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In the digital transformation of vocational education, learning effect prediction is a key means to optimize
teaching strategies. Aiming at the temporal series, nonlinearity and multimodal characteristics of learning
behavior data, this study proposes a TCN-LSTM hybrid model that combines TCN expansion causal
convolution and LSTM gated memory mechanism to simultaneously capture the local dependence and
long-range correlation of learning behavior sequences, and solve the shortcomings of traditional
methods. Data preprocessing uses sliding window, standardization and missing value interpolation, and
constructs 1,205,600 valid samples based on 12 types of time series features (online logs, training records,
etc.) of 12,580 learners. The model is trained with 10-fold cross-validation (training/test set 8:2), with
Adam optimizer, 64/32 hidden layer nodes, 32 batch sizes, 50 iterations and 0.1 dropout rate, and the
local features of TCN and LSTM global timing dynamics are fused through the attention mechanism. The
results show that the comprehensive accuracy of TCN-LSTM is 93.2% (6.8%/4.1% higher than that of
LSTM/TCN), MSE is 0.154 (55% lower than SVM), RMSE is 0.0632, MAE is 0.0427, R 2 is 0.9298, and
the prediction accuracy of 1/3/5 week lag is 94.7%/87.4%/79.8% (The 3-week lag error is 32.6% lower
than that of ARIMA), and the interdisciplinary prediction accuracy of mechanical/IT majors is
91.5%/89.8% (standard deviation 1.7%), which is better than FCN-LSTM with more parameters and
slower speed. This study provides a new path for modeling learning behavior in vocational education,
and verifies the effectiveness of hybrid neural networks in processing complex educational time series
data.

Povzetek: Studija predlaga hibridni model TCN-LSTM z mehanizmom pozornosti za napoved ucnih
ucinkov iz multimodalnih casovnih vrst, ki na 1.205.600 vzorcih doseze 93,2 % natancnost ter izboljsa

napake in stabilnost glede na LSTM/TCN in klasicne pristope.

1 Introduction

With the rapid development of information technology,
the field of vocational education is undergoing a
profound transformation from experience-driven to data-
driven [1]. How to use advanced technology to deeply
analyze learners' behavior trajectories and then build a
scientific learning effect prediction system has become an
important breakthrough to improve teaching quality and
optimize the allocation of educational resources [2, 3]. At
present, learning behavior data in the field of vocational
education presents a composite characteristics of
temporality, dynamics, and nonlinearity, and traditional
prediction methods often cannot cope with complex time
dependencies and multi-dimensional influencing factors,
and rely on a single data dimension, making it difficult to
capture the complex correlation between temporal and
multimodal data in the learning process, and there is an
urgent need to explore new technical frameworks to break
through the existing bottlenecks [4]. The TCN-LSTM
model combined with the two can fully adapt to the
analysis needs of multi-source time series data such as

learning behavior and practical training operations in
vocational education, providing technical support for the
construction of an accurate and efficient learning effect
prediction system, and also providing a new research
direction for personalized teaching and quality
improvement of vocational education.

The learning process of vocational education is
significantly different from general education's. Its
learning subject usually has a clear career development
orientation, and its learning behavior is closely related to
the demand of job skills [5]. Data such as learners'
operation records on the virtual simulation platform,
interaction frequency of online courses, and completion
quality of practical training links constitute a multi-
dimensional time series. These data not only contain
explicit learning performance, but also imply individual
cognitive development laws and skills. Acquisition
trajectory. Existing studies on learning effect prediction
mostly use static models or single time series analysis
methods, which are difficult to effectively capture the
interaction between short-term fluctuations and long-
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term trends, let alone consider the synergistic effects of
local features and global correlations [6]. This
phenomenon leads to obvious limitations in the
prediction model regarding dynamic adjustment ability,
feature extraction depth and cross-cycle correlation
modeling, which restricts the continuous improvement of
prediction accuracy.

