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Muscle fatigue is an inevitable phenomenon in athletic training, and its accurate assessment is crucial for 

preventing injuries. To address the issues of high redundancy in multi-channel surface electromyography 

(sEMG) features and the limitations of linear dimensionality reduction methods, this study proposes a 

muscle fatigue recognition model based on Kernel Principal Component Analysis (KPCA) and Support 

Vector Machine (SVM). sEMG signals were collected from 12 subjects performing sustained contractions. 

A comprehensive set of 48 time-domain, frequency-domain, and nonlinear features was extracted. KPCA 

was employed for nonlinear dimensionality reduction before classification. The resulting features were 

fed into an SVM classifier to distinguish between three fatigue states: relaxed, transitional fatigue, and 

fatigued. The model was evaluated using 10-fold cross-validation. Results demonstrated that the KPCA-

SVM combination achieved the highest performance, with an average recognition accuracy of 91.5%, 

precision of 0.91, recall of 0.93, and F1-score of 0.92, outperforming other combinations of 

dimensionality reduction methods (MI, PCA) and classifiers (FLDA, KNN). This method provides an 

effective tool for the objective assessment of muscle fatigue in athletes. 

Povzetek: Študija predstavi model KPCA + SVM za prepoznavanje treh stanj mišične utrujenosti iz sEMG, 

ki z zmanjšanjem odvečnih značilk doseže okoli 91,5 % natančnost in prekaša primerjane pristope. 

 

1 Introduction  
Athletes get good grades is the premise of the need for a 

lot of training, and a lot of training will increase the injury 

probability of athletes, because with the increase of 

training intensity and time will produce muscle fatigue, 

serious will cause muscle damage [1]. Hence need to be 

testing technology service athlete’s fatigue, avoid the 

occurrence of muscle damage. But in recent years, (multi-

channel sEMG surface electromyography, sEMG) 

because of its noninvasive, convenient detection merits 

attention in evaluation of muscle fatigue [2]. Are produced 

by the muscle contraction multi-channel sEMG weak 

electrical signals of contains many useful biological 

information, biological medicine, sports medicine and 

rehabilitation medicine and other fields play an extremely 

important role in [3]. 

Moniri et al. [4] developed advanced techniques for 

real-time forecasting of sEMG features related to trunk 

muscle fatigue using machine learning, demonstrating the 

potential of sEMG in fatigue analysis. From then on, the 

development of sEMG equipment constantly updated, 

promoted the study of sEMG signal. American Delsys of 

wireless sEMG acquisition instrument [5] the most widely 

used. It includes 16 channel wireless sensor with three 

degrees of freedom of acceleration sensor, small volume 

and easy to carry, up to 5 h of battery life. Xu et al. [6] 

utilized a convolutional neural network for sEMG-based  

 

feature prediction, providing a general model for sports  

activity analysis. In a study on pilot neck fatigue 

assessment, Rampichini et al. [7] achieved a high 

recognition accuracy of 91.25% by employing a hybrid 

optimization algorithm to tune a Gaussian process model. 

This work demonstrates the potential of advanced 

machine learning models in fatigue recognition, which 

motivates our exploration of KPCA and SVM for sEMG-

based fatigue analysis in athletes. 

However, while these methods demonstrate 

promising results, they often rely on direct use of multi-

channel sEMG feature parameters, which may exhibit 

high correlation and redundancy. This can lead to 

increased computational complexity and reduced 

classification accuracy in fatigue models [8]. To address 

these limitations, this study introduces a novel approach 

that combines kernel principal component analysis 

(KPCA) and support vector machines (SVM). KPCA 

effectively reduces feature dimensionality by capturing 

nonlinear relationships in sEMG signals, while SVM 

ensures robust classification performance even with 

limited data. This method not only enhances the efficiency 

of fatigue detection but also avoids the extensive data 

requirements and computational overhead associated with 

deep learning models. 

As mentioned above, the direct use of the 

characteristic parameters of multi-channel sEMG, 
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although also has good recognition effect, but has a great 

deal of correlation between characteristic parameters and 

redundancy, without considering the complexity of the 

algorithm, often affect the fatigue model classification 

recognition rate [8]. This article in order to solve this 

problem, in the original feature parameters under the 

premise of no loss of the original information, using 

different feature dimension reduction method, remove 

redundant information, a new feature set, the use of 

classifier inspection classification effect, from which 

identify the most effective a classification model of 

fatigue. 

Compared to existing studies that often directly use 

raw or high-dimensional sEMG feature sets [8], the main 

contributions of this paper are threefold: (1) It 

systematically compares the effectiveness of three distinct 

feature dimensionality reduction techniques (MI, PCA, 

and KPCA) for muscle fatigue recognition, highlighting 

the importance of addressing feature redundancy and 

nonlinearity; (2) It proposes a novel fatigue recognition 

framework that synergistically combines KPCA for 

nonlinear feature extraction and SVM for robust 

classification, demonstrating that this combination 

effectively captures the complex patterns in sEMG signals 

associated with different fatigue states while maintaining 

computational efficiency; (3) The proposed KPCA-SVM 

model achieves a superior average recognition rate of 

91.5% for three-state fatigue classification, offering a 

practical and high-accuracy solution that avoids the large 

data requirements of deep learning models, making it 

particularly suitable for scenarios with limited training 

data. 

The primary objectives of this study are: (1) to 

develop and evaluate a framework for muscle fatigue 

recognition by comparing the effectiveness of different 

feature dimensionality reduction techniques (MI, PCA, 

KPCA) combined with various classifiers (FLDA, KNN, 

SVM); (2) to specifically investigate the performance of 

the KPCA-SVM model in classifying three states of 

muscle fatigue (relaxed, transitional, fatigued) from multi-

channel sEMG signals; (3) to validate the proposed 

model's accuracy and efficiency against other common 

approaches. 

2 The characteristics of the multi-

channel sEMG analysis method 

2.1 The time domain characteristics 

analysis method 

Time domain features of multi-channel sEMG can reflect 

the change of the signal in the time dimension, from the 

perspective of time, will be understood as a multi-channel 

sEMG time-varying function, has the advantages of 

simple, rapid computation [9]. Common characteristics 

such as RMS values, integral electrical values, the average 

absolute value and the zero rate of the mean, variance and 

amplitude cube [10]. 

 

 

 

1) The Root Mean Square Value (Root Mean Square, 

RMS) 

Root means square value indicates change in unit 

time, multi-channel sEMG can respond muscle activity. 

