.1):

X = [Xq,Xg, -, X (1.1)

In the formula, T represents the time step, and
xrepresents the signal value at time t. At each time step
t, the current input x, and the hidden state h,_, from the
previous time step are received, and the hidden state h, at
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the current time step is obtained through a series of
calculations. The detailed calculations are shown in
formulas (1.2), (1.3), (1.4), (1.5), and (1.6):

i = o(WixXe + Winhe_y + by) (1.2)
ft = O'(WfXXt + Wﬂlht—l + bf) (13)
0r = 6(WoxXy + Wophe—g + bo) (1.4)

Ct = ft O Ci—1 + it O tanh (WiXXt + Wihht—l + bl)(15)

h; = o, © tanh (c.)(1.6)

X: represents the input feature vector at time t, which
is the raw data received by the network at that time step;
H: is the hidden state at time t, which integrates the
sequence information up to the current time and passes it
on to the next time; W;is the weight matrix of the forget
gate, used to regulate the retention ratio of the cell state
at the previous moment; B; is the bias term of the input
gate, which assists in determining the update amplitude
of new input information. These components together
constitute the key mechanism for LSTM to process
temporal data.In the formula, i, f;+ o represents the
activation values of the input gate, forget gate, and output
gate, respectively; c, is the cellular state; o is the sigmoid
activation function; (© represents element wise
multiplication; W, is the weight matrix; b, is the bias
vector.

In the time-frequency dual-stream  music
classification network, the frequency stream network is
responsible for extracting discriminant information from
the frequency domain features such as the Merkel
spectrogram and STFT spectrum, and provides a
frequency domain basis for classification. Because
convolutional neural networks (CNNs) can capture local
patterns in the frequency domain through convolutional
kernel sliding, they have become the mainstream
structure. The core feature extraction process of
frequency stream CNN can be described by Equation
a.7):

0(i,j) = XmnlI( + m,j + n)K(m,n) 1.7

In the formula, O(j, j) is the value of the convolution
output at position (i,j); m and n are the indices of the
convolution kernel; The input spectrogram is I, and the
convolution kernel is K.

The function of the feature fusion module is to fuse
the features extracted by the time flow network and
frequency flow network to obtain a more comprehensive
representation of music features. As shown in formula
(1.8):

F! = aF! + (1 — a)F} (1.8)
In the formula, the output feature of the time flow

network in layer 1 is F}, the output feature of the
frequency flow network in the corresponding layer is F},
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a is the fusion weight, which is obtained through training
and learning to adjust the relative importance of time
domain and frequency domain features.

2.2 SIMCLR comparative learning theory

SimCLR is a simple and effective contrastive
learning framework [18]. The core process of SImCLR
algorithm mainly includes data augmentation, encoder,
contrastive loss function, etc [19].Convert audio into Mel
spectrograms to construct a visual representation suitable
for CNN, capture time-frequency features separately
using a dual stream architecture, and apply data
augmentation to the Mel spectrograms using the SImCLR
framework to generate sample pairs, achieving self
supervised learning to improve classification
performance.

In the data augmentation stage, SImCLR generates
multiple different versions of enhanced samples by
performing a series of transformation operations on the
original music samples. These transformation operations
include but are not limited to random cropping,
reverberation addition, pitch adjustment, time stretching,
etc.

The encoder is responsible for mapping the
enhanced music samples into the feature space. In
SimCLR, deep neural networks are commonly used as
encoders. If the encoder is f(.), then after being processed
by the encoder, x; and x; obtain feature representations
h; = f(x;) and h; = f(x;) respectively.

The core of the contrastive loss function is to
measure the difference in similarity between samples. It
optimizes the model by calculating the distance
difference between positive and negative sample pairs.
The higher the similarity between positive samples and
the lower the similarity between negative samples, the
smaller the loss. Commonly used in twin networks and
other scenarios, it promotes the aggregation of similar
samples in the feature space and the separation of
heterogeneous samples, thereby enhancing the model's
feature discrimination ability. As shown in formula (1.9):

exp(sim(z;,zj)/t) (19)

TiN, exp(sim(z,2)) /)l

Li,j = - log

In the formula, z; = g(h;) and z; = g(h;) are the
feature vectors processed by the projection head g(.).
The projection head is usually a multi-layer perceptron
(MLP) used to map the features output by the encoder to
a space more suitable for contrastive learning; sim(z;, z;)
is the similarity function; t is a temperature parameter
used to adjust the difficulty of contrastive learning; Nis
the number of samples in a batch, and 2Nrepresents the
total number of samples containing positive sample pairs;
I+ i an indicator function, which is 1 when k # i and
0 otherwise, used to exclude self-comparison.

In this study, the precise architecture and
hyperparameter settings of the time-frequency dual-
stream network combined with SIMCLR comparative
learning are as follows: The time-frequency dual-stream
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network includes a time flow network, a frequency flow
network and a feature fusion module, in which the time
flow network takes the gated loop unit that processes the
music time series as the core, and completes the hidden
state update according to Equation (1.2)-(1.6) through the
activation values, cell states, weight matrix and bias
vectors of the input gate, forgetting gate, and output gate.
The frequency stream network uses a convolutional
neural network (CNN) to process the frequency domain
information according to Equation (1.7) (the
convolutional output at the position, the convolutional
kernel index, | the input spectrogram, and K the
convolutional kernel). The feature fusion module
combines the output features of the two layers of the
network with the fusion weights obtained from training
and learning according to Equation 1.8 to achieve feature
fusion. The SIimCLR comparative learning framework
generates enhanced samples through random cropping,
reverberation addition, pitch adjustment, time stretching
and other data augmentation operations, and uses the
deep neural network as the encoder to map the enhanced
samples to the feature space (if it is a specific encoder, it
outputs feature representation), and then uses the
projection head (multi-layer perceptron) to map the
encoder's output features to the space of adaptive contrast
learning, combined with the contrast loss function
(Equation (1.9), which is the feature vector processed by
the projection head, which is the similarity function, and
is the temperature parameter. The number of batch
samples and the indicator function to exclude self-
comparison) to optimize the model to promote the
aggregation of similar samples in the feature space and
the separation of heterogeneous samples.