Deep learning technology has shown unique
advantages in time series data processing in recent years.
Among them, temporal convolution network (TCN) can
capture long-distance time dependency through
hierarchical convolution operation by dilated causal
convolution structure, and its parallel computing
characteristics significantly improve model efficiency [7,
8]. Long short-term memory network (LSTM), as a
classic recurrent neural network variant, has the
advantage of memory gating mechanism in sequence
modeling, and is good at dealing with learning behavior
sequences with complex temporal dynamics [9, 10]. The
fusion innovation of the two models provides a new
technical path for learning effect prediction in vocational
education scenarios: the expanded convolution kernel of
TCN can effectively extract multi-scale time series
features, and the gating unit of LSTM can dynamically
adjust the information transmission weight. The synergy
between the two models is expected to break through the
dual limitations of traditional models in feature fusion
and time series modeling [11].

With the in-depth advancement of digital
transformation of vocational education, the dimension of
data collection in teaching scenarios has been
continuously expanded, from basic attendance records
and test scores to high-dimensional eye tracking and
interactive logs. Data forms' complexity puts higher
requirements for prediction models [12]. Especially in the
vocational skills training, the data such as the response
delay of learners' operating equipment and the operation
path of virtual simulation system have the characteristics
of high noise and strong correlation, which poses a severe
challenge to the anti-interference ability and feature
screening mechanism of the model [13]. Existing
research mostly focuses on the analysis of single modal
data, lacking the ability to fuse and process cross-
platform and multi-source heterogeneous data, and fewer
studies have done to build an adapted prediction
framework for the unique skill acquisition rules of
vocational education. This research gap makes the
existing models often have problems such as insufficient
adaptability and prediction lag in practical application
scenarios.

From the perspective of technological evolution, the
innovative application of deep learning models is
reshaping the paradigm of educational data analysis. In
the field of vocational education, the prediction of
learning effect should not only consider the linear
accumulation of knowledge mastery, but also pay
attention to the nonlinear transition characteristics in
the process of skill formation [14]. The implicit
indicators such as learners' transfer ability among
different teaching modules, the evolution of error patterns
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in skill training, and the interactive effectiveness in
cooperative learning constitute the prediction model's
potential input dimensions. Traditional methods can
easily fall into dimensional disasters when dealing with
such high-dimensional sparse data. At the same time,
distributed representations formed by deep neural
networks through multi-layer nonlinear transformations
provide the possibility of mining deep data associations
[15, 16]. This technical characteristic is consistent with
the complexity of vocational education learning behavior,
which lays a foundation for constructing a prediction
model with strong explanation and high precision.

Globally, the vocational education quality
evaluation system is accelerating its transformation to
process evaluation, which puts higher requirements for
real-time and forward-looking learning effect prediction.
Teaching administrators not only need to know the
current state of learners, but also need to predict their skill
development trajectory in order to adjust teaching
strategies in time. In this context, the hybrid neural
network architecture combining TCN and LSTM shows
unique application value. By constructing a multi-level
feature extraction channel, the model can not only capture
the instantaneous behavior characteristics at the micro
level, but also model the development trend at the macro
level. This multi-granularity analysis ability just matches
the realistic needs of the vocational education evaluation
system from result-oriented to process monitoring. With
the popularization of edge computing devices and
Internet of Things technology, deploying such models in
embedded systems will also provide technical support for
real-time prediction and push the intelligent management
of vocational education into a new stage of development.

In the current digital transformation of vocational
education, learner behavior is time-series, nonlinear, and
multimodal, and it is difficult for traditional single-
dimensional or static models to accurately capture the
learning laws of learning and training, and cannot support
teaching intervention and personalized guidance in a
timely manner, which can easily lead to the omission of
learning problems and the increased risk of dropout, so it
is necessary to build an accurate and dynamic prediction
model. The novelty of this study lies in the advantages of
fusion time convolutional network (TCN) in capturing
local key features and long short-term memory network
(LSTM) processing long-time series dependence,
breaking through the limitations of insufficient mining
long series data in a single TCN and the low efficiency of
processing high-dimensional features by a single LSTM,
and realizing the deep fusion analysis of multi-source
learning data (online learning logs, training operation
records, and regular evaluation results, etc.). The key
findings are that the prediction accuracy of the model on
the actual dataset reaches 93.2%, which is 4.1% and 6.8%
higher than that of traditional TCN and LSTM,
respectively, and the mean square error (MSE) is as low
as 0.154.