As shown in Equation (1): 

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 (1) 

Type, 𝑥𝑖(𝑖 = 1,2, … , 𝑁) is the time series of the signal 

length N to select the number of frames. 

2) The Integral Electrical Values (Integrated EMG, 

iEMG) 

Integral electrical value indicates that the activities of 

the muscle fibers of charge level, reaction of multi-

channel sEMG amplitude changes with exercise. As 

shown in Equation (2): 

𝑖𝐸𝑀𝐺 =∑|𝑥𝑖|

𝑁

𝑖=1

 (2) 

Type, 𝑥𝑖(𝑖 = 1,2, … , 𝑁) is the time series of the signal 

length N to select the number of frames. 

3) The Average Absolute Value (Mean Absolute 

Value, MAV) 

The average absolute value used to identify the 

muscles. As shown in Equation (3): 

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 (3) 

Type, 𝑥𝑖(𝑖 = 1,2, … , 𝑁) is the time series of the signal 

length N to select the number of frames. 

4) The Zero Rate (Zero Crossing Rate, ZCR) 

Zero crossing rate refers to the sEMG symbols change 

ratio, per unit time is an important index of the time-

domain analysis. As shown in Equation (4): 

𝑍𝐶𝑅 = ∑ 𝑠𝑔𝑛

𝑁−1∑(−𝑥𝑖𝑥𝑖−1)

𝑖=1

 (4) 

Type, 𝑥𝑖(𝑖 = 1,2, … , 𝑁) is the time series of the signal 

length N to select the number of frames. 

5) Variance (Variance, VAR) 

Variance is used to measure the parameters of the 

degree of discrete random variables. As shown in 

Equation (5): 

𝑉𝐴𝑅 =
∑ (𝑥𝑖 − 𝑥𝑖)
𝑁
𝑖=1

𝑁
 (5) 

Type, 𝑥𝑖(𝑖 = 1,2, … , 𝑁) is the time series of the signal 

length N to select the number of frames. 

6) The Mean Amplitude Cube (Amplitude Cubic 

scheme, ACM) 

Average amplitude cube can response in time domain 

amplitude change rule of multi-channel sEMG. As shown 

in Equation (6): 

𝐴𝐶𝑀 =
1

𝑁
∑𝑥𝑖

3

𝑁

𝑖=1

. (6) 

Type, 𝑥𝑖(𝑖 = 1,2, … , 𝑁) is the time series of the signal 

length N to select the number of frames. 
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2.2 Analysis of characteristics of frequency 

domain method 

Methods of frequency domain feature of electricity is will 

signal through the fast Fourier transform (FFT), according 

to the power spectrum of signal or frequency spectrum is 

analyzed [11]. Commonly used indicators have mean 

power frequency and spectral moments and the median 

frequency. 

1) The Mean Power Frequency (Mean Power 

Frequency) 

Mean power frequency with muscle fatigue 

deepening decline, the reason is that lower pH, results in 

the decrease of muscle fiber conduction velocity. As 

shown in Equation (7): 

𝑀𝑃𝐹 =
∫ 𝑓
∞

0
× 𝑃𝑆𝐷(𝑓)𝑑𝑓

∫ 𝑃
∞

0
𝑆𝐷(𝑓)𝑑𝑓

 (7) 

Type of 𝑓  sEMG signal frequency, 𝑃𝑆𝐷（𝑓） for 

sEMG signal power spectral density function. 

2) Spectral Moment (Spectral Moment, SM) 

Spectral moment is Dimitrov put forward a set of 

parameters of muscle fatigue, two order spectral moment 

is often used to describe the change of high frequency. As 

shown in Equation (8): 

𝑆𝑀2 = ∫ 𝑓2
∞

0

𝑃𝑆𝐷(𝑓)𝑑𝑓. (8) 

Type of 𝑓  sEMG signal frequency, 𝑃𝑆𝐷（𝑓） for 

sEMG signal power spectral density function. 

3) The median Frequency (Media Frequency, MF) 

Found in the study of muscle fatigue estimation, the 

low frequency component of the multi-channel sEMG 

increases with muscle fatigue, quantitative coefficients are 

part of the representative indicators is the median 

frequency. As shown in Equation (9): 

𝑀𝐹 =
1

2
∫ 𝑃
∞

0

𝑆𝐷(𝑓)𝑑𝑓 (9) 

Type of 𝑓  sEMG signal frequency, 𝑃𝑆𝐷（𝑓） for 

sEMG signal power spectral density function. 

2.3 Time and frequency domain 

characteristics analysis method 

Time domain analysis was conducted on the signal in time 

domain analysis, studies the changing relation between 

time and signal amplitude; Frequency domain analysis is 

in the frequency domain analysis of signals, the frequency 

change [12]. While the aforementioned time-frequency 

analysis methods are foundational, recent advancements 

have introduced more sophisticated techniques for 

handling non-stationary signals like sEMG. Wavelet 

Transform (WT), particularly the Discrete Wavelet 

Transform (DWT), has gained prominence for its multi-

resolution analysis capability, allowing for feature 

extraction across different frequency bands at varying 

temporal resolutions [13]. Although the current study 

focuses on standard time, frequency, and time-frequency 

features for model simplicity and comparability, future 

work will explore integrating wavelet-based features to 

further enhance the model's performance in characterizing 

muscle fatigue dynamics. 

2.3.1 The short-time Fourier transform short-

time 

Fourier transform is a transform and Fourier transform, 

can be implemented by the Fourier transform, is one of the 

more commonly used a time-frequency analysis method . 

STFT principle is to put a long non-stationary signal as a 

superposition of countless short time stationary signal. For 

signal 𝑥(𝑡) , as well as with a moving time window is 

decomposed into countless time length of short time 

signal, so during this period can take it as a stationary 

signal, and then to the Fourier transform, signal time and 

frequency domain information. 

Define functions 𝑆𝑇𝐹𝑇(𝑤, 𝜏), said in the center of the 

window function of 𝜏 , to transform the function of 

spectrum as a result, ss shown in Equation (10): 

𝑆𝑇𝐹𝑇(𝑤, 𝜏) = ∫ [𝑥(𝜏)𝑤(𝑡 − 𝜏)]
+∞

−∞

𝑒−𝑗𝑤𝑡𝑑𝜏 ⋅ (10) 

In the short time Fourier transform, each of the 

different time, after the transformation can be a different 

spectrum, the frequency spectrum is combined time-

frequency distribution. The window length determines the 

time of spectrum, frequency resolution, the longer the 

length of the window, the Fourier transform of frequency 

domain resolution is higher, but the lower temporal 

resolution; on the other hand, the shorter the window, the 

Fourier transform of frequency domain resolution is 

lower, but the higher time resolution. Therefore, in 

practice need to according to the situation, between the 

time resolution and frequency resolution. Although the 

short time Fourier transform algorithm is very simple, can 

deal with non-stationary signal, applied to various fields, 

but the adaptive ability is poor. 

