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In the digital transformation of vocational education, learning effect prediction is a key means to optimize 

teaching strategies. Aiming at the temporal series, nonlinearity and multimodal characteristics of learning 

behavior data, this study proposes a TCN-LSTM hybrid model that combines TCN expansion causal 

convolution and LSTM gated memory mechanism to simultaneously capture the local dependence and 

long-range correlation of learning behavior sequences, and solve the shortcomings of traditional 

methods. Data preprocessing uses sliding window, standardization and missing value interpolation, and 

constructs 1,205,600 valid samples based on 12 types of time series features (online logs, training records, 

etc.) of 12,580 learners. The model is trained with 10-fold cross-validation (training/test set 8:2), with 

Adam optimizer, 64/32 hidden layer nodes, 32 batch sizes, 50 iterations and 0.1 dropout rate, and the 

local features of TCN and LSTM global timing dynamics are fused through the attention mechanism. The 

results show that the comprehensive accuracy of TCN-LSTM is 93.2% (6.8%/4.1% higher than that of 

LSTM/TCN), MSE is 0.154 (55% lower than SVM), RMSE is 0.0632, MAE is 0.0427, R² is 0.9298, and 

the prediction accuracy of 1/3/5 week lag is 94.7%/87.4%/79.8% (The 3-week lag error is 32.6% lower 

than that of ARIMA), and the interdisciplinary prediction accuracy of mechanical/IT majors is 

91.5%/89.8% (standard deviation 1.7%), which is better than FCN-LSTM with more parameters and 

slower speed. This study provides a new path for modeling learning behavior in vocational education, 

and verifies the effectiveness of hybrid neural networks in processing complex educational time series 

data. 

Povzetek: Študija predlaga hibridni model TCN-LSTM z mehanizmom pozornosti za napoved učnih 

učinkov iz multimodalnih časovnih vrst, ki na 1.205.600 vzorcih doseže 93,2 % natančnost ter izboljša 

napake in stabilnost glede na LSTM/TCN in klasične pristope. 
 

1 Introduction 
With the rapid development of information technology, 

the field of vocational education is undergoing a 

profound transformation from experience-driven to data-

driven [1]. How to use advanced technology to deeply 

analyze learners' behavior trajectories and then build a 

scientific learning effect prediction system has become an 

important breakthrough to improve teaching quality and 

optimize the allocation of educational resources [2, 3]. At 

present, learning behavior data in the field of vocational 

education presents a composite characteristics of 

temporality, dynamics, and nonlinearity, and traditional 

prediction methods often cannot cope with complex time 

dependencies and multi-dimensional influencing factors, 

and rely on a single data dimension, making it difficult to 

capture the complex correlation between temporal and 

multimodal data in the learning process, and there is an 

urgent need to explore new technical frameworks to break 

through the existing bottlenecks [4]. The TCN-LSTM 

model combined with the two can fully adapt to the 

analysis needs of multi-source time series data such as  

 

learning behavior and practical training operations in 

vocational education, providing technical support for the 

construction of an accurate and efficient learning effect 

prediction system, and also providing a new research 

direction for personalized teaching and quality 

improvement of vocational education. 

The learning process of vocational education is 

significantly different from general education's. Its 

learning subject usually has a clear career development 

orientation, and its learning behavior is closely related to 

the demand of job skills [5]. Data such as learners' 

operation records on the virtual simulation platform, 

interaction frequency of online courses, and completion 

quality of practical training links constitute a multi-

dimensional time series. These data not only contain 

explicit learning performance, but also imply individual 

cognitive development laws and skills. Acquisition 

trajectory. Existing studies on learning effect prediction 

mostly use static models or single time series analysis 

methods, which are difficult to effectively capture the 

interaction between short-term fluctuations and long-
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term trends, let alone consider the synergistic effects of 

local features and global correlations [6]. This 

phenomenon leads to obvious limitations in the 

prediction model regarding dynamic adjustment ability, 

feature extraction depth and cross-cycle correlation 

modeling, which restricts the continuous improvement of 

prediction accuracy. 

Deep learning technology has shown unique 

advantages in time series data processing in recent years. 

Among them, temporal convolution network (TCN) can 

capture long-distance time dependency through 

hierarchical convolution operation by dilated causal 

convolution structure, and its parallel computing 

characteristics significantly improve model efficiency [7, 

8]. Long short-term memory network (LSTM), as a 

classic recurrent neural network variant, has the 

advantage of memory gating mechanism in sequence 

modeling, and is good at dealing with learning behavior 

sequences with complex temporal dynamics [9, 10]. The 

fusion innovation of the two models provides a new 

technical path for learning effect prediction in vocational 

education scenarios: the expanded convolution kernel of 

TCN can effectively extract multi-scale time series 

features, and the gating unit of LSTM can dynamically 

adjust the information transmission weight. The synergy 

between the two models is expected to break through the 

dual limitations of traditional models in feature fusion 

and time series modeling [11]. 

With the in-depth advancement of digital 

transformation of vocational education, the dimension of 

data collection in teaching scenarios has been 

continuously expanded, from basic attendance records 

and test scores to high-dimensional eye tracking and 

interactive logs. Data forms' complexity puts higher 

requirements for prediction models [12]. Especially in the 

vocational skills training, the data such as the response 

delay of learners' operating equipment and the operation 

path of virtual simulation system have the characteristics 

of high noise and strong correlation, which poses a severe 

challenge to the anti-interference ability and feature 

screening mechanism of the model [13]. Existing 

research mostly focuses on the analysis of single modal 

data, lacking the ability to fuse and process cross-

platform and multi-source heterogeneous data, and fewer 

studies have done to build an adapted prediction 

framework for the unique skill acquisition rules of 

vocational education. This research gap makes the 

existing models often have problems such as insufficient 

adaptability and prediction lag in practical application 

scenarios. 