This study aims to construct a learning effect
prediction index system adapted to vocational education
and screen key features to provide scientific data support,
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develop a prediction model based on TCN-LSTM and
optimize the structure to improve the fitting ability of the
learning effect temporal variation law, and carry out
comparative experiments combined with real vocational
education data to verify the superiority of the model in
prediction accuracy.

2 Theoretical basis and principle
technology

2.1 Extended convolution theory of TCN

Based on the CNN model, the temporal convolutional
neural network (TCN) was optimized and innovated [17].
TCN utilizes techniques such as causal convolution,
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dilated convolution, and residual connection to form
advanced algorithms, which are dedicated to time series
prediction [18]. Its structural diagram is shown in Figure
1.

Causal inflation convolution consists of three core
components: inflation, causality, and convolution [19]. It
uses a 1D fully convolutional layer, where the
convolution kernel slides over the data to perform
operations, ensuring consistent input and output lengths.
The TCN model uses convolution to extract information
efficiently, extracting features across time steps, and
avoiding loss of historical or future data information. At
the same time, the model can handle sequences of any
length, ensuring that the output and input length are the
same.
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Figure 1: Temporal convolutional neural network architecture

Causal convolutional networks are different from
traditional convolutional neural networks in that they
only use current and past data, ensuring temporal
causality. To keep the input and output lengths consistent,
zeros can be filled before the input data. The network
starts from the input layer, passes through three hidden
layers, and finally reaches the output layer.

Causal convolution has two main characteristics: it
does not consider future information, and only makes
predictions based on the sequences that have occurred.
The farther the historical information extends back, the
more hidden layers it reveals [20, 21]. When using simple
causal convolution to simulate time series, its ability is
limited by the convolution kernel size. To capture long-
term dependencies, inflation convolution technology,
also known as "hollow convolution", is needed. It
expands the receptive field by adding voids to
conventional convolutions [22]. Specifically, d-1 holes
are added between every two elements, and the effective
size of the convolution kernel can be calculated by
formula (1).

K'=K+(K-1)x(d-1)(1)

The dilatation rate is denoted by d. When d is equal
to /, the dilatation convolution is equivalent to ordinary

convolution. Inflation convolution can expand the
receptive field without pooling layer, avoid information
loss, and ensure that the convolution results are rich in
information. The inflation convolution is defined as
follows: Let the filter F' = (f}, >, ... fi), the input sequence
X = (x1, X2, ..., X), the size of the convolution kernel is %,
and the expansion rate of the position x; is d. See equation
(2) for the expansion convolution expression.

F(O=(x * (0= Z1(D)%4-2)

In TCN, a deconvolution operation is used to expand
the compressed data to the original dimension. Weight
normalization involves standardizing neural network
weights, decomposed into length and direction by
reparameterization techniques [23]. The expression of the
L-th layer neuron a is a ’ =f(Wa "’ +b), and the weight
W is re-parameterized by a specific formula, as shown in
Equation (3).

W__ —
TS

Within the range of / to M, W;. represents the i-th
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row of the weight W, and M, is the total number of
neurons. The newly added scalar g; is the same as v; and
a"V dimensions. Weight normalization makes the
network converge faster, improves learning robustness,
and reduces noise sensitivity.

2.2 Gated memory mechanism of LSTM

Long short-term memory networks (LSTMs), a variant of
recurrent neural networks (RNNs), solve long-term
dependency and gradient vanishing problems through
gated units [24, 25]. The LSTM unit has three gates: a
forgetting gate, an input gate and an output gate, which
are used to decide the forgetting, updating and outputting
of information. The expression (4) for the forgetting gate
is as follows:

fo=o(W, -[hyx1+b) @)

The decision to discard information depends on the
previous cell state, where #,.; is the hidden state of the
previous time step, x; is the input of the current time step,
Wyand byare the weights and biases of the forgetting gate,
and o is the sigmoid function. When new data x; is input,
the forgetting gate f; decides to retain or exclude some
data according to the previous hidden layer % .; and the
current input x, thus deciding which information of the
old cell state C.; to retain. The input gate is shown in
Equations (5)-(6):