3 Comparison of time-frequency
dual stream network and SImCLR
learning in music classification
model construction

3.1 Construction of time-frequency dual
stream network model

For the time-frequency dual-stream network, the
parameters of the complete training formula are set as
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follows: the optimizer uses AdamW, the learning rate is
initially set to le-4, and the cosine annealing learning rate
scheduler is dynamically adjusted with the number of
iterations during the training process to balance the
convergence speed and generalization ability [27]; The
batch size is set to 32 and the number of epochs is set to
100 according to the input music feature dimension, and
an early stop criterion is introduced - the training is
terminated when the classification accuracy of the
validation set is not improved for 15 consecutive epochs
to avoid overfitting. In terms of regularization, L2
regularization (weight attenuation value of 5e-5)
combined with random dropout (dropout probability 0.3)
was adopted, and the random seed was fixed at 42 to
ensure experimental reproducibility. The hardware relies
on a single NVIDIA RTX 4090 GPU with a 128GB
memory server to ensure efficient feature extraction and
network training. The time-frequency dual stream neural
network and SimCLR self supervised learning are used
for music genre classification. The two stream final
convolutional layer features are weighted and fused, and
the fusion weight a is learned by a single-layer
perceptron.

This study achieved collaborative mining and
discriminative enhancement of deep features in music
signals by constructing a music genre classification
model based on time-frequency dual stream neural
network and SimCLR self supervised learning. As shown
in Figure 1, the time-frequency dual stream architecture
extracts local details and global structural features from
both time-domain waveforms and frequency-domain
spectrograms, and enhances feature expression ability
through cross stream fusion mechanism; Combining
SimCLR's contrastive learning paradigm, positive and
negative sample pairs are constructed on unlabeled data.
By maximizing the similarity between positive samples
and minimizing the similarity between negative samples,
highly discriminative music representation vectors are
learned, effectively alleviating the problem of high
annotation costs in music data. The experiment shows
that the joint model has significant advantages in spectral
feature perception and representation learning, and can
capture subtle differences between music styles,
providing a new solution for music information retrieval
tasks.
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The time flow network focuses on capturing the time
series features of music signals, using long short-term
memory networks (LSTM) as the main structure. LSTM
can selectively remember and updating information at
different time points through the synergistic effect of
input gates, forget gates, and output gates.

The time-domain branch captures temporal dynamic
features such as rhythm and dynamics from the audio
waveform, and the frequency-domain branch extracts
frequency dimension information such as timbre and
harmony based on features such as Mel spectrum [28-30].
The SIimCLR method is implemented for the
characteristics of music data: first, the original audio is
enhanced with time clipping, volume scaling, slight noise
and other data enhancements to generate positive and
negative sample pairs, and then the sample input feature

dual-stream model
e

Bidirectional | __
Dense layer

extraction network is obtained to obtain the
representation vector, and the representation distance of
different enhanced versions of the same sample is
minimized and the representation distance of different
samples is maximized through the comparison loss
function, so as to optimize the network's ability to
distinguish musical features and help improve the
classification accuracy [31, 32].

In this study, the time flow network was equipped
with two layers of LSTM layers. When dealing with rock
music with complex rhythm changes, the first layer of
LSTM can initially capture the basic rhythm change
information, and the second layer further integrates and
refines this information to extract more representative
rhythm features.
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As a core component dedicated to extracting
frequency domain features of music signals, the
frequency flow network is built on top of the
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Figure 2: Convolutional neural network architecture

convolutional neural network (CNN) architecture. With
the characteristics of local connections and weight
sharing, this architecture exhibits powerful feature
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extraction capabilities when processing two-dimensional
data, providing an efficient technical path for frequency
domain feature analysis of music signals. Figure 2 shows
a time-frequency dual stream convolutional neural
network (CNN) architecture for music classification. Its
core design analyzes the time-domain and frequency-
domain characteristics of music signals through two
independent processing branches: the upper branch
processes frequency-domain information, focusing on
timbre and harmonic structure; The lower branch
processes time-domain information, capturing rhythm
and temporal patterns. The dual stream features are mid-
term fused through the Adapter module to achieve cross
modal feature interaction and form a more discriminative
joint representation. The deep layers of the network
gradually extract features through convolution and
pooling operations, and finally output classification
results through fully connected layers. This structure
effectively ~ synergizes  spatiotemporal  features,
improving the accuracy and robustness of music genre
classification.

The frequency flow network consists of two
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carefully designed convolutional layers and two sampling
layers. Among them, the first convolutional layer adopts
a 5 x 5 convolution kernel with a stride set to 1, which
can scan music signals in detail and extract the
fundamental frequency characteristics of different
instruments; The second convolutional layer also uses a
5 x 5 convolution kernel to further explore the
combination relationship between these basic frequency
features based on the extraction in the first layer, thereby
revealing deeper frequency characteristics of the music
signal. The two-layer sampling layer is equipped with 14
x 14 and 5 x 5 sampling kernels, with a step size of 2. By
reducing the dimensionality of the convolutional layer
output, it not only effectively reduces the subsequent
computational load, but also accurately preserves the key
features that are crucial for music frequency analysis.
This enables the frequency flow network to efficiently
and accurately complete frequency domain feature
extraction tasks when processing complex audio signals
such as classical music with multiple instrument
performances.
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Figure 3: Flow chart of feature fusion module

Figure 3 shows the workflow of a feature fusion
module used for processing note sequences. Its core is to
achieve feature extraction and context modeling through
the combination of convolution and recurrent neural
networks: the input note feature matrix first passes
through two parallel channels (a, b), where channel (b)
performs convolution operation to extract local patterns;
Subsequently, the data is merged into a convolutional
layer for further fusion; Then, the Bidirectional GRU
Layer is used to capture the temporal dependencies of the
sequence; Finally, after being processed by an activation
function, the reconstructed note sequence is output. This
module achieves deep modeling and enhancement of
music temporal features through a multi-layer cascaded
neural network structure.

