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With the widespread application of neural translation systems, challenges such as difficult error tracing 

and low proofreading efficiency remain significant. To address this, a DA-MK model is proposed, 

integrating dynamic attention weighting with multimodal knowledge fusion, enabling fine-grained error 

localization and correction. The model incorporates explicit grammar and syntax metrics, including 

syntactic dependency parsing accuracy and grammar correction rate, ensuring robust linguistic 

consistency. Experiments on the WMT 2014 English-German and IWSLT 2016 German-English datasets 

benchmark DA-MK against advanced models such as ErrorFocus, KG-Translate, and BERT-Fix. Results 

demonstrate an error location accuracy of 90.3%, error type classification accuracy of 87.2%, 

proofreading suggestion adoption rate of 79.8%, BLEU score improvement of +13.0, syntactic parsing 

accuracy of 88.6%, and grammar correction rate of 85.1%. These findings confirm DA-MK’s superior 

capability in enhancing translation reliability, grammatical integrity, and proofreading efficiency. The 

study contributes a technically grounded pathway for optimizing neural translation systems with strong 

theoretical and practical significance. 

Povzetek:  

 

1  Introduction 

Numerous businesses, educational institutions, and social 

media platforms utilize neural translation systems. 

Customers would have difficulty recognizing and 

interpreting translation errors because they are often 

"black boxes." According to the study's findings, 35 

percent of the outputs contain a significant inaccuracy, 

and only a small percentage of those errors are 

immediately apparent. As a result, the time it takes for 

people to proofread is significantly increased, and 

translations become far less helpful. It will likely become 

more expensive to communicate with individuals at work 

if one encounters issues of this kind. Considering this, 

there is an immediate need for research and real-world 

applications that will enhance the ability of neural 

translation systems to identify and resolve issues quickly 

and effectively. [1,2]. 

Neural translation systems are widely applied across 

diverse translation scenarios due to their robust learning 

capabilities. They are used in applications ranging from 

instant translations on social media to cross-language 

communication in academic publications. Looking at the 

situation of online translation platforms, a well-known 

translation software processes more than 5 million 

translation requests per day [3,4]. Among user feedback, 

complaints about translation errors and unclear causes 

account for as high as 20%. These errors not only affect 

the user experience, but also hinder the accurate 

transmission of information to a certain extent. Both 

enterprises and ordinary users urgently need an effective 

method to unveil the "mystery" of neural translation 

systems, accurately trace their errors, and thus improve 

the efficiency of manual proofreading[5]. 

At present, many scholars have made explorations in 

the field of interpretable neural translation systems. Some 

studies have tried to use visualization techniques, such as 

heat maps generated by attention mechanisms, to show 

the degree of attention paid by the model to the source 

language vocabulary during the translation process. 

Studies have shown that using attention mechanism 

visualization can help researchers find that about 30% of 

vocabulary translation errors are related to improper 

attention allocation. Other studies have introduced 

external knowledge, such as term bases and knowledge 

graphs, to assist in understanding the decision-making 

process of the translation model. In translation in specific 

fields, this method has increased the error recognition rate 

by about 25% [6]. 

However, existing research still has many 

shortcomings. Most visualization methods only provide a 

simple display of model behavior, but do not delve deeply 

into the underlying causes of errors. Even if vocabulary 
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errors caused by improper attention allocation are found, 

it is difficult to further explore why such improper 

allocation occurs. In studies that combine external 

knowledge, the way knowledge is integrated is often 

relatively simple, and the interaction between different 

types of knowledge is not fully considered, which greatly 

reduces the effectiveness of error tracing in complex 

semantic scenarios. Moreover, most of these studies focus 

on error analysis itself, and there are very few studies on 

how to effectively apply error tracing results to the 

manual proofreading process to effectively improve 

proofreading efficiency [7]. 

In addition, current research has also neglected the 

user experience aspect. In actual work, human 

proofreaders need to quickly and accurately obtain error 

information and related explanations, but the existing 

error tracing results are not user-friendly in terms of 

human-computer interaction design, which makes it 

difficult for proofreaders to efficiently use this 

information and fail to achieve the goal of improving 

proofreading efficiency [8,9]. 

The DA-MK technique is a novel approach that 

combines dynamic attention with multimodal knowledge 

to address the problems of poor proofreading and the 

inability to recognize errors. To better focus on 

translations and identify issues with source phrases, the 

technique utilizes a dynamic attention weighting model. 

Additionally, it employs multimodal knowledge fusion to 

improve comprehension of meaning and determine the 

reasons why translations are inaccurate. This is 

accomplished by merging contextual embeddings with 

external knowledge graphs[10]. Additionally, there is a 

proofreading suggestion module that improves with 

feedback, as well as an adaptive error classifier that 

considers domain-specific characteristics.  

Main contribution:  

(1) This article presents a strategy that is theoretically 

sound and combines multimodal knowledge reasoning 

with dynamic attention recalibration to simplify the 

understanding of neural translation systems. (2) An end-

to-end integration architecture for cross-module 

interaction is developed, starting with the identification 

of issues and culminating in the provision of suggestions 

that include feedback loops. (3) A comprehensive method 

is described for using error tracing outputs in real-world 

proofreading tasks. The goal of this technique is to 

narrow the gap between the comprehensibility of neural 

models and their practical utility in the real world. 

2  Literature review 

2.1 Basic research on neural translation 

systems 

As a key technology in the current translation field, neural 

translation systems are undergoing continuous basic 

research. Many studies have focused on the architecture 

of neural translation systems. For example, Transformer-

based architectures are widely used in many neural 

translation models (relevant studies have shown that 

Transformer architectures are used in more than 80% of 

mainstream neural translation models)[11]. This 

architecture, with its self-attention mechanism, can 

effectively capture the long-distance dependencies 

between words in source language sentences, 

significantly improving translation quality. For example, 

under massively parallel corpus training, the 

Transformer-based neural translation model has an 

average BLEU (a commonly used machine translation 

quality evaluation indicator) score improvement of 10-15 

points compared to traditional architecture 

models[12,13]. 

In terms of training mechanism, research is devoted 

to optimizing the training process to improve model 

performance. Some studies have used adversarial training 

methods to allow the generator and the discriminator to 

compete with each other, prompting the generator to 

generate translation results that are closer to the real 

translation. According to experimental data, the neural 

translation model using adversarial training has improved 

the fluency of translation by about 20% in translation 

tasks in specific fields [14,15]. However, despite the 

progress made in architecture and training mechanism, 

neural translation systems still cannot avoid errors, which 

has laid the groundwork for subsequent research on error 

tracing and proofreading efficiency improvement. 

2.2 Research on error tracing in neural 

translation systems 

Many studies have attempted to use explainability 

techniques to trace the source of errors in neural 

translation systems. Among them, attention mechanism 

visualization technology has been widely used to explore 

the causes of errors by showing the degree of attention 

paid by the model to each part of the source language 

during translation. A study using this technology found 

that about 40% of translation errors are related to the 

model's lack of attention to key information in the source 

language. For example, in the analysis of translation 

errors of news articles, the visualization results showed 

that when the model processes complex sentences, it 

often loses attention and fails to accurately focus on key 

words, resulting in translation errors [16]. 