2.3.2 The Winger-Ville distribution 

In 1932, Winge presents a time-frequency analysis 

method, and applied to the field of quantum mechanics, 

later Ville signal analysis, introduced the method, formed 

the Winger-Ville distribution. 

Signal, a Winger-Ville distribution can be defined as: 

𝑊𝑥,𝑦(𝑡, 𝑤) = ∫ 𝑥
+∞

−∞

(𝑡 +
𝜏

2
) 𝑦∗ (𝑡 −

𝜏

2
) 𝑒−𝑗𝑤𝑡𝑑𝜏 (11) 

Type 11 is also called the bilinear time-frequency 

analysis method, can also be represented as a signal of x(t) 

from Winger-Ville distribution form, as shown in 

Equation (12): 

𝑊𝑥(𝑡, 𝑤) = ∫ 𝑥
+∞

−∞

(𝑡 +
𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
) 𝑒−𝑗𝑤𝑡𝑑𝜏 (12) 

Based on the definition of Winger-Ville distribution, 

frequency spectrum of signal t any time, on time t, t time 

signal multiplication, all results are superimposed and 

then do the Fourier transform, because the signal is not a 

single component, can produce interaction among 

computing, form the cross terms. When the Winger-Ville 

distribution crossover component is bigger when a certain 

cross interference, often cover a useful time and frequency 

information. In order to avoid the Winger-Ville 

distribution in the time-frequency plane cross interference, 

the introduction of window function, the x(t) can be added 
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window, the resulting Winger-Ville distribution is defined 

as shown in Equation (13): 

𝐶𝑍 = ∫ ∫ 𝑧
+∞

−∞

+∞

−∞

(𝑢 +
𝜏

2
) 𝑧∗ (𝑢 −

𝜏

2
)𝜓(𝑡

− 𝑢, 𝜏)𝑒−𝑗𝑤𝑡𝑑𝑢𝑑𝜏 

(13) 

Type of window function, ℎ(𝜏)  is equal to the 

difference between in the frequency domain to the Winger 

Ville distribution of smoothing. 

Compared with the short time Fourier transform, 

Winger-Ville distribution can accurately identify signals 

is a single component or component, get better time-

frequency information. But Winger-Ville distribution of 

different frequency components will cause the 

interference of cross terms, although after add window 

will have certain inhibition on the cross-term interference, 

but cannot completely eliminate its existence. 

 

2.3.3. Choi-William’s distribution 

Choi-William’s distribution is insufficient for 

Winger-Ville distribution problem put forward the 

improved algorithm. In order to complete the related 

domain filtering of fuzzy function, eliminate the cross-

term interference formed by mutual fuzzy function, Choi 

and Williams with the method of the kernel function is 

proposed. As shown in Equation (14): 

𝐶𝑍 = ∫ ∫ 𝑧
+∞

−∞

+∞

−∞

(𝑢 +
𝜏

2
) 𝑧∗ (𝑢 −

𝜏

2
)𝜓(𝑡

− 𝑢, 𝜏)𝑒−𝑗𝑤𝑡𝑑𝑢𝑑𝜏 

(14) 

Type of 𝜓(𝑡 − 𝑢, 𝜏) for Cohen class time-frequency 

distribution kernel function. 

2.4 Nonlinear characteristics analysis 

method 

The contraction of muscles in different state, the motor 

nerve cell number in time, space and there exist certain 

differences, therefore sEMG has obvious nonlinear 

characteristics [14]. Therefore, put forward a new method 

of analysis, complexity and nonlinear analysis of time 

series method is an office value, the greater the signal 

contains information is more complex. In this paper, 

extraction of multi-channel sEMG approximate office as 

the research of nonlinear characteristic parameters. 

Approximate Entropy (ApEn), introduced by Pincus 

[15], is a nonlinear dynamic parameter used to quantify 

the regularity and unpredictability of a time series. A 

higher ApEn value indicates greater complexity and 

irregularity in the signal. It has been widely applied in 

physiological signal analysis, including sEMG, to assess 

the complexity changes associated with muscle fatigue 

[16]. The calculation of ApEn involves comparing the 

similarity of patterns within the signal for increasing 

pattern lengths (m and m+1). 

3 The analysis method of the feature 

dimension reduction and 

classification model 

3.1 Feature dimension reduction 

This article is based on three channels sEMG signal, a total 

of 48 d characteristic parameters can be extracted. High-

dimensional data contains a large number of redundant 

features, the classification of the redundant features of the 

follow-up effect and increase the complexity of the 

operation, and high dimensional data can lead to “fitting” 

and “dimension disaster” problem, reduce the 

performance of the classifier. Extraction of effective 

feature parameters is the key to the classification of 

fatigue, so need to dimension reduction of feature set, the 

classification model recognition rate [17]. The overall 

workflow of the proposed muscle fatigue recognition 

model is illustrated in Figure 1. It outlines the key stages: 

multi-channel sEMG signal acquisition, feature 

extraction, dimensionality reduction, and classification, 

providing a clear roadmap for the methodology described 

in this section. 

 

Figure 1: The whole algorithm flow chart. 

3.1.1 Feature selection 

Feature selection is according to an evaluation criterion, 

from centralized to choose some of the most effective 

characteristics, thus reducing the process of feature 

dimension [18]. The Dash gives the framework of feature 

selection, the following is shown in Figure 2. 
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Figure 2: The framework of feature selection. 

Mutual information (MI) measurement is one of the 

important measures of feature selection, without 

considering the distribution of sample in advance, and can 

deal with linear or nonlinear random variables [19]. MI 

value is larger, can explain the interrelation between the 

two variables, the greater the smaller conversely. 

MI calculation equation is shown below: 

𝐼(𝑈; 𝑉) = ∑∑𝑝

𝑣∈𝑉𝑢∈𝑈

(𝑢, 𝑣) 𝑙𝑜𝑔
𝑝(𝑢, 𝑣)

𝑝(𝑢)𝑝(𝑣)
 (15) 

Type of 𝑝(𝑢, 𝑣)  is the joint probability distribution 

function of u and v, 𝑝(𝑢) and 𝑝(𝑣), respectively is the 

edge of the u and v probability the function. 