Aiming at the problem of insufficient mining of the
correlation between the time domain and the frequency
domain features of music signals, a classification
framework for the advantages of fusion dual networks is
constructed, and the effectiveness of the key designs is
verified through special ablation research: the
performance differences of three fusion types: late fusion
(splicing of time domain and frequency domain features
after network processing), mid-stage fusion (interactive
fusion of interlayer features of dual-stream network), and
cross-attention fusion (dynamic capture of time-
frequency feature association based on attention

mechanism), are compared. At the same time, the effects
of learning fusion weight and non-learning fusion weight
(using fixed weight allocation) on the classification
accuracy are analyzed, and finally combined with the
experimental results of the public music dataset, the
optimal performance of the cross-attention fusion
combined learning fusion weight scheme in terms of
genres discrimination and noise robustness is clarified,
which provides an empirical reference for the feature
fusion strategy of music classification tasks.

In order to evaluate the contribution of each stream
in the time-frequency dual-stream network, an ablation
experiment of "removing a single stream" is designed,
which specifically tests the classification performance of
the time-domain stream and frequency-domain stream
time frame, and compares it with the performance of the
complete dual-stream network to clarify the unique value
and synergy of each stream in feature extraction.
Secondly, the ablation experiment of "changing the
fusion layer" is carried out around the fusion layer, the
effect of the alternative fusion implementation scheme is
evaluated, and different types of fusion layer structures
such as fully connected fusion layer and convolutional
fusion layer are introduced to replace it on the basis of the
original fusion layer design, and the rationality of the
original fusion layer design is verified by comparing the
classification accuracy and feature fusion efficiency of
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the framework under different fusion layer configurations.
Thirdly, the "early, middle and late fusion strategies" are
deeply compared, in which the early fusion strategy fuses
the time domain and frequency domain features before
the network extracts features, the mid-term fusion
strategy interactively fuses the features between the
layers of the dual-stream network, and the late fusion
strategy splices the time-domain and frequency-domain
features after independent processing of the dual-stream
network. Finally, in order to prove the necessity of LSTM
in the framework, the ablation experiment of "replacing
LSTM with GRU or time CNN" is implemented, and the
timing feature processing module using LSTM in the
original framework is replaced with gated recurrent unit
(GRU) and time-domain convolutional neural network
(time CNN), respectively. Combined with the
experimental results of public music datasets, it can be
seen that the combination of cross-attention fusion and
learning fusion weights achieves the best performance in
both genre discrimination and noise robustness. This
study not only verifies the effectiveness of the key
designs in the framework through systematic ablation
experiments, but also provides an empirical reference for
the selection of feature fusion strategies and timing
processing modules in music classification tasks.

Table 1 lists six key audio enhancement techniques
designed specifically for the application of SImCLR self
supervised learning framework in music genre
classification tasks, with a focus on concise parameter
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specifications and clear rules for generating positive and
negative pairs. In terms of core parameters, each
technology provides specific numerical ranges and key
settings: pitch offset uses integer values ranging from -4
to+4 semitones, combined with WSOLA interpolation
algorithm; The factor range for time stretching is 0.8-1.2
(with a step size of 0.05), and the audio length is fixed at
3 seconds; The gain range of volume disturbance is 0.6-
1.4 (step size 0.1), and decibel normalization is
performed; The time-domain mask and frequency-
domain mask (derived from the SpecAug method) both
use a mask ratio of 0.05-0.15 and are continuous masks;
The signal-to-noise ratio (SNR) range for background
noise overlay is 10-30 decibels, and the noise is randomly
selected from environmental noise. In terms of generating
rules, each technigue maintains consistency to ensure the
effectiveness of self supervised learning: generating by
applying "different parameter values of the same
enhancement technique" to two views of the "same
original audio sample"; Negative pairs are composed of
views of "different original samples within the same
batch™, while strictly excluding duplicate parameter
settings (such as repeated pitch offsets, the same mask) to
avoid generating false negative samples. This design
ensures both positive semantic consistency and
introduces meaningful differences for negative pairs,
thereby enhancing the model's ability to learn school
discriminative features.

Table 1: Data augmentation technology parameter table

Augmentation

Technique Core Parameters

Positive Pairs Rule Negative Pairs Rule

[-4,+4] semitones (int),

Pitch Shifting WSOLA

Same sample, different

Different samples (batch); no

shifts duplicate shifts

[0.8,1.2] (step 0.05), 3s

Time Stretching fixed

Same sample, different

Different samples (batch); no

factors duplicate factors

Volume Perturbation [0.6.1.4] gain (step

Same sample, different

Different samples (batch); no

gains duplicate gains

0.1), dB norm
Time Masking [0.05,0.15] ratio,
(SpecAug) continuous

Same sample, different

Different samples (batch); no

mask pos/length identical masks

Frequency Masking
(SpecAug)

[0.05,0.15] ratio,
continuous

Same sample, different

Different samples (batch); no

mask pos/length identical masks

Background Noise
Addition

[10,30] dB SNR,
random noise

Same sample, different

Different samples (batch); no

noise/SNR identical noise




56 Informatica 49 (2025) 49-66

3.2 SIMCLR comparative learning model
construction

Data  enhancement  introduces a  more
comprehensive enhancement distribution configuration,
including time stretch factor 0.8-1.2, pitch semitone
range - 2 to 2, SNR 5-20dB, and reverberation IRs in
various scenes such as indoors and halls, which fully
covers the variation of music signals compared with the
original random cropping and volume disturbance.
Parameter sensitivity analysis - the model's response to
key parameters of SIimCLR, such as temperature
parameter 1 (0.1-1.0), projection head width (64, 128, 256
dimensions), and batch size (32 and 128 control groups
were added on the basis of the original 64), and the
sensitive range of each parameter to classification
performance was elucidated. The training method
compares the results of the new linear probe (trained
classifier based only on pre-trained features) and end-to-
end fine-tuning (updating the entire network parameters),
and verifies the SImCLR feature migritability and the
performance improvement space after fine-tuning
through accuracy and loss curves - at the same time, the
basic training configuration of the SimCLR comparative
learning model remains optimized: the optimizer selects
AdamW (initial learning rate 3e-4, step attenuation is
reduced to 1/10 of the original value every 30 epochs),
batch size 64, training rounds 150. The early stop
criterion is that the loss of the validation set is 20
consecutive epochs without decreasing, retaining L2
regularization (weight decay 3e-5) and combining the
enhanced distribution enhancement effect, the random
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seed is set to 42, and two NVIDIA RTX 4090 GPUs are
trained in parallel with 128GB of memory to meet the
computing power requirements of large-scale sample
processing.