L =o(W,-[h,%]+b)(5)

¢ =tanh(W, - [, % ] +b,) (6)

i; represents the activation vector of the input gate,
C. is the candidate cell state, W, W, b, b. are the
correlation weights and bias terms, and the tanh function
is used to generate a new candidate cell state C,. The cell
state update process is shown in Equation (7):

C, =f-C_+i-C(7)

At the current time step, C; represents the cell state,
f: is the forgetting gate output, and C.; is the cell state at
the previous time step. By multiplying C.; by f, the
information discard is determined, and i, €+, is added, that
is, the new memory information. The updated cell state
C;1is obtained. See (8)-(9) for the output gate expressions.

O, =a(W,-[h_4,x1+b,)(8)
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h =0, -tanh(C, ) (9)

The output gate determines the number of outputs of
the unit state, and the output part is determined by the
sigmoid function [26]. The hidden state of the previous
time step is /A.;, and the weight and bias terms of the
output gate are W, and b,, respectively. In formula (9), the
range of tanh function is [-1, 1], which is multiplied by O,
to determine the final output /.

LSTM unit decides to discard, retain and update
information through key gating functions, and effectively
deals with long-term dependency problems, especially in
time series prediction [27, 28]. A deep LSTM network
consists of multiple units connected in series, and a fully
connected layer is attached at the end to output
predictions. The network training uses a back-
propagation algorithm, adjusting the weights and biases
to minimize the difference between predicted and actual
values. In summary, LSTM performs well in time series
forecasting and can effectively identify data patterns and
trends, achieving success.

2.3 Related work

In the field of vocational education learning effect
prediction, existing solutions have obvious limitations:
traditional machine learning methods (e.g., SVM, RF) are
interpretable but can only process single-modal data,
perform poorly in long-lag prediction (ARIMA has 32.6%
higher 3-week error than TCN-LSTM and fails at 5
weeks), and are inefficient in high-dimensional scenarios;
single deep learning models (e.g., LSTM, TCN) are easy
to implement but have one-sided capabilities (LSTM
lacks local feature extraction, TCN struggles with long-
range dependencies); other hybrids like FCN-LSTM have
coarse local capture, lower accuracy (31.9% less than
TCN-LSTM), and no cross-major adaptability. In
contrast, the proposed TCN-LSTM model fuses TCN” s
local feature extraction and LSTM’s long-range modeling
via attention. Using 12-modal data from 12,580 learners
(1.2M samples), it achieves 93.2% accuracy (6.8%/4.1%
higher than single LSTM/TCN), 0.154 MSE (55% lower
than SVM), 87.4% accuracy at 3-week lag (32.6% lower
error than ARIMA), high efficiency (0.476M parameters,
238.17 data/sec), and strong cross-major adaptability
(91.5%/89.8% in mechanical/IT majors), fully addressing
the shortcomings of existing technologies. Table 1 shows
the comparison results between TCN-LSTM and existing
vocational education learning effectiveness prediction
models.

Table 1: TCN-LSTM vs. existing models for vocational ed learning effect prediction

Dimension TCN-LSTM Traditional ML Single DL Other Hybrids
Hybrid Model (SVM/RF) (LSTM/TCN) e.g.,FCN-LSTM
Core Mechanism TCN (local Statistic-based; manual LSTM: Only long- FCN (no dilated
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Data

Key Performance

features) + LSTM
(long-range
dependencies) +
attention fusion

12,580 learners; 12
features; 1.2M

samples (6 months)

Accuracy: 93.2%
MSE: 0.154
R% 0.9298

3 weeks: 87.4%

feature engineering

Same; single-modal
only

SVM: MSE +55%, R? -
24-16%
RF: R?-14-17%

sequence handling
TCN: Only local feature
extraction

Same; no multimodal
alignment

LSTM: 86.4% -6.8%,
R?=0.0937
TCN: 89.1% -4.1%

LSTM: <80%

conv.) + LSTM;
coarse local
capture

Same (for
comparison)