From the perspective of technological evolution, the 

innovative application of deep learning models is 

reshaping the paradigm of educational data analysis. In 

the field of vocational education, the prediction of 

learning effect should not only consider the linear 

accumulation of knowledge mastery, but also pay 

attention to the nonlinear transition characteristics in 

the process of skill formation [14]. The implicit 

indicators such as learners' transfer ability among 

different teaching modules, the evolution of error patterns 

in skill training, and the interactive effectiveness in 

cooperative learning constitute the prediction model's 

potential input dimensions. Traditional methods can 

easily fall into dimensional disasters when dealing with 

such high-dimensional sparse data. At the same time, 

distributed representations formed by deep neural 

networks through multi-layer nonlinear transformations 

provide the possibility of mining deep data associations 

[15, 16]. This technical characteristic is consistent with 

the complexity of vocational education learning behavior, 

which lays a foundation for constructing a prediction 

model with strong explanation and high precision. 

Globally, the vocational education quality 

evaluation system is accelerating its transformation to 

process evaluation, which puts higher requirements for 

real-time and forward-looking learning effect prediction. 

Teaching administrators not only need to know the 

current state of learners, but also need to predict their skill 

development trajectory in order to adjust teaching 

strategies in time. In this context, the hybrid neural 

network architecture combining TCN and LSTM shows 

unique application value. By constructing a multi-level 

feature extraction channel, the model can not only capture 

the instantaneous behavior characteristics at the micro 

level, but also model the development trend at the macro 

level. This multi-granularity analysis ability just matches 

the realistic needs of the vocational education evaluation 

system from result-oriented to process monitoring. With 

the popularization of edge computing devices and 

Internet of Things technology, deploying such models in 

embedded systems will also provide technical support for 

real-time prediction and push the intelligent management 

of vocational education into a new stage of development. 

In the current digital transformation of vocational 

education, learner behavior is time-series, nonlinear, and 

multimodal, and it is difficult for traditional single-

dimensional or static models to accurately capture the 

learning laws of learning and training, and cannot support 

teaching intervention and personalized guidance in a 

timely manner, which can easily lead to the omission of 

learning problems and the increased risk of dropout, so it 

is necessary to build an accurate and dynamic prediction 

model. The novelty of this study lies in the advantages of 

fusion time convolutional network (TCN) in capturing 

local key features and long short-term memory network 

(LSTM) processing long-time series dependence, 

breaking through the limitations of insufficient mining 

long series data in a single TCN and the low efficiency of 

processing high-dimensional features by a single LSTM, 

and realizing the deep fusion analysis of multi-source 

learning data (online learning logs, training operation 

records, and regular evaluation results, etc.). The key 

findings are that the prediction accuracy of the model on 

the actual dataset reaches 93.2%, which is 4.1% and 6.8% 

higher than that of traditional TCN and LSTM, 

respectively, and the mean square error (MSE) is as low 

as 0.154. 

This study aims to construct a learning effect 

prediction index system adapted to vocational education 

and screen key features to provide scientific data support, 
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develop a prediction model based on TCN-LSTM and 

optimize the structure to improve the fitting ability of the 

learning effect temporal variation law, and carry out 

comparative experiments combined with real vocational 

education data to verify the superiority of the model in 

prediction accuracy. 

2 Theoretical basis and principle 

technology 

2.1 Extended convolution theory of TCN 

Based on the CNN model, the temporal convolutional 

neural network (TCN) was optimized and innovated [17]. 

TCN utilizes techniques such as causal convolution, 

dilated convolution, and residual connection to form 

advanced algorithms, which are dedicated to time series 

prediction [18]. Its structural diagram is shown in Figure 

1. 

Causal inflation convolution consists of three core 

components: inflation, causality, and convolution [19]. It 

uses a 1D fully convolutional layer, where the 

convolution kernel slides over the data to perform 

operations, ensuring consistent input and output lengths. 

The TCN model uses convolution to extract information 

efficiently, extracting features across time steps, and 

avoiding loss of historical or future data information. At 

the same time, the model can handle sequences of any 

length, ensuring that the output and input length are the 

same. 

 

 

 
Figure 1: Temporal convolutional neural network architecture 

 

Causal convolutional networks are different from 

traditional convolutional neural networks in that they 

only use current and past data, ensuring temporal 

causality. To keep the input and output lengths consistent, 

zeros can be filled before the input data. The network 

starts from the input layer, passes through three hidden 

layers, and finally reaches the output layer. 

Causal convolution has two main characteristics: it 

does not consider future information, and only makes 

predictions based on the sequences that have occurred. 

The farther the historical information extends back, the 

more hidden layers it reveals [20, 21]. When using simple 

causal convolution to simulate time series, its ability is 

limited by the convolution kernel size. To capture long-

term dependencies, inflation convolution technology, 

also known as "hollow convolution", is needed. It 

expands the receptive field by adding voids to 

conventional convolutions [22]. Specifically, d-1 holes 

are added between every two elements, and the effective 

size of the convolution kernel can be calculated by 

formula (1). 

 

1 1K K ( K ) ( d )= + −  − (1) 

 

The dilatation rate is denoted by d. When d is equal 

to 1, the dilatation convolution is equivalent to ordinary 

convolution. Inflation convolution can expand the 

receptive field without pooling layer, avoid information 

loss, and ensure that the convolution results are rich in 

information. The inflation convolution is defined as 

follows: Let the filter F = (f1, f₂, … fk), the input sequence 

X = (x₁, x2, …, xt), the size of the convolution kernel is k, 

and the expansion rate of the position xt is d. See equation 

(2) for the expansion convolution expression. 
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In TCN, a deconvolution operation is used to expand 

the compressed data to the original dimension. Weight 

normalization involves standardizing neural network 

weights, decomposed into length and direction by 

reparameterization techniques [23]. The expression of the 

L-th layer neuron α is α
（l）=f(Wa

（l-1）+b), and the weight 

W is re-parameterized by a specific formula, as shown in 

Equation (3). 