There are also studies that introduce external 

knowledge to assist in error tracing, such as combining 

knowledge graphs. When the model is translating content 

involving specific entities or concepts, the knowledge 

graph can provide relevant background information to 

help determine whether the translation is accurate. In 

medical translation research, the use of knowledge graphs 

to assist in error tracing has increased the accuracy of 

error identification by about 25%[17]. However, these 

studies are still lacking in the depth of error tracing. Most 

visualization technologies can only present surface 

phenomena, and have not yet been able to provide a full 

explanation for the deep-level internal decision logic of 



DA-MK: Dynamic Attention and Multimodal Knowledge… Informatica 49 (2025) 429–448 431 
 

the model, such as why the model allocates attention 

incorrectly in certain situations. Moreover, in terms of 

multimodal information fusion for error tracing[18], 

research is still in its infancy and has not fully utilized the 

role of multimodal information such as images and audio 

in understanding translation errors. 

2.3 Research on improving manual 

proofreading efficiency 

The work [19] reviewed advances in incorporating 

context into neural machine translation and examined 

evaluation strategies. It addressed persistent difficulties 

such as maintaining coherence across sentences, 

resolving references, and ensuring terminology 

consistency. The survey stressed that effective translation 

requires integrating wider contextual signals beyond 

sentence level. These insights align with the DA-MK 

model, which leverages multimodal knowledge fusion to 

strengthen contextual understanding, thereby enhancing 

error tracing, grammatical accuracy, and proofreading 

support in translation tasks. Other studies start with the 

optimization of the human-computer interaction interface, 

improving the efficiency of proofreaders in obtaining 

information by rationally arranging the translation and 

error prompt information. A comparative experiment on 

different human-computer interaction interfaces showed 

that the optimized interface reduced the average 

proofreading time of proofreaders by 15%[20]. 

However, current research on improving manual 

proofreading efficiency has obvious shortcomings. Most 

existing proofreading assistance tools rely on simple rules 

and have limited ability to prompt complex semantic 

errors. Moreover, the design of human-computer 

interaction interfaces often does not fully consider the 

work habits and cognitive load of proofreaders, resulting 

in the fact that in actual use, although some functions are 

designed, they fail to effectively improve proofreading 

efficiency. Moreover, these studies rarely closely 

integrate the error tracing results with the manual 

proofreading process, making it difficult to effectively 

transform the results of error tracing into improved 

proofreading efficiency [21,22]. 

Through the application of error feature analysis and 

correction strategies, the research [23] explored how 

machine translation quality could be improved by 

systematically identifying translation inaccuracies. The 

focus was on detecting subtle contextual mistakes, 

correcting structural inconsistencies, and ensuring higher 

linguistic accuracy. These contributions provided a strong 

foundation for building explainable models. Furthermore, 

the study demonstrated that explicitly modeling error 

patterns led to more effective proofreading assistance, 

reinforcing the connection between interpretability and 

translation performance. This perspective aligned closely 

with the objectives of the DA-MK framework in 

improving error tracing efficiency. 

The findings of the study [24] presented a grammar 

correction method that relied on differential fusion of 

syntactic features to reduce common structural mistakes 

in English paragraphs. By capturing syntactic 

dependencies at multiple levels, the method enhanced the 

accuracy of grammatical corrections and improved 

readability. This discussion highlighted the importance of 

integrating linguistic rules with advanced neural models. 

Such integration not only minimized recurring 

grammatical errors but also demonstrated how syntactic 

awareness could be used to refine translation outputs, 

contributing to improved proofreading and consistency in 

multilingual contexts. 

The purpose of the research [25] was to propose an 

automatic identification system for machine translation 

errors using an improved GLR algorithm. This work 

established how parsing-driven analysis could locate and 

categorize translation mistakes more accurately than 

baseline techniques. Its relevance lay in demonstrating 

the connection between structural parsing, error detection, 

and corrective modeling. By automating the 

identification of misalignments and inconsistencies, the 

study provided a valuable reference point for DA-MK’s 

error location mechanism. Additionally, it underlined 

how incorporating robust syntactic parsers could directly 

enhance machine translation interpretability and 

proofreading efficiency. 

The study [26] investigated how embedding methods 

and imbalance-aware learning techniques contributed to 

building knowledge-driven systems for domain-specific 

applications. It highlighted the role of embeddings in 

representing semantic richness and managing uneven 

data distributions across categories. By examining these 

aspects, the work provided insights into handling low-

frequency errors and integrating contextual knowledge 

sources. Its broader contribution lay in showcasing how 

ontology-based learning and embedding strategies could 

enrich multimodal systems. This directly supported the 

DA-MK model’s fusion strategy, where external 

knowledge and balanced feature integration played a 

critical role in reducing translation errors. 

In general, the current research on neural translation 

systems has achieved fruitful results in infrastructure and 

training. However, there is still a broad space for 

exploration in the depth and breadth of error tracing and 

the integration of improving manual proofreading 

efficiency with error tracing. This also provides a 

direction and opportunity for this study to carry out the 

work of error tracing and improving manual proofreading 

efficiency in explainable neural translation systems. 

2.4 Research design 

The objectives were clarified as improving error tracing, 

enhancing proofreading efficiency, and integrating 

multimodal knowledge. Three research questions were 

formulated: (1) How can dynamic attention weighting 

improve error location accuracy in neural translation 



432 Informatica 49 (2025) 429–448                                                                                       Y. Li 

 

systems? (2) In what way can multimodal knowledge 

fusion contribute to error classification and proofreading 

efficiency? (3) How do grammar and syntax metrics 

validate the improvements achieved by DA-MK 

compared to baseline models? These clarifications 

provided a clear anchor for the methodology and results, 

ensuring a more structured and focused narrative. 

summary of related as shown in table 1(a) below 

Table 1(a): Summary of related works on neural machine translation error tracing, proofreading, and knowledge 

fusion 

Ref Method / 

Model 

Dataset(s) 

Used 

Key Mechanism Reported 

Metrics 

Identified Gap 

[11] Liu et al. 

(2020) 

Speed-up NMT 

training 

WMT14 

En-De 

Training 

optimization 

Faster 

convergence 

No error tracing or 

proofreading 

[12] Satir & 

Bulut (2021) 

Hybrid SMT + 

NMT decoding 

WMT En-

Tr 

Beam search 

prevention 

Maintained 

translation 

quality 

No 

grammar/proofreading 

focus 

[13] Farhan et 

al. (2020) 

Unsupervised 

dialectal NMT 

Dialectal 

corpora 

Unsupervised 

training 

BLEU 

improvement 

Lacks error 

classification 

[14] 

Velmurugan 

et al. (2024) 

Novel MT 

algorithm 

Custom 

dataset 

Rule-based + 

NMT 

Better BLEU 

scores 

No explainable error 

tracing 

[15] Zhang et 

al. (2020) 

Similarity-

aware NMT 

TM + 

corpora 

Translation 

memory + NMT 

Reduced effort Not focused on errors 

[16] 

Mohamed et 

al. (2022) 

Residual Info 

Flow NMT 

WMT En-

De 

Residual 

connections 

BLEU: 28.5 No proofreading 

integration 

[17] Li et al. 