3.1.2 Feature extraction 

1) The principal component analysis method 

Principal component analysis is a commonly used 

linear feature extraction method, the linear relationship for 

a set of possible data, through the orthogonal 

transformation, principal component analysis to data 

mapped to a low-dimensional subspace of linear 

independence, the basic principle of the algorithm are: 

Original each dimension data of the covariance matrix as 

well as the eigenvalue and eigenvector, the characteristic 

value from big to small, retain data high contribution rate, 

ignore the data of low contribution rate, so as to realize the 

feature dimension reduction and random vector 𝑥𝑖，𝑖 =
1,2，…𝑀 which 𝑀 as the total number of samples, 𝑁 is 

the dimension of data [20]. The sample can be X11 To form 

M × N matrix, namely 𝑋 = {

𝑥11 ⋯ 𝑥1𝑁
⋮ ⋱ ⋮

𝑥𝑀1 ⋯ 𝑥𝑀𝑁
}. 

In the practical implementation of KPCA in this 

study, the Radial Basis Function (RBF) kernel was 

employed. The kernel parameter σ  was determined 

through a grid search within a range of [0.01,1], 

optimizing for the subsequent classification performance. 

The number of nonlinear principal components was 

selected to ensure a cumulative variance contribution rate 

of over 95%, effectively reducing the feature 

dimensionality from 48 to 10 while preserving the most 

critical discriminatory information. 

According to matrix 𝑋𝑚×𝑛  column, each column of 

the mean, calculate the average each column minus the 

column, as shown in the Equation (16), with each column 

number minus the corresponding column mean, get new 

matrix 𝐵 = {
𝑥11 ⋯ 𝑥1𝑁
⋮ ⋱ ⋮

𝑥𝑀1 ⋯ 𝑥𝑀𝑁

}. 

𝑥̄ = 𝑥𝑖 −
1

𝑀
∑𝑥𝑖

𝑀

𝑖=1

 (16) 

And then according to the 𝐵𝑇  type 16 obtains its 

transpose matrix, computing characteristics of covariance 

matrix C, as shown in the Equation (17): 

𝐶 = 𝐵𝑇 × 𝐵 (17) 

Then calculate the eigenvalues of the covariance 

matrix C, 𝛽𝑖 , 𝜆𝑖  and eigenvector, the eigenvalue 𝜆𝑖  from 

big to small before order, according to the contribution 

rate to select the appropriate k composition, to constitute 

the new data. K before features vector matrix such as type 

of (18): 

𝑊 = (𝛽1, 𝛽2, … , 𝛽𝑘) (18) 

Refactoring data dimension reduction to k-

dimensional 𝑃 = 𝑊 × 𝑋. 

2) The kernel principal component analysis method. 

 Some fatigue characteristic value may show the 

nonlinear relationship between fatigue and, therefore, we 

need a new way to solve the problem. Kernel principal 

component analysis is an improved algorithm based on 

principal component analysis, is a kind of nonlinear 

feature extraction method, solve the problem of principal 

component analysis is unable to realize, compared with 

the principal component analysis greatly reduced the 

amount of calculation, and provides a better recognition 

performance [21]. Its basic principle is as follows: First of 

all, through nonlinear mapping, transform the data into a 

high-dimensional nonlinear space, and then using linear 

PCA mapped to a low dimensional space. In this study, the 

kernel component analysis (KPCA) employs radial basis 

function kernels. The kernel parameter σ was optimized 

through a grid search combined with 5-fold cross-

validation, with the search range set to [0.1, 0.5]. The final 

selected parameter σ=0.1 achieved a cumulative variance 

contribution rate exceeding 95%, while reducing the 

feature dimensionality from 48 to 10. 

For the n input sample data 𝑥𝑘(𝑘 = 1,2, … , 𝑛)，𝑥 ∈
𝑅𝑁 , introducing the nonlinear mapping function 𝛷 , 

transform data 𝑥𝑘 is 𝛷(𝑥𝑘), then in the new feature space, 

covariance matrix for C. 

Using the iterative method to solve eigenvalue 

𝜆(𝜆 > 0) and characteristic vector 𝑉(𝑉 ≠ 0), the specific 

Equation (19): 

𝜆𝑉 = 𝐶𝑉 (19) 

And V by Ф(x) linear said, as shown in Equation (20): 

𝑉 =∑𝛼𝑗

𝑛

𝑗=1

𝛷(𝑥𝑗), 𝑗 = 1,2, … , 𝑛 (20) 

Type in 𝛼𝑗 for the equation coefficient, Equation (21) 

left 19 times 𝛷(𝑥𝑘): 
𝜆(𝛷(𝑥𝑘) ⋅ 𝑉) = 𝛷(𝑥𝑘) ⋅ 𝐶𝑉, 𝑘 = 1,2, … , 𝑛 (21) 

Define a n × n matrix K, the details are shown in 

Equation (22): 

𝐾𝑖𝑗 = 𝛷(𝑥𝑖)𝛷(𝑥𝑗), 𝑖, 𝑗 = 1,2, … , 𝑛 (22) 

Equation (23), for solving the nuclear matrix K of 

non-zero eigenvalue 𝜆 and eigenvector alpha 𝛼. 

𝑛𝜆𝛼 = 𝐾𝛼 (23) 

Centralized eigenvector V, sample data 𝛷(𝑥) in the 

mapping Equation (24): 

ℎ𝑖(𝑥) = (𝑉, 𝛷(𝑥)) = ∑𝛼𝑖

𝑛

𝑖=1

𝛷(𝑥𝑖) (24) 
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ℎ𝑖(𝑥)  to 𝛷(𝑥) of the first k nonlinear principal 

component vectors. 

In addition to dimensionality reduction techniques 

like PCA and KPCA, the selection of appropriate features 

from the sEMG signals is crucial for accurate muscle 

fatigue detection. In this study, we focus on Root Mean 

Square (RMS), Mean Absolute Value (MAV), and Zero 

Crossing Rate (ZCR) as primary features. RMS is chosen 

because it quantifies the amplitude variation of the sEMG 

signal, which is directly related to muscle contraction 

intensity and tends to decrease with fatigue. MAV 

measures the overall signal strength by averaging the 

absolute values of the signal, making it sensitive to 

changes in muscle activity during prolonged exercise. 

ZCR captures the frequency characteristics of the signal 

by counting the number of times the signal crosses the zero 

line, which decreases as muscle fatigue causes a shift 

toward lower frequencies. These features have been 

widely used in muscle fatigue detection due to their 

simplicity and effectiveness. 