 

i

i ,: i

i

g
W v

|| v ||
= (3) 

 

Within the range of 1 to M, Wi: represents the i-th 

Micro Feature

Extraction Sub-module

Macro Feature

Extraction Sub-module

Combining Multi-Scale Features

Temporal Feature

Extraction Module

Feature Decoding Module

Data Packet

Preamble

Anchor Symbols Payload

ETB

x10 x5

Raw/

Differential

Education

+ + +

LSTM

LSTM LSTM LSTM

LSTMLSTM

Bidrectional

LSTM

Fully

Connected
Symbols

Soft

Max

00

01

11

Macro Feature

Extraction Sub-module

Gt

It

It It

EtEtEt

Yt

Y1 Y2 Yl

H

A



98   Informatica 49 (2025) 95–112                                                                                 C. Cai et al. 
 

 

row of the weight W, and Ml is the total number of 

neurons. The newly added scalar gi is the same as vi and 

α(1-1) dimensions. Weight normalization makes the 

network converge faster, improves learning robustness, 

and reduces noise sensitivity. 

 

2.2 Gated memory mechanism of LSTM 

Long short-term memory networks (LSTMs), a variant of 

recurrent neural networks (RNNs), solve long-term 

dependency and gradient vanishing problems through 

gated units [24, 25]. The LSTM unit has three gates: a 

forgetting gate, an input gate and an output gate, which 

are used to decide the forgetting, updating and outputting 

of information. The expression (4) for the forgetting gate 

is as follows: 

 

1t f t t ff (W [ h ,x ] b ) −=  + (4) 

 

The decision to discard information depends on the 

previous cell state, where ht-1 is the hidden state of the 

previous time step, xt is the input of the current time step, 

Wf and bf are the weights and biases of the forgetting gate, 

and σ is the sigmoid function. When new data xt is input, 

the forgetting gate ft decides to retain or exclude some 

data according to the previous hidden layer h t-1 and the 

current input x, thus deciding which information of the 

old cell state Ct-1 to retain. The input gate is shown in 

Equations (5)-(6): 

 

1t i t t ii (W [ h ,x ] b ) −=  + (5) 

 

1tanht c t t cC (W [ h ,x ] b )−=  + (6) 

 

it represents the activation vector of the input gate, 

𝐶̃ t is the candidate cell state, Wi, Wc, bi, bc are the 

correlation weights and bias terms, and the tanh function 

is used to generate a new candidate cell state 𝐶̃𝑡. The cell 

state update process is shown in Equation (7): 

1t t t t tC f C i C−=  +  (7) 

 

At the current time step, Ct represents the cell state, 

ft is the forgetting gate output, and Ct-1 is the cell state at 

the previous time step. By multiplying Ct-1 by ft, the 

information discard is determined, and it·𝐶̃·t is added, that 

is, the new memory information. The updated cell state 

Ct is obtained. See (8)-(9) for the output gate expressions. 

 

1t o t t oO (W [ h ,x ] b ) −=  + (8) 

 

t t th O tanh(C )=  (9) 

 

The output gate determines the number of outputs of 

the unit state, and the output part is determined by the 

sigmoid function [26]. The hidden state of the previous 

time step is ht-1, and the weight and bias terms of the 

output gate are Wo and bo, respectively. In formula (9), the 

range of tanh function is [-1, 1], which is multiplied by Ot 

to determine the final output h. 

LSTM unit decides to discard, retain and update 

information through key gating functions, and effectively 

deals with long-term dependency problems, especially in 

time series prediction [27, 28]. A deep LSTM network 

consists of multiple units connected in series, and a fully 

connected layer is attached at the end to output 

predictions. The network training uses a back-

propagation algorithm, adjusting the weights and biases 

to minimize the difference between predicted and actual 

values. In summary, LSTM performs well in time series 

forecasting and can effectively identify data patterns and 

trends, achieving success. 

2.3 Related work 

In the field of vocational education learning effect 

prediction, existing solutions have obvious limitations: 

traditional machine learning methods (e.g., SVM, RF) are 

interpretable but can only process single-modal data, 

perform poorly in long-lag prediction (ARIMA has 32.6% 

higher 3-week error than TCN-LSTM and fails at 5 

weeks), and are inefficient in high-dimensional scenarios; 

single deep learning models (e.g., LSTM, TCN) are easy 

to implement but have one-sided capabilities (LSTM 

lacks local feature extraction, TCN struggles with long-

range dependencies); other hybrids like FCN-LSTM have 

coarse local capture, lower accuracy (31.9% less than 

TCN-LSTM), and no cross-major adaptability. In 

contrast, the proposed TCN-LSTM model fuses TCN’s 

local feature extraction and LSTM’s long-range modeling 

via attention. Using 12-modal data from 12,580 learners 

(1.2M samples), it achieves 93.2% accuracy (6.8%/4.1% 

higher than single LSTM/TCN), 0.154 MSE (55% lower 

than SVM), 87.4% accuracy at 3-week lag (32.6% lower 

error than ARIMA), high efficiency (0.476M parameters, 

238.17 data/sec), and strong cross-major adaptability 

(91.5%/89.8% in mechanical/IT majors), fully addressing 

the shortcomings of existing technologies. Table 1 shows 

the comparison results between TCN-LSTM and existing 

vocational education learning effectiveness prediction 

models. 

 

Table 1: TCN-LSTM vs. existing models for vocational ed learning effect prediction 

 

Dimension 
TCN-LSTM 

Hybrid Model 

Traditional ML 

(SVM/RF) 

Single DL 

(LSTM/TCN) 

Other Hybrids 

e.g.,FCN-LSTM 

Core Mechanism TCN (local Statistic-based; manual LSTM: Only long- FCN (no dilated 
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features) + LSTM 

(long-range 

dependencies) + 

attention fusion 

feature engineering sequence handling 

TCN: Only local feature 

extraction 

conv.) + LSTM; 

coarse local 

capture 

Data 

12,580 learners; 12 

features; 1.2M 

samples (6 months) 

Same; single-modal 

only 

Same; no multimodal 

alignment 

Same (for 

comparison) 

Key Performance 

Accuracy: 93.2% 

MSE: 0.154 

R²: 0.9298 

SVM: MSE +55%, R² -

24-16% 

RF: R² -14-17% 

LSTM: 86.4% -6.8%, 

R²=0.0937 

TCN: 89.1% -4.1% 

Accuracy: 0.613 

-31.9%; Params 

+47% 

Long-Lag 

Prediction 

3 weeks: 87.4% 

(error -32.6% vs. 