(2025) 

Bilingual 

template NMT 

Parallel 

corpora 

Templates + NMT BLEU gains No multimodal fusion 

[18] Zhang & 

Zong (2020) 

Survey of NMT Multiple Challenges/future Review No experimental 

contribution 

[20] Zhao et 

al. (2022) 

Region-

attentive 

multimodal 

NMT 

Multi30k Visual + text 

fusion 

BLEU ↑ Limited to vision, not 

error tracing 

[22] Wang et 

al. (2022) 

Progress in MT Multiple Benchmark survey — No error-tracing models 

[23] Tao 

(2023) 

Error feature 

analysis 

En-Zh 

corpora 

Error tracing + 

correction 

Improved 

accuracy 

Limited proofreading 

integration 

[24] Liu et al. 

(2025) 

Grammar 

correction 

English 

paragraphs 

Differential fusion Correction rate: 

85% 

No error localization 

[25] Li (2024) Error detection 

(GLR) 

MT outputs Improved GLR 

parsing 

Error detection 

↑ 

No multimodal 

knowledge fusion 

[26] Utomo et 

al. (2025) 

Word 

embedding + 

imbalance 

Quran 

ontology 

Embedding + 

balancing 

Classification ↑ Domain-specific, not 

NMT 
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3  Research methods 

Figure 1 illustrates the entire operational procedure of the 

DA-MK model that has been proposed, making it more 

straightforward for individuals to understand how it 

operates. The four primary components of the system are 

connected by feedback loops and data channels, which 

improve the residuals through the following process: 

Initially, it identifies the incorrect traits. Second, it will 

make an effort to determine the different kinds of errors 

that they are. Third, it will arrange the various categories 

of errors in the correct sequence. In conclusion, it will  

 

provide some guidance on how to proofread the work. To 

determine what went wrong, the first step is to apply 

dynamic attention weighting to a phrase pair that contains 

source and target information. Following the use of 

multimodal knowledge embeddings to produce improved 

features, the classifier reveals the specific types of errors 

it committed. By working with them, there's an 

opportunity to receive proofreading guidance tailored to 

the progress being made, to refine the criteria for 

attention and recommendations, and utilize the feedback 

provided by proofreaders.  

 

 
 

Figure 1: Proposed DA-MK model 

For example, words that are not translated appropriately, 

such as "the patient was prescribed a high dose," can 

cause the attention module to become activated. The 

knowledge graph indicates that the term "high dose" is 

frequently used in the medical field. Considering that this 

is a semantic omission, the classifier recommends using 

"high" as a substitute. Taking this advice into 

consideration will make it easier for the algorithm to 

identify errors of this kind in future events. 

Datasets were preprocessed using the Moses 

tokenizer, with BPE segmentation (32k merges). 

Vocabulary sizes were 32k for German–English and 30k 

for French–English 

3.1 Error feature extraction module based 

on dynamic attention weighting 

In the error tracing of neural translation systems, 

accurately extracting error features is a key step. This 

paper adopts a dynamic attention weighted mechanism to 

construct an error feature extraction module. This module 

aims to automatically capture key information related to 

errors in the translation process. 

First, define the source sentence as 

1 2[ , , , ]Tx x x= x
, where T is the sentence length or 

number of tokens in the source and target sentences; the 

target sentence is 1 2[ , , , ]Ty y y = y
 . Based on the 

traditional attention mechanism 
( , , )Attention Q K V

 , 

dynamic weight calculation is introduced. The similarity 

score between the query vector 
Q

and the key vector is 

calculated K as shown in Formula 1. 

All variables used in the dynamic attention module 

are now defined:Let 𝑆 =  {𝑠1, 𝑠2, … , 𝑠𝑛}  denote the 
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source sentence of length n. Let 𝑇 =  {𝑡1, 𝑡2, … , 𝑡𝑛} 

denote the target sentence of length 𝑚 . The similarity 

score between query 𝑞𝑖 and key 𝑘𝑗 is computed as: 

𝛼𝑖𝑗  =  
(𝑞𝑖 · 𝑘𝑗)

√𝑑𝑘
     (1) 

In the equation 1, 𝑑𝑘  is the dimensionality of the key 

vector.A dynamic adjustment factor λ is introduced as: 

    
𝜆 =  𝜎 (𝑓(𝑐, 𝑠𝑖𝑚(𝑆, 𝑇)))

 ã𝑖𝑗  =  𝜆 ·  𝛼𝑖𝑗

}   (2) 

 

in equation 2, c represents translation confidence, 

sim(S,T) denotes semantic similarity between source and 

target segments, and f(·) is a sigmoid-activated 

feedforward layer.The recalibrated attention score.This 

formulation ensures that tokens with low confidence or 

poor semantic alignment are assigned higher attention 

weights during error tracing. 

 

Among them, is  the sigmoid function, 
f

which 

is a custom nonlinear function used to fuse confidence 

and semantic similarity information. The final attention 

weight calculation is as shown in Formula 3. 

1

exp( )

exp( )

ij ij

ij T

ij ij

j

e

e





=

=


                                     

      (3) 

By dynamically adjusting the attention weights, the 

module can more accurately focus on the source language 

segments that may cause errors, thereby extracting more 

representative error feature vectors feath
 as shown in 

Formula 4a. 

1

T

feat ij j

j

V
=

=h

 (4a) 

Traditional attention algorithms assign source tokens 

fixed priority values during the translation process. As a 

result, incorrect conclusions may be drawn because they 

fail to consider ambiguities and inconsistencies in 

meaning. On the other hand, the dynamic attention 

weighting approach presented adjusts the attention scores 

in accordance with variations in the confidence of the 

translation output and the semantic alignment between 

the source segments and the destination segments. When 

the model can adapt to new data and identify problem 

areas, such as phrases that are uncertain or have low 

confidence, it is significantly easier to uncover errors. In 

a manner analogous to how a human proofreader would 

do it, this approach makes the process of error feature 

extraction more sensitive and accurate by drawing greater 

attention to areas that seem suspicious or out of place. 

Empirical data have shown that the use of this strategy 

enhances the model's capability to detect errors across a 

wide range of domains and phrase complexities. 

3.2 Error attribution inference network for 

multimodal knowledge embedding 

In order to gain a deeper understanding of the causes of 

errors, this study constructed a multimodal knowledge-

embedded error attribution reasoning network, which 

integrates external knowledge (such as terminology 

knowledge and cultural knowledge) with the internal 

information of the neural translation system to achieve 

more accurate error attribution.  

Define the terminology knowledge graph as and 

( , )term term term=G V E
 the cultural knowledge graph as 

( , )culture culture culture=G V E
. Map the nodes and edges in 

the knowledge graph embedding function 
Embed( )

 

to the vector space through the embedding function, as 

shown in Formula 5 and Formula 6.  

The Embed function in Formula (5) is what makes 

the nodes in a knowledge network into dense, continuous 

vector representations in a common semantic space.  If 

the knowledge graph already includes pre-trained 

embeddings, such as TransE or Node2Vec, it can generate 

Embeddings by pulling from a pre-trained embedding 

table. It used TransE to set things up in our 

implementation, and then it changed it during training. 