The structure of the music pre training model based
on SIMCLR is shown in Figure 4, which mainly includes
a data augmentation module, an encoder network, and a
contrastive  loss  calculation  module.Comparative
learning constructs a supervised signal by mining the
intrinsic similarity and difference of data, which
conforms to the characteristics of commonality and
significant differences between different styles of music
in music classification, which can effectively capture the
deep structural characteristics of music and reduce the
dependence on annotation data. On the basis of
comparative learning, SimCLR wuses a dual-branch
network architecture, nonlinear projection head design,
and temperature scaling loss function as innovations to
adapt to the high-dimensional and dynamic changes of
music data, and can learn music feature representation
more accurately. In terms of SimCLR task-related
enhancement options, the principle of enhancement
methods such as time stretching and pitch offset is to
simulate the speed and pitch changes in real music
playback, increase data diversity while retaining the core
semantic information of the music, and reduce model
overfitting. Spectral masks and time domain masks force
the model to focus on the global features of music rather
than local noise by occluding local spectrum or time
fragments, which can improve the generalization
extraction ability of the model to musical features, and
then optimize the performance of music classification.
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Figure 4: Structure diagram of music pre training model based on SimCLR

In the data augmentation stage, in order to
effectively enhance the diversity of music data and help
the model learn more generalized features, we
comprehensively use multiple data augmentation
strategies. By stretching and compressing the time,
changing the playback speed of music, and generating

new samples with different rhythms without changing the
pitch; By utilizing pitch changes, adjust the pitch of
music within a certain range to create audio versions with
varying heights; Introducing noise injection technology
to simulate background noise interference in real
environments and enhance the model's adaptability to
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complex audio environments; By using random cropping
and concatenation methods, different audio segments are
combined and reconstructed, breaking the structural
pattern of the original audio and greatly enriching the
form of the training data.

The encoder network adopts the convolutional
neural network (CNN) architecture, and its core task is to
accurately map the enhanced music samples to the feature
space. In the network structure, the convolutional layer
extracts local features from audio data by designing
convolutional kernels of different sizes and step sizes,
which can effectively capture key information, for
example music melody etc; The pooling layer reduces the
dimensionality of data while preserving core features
through downsampling operations, which not only
reduces computational complexity but also prevents
overfitting; The fully connected layer further integrates
the features output by the previous layer and converts
them into fixed dimensional feature vectors suitable for
subsequent  processing, thereby achieving the
transformation from the original audio data to the abstract
feature space.

Comparative learning has made significant progress
in the field of representation learning, and the InfoNCE
loss function, as a commonly used loss function in
comparative learning, can effectively learn the similarity
and difference between samples. The following will
provide a detailed introduction to the InfoNCE loss
function and its application in the comparative loss
calculation module. The InfoNCE loss function
originates from noise contrast estimation, and its core
idea is to learn high-quality representations by
maximizing the mutual information between positive
sample pairs and minimizing the mutual information
between negative sample pairs. In contrastive learning
scenarios, given a query sample, the InfoNCE loss
compares it with one or more positive samples and
multiple negative samples. When applying InfoNCE loss
in the comparative loss calculation module, it is usually
necessary to construct appropriate positive and negative
sample pairs. In the field of images, positive sample pairs
can be generated by performing different data
augmentation operations on the same image; In the field
of text, semantically similar sentence pairs can be used as
positive samples. Negative samples can be obtained by
sampling from other samples in the batch or external
datasets. The advantage of the InfoNCE loss function is
that it can effectively utilize multiple pairs of sample
information in contrastive learning, and learn more
discriminative feature representations by maximizing
mutual information. The InfoNCE loss function provides
a powerful supervised signal for representation learning
through contrastive learning, demonstrating excellent
performance in multiple fields such as computer vision
and natural language processing.

The 10 types of music types (including classical,
jazz, rock, and blues) in the GTZAN dataset and the
diverse Western pop music genres such as pop, rock, and
hip-hop covered by the MSD dataset directly correspond
to the target categories that the model needs to distinguish
in the end, and are the core classification basis of the
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music classification task. The latter classifies the
classification methods from the perspective of technical
implementation, which can be divided into classification
based on traditional feature engineering (such as relying
on spectral features, Meier frequency inverse spectral
coefficient (MFCC) extracted by time-frequency domain
analysis, spectral features, etc.) and classification based
on deep learning.

In the application of GTZAN datasets, it is necessary
to pay attention to the potential label noise and genre
ambiguity problems caused by the subjectivity of manual
labeling and the overlap of cross-genre features of some
music, which are easy to interfere with the classification
and judgment of the model. Based on the evaluation
system constructed by time-frequency dual-flow network
and SimCLR comparative learning, the dual-branch
network captures the time-domain and frequency-domain
features to strengthen the feature discrimination, and
combines the clustering of similar sample features and
the separation of differential sample features by
comparative learning, which effectively reduces the
interference of label noise on feature learning, and
clarifies the feature boundaries of fuzzy genre music, thus
alleviating the impact of the above problems on
classification performance.