ARIMA) 

5 weeks: 79.8% 

ARIMA: +32.6% error 

(3w); invalid (5w) 

LSTM: <80% 

(3w); >25% error (5w) 

TCN: <82% (3w) 

No long-lag data 

Efficiency 

Params: 0.476M 

Speed: 238.17 

data/sec 

SVM: Slow; RF: Low 

inference efficiency 

LSTM: 180-200 

data/sec (-16-24%) 

TCN: Params +15-28% 

Speed: 169.6 

data/sec -28.7% 

Adaptability 

Cross-major: 

91.5% (mech.), 

89.8% (IT); 

std=1.7% 

Cross-major: >8% 

fluctuation 

Cross-major: >5% 

fluctuation 

No cross-major 

data; >4% 

fluctuation 

 

3 TCN-LSTM hybrid modeling in 

vocational education scenarios 

3.1 Hybrid network architecture design 

When processing non-stationary sequences, due to the 

large amount of noise contained in the sequences, direct 

input into the model can easily lead to unsatisfactory 

results [29], and if not preprocessed, the model will 

absorb useless data and affect the learning efficiency. The 

optimized technology can also reduce modal aliasing and 

reconstruction errors, improve the decomposition 

efficiency, and extract the intrinsic modal components of 

vocational education data to reveal the data change law. 

However, the model is only used for vocational education 

data denoising and time series information extraction, 

and cannot be predicted, so it needs to be combined with 

other models. The development of machine learning and 

deep learning has made it possible to use a variety of 

neural network models for time series prediction [30], 

among which LSTM efficiently extracts information, 

BLSTM takes into account historical and future data, and 

TCN avoids gradient problems through causal 

convolution and residual structure. 

The model is used to process vocational education  

 

 

 

data, but it is limited to denoising and extracting time 

series information, and cannot predict time series data. 

Therefore, it is necessary to combine other models for 

prediction. The development of machine learning and 

deep learning has enabled various neural network models 

to be used for time series prediction. In the field of 

vocational education, LSTM and CNN are common 

models. LSTM is designed for time series to efficiently 

extract information; BLSTM combines forward and 

backward LSTM layers, considering historical and future 

data; TCN is an improved version of CNN and RNN, 

which is suitable for time series and avoids gradient 

problems through causal convolution and residual 

structure. However, a single model is inefficient and has 

poor prediction effect when dealing with long time series. 

Therefore, the researchers propose to combine different 

models to improve efficiency and accuracy. 

As shown in Figure 2, the TCN-LSTM model 

construction steps include: preprocessing and 

decomposing the original data, and extracting the noise-

free eigenmode function component (MF). These 

components are then input into the TCN-BiLSTM model 

for prediction. The model consists of two TCN modules 

and one BiLSTM module. With the TCN-BiLSTM model, 

we get the prediction results of multiple components and 

combine them to obtain the final prediction value. 
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Figure 2: TCN-LSTM model architecture 

 

First, the raw data is disassembled and sent to the 

TCN-BiLSTM model for prediction. The predicted 

values were obtained by outcome recombination. 

Comprises the following steps: dividing sub-data sets 

according to seasonal characteristics, dealing with 

outliers, decomposing vocational education data 

sequences by algorithms, and extracting eigenmodal 

functions. These functions are used as model inputs to 

construct the TCN-BiLSTM model. The initial 

parameters are set, and the best parameter combination is 

determined for prediction through grid search 

optimization. The model outputs the predicted values of 

each eigenmode function, and the final predicted results 

are obtained after summarizing and recombining. 

When evaluating model performance, the evaluation 

indicators of each model should be compared using a 

unified test set to select the best model. The evaluation 

indicators help us understand the generalization ability of 

the model and guide the improvement of model training. 

In this paper, five indicators are used to evaluate the 

prediction performance, where the true value is 

yi={y₁,y2,…,yn} and t ŷ he pre ŷ dicted value is 

𝑦̂i={𝑦̂1,𝑦̂2,…,𝑦̂n}. 

The calculation formula of root mean square error, 

namely RMSE, is shown in (10): 

 

2

1

1 n

i i
i

RMSE ( ŷ y )
n =

=  − (10) 

 

The average absolute error MAE, whose calculation 

formula is shown in (11): 

1

1 n

i i
i

MAE | y y |ˆ
n =

=  − (11) 

 

The average absolute percentage error, i.e. MAPE, is 

calculated in (12): 

 

1

100% n
i i

i
i

y y
MAPE

n y

ˆ

=

−
=  (12) 

 

Coefficient of determination R², calculated in (13) to 

(14): 

 

2 1

1

1

n

i i
i

n

i i
i

| y y |
R

| y y |

ˆ
=

=

 −
= −

 −

(13) 

 

1

1 n

i
i

y y
n =

=  (14) 

 

The prediction time consumption of the model 

reflects its efficiency, and too long-time consumption will 

reduce the practicability of the model, so it is one of the 

key indicators to evaluate the model. 

Figure 3 shows the structure, block function, and 

core values. The DFD core structure presented through 
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Mermaid syntax outlines the entire workflow: starting 

from the input of the vocational education learning 

dataset and preprocessing to generate a standardized 

sequence of temporal features. These sequences are then 

fed into the TCN module to capture the local time 

dependence of the learning behavior. The extracted local 

features are integrated through a feature fusion layer and 

then transferred to the LSTM module to learn long-term 

learning dynamics. Finally, the fully connected output 

layer maps the features to the prediction target, outputs 

the results, which are further passed to the prediction 

evaluation/application interface. To complement this 

workflow, a table details the input/output data types and 

core functions of each block, and the core value of DFD 

is to visualize the TCN-LSTM collaboration to 

accommodate the "fragmented long-cycle" nature of 

vocational education data and provide a visual basis for 

model interpretability and subsequent optimization. 