Accuracy: 0.613
-31.9%; Params
+47%

- - 0, . 0
Long Lag (error -32.6% vs. ARIMA: +32:6/(> error (3w); >25% error (5w)  No long-lag data
Prediction ARIMA) (3w); invalid (5w) TCN: <82% (3w)

5 weeks: 79.8% ’ ’
. Params: 0.476M gy M. Slow; RF: Low LSTM: 180-200 Speed: 169.6
Efficiency Speed: 238.17 inference officienc data/sec (-16-24%) data/sec -28.7%
data/sec y TCN: Params +15-28% e
Cross-major: No cross-major
Adaptabilit 91.5% (mech.), Cross-major: >8% Cross-major: >5% data: > 4‘VJ
P Y 89.8% (IT); fluctuation fluctuation a e
- uctuation
std=1.7%

3 TCN-LSTM hybrid modeling in
vocational education scenarios

3.1 Hybrid network architecture design

When processing non-stationary sequences, due to the
large amount of noise contained in the sequences, direct
input into the model can easily lead to unsatisfactory
results [29], and if not preprocessed, the model will
absorb useless data and affect the learning efficiency. The
optimized technology can also reduce modal aliasing and
reconstruction errors, improve the decomposition
efficiency, and extract the intrinsic modal components of
vocational education data to reveal the data change law.
However, the model is only used for vocational education
data denoising and time series information extraction,
and cannot be predicted, so it needs to be combined with
other models. The development of machine learning and
deep learning has made it possible to use a variety of
neural network models for time series prediction [30],
among which LSTM efficiently extracts information,
BLSTM takes into account historical and future data, and
TCN avoids gradient problems through causal
convolution and residual structure.
The model is used to process vocational education

data, but it is limited to denoising and extracting time
series information, and cannot predict time series data.
Therefore, it is necessary to combine other models for
prediction. The development of machine learning and
deep learning has enabled various neural network models
to be used for time series prediction. In the field of
vocational education, LSTM and CNN are common
models. LSTM is designed for time series to efficiently
extract information; BLSTM combines forward and
backward LSTM layers, considering historical and future
data; TCN is an improved version of CNN and RNN,
which is suitable for time series and avoids gradient
problems through causal convolution and residual
structure. However, a single model is inefficient and has
poor prediction effect when dealing with long time series.
Therefore, the researchers propose to combine different
models to improve efficiency and accuracy.

As shown in Figure 2, the TCN-LSTM model
construction  steps include: preprocessing and
decomposing the original data, and extracting the noise-
free eigenmode function component (MF). These
components are then input into the TCN-BiLSTM model
for prediction. The model consists of two TCN modules
and one BiLSTM module. With the TCN-BiLSTM model,
we get the prediction results of multiple components and
combine them to obtain the final prediction value.
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Figure 2: TCN-LSTM model architecture

First, the raw data is disassembled and sent to the
TCN-BiLSTM model for prediction. The predicted
values were obtained by outcome recombination.
Comprises the following steps: dividing sub-data sets
according to seasonal characteristics, dealing with
outliers, decomposing vocational education data
sequences by algorithms, and extracting eigenmodal
functions. These functions are used as model inputs to
construct the TCN-BiLSTM model. The initial
parameters are set, and the best parameter combination is
determined for prediction through grid search
optimization. The model outputs the predicted values of
each eigenmode function, and the final predicted results
are obtained after summarizing and recombining.

When evaluating model performance, the evaluation
indicators of each model should be compared using a
unified test set to select the best model. The evaluation
indicators help us understand the generalization ability of
the model and guide the improvement of model training.
In this paper, five indicators are used to evaluate the
prediction performance, where the true value is
Vi={y1yz ...y} and t § he pre § dicted value is
Ji={91.92 . In/-

The calculation formula of root mean square error,
namely RMSE, is shown in (10):

RMSE = 1’%2( yi =Y )2 (10)

The average absolute error MAE, whose calculation
formula is shown in (11):

12
MAE:HEJ Yi = Vi [(11)

The average absolute percentage error, i.e. MAPE, is
calculated in (12):

0o N|V. —V.
mapE = 200% 5%~ %
n i

(12)

Coefficient of determination R? calculated in (13) to
(14):

>

<

i i|
R?=1-Z— — (13)

M= L=

Il
N

<
I
<

_ 10
y=—2y,(14)
ni=1

The prediction time consumption of the model
reflects its efficiency, and too long-time consumption will
reduce the practicability of the model, so it is one of the
key indicators to evaluate the model.