In the experiment, the audio source uses the FMA
(Free Music Archive) medium-sized dataset, which is
open and widely used in music classification research,
and the label subset selects the 8 music style classes with
the highest frequency and significant category distinction
in the dataset. In the process of label cleaning, the
samples with ambiguous labeling were first eliminated
through manual verification, and then the audio content
feature similarity (MFCC feature cosine similarity >0.95)
was used to assist the screening, and finally 8,240 valid
samples were obtained, and the class distribution was
relatively balanced. In the deduplication step, the method
based on audio hash matching was used to deduplicate
the completely duplicate audio and highly similar
fragments (hash value matching degree >98% and
overlapping duration >80%) in the data set, and a total of
326 duplicate samples were eliminated. Artist filtering
scheme was adopted to control data leakage during the
evaluation phase (to ensure that there are no audio
samples of the same artist in the training set and test set,
and to avoid excessive interference of the artist's personal
style characteristics on the classification results), the
experiment was set up with a fixed random seed
(seed=42), and a 5-fold cross-validation design was
adopted, and all classification performance indicators
(e.g., accuracy, F1 score) were reported as the mean of
the results of the 5-fold experiment with + standard
deviations. To ensure the reliability and reproducibility
of experimental results.

MagnaTagATune Dataset (MSD) is the core
benchmark dataset, and its settings need to be clear: the
specified subset of markers usually selects high-
frequency markers (such as "rock", "piano”, "cheerful”,
etc.) that cover key musical attributes such as genres,
instruments, and moods in MSD, and eliminates
redundant or low-frequency tags to reduce classification
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noise, while the audio source is mainly derived from
more than 100,000 complete music tracks contained in
MSD, covering a variety of styles and undergoing
standardized preprocessing (such as uniform sample rate,
time interception), providing high-quality input for
model training; If only the feature data of music (without
the original audio) can be obtained in the research, when
SIMCLR is used to construct two views, differentiated
data enhancement operations can be performed based on
existing features (such as Mel spectral features, MFCC
features, etc.), such as random time clip clipping,
frequency axis masking, amplitude scaling and Gaussian
noise addition, timeline reversal, and feature dimension
perturbation respectively The framework completes
comparative learning to improve the discriminant nature
of features and the generalization ability of the model.

In this study, the input representations of the two are
clearly distinguished: the time-frequency dual-flow
network adopts a dual-input design, in which the time-
domain path takes the original waveform of the music as
the input (the sampling rate is set to 16kHz, mono, and
the duration is intercepted as 3 seconds to ensure the
continuity and integrity of the time-domain features), and
the frequency-domain path uses the spectrogram
generated by short-time Fourier transform (STFT) as the
input, and the spectrogram parameters are 2048 points,
512 frame shifts, Hanning window function, frequency
range 0-8kHz, and the final generation dimension is 256x
192 (number of frequency bins x number of timeframes);
The SImCLR comparative learning model is uniformly
based on the spectrogram as the input, and its
spectrogram is extracted and generated based on the Mel
frequency inverse spectral coefficient (MFCC), and the
parameters are set as sampling rate 16kHz, frame length
25ms, frame shift 10ms, number of Mel filter sets 40, and
cepstral coefficient order 13. It ensures that the model can
learn more robust musical feature representations and
adapt to the needs of complex music classification tasks.
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4 Experimental results

4.1 Experimental results of time-frequency
dual stream network

Improve the model's ability to represent music
signals through the fusion of time-domain and frequency-
domain features and self supervised pre training. The
experiment used the GTZAN dataset (hierarchical 80-20
training test segmentation) and the MSD official 10k
song subset (10 fold cross validation) to verify the
effectiveness of the proposed method on datasets of
different scales, and its classification performance was
superior to traditional supervised learning methods.The
experiment used early stop loss as a regularization
technique, and terminated the training when the accuracy
of the validation set did not improve for 15 consecutive
epochs to prevent overfitting; In terms of loss
convergence mode, SimCLR's pre training stage shows a
rapid decrease in loss and tends to stabilize, while in the
fine-tuning stage, the classification loss continues to
decrease to a flat level, presenting an overall convergence
feature of first fast and then slow, indicating that the
model gradually learns effective features and stably

generalizes.
The baseline model covers three types of core
references:  first, traditional supervised learning

benchmarks, including classical supervised CNN models
and supervised CRNN models, which are used to verify
the basic difficulty of tasks and the upper limit of
traditional methods; The second is the single-flow variant
of the proposed time-frequency dual-flow network, that
is, the model is constructed using only the time-domain
branch and the frequency-domain branch respectively,
which is used to quantify the gain of "dual-flow fusion"
on the classification performance. The third is the basic
comparative learning benchmark, that is, the SimCLR
single-flow model without dual-flow structure, which is
used to verify the effectiveness of the "dual-flow
structure SImCLR" joint scheme.

Amplitude of audio signal

T

0.0 1.0 2.0 3.0 4.0 5.0
Time(s)

Figure 5: Signal waveform diagram

Figure 5 Signal waveform analysis. The time-
domain waveform display (with high peak values and
drastic changes in the left image, and relatively flat
changes in the right image) indicates significant

differences in the time-domain energy distribution of
samples from different music genres: the left waveform
corresponds to genres (such as rock or electronic music)
that exhibit short-term high-energy pulses and irregular
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fluctuations, reflecting impulsive transient characteristics;
The right waveform corresponds to genres such as
classical or jazz, exhibiting more stable amplitude
modulation and lower energy fluctuations, reflecting
smooth audio textures. The contrastive learning task
constructed through SImCLR effectively captures such
temporal dynamic differences, enabling the model to
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distinguish the non-stationary characteristics of different
schools in the time domain. The time-frequency dual
stream network further integrates frequency domain
information, enhancing the ability to extract
discriminative features between schools and providing
data support for improving classification performance.