3.2 Muscle fatigue classifier selection 

Classification of fatigue is the last step of fatigue model is 

set up, on the extraction of feature dimension reduction, 

multi-channel sEMG its inputs to the classifier for training 

[22]. This article USES the Fisher linear discriminant 

analysis, K neighbor and three kinds of support vector 

machine classifier to classify fatigue. 

3.2.1 Fisher linear discriminant analysis 

Fisher linear discriminant analysis (FLDA) in the field of 

pattern recognition, introduced in the 1990s, is a classic 

algorithm in pattern recognition. Linear discriminant 

analysis is a kind of, supervision and learning needs for 

data classification label in advance, the basic idea is to 

project high-dimensional data to identify best low 

dimensional vector space, in the new subspaces, maximize 

the spacing between the similar sample, the sample 

spacing between different categories to minimize, or 

similar samples gathered as much as possible, samples of 

different categories of decentralized as much as possible. 

The core idea of FLDA is to find a projection direction 

that maximizes the distance between classes while 

minimizing the variance within each class, as conceptually 

depicted in Figure 3. This property makes it suitable for 

distinguishing well-separated fatigue states. 

 

Figure 3: Fisher schematic diagram of the linear 

discriminant analysis principle. 

Given sample set (𝑥𝑖，𝑦𝑖), 𝑖 = 1,2, … , 𝑛, 𝑥 ∈ 𝑅𝑁 , 𝑦 ∈
{−1,1}, the first-class y the sample mean and variance as 

the Equation (25): 

𝜇𝑦 =
1

𝑁𝑦
∑ 𝑥𝑖
𝑥𝑖∈𝑦

 

𝑠𝑦
2 = ∑(𝑥𝑖 − 𝜇𝑦)

𝑥𝑖∈𝑦

2

 

(25) 

Type in N, said the number of sample points, the first 
(𝑥𝑖 , 𝑦𝑖)  mapping to 𝛾  direction vector, is the first i a 

sample points on its projection for the Equation (26): 

𝑧𝑖 = 𝛾𝑇𝑥𝑖 (26) 

Is mapped to the first-class y sample direction vector 

𝛾 on the mean and variance of the concrete as shown in 

Equation (27): 

𝑣𝑦 = 𝛾𝑇𝜇𝑦 (27) 

When the same sample interval with different kinds 

of sample spacing ratio, the largest best direction vector 𝛾 

requires specific can be obtained as shown in the Equation 

(28): 

𝑎𝑟𝑔𝑚𝑎𝑥 𝐽 (𝛾) =
𝑣−1 − 𝑣1

𝜎−1
2 − 𝜎1

2 (28) 

Mean value and variance of (27) will type into type 

(28) and Equation (29) can be obtained: 

𝛾𝑇(𝜇−1 − 𝜇1)(𝜇−1 − 𝜇1)
𝑇𝛾

∑ 𝛾𝑇𝑥𝑖∈𝑦−1
(𝑥𝑖 − 𝜇−1)(𝑥𝑖 − 𝜇−1)

𝑇𝛾 + ∑ 𝛾𝑇𝑥𝑖∈𝑦1
(𝑥𝑖 − 𝜇1)(𝑥𝑖 − 𝜇1)

𝑇𝛾
 

(

29) 

Type of (𝜇−1 − 𝜇1)(𝜇−1 − 𝜇1)
𝑇  class is called the 

divergence between the matrix and the available 𝑆𝑎 said. 

(𝑥𝑖 − 𝜇−1)(𝑥𝑖 − 𝜇−1)
𝑇  and (𝑥𝑖 − 𝜇1)(𝑥𝑖 − 𝜇1)

𝑇  known 

as covariance matrix, and use the 𝑆𝜔 said together, that is, 

class divergence within the matrix. 30 type 2b after 

reduction for the equation: 
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𝑎𝑟𝑔𝑚𝑎𝑥 𝐽 (𝛾) =
𝛾𝑇𝑠𝑎𝛾

𝛾𝑇𝑠𝜔𝛾
 (30) 

Type of 𝑠𝑎  and 𝑠𝜔 , called generalized Rayleigh 

quotient, the 𝛾𝑟𝑠𝜔𝛾 = 1, though laser multiplier method 

is used to calculate the maximum eigenvalue of matrix 

𝑠𝑎
−1𝑠𝜔 𝜆 with the corresponding eigenvectors 𝛽, 𝛽 is the 

direction vector 𝛽 best value. 

3.2.2 K neighbor 

K Neighbor (K—on his Neighbor, KNN, put forward 

by Cover and others in the sixties of the 20th century, is a 

kind of typical supervised learning algorithm. K neighbor 

algorithm is the core idea: Classification of calculation for 

the distance between the training set and test set sample, 

find the nearest K training sample points, will stay 

classification test set samples for this K training set of 

sample points appear in the category of at most. The K-

Nearest Neighbors (KNN) algorithm classifies a sample 

based on the majority vote of its nearest neighbors in the 

feature space, as shown in Figure 4. The choice of K 

value, as illustrated, critically affects the decision 

boundary. 

 

Figure 4: Schematic representation of the K-neighbor 

principle. 

K neighbor algorithm has three elements, including 

the selection of K value, the distance measure and decision 

rules. K values will produce less fitting, and too small will 

have a fitting, affect classification recognition rate, 

generally with the method of cross validation to set the 

number of K value; Distance measurement with multiple 

methods, common with Euclidean distance, Manhattan 

distance, etc., this paper USES the Euclidean distance; For 

decision rules, in pattern recognition, generally USES the 

“majority voting method”. 

Set the sample sets (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑛, (𝑥𝑖 , 𝑦𝑖 ∈
𝑍), the calculation of Euclidean distance equation is: 

𝑑(𝑥𝑖 , 𝑦𝑖) = √∑(𝑥𝑖 , 𝑦𝑖)
2

𝑛

𝑖=1

 (31) 

To calculate the distance the sample concentration 

sample points, and according to the distance size in 

descending order; Select the current classification sample 

points, the most recent K points, adopts “majority voting 

method”, choose the highest frequency of sample points 

class, as a test sample point prediction of classes. 

3.2.3 Support vector machine (SVM) 

SVM (support vector machine, SVM) is put forward by 

Vapnik, first of all, is based on the statistical theory of VC 

dimension theory and structural risk minimum theory on 

the basis of a Machine learning algorithm. Core strategy 

is to find an optimal hyperplane, the support vector 

distance to the hyperplane is the largest, namely maximize 

between class and class intervals, can be applied to the 

characteristics of high dimension and nonlinear interface, 

etc., is a typical binary classification model. The SVM 

algorithm, is widely studied because of its classification 

performance advantage, mainly reflected in the system 

structure is simple, the global optimal, promotion ability, 

learning and prediction time is short. This experiment 

implements the SVM classifier using the LIBSVM library. 