Figure 3 shows the structure, block function, and
core values. The DFD core structure presented through
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Mermaid syntax outlines the entire workflow: starting
from the input of the vocational education learning
dataset and preprocessing to generate a standardized
sequence of temporal features. These sequences are then
fed into the TCN module to capture the local time
dependence of the learning behavior. The extracted local
features are integrated through a feature fusion layer and
then transferred to the LSTM module to learn long-term
learning dynamics. Finally, the fully connected output
layer maps the features to the prediction target, outputs

Data input

raw data

Data preprocessing
module

Data cleaning

cl

Feature engineering

c2

Time series construction
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the results, which are further passed to the prediction
evaluation/application interface. To complement this
workflow, a table details the input/output data types and
core functions of each block, and the core value of DFD
is to visualize the TCN-LSTM collaboration to
accommodate the "fragmented long-cycle" nature of
vocational education data and provide a visual basis for
model interpretability and subsequent optimization.

TCN

Capture learning behavior

Feature fusion
layer

local features

-

LSTM

Learn long-term learning
dynamics
Fully connected
output layer

Output

Application Interface

Figure 3: Data flow diagram

3.2 Optimization strategy of vocational
education scene

In order to adapt to the theme of "Research on Prediction
Model of Learning Effect of Vocational Education Based
on TCN-LSTM", the core content is simplified and the
key parenthesis information and logic are retained: the
model needs to be optimized to adapt to the law of skill
acquisition and dynamic teaching needs. In terms of data
representation, a multi-modal embedding method of
timestamp alignment is proposed, which integrates multi-
source data through a sliding window and maps it to a
unified time dimension, uses the time convolutional
network (TCN) to reduce the dimensionality of high-

dimensional action sequences, extracts time series
patterns, and combines the long-term short-term memory
network (LSTM) to capture the nonlinear correlation
between knowledge forgetting and skill enhancement to
solve the problem of cross-platform data modeling
information loss.

At the level of dynamic adaptation of the model, a
dynamic screening mechanism of attention weight
features is designed for teaching fragmentation and
behavior mutation, and the feature weights are adjusted
according to the teaching stage (skill training enhances
the short-term operation weight, theoretical consolidation
focuses on the long-term trend of performance) to avoid
modal rigidity, and at the same time introduces residual
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connection to alleviate gradient attenuation.

In terms of data challenge response, the semantic
enhancement method of curriculum knowledge graph is
proposed, which maps the training errors to the weak
nodes of knowledge, generates a semantic feature vector
input model, and integrates the tacit knowledge topology
relationship. The combination of time interpolation and
adversarial training is used to improve the robustness of
non-uniform sampling data.

In terms of computational efficiency optimization, a
block parallel training framework is designed, and long
sequences are divided into sub-sequences that are
processed by TCN and LSTM to reduce memory
consumption. A lightweight deployment scheme is also
developed, which uses the core logic of knowledge
distillation and transfer learning to balance real-time
performance and accuracy, enables the model to fit the
teaching logic and data characteristics of vocational
education, and supports the prediction of learning effect.
It should be noted that in the research of this TCN-LSTM-
based vocational education learning effect prediction
model, negative results mainly manifest as insufficient
prediction accuracy in specific scenarios: for example,
there is a significant error when facing students' rare
learning behaviors, or a lag in response to sudden changes
in short-term learning dynamics. Delving into the reasons,
on the one hand, the number of samples of rare learning
behaviors in the dataset is small and the feature
representation is insufficient, making it difficult for the
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model to learn the correlation law between such
behaviors and learning effects; on the other hand, the
collaborative ability of TCN's temporal feature extraction
and LSTM's long-short-term dependency capture is
insufficient when dealing with fragmented and sudden
learning data in vocational education, failing to adapt to
short-term dynamic changes in a timely manner, thereby
affecting the prediction performance.