Embed( ), Embed( )i i j j

term term term termv e= =v e
 

      (5) 

Embed( ), Embed( )m m n n

culture culture culture culturev e= =v e

      (6) 
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The extracted error feature vector feath
is fused with 

the knowledge embedding vector. A gating mechanism is 

used to control the proportion of information fusion, as 

shown in Formula 7 and Formula 8. 

1 2 1( )i

term g feat g term g= + +g W h W v b
  (7) 

3 4 2( )m

culture g feat g culture g= + +g W h W v b
 

           (8) 

The fused vector is Formula 9(a). 

 

hfusion = gtermvterm
i + (1 − gterm)hfeat +

gculturevculture
m + (1 − gculture)hfeat    (9a) 

 

Among them, gtermvterm
i  represents the 

multiplication of elements. Through this network, 

multimodal knowledge can be integrated into the error 

analysis process, providing richer information for error 

attribution. Formula 9 depicts the fused feature vector ℎ, 

which is created by using a gating mechanism to combine 

the erroneous feature vector with the multimodal 

knowledge embeddings. The model regulates how much 

data from each source is included in the final 

representation due to gating. This fused vector ℎ is used 

to correct mistakes, and both internal model signals and 

external information aid in determining the decision. 

The multimodal knowledge fusion process is 

clarified:External knowledge graphs Gterm (terminology) 

and Gcult (cultural) are embedded using TransE and 

refined through Graph Convolutional Networks 

(GCN).The embedding for a node v is represented as 

𝑒𝑣  =  𝐸𝑚𝑏𝑒𝑑(𝑣). Fusion is controlled by a gating 

mechanism: 

 

    ℎ =  𝛾 ·  𝑒𝑒𝑟𝑟  +  (1 −  𝛾)  ·  𝑒𝑘𝑔     9(b) 

 

In equation 9(b),𝑒𝑒𝑟𝑟   is the error feature vector, 𝑒𝑘𝑔  is 

the knowledge embedding, and γ is a trainable gate 

parameter.This detailed articulation clarifies the role of 

each component and highlights the interaction between 

dynamic attention weighting and multimodal knowledge 

embeddings within the DA-MK model 

Cultural knowledge graphs and lexical knowledge 

graphs are the two types of external knowledge graphs 

that are used in this research project for multimodal error 

attribution. The Terminology Knowledge Graph, often 

referred to as the TKG, is a type of knowledge graph that 

illustrates the connections between words within a 

specific domain in terms of their meanings. Words used 

in various sectors, including the legal system, healthcare, 

and technology, are represented by the nodes that 

comprise this network. The edges illustrate how these 

words are connected. The combination of medical terms, 

such as "hypertension," "blood pressure," and "systolic 

value," may help us gain a better understanding of how 

these terms interact with one another in the real world. 

When the TKG is used, it becomes much simpler to 

identify instances of domain consistency violations 

caused by replacements, the absence of translations, or 

the selection of the incorrect word. 

To develop a model that illustrates how idioms, 

phrases, and social norms influence language, the 

Cultural Knowledge Graph (CKG) is an attempt that has 

been made. Nodes are concepts or claims that, depending 

on the culture in question, may have a variety of 

interpretations. Several different approaches, including 

metaphorical equivalence and idiomatic alternatives, 

illustrate how edges connect nodes. There may be a more 

elegant method to express the concept of "die" in a 

language different than the English term "kick the 

bucket." Using the Cultural Knowledge Gap (CKG) is 

one method that may be used to identify phrases that are 

culturally inappropriate or idiomatic.  

     To illustrate, the patient had high blood pressure in 

the second stage, which allowed you to assess their 

performance.  

     By providing an accurate definition of the term' 

cardiac illness,' the TKG helps to reduce any uncertainty 

that may exist regarding the staging of cancer. Without 

the assistance of CKG, a translation of a patient's journal 

entry that employs the cultural phrase "under the 

weather" to mean "not feeling well" would not be 

successful in any way. They become more adept at 

determining what is culturally acceptable and factually 

correct when they include both graphs in their models, 

which enables them to more accurately assign culpability 

for mistakes that occur during the process of translating 

between multiple languages. 

3.3 Adaptive error type classifier 

After error feature extraction and attribution reasoning, 

the error types need to be classified. This study designs 

an adaptive error type classifier that can automatically 

adjust the classification strategy according to different 

translation tasks and data characteristics. 

Define the error type set as 1 2{ , , , }Nc c c= C
 . 

The input of the classifier is the fused feature vector 

fusionh
, which is transformed by a multi-layer perceptron 

(MLP), as shown in Formula 10 and Formula 11. 

1 1 1ReLU( )fusion= +z Wh b
          (10) 2 2 1 2ReLU( )= +z W z b

            (11) 
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In order to achieve adaptive classification, task 

adaptive parameters are introduced task
 . The output 

probability distribution of the classifier is calculated as 

shown in formula 12. 

2

2

1

exp( )
| , )

exp( )

( i

j

T i

c task

i fusion task N
T j

c task

j

p c





=

+
=

+

W z
h

W z

                      (12) 

Among them, icW
 is ic

 the weight vector 

corresponding to the error type, 
i

task
and is the part of 

the task adaptation parameter ic
related to. In this way, 

the classifier can better adapt to the error type 

classification requirements in different scenarios. 

3.4 Interactive proofreading suggestion 

generation module 

Based on the error types and attribution results obtained 

in the previous modules, an interactive proofreading 

suggestion generation module is designed to improve the 

efficiency of manual proofreading. This module 

automatically generates targeted proofreading 

suggestions based on the error information. For 

vocabulary errors, semantic similarity calculation M  is 

used to generate suggested words from the candidate 

vocabulary library. The semantic similarity between the 

candidate word D  and the original error word errw
 is 

calculated kw D
 , as shown in Formula 13.

sim( , )
T

k err
k err

k err

w w =
w w

w w‖ ‖‖ ‖
   (13) 

Select the previous word with higher similarity 

sim(wk,werr) as the suggested word. For grammatical 

errors, according to the error type and source language 

structure, the grammar rule template generates suggested 

modifications. Let the grammar rule template be 

1 2{ , , , }Lr rR r=
, for a given error type ic

and source 

language structure feature s , the rule matching function 

is used 
Match( , , )i lc rs

to find the applicable rule and 

generate grammar modification suggestions.  

In order to achieve interactive generation, a user 

feedback mechanism is introduced. When the proofreader 

acts on the generated suggestions (such as accepting or 

rejecting), the system updates the suggestion generation 

strategy based on the feedback. Let the feedback vector 

be 
{0,1}Mf

 ( M  the number of suggestions), and 

update the suggestion generation parameters in the 

following way, as shown in Formula 14.θnew = θold +

η ∙ f∇θLoss(f, suggestions)  (14) 

Among them, θ  is the suggestion generation 

parameter, 


 is the learning rate, Loss  and is the 

feedback loss function. Users' comments led to changes 

in the suggestion-generating parameter, θ_new, to 

improve future proofreading suggestions. The adaptive 

classifier may switch to different translation regions by 

using a different set of parameters for each task. Task 𝑖 

is the part of the task that talks about the i-th category 

when it comes to arranging faults into groups. These 

parameters don't need to be adjusted manually, as 

gradient-based optimization automatically learns them 

during model training. 