The radial basis function kernel is employed, with both the 

penalty parameter C and kernel parameter γ optimized 

through grid search. The search space for C is defined as 

{0.1, 1, 10,100} and γ as {0.01,0.1, 1}. The optimization 

objective is determined by the average classification 

accuracy obtained from 10-fold cross-validation. The 

principle of Support Vector Machine (SVM) is to find the 

optimal hyperplane that maximizes the margin between 

classes, as shown in Figure 5. This approach ensures 

robust generalization performance. 

 

Figure 5: A schematic diagram of the SVM principle. 

Given training set sample (𝑥𝑖 , 𝑦𝑖) , 𝑥 ∈ 𝑅𝑛 , 𝑦 ∈
(−1,1), hyperplane 𝜔 ⋅ 𝑥 + 𝑏 = 0. In order to make the 

sample training set classification is correct, the details are 

shown in Equation (32): 

𝑦𝑖[(𝜔 ⋅ 𝑥𝑖 + 𝑏)] ≥ 1, 𝑖 = 1,2, … , 𝑛 (32) 

By the support vector can get 𝑦𝑘[𝜔 × 𝑥𝑘 + 𝑏] = 1, 

classification interval is calculated for 2/‖𝜔. ‖ , can be 

converted into minimum value problem with constraint 

conditions of (32), as shown in the Equation (33): 

𝑚𝑖𝑛 𝛷 (𝜔) =
1

2
‖𝜔‖2 =

1

2
(𝜔 ⋅ 𝜔) (33) 
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Introducing the though laser function 𝐿 = (𝜔, 𝑏, 𝛼), 
to 𝜔 after the partial derivatives into a and b, which is 

transformed into the dual problem, as shown in the 

Equation (34): 

𝑚𝑎𝑥 ∑ 𝛼𝑖
𝑚
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖

𝑚
𝑗=1

𝑚
𝑖=1 𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

1

. .$ 0
m

i i

j

s t y
=

= 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … ,𝑚 
(34) 

The calculated optimal weight vector 𝜔∗ and optimal 

offset 𝑏∗, the optimal hyperplane is obtained (𝜔∗ ⋅ 𝑥) +
𝑏 = 0 , and get the optimal classification function 

Equation (35):  

𝑠𝑔𝑛 {(∑𝛼𝑖
∗

𝑚

𝑖=1

𝑦𝑖(𝑥𝑖 ⋅ 𝑥𝑗)) + 𝑏∗} (35) 

In this study, the SVM classifier was implemented 

using the scikit-learn library in Python. The Radial Basis 

Function (RBF) kernel was selected due to its 

effectiveness in handling nonlinear classification 

problems. The hyperparameters, including the penalty 

parameter C and the kernel coefficient γ, were optimized 

through a grid search strategy combined with 5-fold cross-

validation on the training set. The search ranges were set 

as C = [0.1, 1, 10, 100] and γ  = [0.01, 0.1, 1]. The 

combination that yielded the highest cross-validation 

accuracy was selected for the final model. 

4 Classification of fatigue experiment 

and result analysis 
Extensive research has been conducted on sEMG-

based muscle fatigue recognition, with Table 1 

summarizing representative methodologies developed in 

recent years. For instance, Xu et al. [6] employed 

convolutional neural networks (CNN) for feature 

prediction, though their model exhibited high complexity. 

Rampichini et al. [7] utilized a Gaussian process model 

achieving 91.25% accuracy, yet failed to resolve feature 

redundancy issues. Most studies directly applied multi-

channel sEMG features, which resulted in redundant data 

and insufficient capture of nonlinear relationships through 

linear approaches [8]. To address these limitations, this 

paper introduces K-means Projection (KPCA) for 

nonlinear dimensionality reduction combined with 

Support Vector Machines (SVM) classifiers, aiming to 

achieve high-precision classification with reduced 

computational costs. 

Table 1: Comparison of work related to muscle fatigue 

and sEMG recognition 
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LDA 85% 15 
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resear
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KPCA SVM 91.5% 12 

Effecti

ve 

dimens

ion 

reducti

on, 

nonline

ar 

process

ing, 

high 

comput

ational 

efficien

cy 

4.1 Fatigue experiment scheme design 

4.1.1 Objects and materials 

The 120 subjects for the lab, including 60 boys and 60 

girls, are right-handed, no nervous musculoskeletal 

diseases. In good health, between the ages of 16 and 20, 

24 h before the experiment for high intensity exercise, no 

physical and mental fatigue. Each subject before the 

experiment were told the experimental process, at the 

same time sign the informed consent. 

4.1.2 The experimental process 

Experimental subjects before the corresponding action 

guidance to help their familiar with Borg subjective 

fatigue rating scale, and then according to individual 

circumstance to the experiment of several times to make 

participants familiar with the experimental process. 

Previous research, the experiment used more by those 

recorded every time ask participants state, so easy to 

interfere with the subjects, to give participants a certain 

psychological pressure, and different subjects, the time to 

reach the level of fatigue is endless also and same, easy to 

miss the corresponding fatigue level. The raw sEMG 

signals were acquired at a sampling rate of 2000 Hz using 
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a Delsys Trigno wireless system. Prior to feature 

extraction, the signals were processed with a 4th-order 

Butterworth band-pass filter (20-450 Hz) to remove low-

frequency drift and high-frequency noise, followed by a 

notch filter at 50 Hz to eliminate power line interference. 

This experiment adopts the subjects according to their 

own subjective initiative report subjective fatigue rating 

scale for 6-RPE score, subjective fatigue rating scale score 

and RPE classified as shown in Table 2, to RPE points, 11 

as relaxed state, 12 to 18 for the transition state of fatigue, 

19th and 20th for fatigue state. The sEMG signals were 

collected using the Delsys wireless acquisition system 

(16-channel) with a sampling frequency of 2000 Hz. The 

acquired raw signals were filtered through a band-pass 

filter with a frequency range of 20-450 Hz to eliminate 

power frequency interference and motion artifacts, 

followed by full-wave rectification. 

Table 2: RPE score and status classification. 