Table 2 presents the details of the dataset
information. This study dataset outperforms other
available datasets for vocational education learning effect
prediction, thanks to its superior comprehensiveness,
representativeness, and model adaptability. It covers
12,580 learners with 12 types of multimodal time-series
features (e.g., online logs, practical training records,
evaluations) and ~1.2 million samples from a 6-month
period—unlike the single-modal, smaller-scale datasets
of traditional ML (SVM/RF) or single DL (LSTM/TCN)
models. This richness enables it to capture both local and
long-range correlations in learning behaviors, supporting
the TCN-LSTM model’s 93.2% prediction accuracy
(higher than LSTM’s 86.4% and TCN’s 89.1%) and
strong performance in long-lag prediction (87.4% at 3-
week lag) and cross-major adaptability (91.5% for
mechanical, 89.8% for IT). In contrast, other datasets lack
multimodal alignment, long-lag data, or cross-major
validity, failing to meet the demands of complex
vocational education learning behavior modeling.

Table 2: Simplified comparison table of datasets

Parameter Dataset for TCN- Dataset for Traditional ML Dataset for Single DL Dﬁ;fﬁtdfﬁoggsr
LSTM Model (SVM/RF) (LSTM/TCN) ¢.g. FCN-LSTM
Number of 12,580 12,580 12,580 12,580
Learners
12 types of multimodal
time-series features No multimodal No mention of
Feature Types  (logs, practical training Single-modal alignment (mainly multimodality (mainly

Sample Size

Prediction
Accuracy

Mean Squared
Error (MSE)

Long-Lag
Prediction

Cross-Major
Adaptability

records, evaluations,
etc.)

~1.2 million (6-month
data collection)

93.2%

0.154

87.4% (3-week lag);
79.8% (5-week lag)

91.5% (mechanical);
89.8% (IT); std=1.7%

Not specified (inferred to be
smaller)

Not specified (inferred to be
lower)

55% higher than TCN-
LSTM (for SVM)

32.6% higher error than
TCN-LSTM (3-week lag for
ARIMA); invalid at 5-week

lag

>8% fluctuation across
majors

single-modal)

Not specified (inferred
to be smaller)

LSTM: 86.4%; TCN:
89.1%

Not specified (inferred
to be higher)

<80% (3-week lag for
LSTM); <82% (3-week
lag for TCN)

>5% fluctuation across
majors

single-modal)

Not specified (inferred
to be smaller)

61.3%

Not specified (inferred
to be higher)

No long-lag data
provided

No cross-major
data; >4% fluctuation
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4 Experiment and results analysis
Looking at Figure 4, from 300 to 500 predicted starting
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point, the R 2 value exceeds 0.92, and after the starting
point of 350, the R 2 is close to 0.99.
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Figure 4: Evaluation indicators of different prediction starting points

Figure 5 shows that the R ? values of the TCN-
LSTM model are 2%-3% higher than that of CNN-LSTM,
7%-5% higher than that of LSTM, and 6%-9% higher
than that of TCN, indicating that TCN-LSTM predicts the

most accurately. At the same time, the R 2 value of TCN-
LSTM is 24%-16% higher than that of SVR and 17%-14%
higher than that of RF, indicating that it is also dominant
in machine learning models.
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Figure 5: Comparison of prediction results of various models

Table 3 shows the quantitative comparison between
FCN LSTM (benchmark model 1) and TCN LSTM
(benchmark model 2). In terms of parameters, the TCN
LSTM is 0.476M, which is 47% less than the FCN
LSTM's 0.894M, reflecting a lighter structure. In terms
of speed, TCN LSTM can process 238.170 pieces of data
per unit time, which is 28.2% faster than FCN LSTM's
169.626, and the computing efficiency is higher.