Table 2: Performance comparison table of music classification methods

Method Core Features Dataset Accuracy SFl'
core
Time-Erequenc Captures temporal (time stream) & frequency
g y (frequency stream) features; fuses for better GTZAN 82.4% 82.0%
Two-Stream NN
performance
SimCLR Uses data augmentation for pos/neg sample
Contrastive pairs; contrastive loss reduces labeled data MSD 79.5% 79.1%
Learning reliance
VGG-16 CNI_\I Based on spectrograms; a_pplles VGG-16 AudioSet 0.63 0.61
Transfer Learning transfer learning
VQG'16 QNN Based on spectrograms; fine-tunes VGG-16 AudioSet 0.64 0.61
Fine-Tuning
SVM Relies on handcrafted time-frequency features Spo[t)lgasl\gtjsm 80% /

Table 2 summarizes the mainstream SOTA methods
for classifying music genres. The time-frequency dual
stream neural network achieves an accuracy of 82.4% and
an F1 value of 82.0% on the GTZAN dataset by capturing
and fusing time-domain and frequency-domain features;
SIMCLR  self supervised learning utilizes data
augmentation to construct positive and negative sample
pairs, reducing dependence on annotated data. The

accuracy on the MSD dataset is 79.5%, and the F1 score
is 79.1%. The VGG-16 series is based on spectrograms,
and the accuracy of transfer learning and fine-tuning on
the AudioSet dataset are 0.63 and 0.64, respectively, with
an AUC of approximately 0.89. In traditional methods,
SVM achieves an accuracy rate of 80% on the Spotify
dataset based on manual time-frequency features.

Table 3: Experimental results of time-frequency dual stream network in music classification task

Data Set Accuracy Recall

F Value

Feature Analysis and Classification Performance

GTZAN Dataset 82.4% 81.7%

82.0%

The overall performance is balanced, and the time-frequency
dual stream network effectively integrates the rhythmic
features of the time dimension and the melodic features of the

timbre of the frequency dimension.

Pop Pusic 86.5% 78.8%

78.4%

The time flow network captures strong rhythms (such as
drum beats and beat patterns), while the frequency flow
network extracts unique timbre and melody features, resulting

in outstanding classification effects after fusion.

Classical Music 78.2% 76.9%

76.3%

Due to the influence of complex harmonies and multi-
instrument performance, feature extraction is difficult.
Although some features can be extracted, the classification

accuracy is lower than that of popular music due to the

complexity of music.
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The experimental results of time-frequency dual
stream network in music classification task are shown in
Table 3. On the GTZAN dataset, the accuracy of the time-
frequency dual stream network reached 82.4%, the recall
rate was 81.7%, and the F-value was 82.0%. In the
classification of different music genres, the accuracy rate
for popular music is as high as 86.5%, thanks to the
effective capture of strong rhythms in popular music by
time flow networks and the extraction of unique timbre
and melody features by frequency flow networks. When
dealing with a fast-paced and simple melody popular
song, the time flow network can accurately learn the
drum beats and beat patterns of the rhythm, while the
frequency flow network can recognize the timbre
characteristics of commonly used instruments in popular
music. The fusion of the two makes the model more
accurate in classifying popular music. For classical music,
the accuracy rate is 78.2%. The complex harmonies and
multi-instrument performances of classical music require
high feature extraction capabilities from the model.
Although time-frequency dual stream networks can
extract relevant features to some extent, the classification
accuracy of classical music is slightly lower than that of
popular music due to its complexity.

Z.Yang et al.

4.2 SImCLR
experiment results

Figure 6 shows the variation in the accuracy of the
SImCLR model on the GTZAN dataset under different
temperature parameters. It can be seen that as the
temperature parameter gradually increases from 0.5 to0 2.5,
the accuracy of the model shows an overall upward trend.
When the temperature parameter is 0.5, the model
accuracy is low, and the improvement is slow when the
dataset size is small. When the temperature parameter
increases to 2.5, the accuracy of the model reaches a high
level and maintains good stability during the change of
data set scale. This indicates that the temperature
parameter has a significant impact on the performance of
the SIMCLR model in the music classification task, and
the appropriate temperature parameter can effectively
improve the classification accuracy of the model in the
GTZAN dataset, which provides a reference for
parameter selection for combining SImCLR with the
traditional time-frequency dual-stream network to
optimize the music classification performance.

comparative  learning
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Figure 6: Accuracy variation of SImCLR model on GTZAN dataset under different temperature parameters

4.3 Comparison and analysis of results

(1) Training Details

Music genre classification experiment based on
time-frequency dual stream neural network and SimCLR
self supervised learning. The hardware configuration
adopts NVIDIA V100 (32GB video memory) GPU, Intel
Xeon Gold 6248 (20 cores and 40 threads) CPU, 128GB
DDR4 memory, and 1TB NVMe SSD storage. The
system is Ubuntu 20.04 LTS, relying on CUDA 11.3 and
CcuDNN 8.2.1; The experiment used the GTZAN dataset
(10 genres, 100 30 second audio per category), with
training hyperparameters set to batch size 32, initial
learning rate le-4 (Adam optimizer), 100 epochs,
SimCLR temperature coefficient 0.1, and time-frequency
flow features of 128 dimensional Mel spectrograms and
40 dimensional MFCC, respectively. The single card

training time was about 24 hours (including 16 hours of
self supervised pre training and 8 hours of fine-tuning).

(2) Performance comparison

In the GTZAN dataset of the music classification
task, the performance differences between the time-
frequency dual-flow network and the SimCLR
comparative learning model are reflected in different
training methods: in the linear probe experiment, the
time-frequency dual-stream network has an accuracy rate
of 82.4%, a recall rate of 81.7%, and an F-value of 82.0%,
which is higher than that of the SImCLR model of 80.2%,
79.5%, and 79.8%, respectively. In the fully fine-tuning
experiment, the time-frequency dual-stream network still
maintains the leading performance by virtue of the
synergistic fusion advantage of time-frequency features,
which confirms the overall effect of the "dual-stream
structure comparative learning” joint scheme on
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improving the performance of music classification, rather
than a single SimCLR or single-stream structure, as
shown in Table 4. For complex music data, the time-
frequency dual-flow network breaks through the
limitations of single feature extraction by extracting time-
domain and frequency-domain features separately and
constructing dual-flow channel fusion decisions,
achieving "high classification accuracy" and accurately
identifying music categories. SImCLR comparative
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learning has "significant advantages": it enhances the
ability to distinguish subtle differences in music through
contrastive learning, improves generalization problems
caused by insufficient samples or incomplete annotations,
and can be trained efficiently without complex negative
sample strategies, and the generated feature
representations are more stable against input
perturbations.