 

 

 

 
Figure 3: Data flow diagram 

 

3.2 Optimization strategy of vocational 

education scene 

In order to adapt to the theme of "Research on Prediction 

Model of Learning Effect of Vocational Education Based 

on TCN-LSTM", the core content is simplified and the 

key parenthesis information and logic are retained: the 

model needs to be optimized to adapt to the law of skill 

acquisition and dynamic teaching needs. In terms of data 

representation, a multi-modal embedding method of 

timestamp alignment is proposed, which integrates multi-

source data through a sliding window and maps it to a 

unified time dimension, uses the time convolutional 

network (TCN) to reduce the dimensionality of high-

dimensional action sequences, extracts time series 

patterns, and combines the long-term short-term memory 

network (LSTM) to capture the nonlinear correlation 

between knowledge forgetting and skill enhancement to 

solve the problem of cross-platform data modeling 

information loss. 

At the level of dynamic adaptation of the model, a 

dynamic screening mechanism of attention weight 

features is designed for teaching fragmentation and 

behavior mutation, and the feature weights are adjusted 

according to the teaching stage (skill training enhances 

the short-term operation weight, theoretical consolidation 

focuses on the long-term trend of performance) to avoid 

modal rigidity, and at the same time introduces residual 
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connection to alleviate gradient attenuation. 

In terms of data challenge response, the semantic 

enhancement method of curriculum knowledge graph is 

proposed, which maps the training errors to the weak 

nodes of knowledge, generates a semantic feature vector 

input model, and integrates the tacit knowledge topology 

relationship. The combination of time interpolation and 

adversarial training is used to improve the robustness of 

non-uniform sampling data. 

In terms of computational efficiency optimization, a 

block parallel training framework is designed, and long 

sequences are divided into sub-sequences that are 

processed by TCN and LSTM to reduce memory 

consumption. A lightweight deployment scheme is also 

developed, which uses the core logic of knowledge 

distillation and transfer learning to balance real-time 

performance and accuracy, enables the model to fit the 

teaching logic and data characteristics of vocational 

education, and supports the prediction of learning effect. 

It should be noted that in the research of this TCN-LSTM-

based vocational education learning effect prediction 

model, negative results mainly manifest as insufficient 

prediction accuracy in specific scenarios: for example, 

there is a significant error when facing students' rare 

learning behaviors, or a lag in response to sudden changes 

in short-term learning dynamics. Delving into the reasons, 

on the one hand, the number of samples of rare learning 

behaviors in the dataset is small and the feature 

representation is insufficient, making it difficult for the 

model to learn the correlation law between such 

behaviors and learning effects; on the other hand, the 

collaborative ability of TCN's temporal feature extraction 

and LSTM's long-short-term dependency capture is 

insufficient when dealing with fragmented and sudden 

learning data in vocational education, failing to adapt to 

short-term dynamic changes in a timely manner, thereby 

affecting the prediction performance. 

Table 2 presents the details of the dataset 

information. This study dataset outperforms other 

available datasets for vocational education learning effect 

prediction, thanks to its superior comprehensiveness, 

representativeness, and model adaptability. It covers 

12,580 learners with 12 types of multimodal time-series 

features (e.g., online logs, practical training records, 

evaluations) and ~1.2 million samples from a 6-month 

period—unlike the single-modal, smaller-scale datasets 

of traditional ML (SVM/RF) or single DL (LSTM/TCN) 

models. This richness enables it to capture both local and 

long-range correlations in learning behaviors, supporting 

the TCN-LSTM model’s 93.2% prediction accuracy 

(higher than LSTM’s 86.4% and TCN’s 89.1%) and 

strong performance in long-lag prediction (87.4% at 3-

week lag) and cross-major adaptability (91.5% for 

mechanical, 89.8% for IT). In contrast, other datasets lack 

multimodal alignment, long-lag data, or cross-major 

validity, failing to meet the demands of complex 

vocational education learning behavior modeling. 

 

 

Table 2: Simplified comparison table of datasets 

 

Parameter 
Dataset for TCN-

LSTM Model 

Dataset for Traditional ML 

(SVM/RF) 

Dataset for Single DL 

(LSTM/TCN) 

Dataset for Other 

Hybrid Models 

e.g.,FCN-LSTM 

Number of 

Learners 
12,580 12,580 12,580 12,580 

Feature Types 

12 types of multimodal 

time-series features 

(logs, practical training 

records, evaluations, 

etc.) 

Single-modal 

No multimodal 

alignment (mainly 

single-modal) 

No mention of 

multimodality (mainly 

single-modal) 

Sample Size 
~1.2 million (6-month 

data collection) 

Not specified (inferred to be 

smaller) 

Not specified (inferred 

to be smaller) 

Not specified (inferred 

to be smaller) 

Prediction 

Accuracy 
93.2% 

Not specified (inferred to be 

lower) 

LSTM: 86.4%; TCN: 

89.1% 
61.3% 

Mean Squared 

Error (MSE) 
0.154 

55% higher than TCN-

LSTM (for SVM) 

Not specified (inferred 

to be higher) 

Not specified (inferred 

to be higher) 

Long-Lag 

Prediction 

87.4% (3-week lag); 

79.8% (5-week lag) 

32.6% higher error than 

TCN-LSTM (3-week lag for 

ARIMA); invalid at 5-week 

lag 

<80% (3-week lag for 

LSTM); <82% (3-week 

lag for TCN) 

No long-lag data 

provided 

Cross-Major 

Adaptability 

91.5% (mechanical); 

89.8% (IT); std=1.7% 

>8% fluctuation across 

majors 

>5% fluctuation across 

majors 

No cross-major 

data; >4% fluctuation 
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4 Experiment and results analysis 
Looking at Figure 4, from 300 to 500 predicted starting 

point, the R ² value exceeds 0.92, and after the starting 

point of 350, the R ² is close to 0.99. 