3.5 Inter-module interaction mechanism 

The above four modules do not work independently, but 

work together through a carefully designed interaction 

mechanism to complete the tasks of error tracing and 

improving proofreading efficiency. 

After the error feature extraction module obtains the 

feature vector feath
, it is passed to the error attribution 

reasoning network embedded in multimodal knowledge. 

The reasoning network uses the feature vector to fuse 

with external knowledge to obtain a more explanatory 

fused feature vector fusionh
. fusionh

It is passed as input 

to the adaptive error type classifier, which outputs the 
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probability distribution of the error type based on its 

features and task adaptive parameters to determine the 

error type. 

After determining the error type, the interactive 

proofreading suggestion generation module generates 

corresponding proofreading suggestions based on the 

error type and the results of the previous module. At the 

same time, the feedback information from the proofreader 

will be back-propagated, affecting the parameter update 

of the suggestion generation module, and the feedback 

information will also indirectly affect the dynamic weight 

calculation of the error feature extraction module and the 

knowledge fusion strategy of the error attribution 

reasoning network, forming a closed-loop interactive 

system. Through this close interaction between modules, 

the complete process from error feature extraction, 

attribution, classification to proofreading suggestion 

generation and optimization can be realized, effectively 

improving the error tracing ability of the interpretable 

neural translation system and the efficiency of manual 

proofreading. 

3.6 Model details 

In the overall architecture of the model, the data flow 

and processing details of each module are the key to 

ensuring the efficient operation of the system. In the error 

feature extraction module based on dynamic attention 

weighting, the input source language sentence x  and 

target language sentence 
y

 must first pass through the 

word embedding layer to convert discrete words into 

continuous vector representations, as shown in Formula 

15 and Formula 16. These embedded vectors serve as the 

basis for subsequent attention calculations. In order to 

reduce the amount of calculation and improve the 

calculation stability, ije
 the embedded vectors are 

normalized before calculating the similarity score, as 

shown in Formula 17. 

1 2[ , , , ]T

emb emb emb embx x x= x
    (15) 

1 2[ , , , ]T

emb emb emb emby y y


= y
    (16) 

ˆ ˆ,
j i

j iemb emb
emb embj i

emb emb

x y
x y

x y
= =
‖ ‖ ‖ ‖

  (17) 

 

The normalized vectors are then used to calculate 

similarity. The results demonstrate that attention 

calculation is more consistent and fits better with 

normalized data. When normalization is removed, the 

accuracy of mistake localization decreases by 3.2% and 

the BLEU score drops by 2.7 points. 

For the error attribution reasoning network of 

multimodal knowledge embedding, after mapping the 

 knowledge graph nodes and edges to the vector 

space, in order to better capture the relationship between 

knowledge, the graph convolution network (GCN) is 

used to further process the knowledge embedding vector. 

Taking the term knowledge graph as an example, l the 

graph convolution at the layer is calculated as Formula 18 

 

hterm
l+1 = σ(Ahterm

l Wterm
l + bterm

l )  (18) 

 

Among them, 𝐴 is the normalized adjacency matrix, 

l

termh
 is l  the node feature matrix of the layer, 

l

termW

and 
l

termb
are the learnable weight matrix and bias vector 

respectively. Through multi-layer graph convolution 

operations, the information of neighboring nodes can be 

effectively aggregated to enhance the richness of 

knowledge representation. 

In the adaptive error type classifier, the Dropout 

mechanism is introduced to avoid overfitting during the 

multi-layer perceptron (MLP) training process. During 

the feature transformation process, dropp
 the output of 

the neuron is set to 0 with a certain probability, that is, 

Formula 19 and Formula 20. 

1 1Dropout( , )drop

dropp=z z
          (19) 

2 2Dropout( , )drop

dropp=z z
          (20) 
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Through the Dropout operation, the model is forced 

to learn more robust feature representations and improve 

the generalization ability of the classifier. 

When dealing with grammatical errors, the rule 

matching function of the interactive proofreading 

suggestion generation module 
Match( , , )i lc rs

 is 

specifically implemented using a tree matching algorithm. 

The source language sentence is parsed into a 

grammatical tree structure, and the given grammatical 

rule template lr is also constructed as a tree structure. By 

comparing the matching of nodes and edges of the two 

trees, it is determined whether the rule is applicable. In 

the matching process, different weights node
 and 

edge
are set to measure the importance of node matching 

and edge matching respectively. The final matching score 

is calculated as Formula 21. 

 

 

matched nodes matched edges

score 1 1node edge

n e

 
 

= + 
  (21) 

 

 

When the score exceeds the preset threshold  , the 

rule is considered applicable and corresponding 

modification suggestions are generated. 

In terms of inter-module interaction, in order to 

reduce information loss during data transmission, 

residual connections are added to the output layer of each 

module. Taking the transmission from the error feature 

extraction module to the error attribution inference 

network as an example, when transmitting the feature 

vector feath
, the actual transmitted vector is Formula 22. 

Residual( )trans feat feat= +h h h
  (22) 

Among them, 
Residual( )

is the residual function, 

which ensures that information can flow more completely 

between modules and further improves the performance 

of the model. 

4  Experimental evaluation 

4.1 Experimental setup 

This experiment aims to verify the effectiveness of the 

proposed model in tracing the error sources of 

explainable neural translation systems and improving the 

efficiency of manual proofreading. By comparing with 

existing advanced models, the performance of the model 

in different dimensions is evaluated. The experiment uses 

the WMT 2014 English-German and IWSLT 2016 

German-English datasets, which are widely used in 

neural translation research, as test benchmarks. The 

former contains large-scale parallel corpora in the news 

field, and the latter focuses on spoken translation 

scenarios. The combination of the two can 

comprehensively test the performance of the model in 

different types of translation tasks [27].  

 

The experiment uses error location accuracy, error 

type classification accuracy, proofreading suggestion 

adoption rate and translation quality improvement 

(measured by BLEU score) as baseline indicators. Error 

location accuracy is used to evaluate the model's ability 

to identify the source language location of the translation 

error; error type classification accuracy reflects the 

model's accuracy in distinguishing different error types 

such as vocabulary, grammar, and semantics; 

proofreading suggestion adoption rate reflects the degree 

of recognition of the model-generated suggestions by 

human proofreaders; and translation quality improvement 

intuitively shows the improvement in translation quality 

after model-assisted proofreading[28]. 

The experimental group is the model based on 

dynamic attention weighting and multimodal knowledge 

fusion proposed in this paper (denoted as DA-MK model), 

and the control group selects the current representative 

models in the field of error analysis and translation 

optimization, including the ErrorFocus model based on 

traditional attention visualization, the KG-Translate 

model combined with knowledge graph, the RL-Correct 

model using reinforcement learning for error correction, 

and the BERT-Fix model based on pre-training fine-

tuning. The baseline is set as the original neural 
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translation system (Transformer architecture) without 

error tracing and proofreading optimization. By 

comparing the differences in the baseline indicators of 

each model, the advantages and innovative value of the 

DA-MK model are analyzed.  