Table 4: Performance comparison of time frequency dual stream network and SimCLR comparison learning model on

GTZAN dataset
Model Accuracy Recall F Value
Time-frequency Dual 82 4% R1.7% 82.0%
Stream Network
" 1CLR ;
SImCLR Comparative 80.2% 79.5% 79.8%
Learning Model

On the dataset, the accuracy of the time-frequency
dual stream network is 78.9%, while the accuracy of the
SimCLR contrastive learning model is 79.5%, with the
SimCLR model slightly higher than the time-frequency
dual stream network. In terms of recall, the time-
frequency dual stream network has a recall rate of 78.1%,
while the SimCLR model has a recall rate of 78.8%. The
SimCLR model performs well. In terms of F-value, the
time-frequency dual stream network has an F-value of
78.5%, while the SImCLR model has an F-value of
79.1%. The SimCLR model has a slight advantage in
overall performance. As shown in Table 5. Compared
with single-branch CNNs with only time pools, this study
significantly expands the model design: we incorporate a

highly supervised log-mel CNN/CRNN architecture,
which can more effectively capture the time-frequency
domain information of audio signals on log-mel spectral
features, and enhance the modeling ability of long-term
dependencies of music through the combination of
convolution and loop structure. At the same time, in order
to comprehensively verify the effectiveness of the
proposed time-frequency dual-current network and
SIMCLR comparative learning method, the pre-trained
audio model is also supplemented as a baseline in the
experimental setup, so as to evaluate the classification
performance improvement of the new method under a
broader model comparison framework.

Table 5: Performance comparison of time frequency dual stream network and SImCLR comparison learning model on
MSD dataset

Model Accuracy Recall F Value

Time-frequency Dual 78.9% 78.1% 78.5%
Stream Network
1CLR ]

SImCLR Comparative 79.5% 78.8% 79.1%
Learning Model

Perform a significant difference analysis on the
accuracy of the two on the MSD dataset. The calculated
t-value is less than the critical value, indicating that at a
95% confidence level, there is no significant difference
in accuracy between the time-frequency dual stream
network and SimCLR contrastive learning model on the
MSD dataset, and their performance is relatively close.

(3) Analysis of influencing factors

There are many factors that affect the performance
of time-frequency dual stream networks and SimCLR
contrastive learning models, among which data volume
and feature selection are the key factors. As shown in the
figure, Figure 7 shows the data volume of the time-
frequency dual stream network model, and Figure 8
shows the data volume of the SIMCLR comparative
learning model.
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Figure 8: Data volume of SImMCLR comparative learning model in music classification application

Data is the core foundation of model training. The
amount of data directly determines the richness of
information that can be accessed during the model
learning process. When the amount of data is small, the
information that the model can obtain is extremely
limited, and only partial surface features of the target
object can be captured, making it difficult to deeply
explore the inherent rules and complex patterns. This
makes it easy for the model to have underfitting or
overfitting when facing practical application scenarios,
resulting in large deviations in prediction results and poor
performance.

As the amount of data gradually increases, the
training environment of the model is improved. A large
amount of data provides a broader learning space for the
model, giving it the opportunity to be exposed to the
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diverse features presented by the target object under
different conditions and contexts.

More data allows the model to be exposed to music
works of various styles, different periods, and diverse
cultural backgrounds. In this process, the model is able to
continuously learn and summarize more comprehensive
and detailed musical features, from basic melodies,
rhythms, harmonies, to complex emotional expressions,
cultural connotations, and other deep patterns. By
learning from massive amounts of data, the model can
construct a more accurate and comprehensive knowledge
system, thereby more accurately identifying and
processing various types of music information,
effectively improving its performance in tasks such as
music classification, creation, and recommendation.
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Figure 9: Comparison of feature selection in time - frequency dual - stream networks for music classification with
SimCLR comparative learning
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Figure 10: Comparison of feature selection in SImCLR contrastive learning

Feature selection is also one of the key factors
affecting model performance. As shown in the figure,
Figure 9 compares the feature selection of time-frequency
dual stream networks, and Figure 10 compares the feature
selection of SIMCLR contrastive learning. The time-
frequency dual stream network can obtain a more
comprehensive representation of music features by
extracting and fusing the time-frequency characteristics
of music signals. The SIimCLR contrastive learning
model learns the intrinsic feature representation of data
through data augmentation and contrastive learning. In
the feature selection experiment, different feature
extraction methods and data augmentation strategies
were used to compare the time-frequency dual stream
network and SimCLR learning models, and the changes
in model performance were observed. For time-
frequency dual stream networks, when using more
refined time-frequency analysis methods such as wavelet
transform instead of short-time Fourier transform for
frequency domain feature extraction, the accuracy of the
model on the GTZAN dataset is improved, indicating that
more effective feature extraction methods can improve
the performance of time-frequency dual stream networks.

5 Discussion of results

From the experimental results, it can be seen that
both the time-frequency dual stream network and
SimCLR compared learning models have shown certain
performance in music classification tasks, but they also
have their own advantages and disadvantages.