Grade Self-feeling Fatigue state 

6 Easy 

Easy state 

7 Have a rest 

8 
Extremely 

relaxed 

9 Relaxed 

10 Very light 

11 Light 

12 Fairly light 

13 Moderate 

14 It’s a little hard 
Fatigue 

transition state 
15 Very hard 

16 Strenuous 

17 It’s hard 

Fatigue state 

18 
Extremely 

difficult 

19 
Maximal 

exertion 

20 
Completely 

exhausted 

 

Pattern recognition algorithms mainly include 

supervision of learning, a semi-supervised learning and 

unsupervised learning. Supervision, which is also called a 

teacher learning, it is using the known label samples (tags) 

was carried out on the data in advance, adjust the classifier 

parameters, through the tags and data mapping 

relationships to build the model. A semi-supervised 

learning the use of two sample sets, one of the sample data 

sets have category labels, another for unclassified tag data, 

establish proper classification model. Unsupervised 

learning to use the data set, without any label, need 

machine to modeling of data sets, such as clustering. In 

this paper, using supervised learning, need labels on 

methods of electrical data, generate the relaxed state, 

transition state of fatigue and fatigue state data set. Which 

will easily tag set to 1, fatigue transition state tags to 0, 

fatigue tag set to 1. 

Subjects to close their eyes to relax on the bench to 

rest 2–3 min, to reach the best state of physical and mental 

relaxation. With grind arenaceous cream, alcohol cotton 

cleaning the skin, reduce skin impedance interference. 

According to the principle of anatomy, the methods of two 

difference electric sensor electrode according to the center 

of the interval of 2 cm distance joint in the target muscle 

bulging highest position, reference electrode from muscle 

testing, as far as possible general joint bone in the elbow. 

One-time recorded Dian Tie when fit, in order to make it 

closer and muscle adhesion to obtain more accurate, multi-

channel sEMG can make electric gel surface with a small 

amount of water. Cloth with intramuscular effect sensor 

coil on the right hand oboro triceps, biceps, oboro 

scratching test parts of the muscle, to prevent the shedding 

of electrode paste during the test. 

Subjects are sitting on a chair, neck, back straight, 

torso and legs, thighs and legs to keep 90°, respectively, 

on the left hand flat on left leg, right forearm and right 

upper arm to keep 90°, a little closer to the trunk. When it 

began, the first three seconds without load condition data; 

Then put in the dumbbell subjects, continue to maintain 

the non-weight bearing condition of position, and then 

start to collect the electromyographic data load condition. 

Acquisition process, the participants keep constant force 

lifts weights, the operator records the subjects’ subjective 

fatigue rating scale RPE values and the corresponding 

time, and observe the subjects’ right arm joint Angle, 

jitter, understand the subjects’ subjective feeling at any 

time. When the subject right forearm and right upper arm 

cannot maintain 900 or arm end data acquisition when 

shaking violently. Therefore, the final dataset comprised a 

total of 360 experimental sessions (120 subjects ×  3 

sessions per subject). From each session, the continuous 

sEMG signals corresponding to the three pre-defined 

fatigue states were segmented using a 1-second window 

with 50% overlap. This resulted in a final dataset of 

approximately 63,700 samplesfor model training and 

evaluation. 

4.2 Analysis, the result of the experiment 

Following dimensionality reduction, the number of 

features was determined as follows: For MI, the top 15 

features with the highest mutual information scores with 

the target fatigue states were selected. For PCA, the 

number of principal components was chosen to retain 95% 

of the cumulative variance, resulting in 12 components. 

Similarly, for KPCA (using an RBF kernel), the number 

of components accounting for 95% of the variance was 10. 

1) A stratified 10-fold cross-validation method was 

employed to evaluate the model performance. The 

dataset was partitioned into 10 folds while 

preserving the percentage of samples for each 

fatigue class in every fold. This stratification helps 

to ensure that each fold is a good representative of 

the overall class distribution, reducing bias and the 

risk of overfitting, which is particularly important 

for small datasets. To evaluate the model 

performance robustly, a stratified 10-fold cross-

validation scheme was employed, as illustrated in 

Figure 6. This method ensures that each fold is 

representative of the overall data distribution, 

reducing the bias in performance estimation. 



300   Informatica 49 (2025) 291–302                                                                                                                                  X. Chu et al. 
 

 

Figure 6: Ten folds cross validation schematic. 

Will new characteristics after dimension reduction set 

into Fisher linear discriminant analysis, K neighbor, 

support vector machine (SVM) three classifier for 

training, Table 3 for MI, PCA, KPCA and FLDA three 

dimensions reduction algorithm, KNN, three SVM 

classifier combination on fatigue state average recognition 

rate and the average elapsed time. 

 

Table 3: Experimental results of the different 

combinations 
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od 
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on Rate 

(%) 
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F1-

Scor
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Elapse
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MI + 

FLD

A 

69.3 0.68 0.71 0.69 4.08 

PCA 

+ 

FLD

A 

61.9 0.6 0.65 0.62 3.15 

KPC

A + 

FLD

A 

68.4 0.67 0.7 0.68 2.68 

MI + 

KNN 
77.1 0.76 0.79 0.77 4.35 

PCA 

+ 

KNN 

80.8 0.79 0.83 0.81 3.77 

KPC

A + 

KNN 

83.1 0.82 0.85 0.83 3.19 

MI + 

SVM 
83.6 0.82 0.86 0.84 4.15 

PCA 

+ 

SVM 

86.9 0.85 0.89 0.87 3.73 

KPC

A + 

SVM 

91.5 0.91 0.93 0.92 2.75\ 

 

Can be seen from Table 3, the use of different 

dimension reduction method, Fisher classifier running 

time the shortest, but its average recognition rate is low; 

The SVM classifier has the highest average recognition 

rate, operation time is short, in which the combination of 

KPCA and SVM has the highest average recognition rate, 

the average recognition rate reached 91.5%.To 

statistically validate the superiority of the KPCA-SVM 

model, a Wilcoxon signed-rank test was performed 

comparing its accuracy against the other eight model 

combinations. The results indicated that the performance 

improvement of the KPCA-SVM model was statistically 

significant (p < 0.05), confirming its effectiveness beyond 

chance. 

2) Rationale for classifier selection 

The selection of FLDA, KNN, and SVM as classifiers 

was driven by their complementary strengths in handling 

muscle fatigue detection tasks: 

 FLDA was chosen for its ability to maximize inter-

class separation in linear spaces, which is critical for 

distinguishing between discrete fatigue states (e.g., 

relaxed vs. fatigued) [23]. 

 KNN leverages local data distribution patterns 

without assuming global data structures, making it 

robust to complex sEMG signal variations [24]. 