 

4.2 Experimental results 

 

Figure 2: Comparison of error location accuracy of different models 

 

As shown in Figure 2, in terms of error location 

accuracy, the DA-MK model is significantly better than 

other comparison models. The original Transformer 

model lacks an effective error tracing mechanism and can 

only rely on the model's own translation ability to make 

judgments, with a low accuracy rate. The ErrorFocus 

model improves the error location capability to a certain 

extent through traditional attention visualization, but is 

still limited by the limitations of visual information. The 

KG-Translate model uses knowledge graphs to enhance 

semantic understanding and improve accuracy. The DA-

MK model focuses on key error information through 

dynamic attention weighting, combines multimodal 

knowledge embedding to reason about the root cause of 

the error, and can more accurately locate the error 

location, with an average accuracy of 90.3%, an increase 

of 13.6 percentage points over the second-best BERT-Fix 

model.  
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Figure 3: Comparison of classification accuracy of different models’ error types 

 

Judging from the error type classification accuracy 

data in Figure 3, the DA-MK model also shows strong 

performance. The original Transformer model has 

difficulty distinguishing complex error types accurately, 

resulting in low classification accuracy. The ErrorFocus 

model only analyzes from the perspective of attention and 

cannot fully capture the error characteristics. Although 

the KG-Translate model introduces knowledge graphs, it 

is insufficient in the coordination of knowledge fusion 

and feature extraction. With the support of multimodal 

fusion features, the DA-MK model's adaptive error type 

classifier can deeply analyze the essential characteristics 

of errors, and has excellent classification capabilities for 

vocabulary, grammar, and semantic errors. The average 

accuracy rate reaches 87.2%, which is far ahead of other 

models and lays the foundation for the subsequent 

generation of accurate proofreading suggestions.  

 

Figure 4: Comparison of adoption rates of proofreading suggestions from different models 
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Figure 4 shows the adoption rate of proofreading 

suggestions of each model. The original Transformer 

model does not provide proofreading suggestions, so 

there is no data. The suggestions generated by other 

comparison models generally have low adoption rates 

due to defects in error understanding and targeted 

solutions. The DA-MK model is based on accurate error 

tracing and classification, combined with an interactive 

proofreading suggestion generation module, which can 

dynamically optimize suggestions based on feedback 

from proofreaders. The generated proofreading 

suggestions are more in line with actual needs, with an 

average adoption rate of 79.8%, which is nearly 30 

percentage points higher than the BERT-Fix model, 

greatly improving the efficiency of manual 

proofreading.  

 

Figure 5: Comparison of translation quality improvement (BLEU score) of different models 

 

In terms of translation quality improvement, as can be 

seen from Figure 5, the DA-MK model performs 

excellently. The original Transformer model is not 

optimized and cannot effectively improve the quality of 

the translation. Although models such as ErrorFocus and 

KG-Translate can improve the translation results to a 

certain extent, the improvement effect is limited due to 

the limitations of error tracing and proofreading 

strategies. The DA-MK model significantly improves 

the quality of the translation through full-process error 

analysis and precise proofreading suggestions. The 

average BLEU score improvement value reaches 13.0, 

which is 4.45 higher than the BERT-Fix model, which 

fully proves the effectiveness of the model in optimizing 

translation quality.  

 

Figure 6: Error location accuracy of different models under different error number samples
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Figure 6 further explores the error location 

capabilities of different models under different error 

number samples. As the number of errors in the sample 

increases, the accuracy of all models decreases, but the 

DA-MK model has the smallest decrease and always 

maintains the highest accuracy. This is due to its powerful 

dynamic attention mechanism and multimodal 

knowledge reasoning ability. Even in complex error 

scenarios, it can still accurately identify the error location 

and show good robustness.  

 

Figure 7 Error type classification accuracy of different 

models under different error type proportion samples 

Figure 7 analyzes samples with different error types. 

The DA-MK model maintains a leading classification 

accuracy in all error types, especially in samples with a 

high proportion of semantic errors and mixed error types. 

This is because the model can accurately understand the 

nature of errors from a semantic and knowledge level 

through the deep fusion of multimodal knowledge, 

thereby achieving accurate classification.  

Table 1(b): Proofreading suggestion adoption rate of different models under different domain data 

Model Name News Technology Literature Legal fields 
Average adoption 

rate 

Original 

Transformer 

- - - - - 

ErrorFocus 38.2% 36.5% 32.1% 34.7% 35.4% 

KG - Translate 45.3% 43.8% 39.2% 41.7% 42.5% 

RL - Correct 44.1% 42.6% 38.5% 40.8% 41.5% 

BERT - Fix 52.6% 50.3% 46.2% 48.7% 49.5% 

DA - MK Model 81.2% 79.8% 76.5% 78.3% 79.5% 

 
Table 1(b) shows the adoption rate of proofreading 

suggestions of each model under different fields of data. 

The language characteristics and professional knowledge 

of different fields vary greatly, and the accuracy and 

professionalism of proofreading suggestions are required 

to be higher. The DA-MK model can adapt to the needs 

of different fields by virtue of multimodal knowledge 

embedding and adaptive suggestion generation 

mechanism, and has achieved a high adoption rate in all 

fields, indicating that the model has wide applicability.  
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Table 1(c): Key implementation details of DA-MK components 

Module Parameters 

Dynamic Attention λ jointly learned; Adam, LR = 1×10−41 ; batch = 64; 30 epochs; early stopping 

Knowledge Fusion TransE dim = 200; GCN dim = 200; aligned via linear projection 

Error Classifier 3 hidden layers; ReLU; gating-based task adaptation; fine-tuning for domain adaptation 

Proofreading Module Cosine similarity retrieval; rule-based grammar templates; feedback-driven updates 

Table 1(c) summarizes the key implementation 

details of the DA-MK model. It outlines training settings 

for dynamic attention, embedding dimensions in 

knowledge fusion, architectural specifications of the 

adaptive error classifier, and mechanisms for 

proofreading suggestion generation. These concise 

parameters ensure clarity, reproducibility, and 

transparency in the proposed framework’s methodology. 

 

 

Table 2: Translation quality improvement (BLEU score) of different models at different translation lengths 

Model Name Short sentences 

(<10 words) 

Medium Sentence 

(10 - 30 words) 

Long sentences (>30 

words) 

Average lift 

Original Transformer - - - - 

ErrorFocus 4.8 5.6 6.2 5.53 

KG - Translate 6.1 7.0 7.6 6.9 

RL - Correct 5.9 6.7 7.3 6.63 

BERT - Fix 7.8 8.5 9.2 8.5 

DA - MK Model 11.2 12.8 13.6 12.53 

 
Table 2 analyzes the translation quality 

improvement effect of different models at different 

translation lengths. As the translation length increases, 

the translation difficulty increases significantly, but the 

DA-MK model still performs well in processing long 

sentences, with an average improvement value of 12.53. 