The combination of time-frequency dual stream
neural network and SImCLR self supervised learning
method proposed in this study has shown outstanding
performance in music genre classification tasks. In terms
of performance, the time-frequency dual stream network
outperforms SimCLR (accuracy 80.2%, F1 value 79.8%)
on the GTZAN dataset (accuracy 82.4%, F1 value 82.0%),
and both have similar performance on the MSD dataset
(accuracy 78.9%, 79.5%, respectively), and are superior
to traditional methods such as VGG-16 series (AudioSet
accuracy 0.63-0.64) and SVM (Spotify accuracy 80%),
only slightly lower than AST (accuracy 85.5%). Its
novelty lies in the fact that the time-frequency dual
stream network extracts time-domain rhythm and

frequency-domain timbre features separately through a
parallel structure and fuses them, breaking through the
limitations of single feature extraction; SimCLR utilizes
data augmentation and contrastive loss to reduce
annotation dependencies and improve generalization.
The combination of the two enhances feature
comprehensiveness while reducing data requirements.
The limitations are reflected in the low classification
accuracy (78.2%) of complex genres such as classical
music, and the lack of validation of generalization on
more datasets (such as ISMIR 2004). The optimization
space for feature extraction methods (such as wavelet
transform replacing short-time Fourier transform) still
needs further exploration.

On GTZAN (hierarchical 80-20 segmentation) and
MSD-10k (10-fold cross validation), the time-frequency
dual stream architecture improved the optimal single
stream model by 2.8% -3.2%, the feature fusion module
contributed 1.1% -1.5% of the gain, and SImCLR self
supervised enhancement further improved performance,
verifying the effectiveness of each core component.

T-F Network is good at rock and folk genres, but has
limited performance in jazz and symphonic music; In
addition to improving rock and folk, T-F SimCLR
Network also adapts to electronic and pop genres, and
only jazz and world music are not enough. In this study,
30 groups of samples were taken in a unified environment
based on accuracy and macro average F1 value, and the
validity of the model was verified by single-sample t-test.
After confirming normality by Shapiro-Wilk test, the
improved model was proved to be better by independent
sample t-test. For jazz and other non-normally distributed
genre data, the Mann-Whitney U test (U=186,
p=0.04<0.05) was used to reveal the performance
differences of the model in different genres.

On the GTZAN dataset, the time-frequency dual
stream network has a macroscopic accuracy of 82.4% +
1.2% (95% confidence interval [81.2%, 83.6%]), a recall
rate of 81.7% + 1.5%, and an F-value of 82.0% = 1.3%,
which is significantly better than the SImCLR model
(80.2% * 1.4%, 79.5% * 1.6%, 79.8% + 1.5%), p<0.05)
On the MSD dataset, there was no significant difference
in performance between the time-frequency dual stream
network (78.9% + 1.7%, 78.1% + 1.8%, 78.5% + 1.6%)
and the SImCLR model (79.5% * 1.3%, 78.8% =+ 1.5%,
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79.1% + 1.4%) (t=1.24, p>0.05). Fine grained analysis
shows that the time-frequency dual stream network in
GTZAN outperforms SimCLR in F1 scores for both pop
(78.4% = 2.1%) and classical music (76.3% * 2.3%), with
significant differences in pop music categories. The
confusion matrix analysis shows that the time-frequency
dual stream network performs better in GTZAN due to
the fusion of rhythm and timbre melody features, while
SIMCLR has a slight advantage in MSD through
parameter adjustment and data augmentation, providing
reference for model selection and parameter tuning in
music classification.

6 Conclusion

This study explores the application of time-
frequency dual stream network and SimCLR contrastive
learning in music genre classification. Firstly, an in-depth
analysis of the comparative learning principles between
the two is conducted, and the structures and working
mechanisms of time flow and frequency flow in the time-
frequency dual stream network are elaborated. The
process of effectively extracting and fusing time-
frequency features of music signals is achieved through a
feature fusion module (using an intermediate fusion
strategy to dynamically adjust the relative importance of
time-frequency features based on the learned fusion
weights). In the time flow network, LSTM utilizes the
synergistic effect of input gates, forget gates, and output
gates to accurately capture the temporal features of music
signals (such as rhythm changes and note duration); In
frequency stream networks, CNN automatically learns
the frequency domain characteristics of music signals
through a combination of convolutional layers, pooling
layers, and fully connected layers. At the same time, a
comprehensive study will be conducted on the algorithm
flow of SimCLR contrastive learning, covering key
components such as data augmentation, encoder,
contrastive loss function, etc.

In terms of experiments and result analysis, a
comprehensive evaluation of the two models was
conducted based on the GTZAN and MSD datasets. The
results show that the time-frequency dual stream network
has an accuracy of 82.4%, a recall of 81.7%, and an F-
value of 82.0% on the GTZAN dataset, and 78.9%,
78.1%, and 78.5% on the MSD dataset, respectively; The
SIMCLR contrastive learning model achieved an
accuracy of up to 80.2% in the GTZAN dataset (with a
temperature parameter of 0.5) and an F-value of up to
79.5% in the MSD dataset (using a combination of
random cropping, reverberation addition, and tone
adjustment data augmentation strategies). Performance
comparison shows that the three indicators of the time-
frequency dual stream network on the GTZAN dataset
are slightly higher than SImCLR, while SimCLR has a
slight advantage on the MSD dataset, but their overall
performance is similar. Further analysis of the
influencing factors reveals that data volume and feature
selection have a significant impact on the performance of
the two models: an increase in data volume can improve
model accuracy, and time-frequency dual stream

Z.Yang et al.

networks are more sensitive to data volume growth; More
effective feature extraction methods and rich data
augmentation strategies can respectively improve the
performance of time-frequency dual stream networks and
SimCLR.

The important finding of this study is that the time-
frequency dual stream network can fully leverage the
advantages of time-frequency features and achieve high
accuracy in classifying music with complex rhythms and
rich melodies; SImCLR has significant advantages over
contrastive learning models, as it utilizes an unsupervised
learning framework to mine potential features from
massive unlabeled data, significantly reducing reliance
on manually annotated data and reducing annotation costs
(especially in areas such as music classification where
data annotation is tedious). Additionally, it generates
diverse training samples through carefully designed data
augmentation strategies such as audio time stretching and
frequency transformation, significantly improving the
model's generalization ability. The research results
provide new methods and ideas for the field of music
classification, and have important theoretical and
practical application value.
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