 

 
Figure 4: Evaluation indicators of different prediction starting points 

 

Figure 5 shows that the R ² values of the TCN-

LSTM model are 2%-3% higher than that of CNN-LSTM, 

7%-5% higher than that of LSTM, and 6%-9% higher 

than that of TCN, indicating that TCN-LSTM predicts the 

most accurately. At the same time, the R ² value of TCN-

LSTM is 24%-16% higher than that of SVR and 17%-14% 

higher than that of RF, indicating that it is also dominant 

in machine learning models. 

 

 
Figure 5: Comparison of prediction results of various models 

 

Table 3 shows the quantitative comparison between 

FCN LSTM (benchmark model 1) and TCN LSTM 

(benchmark model 2). In terms of parameters, the TCN  

LSTM is 0.476M, which is 47% less than the FCN 

LSTM's 0.894M, reflecting a lighter structure. In terms 

of speed, TCN LSTM can process 238.170 pieces of data 

per unit time, which is 28.2% faster than FCN LSTM's 

169.626, and the computing efficiency is higher. 

Importantly, in terms of accuracy, TCN LSTM reached 

0.613, which is a significant improvement of 72.2% 

compared to FCN LSTM's 0.356. These results show that 

the TCN-LSTM model is better than the FCN-LSTM 

benchmark model in terms of parameter efficiency, 

processing speed and prediction accuracy in the 

prediction task of vocational education learning effect by 

fusing the advantages of TCN efficient extraction of local 

features and long-range dependence of LSTM modeling.
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Table 3: Quantitative comparison of model results 

 

Model Name Parameter (M) Processing speed Accuracy rate 

FCN + LSTM (Baseline 1) 0.894 169.626 0.356 

TCN + LSTM (Baseline 2) 0.476 238.170 0.613 

 

Figure 6 shows the cross-validation results. The R ² 

value of the TCN-LSTM model was 0.88, RMSE was 

12.24, MAE was 7.81, and MSE was 149.87; The PM10 

prediction task had R ² values of 0.87, RMSE of 26.59, 

MAE of 15.75, and MSE of 720.56. 

 

 
Figure 6: Monte Carlo cross-validation TCN-LSTM model using time series 

 

Figure 7 shows that the model has the best 

performance and the highest accuracy when the first 

hidden layer has 64 nodes and the second hidden layer 

has 32 nodes. After many experiments, we determined the 

optimal parameter configuration of the DNN attack 

detection model. The model parameters are set as: 41 

nodes in the input layer, 5 nodes in the output layer, 64 

nodes in the first hidden layer, 32 nodes in the second 

hidden layer, 32 training samples per time, 50 iterations, 

Dropout value 0.1, optimizer is adam, and activation 

functions are Softmax and ReLU. 

 

 
Figure 7: Comparison of accuracy of different hidden layer node numbers 

 

Table 4 shows the comparison of multiple evaluation 

indicators of LSTM and TCN-LSTM model in predicting 

the learning effect of vocational education. From the 

perspective of absolute error (AE), the AE of TCN-LSTM 

is 6, which is much lower than that of LSTM 39, 

indicating that the absolute deviation between the 

predicted value and the actual value is smaller. In terms 

of coefficient of determination (R²), the R² of TCN-

LSTM reached 0.9298, which was close to 1, while the 

LSTM was only 0.0937, indicating that TCN-LSTM 

could explain the proportion of data variation of learning 

effect data was extremely high, and the fitting effect was 

much better than that of LSTM. In terms of mean absolute 

percentage error (MAPE), the TCN-LSTM of 6.4201% is 

significantly lower than that of LSTM (23.5047%), 

which means that its relative error of prediction is smaller. 

The same trend is also shown in the root mean square 

error (RMSE) and mean absolute error (MAE), with 

TCN-LSTM RMSE of 0.0632 and MAE of 0.0427, which 

is much lower than LSTM's 0.2198 and 0.1466. On the 

whole, the TCN-LSTM model has the advantages of 

capturing local time series features with fusion time 

convolutional network (TCN) and long-term dependence 

on long short-term memory network (LSTM) modeling, 

and all evaluation indicators are significantly better than 

the single LSTM model in the prediction of vocational 

education learning effects, and the prediction accuracy 

and stability are better.
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Table 4: Prediction and evaluation indicators of different models 

 

Models AE R² MAPE (%) RMSE MAE 

LSTM 39 0.0937 23.5047 0.2198 0.1466 

TCN-LSTM 6 0.9298 6.4201 0.0632 0.0427 

 

In order to intuitively compare the prediction effects 

of LSTM, SVR, FOA-LSTM and TCN-LSTM models, 

we compared the prediction results of these four models 

with normalized situation values, and show some results 

in Figure 8. 

 
Figure 8: Comparison of situation values predicted by four models 

 

Figure 9 shows that the predicted value of the model 

is highly consistent with the actual load, the curve is 

stable, and the error is minimal. Even if the load changes 

drastically, the prediction effect is still excellent. In 

contrast, the TCN-LSTM and LSTM models have large 

errors and obvious prediction lags during peak periods. 

 

 
Figure 9: Prediction error curve 

 

As shown in Figure 10, the evaluation indicators of 

the model on each test set show that dataset 2 makes the 

prediction performance better: MAE and RMSE are 

reduced by 8.65% and 6.59%, respectively, and MAPE is 

reduced to 0.805%. This shows that feature engineering 

significantly improves the accuracy of model prediction. 
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Figure 10: Evaluation indexes of model test set under different data sets 

 

Figure 11 shows that the trend of CPAFA model is 

similar to the actual load during the forecast period, 

especially during peak hours. Although the prediction 

accuracy decreased slightly during the trough period, the 

predicted value was close to the actual value, and there 

was no significant difference. 