This is because the dynamic attention mechanism of the 

model can effectively capture the semantic relationship in 

long sentences, and multimodal knowledge reasoning 

ensures the accuracy of semantics, thereby achieving 

high-quality translation optimization.  
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Table 3: Error location accuracy of different models under small sample data 

Model Name 
100 pairs of 

samples 

200 pairs of 

samples 

300 pairs of 

samples 

400 pairs of 

samples 

500 pairs of 

samples 

Average 

accuracy 

Original 

Transformer 
48.6% 51.2% 53.8% 55.6% 57.3% 53.3% 

ErrorFocus 62.5% 65.8% 68.2% 70.5% 72.1% 67.8% 

KG - Translate 66.8% 69.5% 71.2% 73.0% 74.3% 70.9% 

RL - Correct 65.1% 67.8% 70.0% 71.5% 73.2% 69.5% 

BERT - Fix 70.2% 72.6% 74.8% 76.5% 78.2% 74.4% 

DA - MK Model 82.4% 84.6% 86.2% 87.5% 88.9% 85.9% 

 
Table 3 experiments on small sample data scenarios. 

When the amount of data is limited, the DA-MK model 

can still maintain a high error location accuracy, reaching 

an average of 85.9%. This is due to the multimodal 

knowledge assistance of the model, which can use 

external knowledge to make up for the lack of data. At the 

same time, the dynamic attention mechanism effectively 

extracts key features, so that the model also has good 

performance in small sample scenarios.  

 

Table 4a: Error type classification accuracy of different models under different noise level data 

Model Name Low noise (5% error) 
Medium Noise (15% 

Error) 
High noise (30% error) Average accuracy 

Original Transformer 63.2% 55.8% 48.6% 55.9% 

ErrorFocus 74.5% 68.3% 61.2% 68.0% 

KG - Translate 77.4% 71.2% 64.8% 71.1% 

RL - Correct 76.1% 70.0% 63.3% 69.8% 

BERT - Fix 80.6% 76.2% 70.5  

As shown in Table 4a, in the error type classification 

task under different noise levels, the DA-MK model 

showed stability and accuracy far exceeding other 

comparison models. As the error ratio in the data climbed 

from 5% to 30%, the classification accuracy of the 

original Transformer model dropped significantly, from 

63.2% to 48.6%, which exposed its weakness of lacking 

an effective anti-interference mechanism when facing 

data disturbances. Although models such as ErrorFocus 

and KG-Translate have certain error analysis capabilities 

due to their own characteristics, their performance has a 

clear downward trend as the noise level increases, 

indicating that a single analysis method is difficult to 

maintain efficient operation in a complex interference 

environment. 

On the other hand, the DA-MK model still maintains 

a high accuracy of 82.3% even in a high-noise (30% error) 

data environment, and the average accuracy reaches 

85.6%. This is mainly due to its unique dual-core 

mechanism: the dynamic attention weighting module can 

accurately identify key features related to the error type 

under noise interference, avoiding being misled by 

erroneous or redundant information; the multimodal 

knowledge embedding module introduces rich external 
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knowledge to provide more dimensional reference for the 

judgment of error types. For example, when encountering 

errors caused by semantic confusion, the semantic 

association information in the knowledge graph can assist 

the model in clarifying the error type and reducing 

misjudgments caused by noise. This multi-mechanism 

collaborative working mode enables the DA-MK model 

to stably and accurately classify error types even when 

data quality is uneven, showing strong robustness and 

adaptability. 

Table 4(b): Qualitative error analysis of DA-MK corrections 

Source Sentence 

(Excerpt) 

Baseline Translation (Error) DA-MK Suggested 

Correction 

Proofreader 

Acceptance 

Error Type 

The patient was 

prescribed a high 

dose. 

Dem Patienten wurde eine 

große Dosis verschrieben. 

(literal, awkward) 

Dem Patienten wurde 

eine hohe Dosis 

verschrieben. 

Accepted Lexical 

He kicked the 

bucket yesterday. 

Er trat gestern den Eimer. 

(literal mistranslation) 

Er ist gestern gestorben. Accepted Idiomatic 

The system failed 

due to memory 

leak. 

Das System schlug aufgrund 

von Speicherverlust fehl. 

(incorrect term) 

Das System fiel 

aufgrund eines 

Speicherlecks aus. 

Accepted Technical 

terminology 

The company will 

bear the cost. 

Das Unternehmen wird den 

Bären kosten. (false friend) 

Das Unternehmen trägt 

die Kosten. 

Accepted Semantic 

She is under the 

weather today. 

Sie ist heute unter dem 

Wetter. (literal mistranslation) 

Sie fühlt sich heute 

nicht wohl. 

Accepted Idiomatic / 

Cultural 

Table 4(b) presents qualitative examples of 

translation errors and DA-MK’s suggested corrections, 

together with proofreader acceptance results. These 

examples complement the quantitative analysis in Table 

4 by illustrating practical improvements in readability, 

idiomatic usage, and terminology accuracy. 

Table 5: Comparative performance of DA-MK and baseline models 

Model Error Location 

Accuracy (%) 

BLEU Score 

(±95% CI) 

Error Classification F1 

(%) 

Statistical Significance (p-

value) 

Transformer 82.4 ± 1.5 27.4 ± 0.6 79.8 p < 0.01 

BERT-NMT 81.6 ± 1.7 26.9 ± 0.7 77.5 p < 0.01 

mBART 83.2 ± 1.6 28.1 ± 0.5 80.6 p < 0.01 

XLM-R 84.0 ± 1.3 28.3 ± 0.6 81.4 p < 0.01 

DA-MK  90.3 ± 1.2 29.6 ± 0.5 85.7 — 

Table 5 presents a comparative analysis of DA-MK 

against baseline models. Results highlight DA-MK’s 

superior error location accuracy, BLEU scores, and F1 

classification performance. Confidence intervals and p-

values confirm statistical reliability, demonstrating that 

DA-MK significantly outperforms Transformer, BERT-

NMT, mBART, and XLM-R across evaluation metrics. 

Proofreading Assistance Workflow 

The proofreading assistance in the DA-MK framework is 

carried out through the following structured steps: 

1. Error Detection: Identify potential errors in the 

translation output using dynamic attention recalibration 

(Eq. 7a–7c). 

2. Error Classification: Categorize detected 

errors into lexical, syntactic, or semantic types based on 

multimodal features and error vectors. 

3. Knowledge Consultation: Retrieve relevant 

contextual or domain-specific information from external 

knowledge graphs $G_{term}$ and $G_{cult}$ (see Eq. 

9b). 

4. Suggestion Generation: Provide corrective 

proofreading suggestions ranked by confidence scores, 

with high-probability edits prioritized for user adoption. 

This structured process replaces vague descriptions 

and offers a precise, stepwise mechanism for 

proofreading assistance within the DA-MK model 
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Table 6: Ablation study results of DA-MK 

components 

Model 

Variant 

Accuracy 

(%) 

F1-

Score 

Inference 

Time (ms) 

Baseline 

Transformer 

70.5 68.9 55 

+ Dynamic 

Attention only 

74.2 72.1 59 

+ Multimodal 

Fusion only 

75.0 72.8 61 

+ Both (DA-

MK full 

model) 

80.0 78.6 63 

Table 6 shows that both Dynamic Attention and 

Multimodal Fusion individually improve performance 

over the baseline. Their combination yields the highest 

gains, confirming complementary benefits. The inference 

time increase remains marginal, ensuring efficiency is 

preserved. 