 SVM excels in high-dimensional nonlinear 

classification through kernel methods, aligning with 

the nonlinear nature of sEMG fatigue patterns [25]. 

Comprehensive performance evaluation 

While Table 3 highlights the superiority of SVM in 

average recognition rate (91.5%), we further analyzed its 

performance using additional metrics (Table 4): 

Table 4: Performance metrics of SVM classifier. 

Metric Value Description 

Precision 0.91 

Proportion of correctly identified 

fatigue instances among all 

predictions. 

Recall 0.93 

Proportion of true fatigue 

instances correctly identified by 

the model. 

F1 Score 0.92 

Harmonic mean of precision and 

recall, balancing model 

performance. 

Confusion 

Matrix 
- 

87% of misclassifications 

occurred between adjacent fatigue 

levels. 

 

These results validate SVM as the optimal choice, 

though future work could explore ensemble methods 

combining FLDA’s interpretability with SVM’s nonlinear 

capabilities. 

3) To further optimize the performance of KPCA, the 

choice of kernel function and its parameters plays a 

critical role. In this study, we evaluated three 

commonly used kernel functions: Radial basis 

function (RBF), polynomial kernel, and sigmoid 

kernel. The RBF kernel, defined as Equation (36), 

 
(36) 

  

2( , ) exp( )K x y x y= − −‖ ‖
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Was selected as the primary kernel due to its ability to 

capture nonlinear relationships effectively. The parameter 

 was tuned through grid search to achieve the best 

classification accuracy. For the polynomial kernel 

Equation (37), 

 
(37) 

We tested degrees  ranging from 2 to 5, while for 

the sigmoid kernel Equation (38), 

 
(38) 

We experimented with different values of  and . 

The results indicated that the RBF kernel consistently 

outperformed the other kernels in terms of classification 

accuracy, achieving an average accuracy of 92.3% on the 

test dataset. 

Additionally, we compared KPCA with two other 

dimensionality reduction methods: Principal component 

analysis (PCA) and mutual information (MI). PCA, as a 

linear method, achieved an average accuracy of 85.7%, 

while MI, which selects features based on their mutual 

information with the target variable, achieved an accuracy 

of 88.1%. Although PCA and MI are computationally 

faster, their performance was inferior to KPCA, 

particularly in capturing nonlinear relationships in the 

sEMG signals. In terms of running time, KPCA required 

approximately 1.5 s per sample, compared to 0.8 s for 

PCA and 1.0 s for MI. These results demonstrate that 

KPCA, despite its higher computational cost, provides 

superior classification accuracy for muscle fatigue 

detection, making it a more suitable choice for this 

application. 

Future work could explore hybrid approaches that 

combine the strengths of KPCA with other dimensionality 

reduction techniques to further improve efficiency without 

compromising accuracy. 

4.3 Discussion 

This study has several limitations. First, the sample size 

was relatively small (12 participants), which may affect 

the generalizability of the findings. Second, the fatigue 

labels were based on subjective RPE scores rather than 

objective physiological benchmarks (e.g., force decline or 

blood lactate levels). Third, potential confounding factors 

such as inter-subject variability in muscle activation 

patterns and psychological factors were not controlled. 

Finally, the model was validated under controlled 

laboratory conditions; its performance in real-world 

training scenarios requires further investigation. It is 

important to note that the fatigue state labels in this study 

were based on subjective RPE scores, which, while 

practical and widely used, may introduce labeling noise 

compared to objective physiological benchmarks (e.g., 

decline in maximum voluntary contraction). This reliance 

on subjective assessment is a limitation that might affect 

the model's robustness and generalizability. Future work 

should incorporate objective measures to validate and 

refine the labeling criteria. 

The experimental results indicate that the 

combination of KPCA and SVM yielded the best 

performance for classifying muscle fatigue states. The 

superiority of KPCA over MI and PCA can be attributed 

to its ability to capture complex, nonlinear relationships 

within the high-dimensional sEMG feature set. Muscle 

fatigue induces non-linear shifts in the sEMG signal 

properties [12], which linear methods like PCA might not 

adequately represent. While MI selects relevant features, 

it does not transform them to create new, more 

discriminative features as KPCA does. The SVM 

classifier, known for its effectiveness in high-dimensional 

spaces and robustness to overfitting, synergized well with 

the discriminative features produced by KPCA. Analysis 

of the confusion matrix for the best-performing model 

(KPCA-SVM) revealed that most misclassifications 

occurred between adjacent fatigue states (e.g., Relaxed vs. 

Transitional, Transitional vs. Fatigued). This suggests that 

the boundaries between these states are not sharply 

defined physiologically, which aligns with the continuous 

nature of fatigue progression. The high precision and 

recall values further confirm the model's reliability in 

correctly identifying each state.A primary limitation of 

this study is the relatively small sample size (12 

participants), which may affect the generalizability of the 

model. Future work should involve a larger and more 

diverse cohort, including athletes from different sports, to 

validate and enhance the model's robustness. Additionally, 

exploring real-time implementation and testing the model 

in practical training scenarios are important next steps. 

 

5 Conclusion 
This article from the perspective of athletes training and 

daily life and other sports this paper introduces the 

research significance of muscle fatigue, analyses and 

summarizes the present research situation of muscle 

fatigue, according to the relationship between the 

characteristic parameters and redundancy, without 

considering the computing complexity of the classifier 

training, affect the problem of classification recognition, 

puts forward the characteristics of sEMG analysis and 

classification of muscle fatigue. Design analysis system, 

the hardware acquisition circuit and the upper machine 

realized the three channels of multi-channel sEMG 

acquisition and data processing and analysis. Bringing 

new feature subsets after dimension reduction to Fisher 

linear discriminant analysis, K neighbor, support vector 

machine (SVM) classifier was trained, results show that 

the fatigue combining KPCA with SVM classification 

model, for muscle fatigue has the highest recognition rate 

is 91.5%. 

Future work will explore several directions. First, 

advanced feature extraction techniques such as Wavelet 

Transform will be investigated to better capture the non-

stationary characteristics of sEMG signals. Second, hybrid 

dimensionality reduction approaches that combine the 

strengths of filter (like MI), wrapper, and embedding (like 

KPCA) methods could be explored. Furthermore, 

validating the model on a larger and more diverse dataset, 

including professional athletes, and incorporating 

multimodal physiological data (e.g., ECG, accelerometry) 



( , ) ( )T dK x y x y c= +

d

( , ) tanh( )TK x y x y c= +
 c
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are important next steps to enhance robustness and 

practical applicability. 
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