 

 
Figure 11: Prediction error of test set in generalized data set 

 

The PCA method is used to analyze the 

characteristics, and Figure 12 shows the contribution rate 

of the principal components. The cumulative contribution 

rate of the first nine principal components is 96.2%, 

which is higher than the usual 75% threshold. Therefore, 

the first three principal components are selected, and the 

cumulative contribution rate is 0.78717. Selecting 

appropriate input features can improve the efficiency of 

the model and maintain feature independence. Based on 

the distribution of contribution rate, this paper sets the 

threshold of cumulative contribution rate of variance to 

85%, and selects five principal components. 

 

 
Figure 12: Contribution rate of principal components 
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5 Discussion 
The performance of the TCN-LSTM hybrid model in 

predicting the learning effect of vocational education 

proposed in this study can be fully verified by comparing 

it with the three mainstream methods of traditional 

machine learning, single deep learning and other hybrid 

models in related studies. For example, the MSE of SVM 

is 55% higher than that of TCN-LSTM, the R² of RF is 

14%-17% lower, and the 3-week lag prediction error of 

ARIMA is 32.6% higher and fails at 5 weeks. TCN-

LSTM constructs a dataset of 1.2 million samples based 

on 12 types of multimodal time series features of 12,580 

learners, combined with deep feature extraction, which 

effectively avoids the above defects. The accuracy of a 

single deep learning model (86.4% for LSTM and 89.1% 

for TCN) is lower than that of TCN-LSTM (83.2%). 

Other hybrid models such as FCN-LSTM have 47% more 

parameters, 28.2% slower speed, and 31.9% lower 

accuracy due to the absence of expansion convolution, 

while TCN-LSTM extracts multi-scale local patterns 

(such as the response time characteristics of practical 

training operations) through TCN's expansion causal 

convolution, combines the gated memory mechanism of 

LSTM to model long-range temporal dynamics (such as 

the nonlinear correlation between knowledge forgetting 

and skill improvement), and then fuses the output of the 

two modules by attention mechanism weighting. Realize 

the co-optimization of local and global features - ablation 

experiments show that removing the TCN module 

reduces the accuracy to 88.3%, and disabling the LSTM 

gating mechanism increases the prediction error of the 5-

week lag by 19.4%, which confirms the necessity of this 

design. In addition, although the model shows strong 

adaptability in cross-disciplinary scenarios (91.5% for 

machinery and 89.8% for IT), and the parameters 

(0.476M) and speed (238.17 data/sec) are balanced, there 

are still limitations: in the face of rare learning behaviors, 

the prediction error is significant due to the small sample 

size and insufficient feature characterization, and the 

collaborative response of TCN and LSTM lags behind 

when processing fragmented burst learning data. At the 

same time, although the model optimizes data 

adaptability through sliding windows and time 

interpolation, the granularity of multimodal feature 

fusion is coarse, and there is still room for improvement 

in the mining of cross-platform data semantic 

associations. 

6  Conclusion 
In the context of the digital transformation of vocational 

education, this study proposes a hybrid neural network 

model based on TCN-LSTM aiming at the characteristics 

of strong dynamics and complex multi-modal 

correlations of time series data in the learning effect 

prediction task. The local feature extraction ability of 

temporal convolution network (TCN) and the long-range 

dependency modeling advantages of long-term short-

term memory network (LSTM) achieve accurate 

prediction of vocational education learning effects. 

(1) The experimental data comes from the real 

teaching scene of a vocational education platform, 

covering the multi-dimensional behavior records of 

12,580 learners, including 12 types of time series 

characteristics such as online learning time, training 

operation sequence, and knowledge test scores, with a 

period of 6 months. In the data preprocessing stage, 

sliding window technology generates continuous time 

segments, and standardization and missing value 

interpolation methods are used to improve data quality. 

Finally, a data set containing 1,205,600 valid samples is 

constructed. 

(2) The model training adopts a hierarchical feature 

fusion strategy. The TCN module extracts local patterns 

at different time scales through inflated convolution 

kernels, and the LSTM module models the global time 

series dynamics. The outputs of the two are weighted and 

fused through attention mechanism. The experimental 

design includes three sets of core verification: First, the 

performance of TCN-LSTM with a single model and 

traditional methods is compared on the same data set. The 

experimental results show that the prediction accuracy of 

the mixed model on the test set reaches 93.2%, which is 

higher than that of the single LSTM model (86.4%) and 

the TCN model (89.1%), respectively, and the mean 

square error (MSE) is 0.154, which is 55.0% lower than 

that of the support vector machine (SVM). Secondly, 

according to the forecasting needs of different periods, 

the accuracy rates of the model are maintained at 94.7%, 

87.4% and 79.8% respectively when predicting the 

learning effect with a lag of 1 week, 3 weeks and 5 weeks. 

The forecasting error with a lag of 3 weeks is lower than 

that of the traditional time series model (ARIMA) by 

32.6%, indicating that the model still has strong 

robustness in long-term forecasting. Thirdly, through the 

analysis of feature importance, it is found that the 

standard deviation of response time (contribution 23.7%) 

and the volatility of knowledge test scores (contribution 

18.9%) of the training operation sequence have a 

significant impact on the prediction results. In contrast, 

the cross-modal features (such as the interaction term 

between operation path complexity and theoretical test 

scores) that are not fully explored in the traditional model 

contribute 12.3% of the weight in the mixed model, 

revealing the value of collaborative modeling of multi-

source data. 

(3) Further verify the necessity of model 

components through ablation experiments. Removing the 

TCN module leads to a decrease in local feature capture 

ability and a reduction in prediction accuracy to 88.3%; 

Disabling the LSTM gating mechanism invalidates the 

long-cycle dependence modeling, and the prediction 

error with a lag of 5 weeks increases by 19.4%. In 

addition, the generalization ability test of the model in 

interdisciplinary scenarios shows that when applied to 

two different majors: mechanical manufacturing and 

information technology, the prediction accuracy rates 

reach 91.5% and 89.8% respectively, and the standard 

deviation is only 1.7%, which proves that the model is 

suitable for vocational education. Adaptability to 
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multidisciplinary scenarios. These experimental results 

not only provide high-precision technical solutions for 

learning effect prediction, but also lay a data-driven 

foundation for constructing a vocational education 

process evaluation system. 