5  Experimental discussion 

From the experimental results, the DA-MK model shows 

significant advantages in all indicators, which fully 

supports the hypothesis proposed in this study that 

dynamic attention weighting and multimodal knowledge 

fusion can achieve efficient error tracing and improve 

proofreading efficiency. In terms of error location and 

classification, traditional models mostly rely on a single 

information source or shallow analysis mechanism. For 

example, the ErrorFocus model is only based on 

traditional attention visualization, which makes it 

difficult to deeply explore the essence of the error; while 

the DA-MK model relies on dynamically adjusting 

attention weights to focus on the core of the error, and 

combines multimodal knowledge embedding to perform 

deep reasoning on semantics and background 

information, effectively overcoming this limitation and 

achieving accurate judgment of the error location and 

type. This mechanism can not only deal with common 

errors, but also performs well in dealing with complex 

semantic errors and mixed error types, reflecting the 

model's deep understanding and analysis capabilities. 

Five human proofreaders with extensive expertise in 

revising translations conducted the proofreading 

assessment. Each participant used the technology 

independently after receiving a set of translation 

examples to contribute. It corroborated the dependability 

by finding that the raters' ratings were quite similar 

(Cohen's κ = 0.82).  

The experimental results of the proofreading 

suggestion adoption rate and translation quality 

improvement further highlight the practical value of the 

DA-MK model. Other comparison models have 

shortcomings in the accuracy of error analysis and the 

pertinence of proofreading suggestions, resulting in a low 

suggestion adoption rate, which in turn limits the 

improvement in translation quality. The DA-MK model 

can dynamically optimize suggestions based on 

proofreaders' feedback through accurate error tracing and 

classification, combined with an interactive proofreading 

suggestion generation module. The generated 

proofreading suggestions are more in line with actual 

needs, thereby greatly improving manual proofreading 

efficiency and translation quality. This shows that the 

model can not only detect errors, but also provide 

practical solutions, truly realizing the leap from 

theoretical analysis to practical application. 

The experimental results under different conditions 

also show the good adaptability and robustness of the 

DA-MK model. Faced with changes in the number of 

errors, error type ratios, domain data, translation length, 

sample size, and noise level, the DA-MK model can 

maintain a high level of performance. For example, in a 

small sample data scenario, the multimodal knowledge 

auxiliary mechanism uses external knowledge to make up 

for the lack of data, and the dynamic attention mechanism 

effectively extracts key features, so that the model still 

performs well with limited data; when processing long 

sentences and complex semantics, the dynamic attention 

mechanism can effectively capture semantic relationships, 

and multimodal knowledge reasoning ensures semantic 

accuracy, ensuring the stability of the model in difficult 

tasks. This shows that the design mechanism of the model 

has strong versatility and flexibility, and can adapt to 

diverse translation tasks and complex practical 

application environments. 

However, the experimental results also reflect certain 

limitations of the research. Although the DA-MK model 

performs well in many aspects, the performance of the 

model may be affected in extremely complex translation 

scenarios, such as texts involving highly professional and 

rare domain knowledge, or content with extremely 

obscure language expressions and special rhetoric. In 

addition, although the dataset used in the experiment 

covers different fields and language directions, it still has 

limitations and may not cover all language phenomena 

and translation needs. Future research can further expand 

the diversity of the dataset and explore how to incorporate 

more types of knowledge and more advanced 

technologies into the model to enhance the model's 

processing capabilities in extreme scenarios. 

In the future, the use of domain-specific ontologies 

in conjunction with low-resource adaptation strategies to 

address problematic linguistic and domain-specific 

challenges has the potential to help individuals better 

comprehend unique subjects. The use of contextual 

embeddings derived from multilingual models that have 

been trained previously will be beneficial in 

understanding figurative language and cultural 

differences. It is possible to include items in the collection 
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that are written in languages that are exceedingly difficult 

to comprehend and technical. It will make it more 

difficult for consumers to decline the offer. If these rules 

are implemented, it is anticipated that the DA-MK model 

will become more flexible and accurate in a wide range 

of real-world translation scenarios. 

The recommendations were easier to grasp, and the 

error portrayal was more understandable, according to 

five skilled proofreaders who participated in the pilot test 

of the interface. They believed that the interface was 

easier to understand. People who used the software said 

that the easy design and the real-time feedback loop made 

it simpler and quicker to make decisions while they were 

proofreading. It is clear from these results that the 

interface is helpful, and they also provide some 

suggestions for how it may be improved in the future. 

Regarding the external validity and generalizability 

of the experimental results, judging from the existing 

experimental data, the DA-MK model has performed 

well in tests in multiple dimensions and has the potential 

to be generalized to actual translation work scenarios. 

Whether it is daily corporate translation, academic 

literature translation, or the application of online 

translation platforms, the model's error tracing and 

proofreading efficiency improvement functions can play 

an important role. However, in the actual promotion 

process, it is also necessary to consider the usage habits 

and demand differences of different user groups, as well 

as compatibility issues with existing translation systems 

and workflows. By further optimizing the human-

computer interaction interface of the model and 

strengthening its integration with actual application 

scenarios, it is expected that the DA-MK model will be 

applied in a wider range of fields, bringing greater 

impetus to the development of the translation industry. 

To assess generalization, DA-MK was additionally 

evaluated on the French–English WMT dataset, where it 

achieved comparable improvements, confirming 

robustness and adaptability across different language 

pairs. 

User feedback from 15 proofreaders showed DA-

MK reduced average proofreading time by 27%, 

confirming practical usability improvements.” 

6  Conclusion 

In the context of globalization, neural translation systems 

have become an important tool for cross-language 

communication, but their black-box characteristics make 

it difficult to trace errors and inefficient to manually 

proofread. Due to the time-consuming location of 

translation errors, the cross-language communication 

costs of enterprises increase by an average of 25% each 

year, which seriously hinders the efficient transmission of 

information. In response to the above problems, this 

study innovatively proposed the DA-MK model, which 

integrates dynamic attention weighting and multimodal 

knowledge embedding technology to build a complete 

system from error feature extraction, attribution 

reasoning, type classification to proofreading suggestion 

generation. By designing an adaptive error type classifier 

and an interactive proofreading suggestion module, 

accurate error identification and efficient processing are 

achieved. In the experimental stage, based on the WMT 

2014 and IWSLT 2016 datasets, the DA-MK model 

showed excellent performance in multiple indicators 

compared with four mainstream models. In terms of error 

location, the average accuracy rate reached 90.3%; the 

error type classification accuracy rate was 87.2%; the 

proofreading suggestion adoption rate was as high as 

79.8%, which increased the translation quality 

improvement (BLEU score) by an average of 13.0, far 

exceeding other comparison models. The research results 

have enriched the research system of interpretable neural 

translation systems in theory and provided a new 

perspective for understanding the decision-making 

mechanism of the model. In practice, they have 

significantly reduced the cost of translation and 

proofreading, improved the efficiency of cross-language 

collaboration in enterprises, and have broad application 

prospects in scenarios such as academic document 

translation and online translation platforms. Although the 

model performs well in most scenarios, there is still room 

for improvement in extremely complex translation tasks. 

In the future, the data set coverage can be further 

expanded, more advanced technologies can be integrated, 

model performance can be optimized, and the neural 

translation system can be promoted to develop in a more 

efficient and interpretable direction. 
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