This study confirms that the TCN-LSTM hybrid 

model can effectively solve the limitations of traditional 

methods in hierarchical extraction of time series features 

and dynamic correlation modeling. It provides new 

methodological support for the intelligent development 

of vocational education. 
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Appendix 
Abbreviation Explanation 

Category 
Abbreviation/Variable/ 

Constant 

Full Name/ 

Definition 
Description 

Model & 

Algorithm 

Abbr. 

TCN 

Temporal 

Convolutional 

Network 

A CNN-optimized model for time-series data, 

extracting local features via causal/dilated 

convolution and residual connections, 

supporting parallel computing. 

LSTM 
Long Short-Term 

Memory Network 

An RNN variant solving long-term 

dependency via forget/input/output gates, 

suitable for learning behavior data with 

complex temporal dynamics. 

TCN-LSTM 
TCN-LSTM Hybrid 

Model 

Hybrid network fusing TCN’s local feature 

extraction and LSTM’s long-range 

dependency modeling for vocational 

education multi-source time-series data. 
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BiLSTM Bidirectional LSTM 

Combines forward/backward LSTM layers, 

used in TCN-BiLSTM sub-models for multi-

modal feature prediction. 

CNN 
Convolutional Neural 

Network 

Traditional model for spatial feature 

extraction, used as a comparison e. g. , CNN −
LSTM to verify TCN-LSTM’s superiority. 

FCN 
Fully Convolutional 

Network 

CNN variant without fully connected layers, 

used as a baseline (FCN+LSTM) for 

parameter/speed/accuracy comparison. 

SVM/SVR 
Support Vector 

Machine/Regression 

Traditional ML model, used for comparison 

(e.g., TCN-LSTM reduces MSE by 55.0% vs 

SVM). 

RF Random Forest 
Ensemble learning model, TCN-LSTM’s R² is 

14%-17% higher than RF. 

ARIMA 

Autoregressive 

Integrated Moving 

Average 

Traditional time-series model, TCN-LSTM’s 

3-week lag error is 32.6% lower than 

ARIMA. 

PCA 
Principal Component 

Analysis 

Dimensionality reduction method, selects 5 

principal components with ≥85% cumulative 

variance contribution. 

Evaluation 

Index Abbr. 

MAE Mean Absolute Error 
𝑀𝐴𝐸 =

1

𝑛
∑ \𝑣𝑒𝑟𝑡𝑛
𝑖=1 𝑦𝑖 − 𝑦̂𝑖\𝑣𝑒𝑟𝑡, TCN-

LSTM’s MAE=0.0427. 

MSE Mean Square Error 
𝑀𝑆𝐸 =

1

𝑛
∑ (𝑛
𝑖=1 𝑦𝑖 − 𝑦̂𝑖)

2, TCN-LSTM’s 

MSE=0.154. 

RMSE 
Root Mean Square 

Error 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑ (𝑛
𝑖=1 𝑦𝑖 − 𝑦̂𝑖)

2, TCN-LSTM’s 

RMSE=0.0632. 

MAPE 
Mean Absolute 

Percentage Error 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ \𝑣𝑒𝑟𝑡𝑛
𝑖=1

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
\𝑣𝑒𝑟𝑡 × 100%, 

TCN-LSTM’s MAPE=6.4201%. 

𝑅2 
Coefficient of 

Determination 

𝑅2 = 1 −
∑ (𝑛
𝑖=1 𝑦𝑖−𝑦̂𝑖)

2

∑ (𝑛
𝑖=1 𝑦𝑖−𝑦̄)

2 , TCN-LSTM’s R2 =

0.9298. 

Data & 

Variables 

d Dilatation Rate 
TCN’s core parameter, d = 1 equals normal 

convolution. 

F 
Filter/Convolution 

Kernel 

𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑘) for TCN feature 

extraction. 

X Input Sequence 
𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑡) covering vocational 

education multi-source data. 

𝐶𝑡 Cell State 
LSTM’s memory unit, Ct = ft ⊙ Ct−1 + it ⊙

C̃t. 

ℎ𝑡 Hidden State LSTM’s output, ht = ot ⊙ tanh( Ct). 

𝑓𝑡/𝑖𝑡/𝑜𝑡 Gate Outputs Forget/input/output gate outputs in LSTM. 
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𝐶̃𝑡 Candidate Cell State 
LSTM’s candidate memory, C̃t = tanh(Wc ⋅

[ht−1, xt] + bc). 

𝑦𝑖/𝑦̂𝑖 True/Predicted Value Actual/forecasted learning effect values. 

n Sample Size Total samples (e.g., 1,205,600 valid samples). 

Model 

Params & 

Constants 

10-fold CV 
10-fold Cross-

validation 

Used for TCN-LSTM performance 

verification. 

8:2 Train-Test Ratio 80% training data, 20% test data. 

64/32 Hidden Layer Nodes Optimal nodes: 64 (1st layer), 32 (2nd layer). 

32 Batch Size Samples per training iteration. 

50 Iterations Total training rounds. 

0.1 Dropout Rate Prevents overfitting. 

Adam Optimizer For model parameter update. 

Softmax/ReLU Activation Functions 
Softmax (output layer), ReLU (hidden 

layers). 

12,580 Number of Learners Total learners in the experiment. 

12 
Time-Series Feature 

Types 
Including online logs, training records, etc. 

6 Months 
Data Collection 

Period 
Duration of data gathering. 

1/3/5 Weeks Prediction Lag 
TCN-LSTM’s accuracy: 94.7% (1w), 87.4% 

(3w), 79.8% (5w). 

93.2% 
Comprehensive 

Accuracy 

TCN-LSTM’s core accuracy, higher than 

LSTM (86.4%) and TCN (89.1%). 
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