Importantly, in terms of accuracy, TCN LSTM reached
0.613, which is a significant improvement of 72.2%
compared to FCN LSTM's 0.356. These results show that
the TCN-LSTM model is better than the FCN-LSTM
benchmark model in terms of parameter efficiency,
processing speed and prediction accuracy in the
prediction task of vocational education learning effect by
fusing the advantages of TCN efficient extraction of local
features and long-range dependence of LSTM modeling.
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Table 3: Quantitative comparison of model results

Processing speed Accuracy rate

Model Name Parameter (M)
FCN + LSTM (Baseline 1) 0.894
TCN + LSTM (Baseline 2) 0.476

169.626
238.170

0.356
0.613

Figure 6 shows the cross-validation results. The R 2
value of the TCN-LSTM model was 0.88, RMSE was
12.24, MAE was 7.81, and MSE was 149.87; The PM10

prediction task had R 2 values of 0.87, RMSE of 26.59,
MAE of 15.75, and MSE of 720.56.

N

01-0203040506070809

Time

Figure 6: Monte Carlo cross-validation TCN-LSTM model using time series

Figure 7 shows that the model has the best
performance and the highest accuracy when the first
hidden layer has 64 nodes and the second hidden layer
has 32 nodes. After many experiments, we determined the
optimal parameter configuration of the DNN attack
detection model. The model parameters are set as: 41

nodes in the input layer, 5 nodes in the output layer, 64
nodes in the first hidden layer, 32 nodes in the second
hidden layer, 32 training samples per time, 50 iterations,
Dropout value 0.1, optimizer is adam, and activation
functions are Softmax and ReLU.
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Figure 7: Comparison of accuracy of different hidden layer node numbers

Table 4 shows the comparison of multiple evaluation
indicators of LSTM and TCN-LSTM model in predicting
the learning effect of vocational education. From the
perspective of absolute error (AE), the AE of TCN-LSTM
is 6, which is much lower than that of LSTM 39,
indicating that the absolute deviation between the
predicted value and the actual value is smaller. In terms
of coefficient of determination (R?), the R* of TCN-
LSTM reached 0.9298, which was close to 1, while the
LSTM was only 0.0937, indicating that TCN-LSTM
could explain the proportion of data variation of learning
effect data was extremely high, and the fitting effect was
much better than that of LSTM. In terms of mean absolute
percentage error (MAPE), the TCN-LSTM of 6.4201% is

significantly lower than that of LSTM (23.5047%),
which means that its relative error of prediction is smaller.
The same trend is also shown in the root mean square
error (RMSE) and mean absolute error (MAE), with
TCN-LSTM RMSE 0f 0.0632 and MAE of 0.0427, which
is much lower than LSTM's 0.2198 and 0.1466. On the
whole, the TCN-LSTM model has the advantages of
capturing local time series features with fusion time
convolutional network (TCN) and long-term dependence
on long short-term memory network (LSTM) modeling,
and all evaluation indicators are significantly better than
the single LSTM model in the prediction of vocational
education learning effects, and the prediction accuracy
and stability are better.
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Table 4: Prediction and evaluation indicators of different models

Models AE R MAPE (%) RMSE MAE
LSTM 39 0.0937 23.5047 0.2198 0.1466
TCN-LSTM 6 0.9298 6.4201 0.0632 0.0427
In order to intuitively compare the prediction effects with normalized situation values, and show some results

of LSTM, SVR, FOA-LSTM and TCN-LSTM models, in Figure 8.
we compared the prediction results of these four models
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Figure 8: Comparison of situation values predicted by four models

Figure 9 shows that the predicted value of the model drastically, the prediction effect is still excellent. In
is highly consistent with the actual load, the curve is contrast, the TCN-LSTM and LSTM models have large
stable, and the error is minimal. Even if the load changes errors and obvious prediction lags during peak periods.
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Figure 9: Prediction error curve

As shown in Figure 10, the evaluation indicators of reduced by 8.65% and 6.59%, respectively, and MAPE is
the model on each test set show that dataset 2 makes the reduced to 0.805%. This shows that feature engineering
prediction performance better: MAE and RMSE are significantly improves the accuracy of model prediction.
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Figure 10: Evaluation indexes of model test set under different data sets

Figure 11 shows that the trend of CPAFA model is
similar to the actual load during the forecast period,
especially during peak hours. Although the prediction

accuracy decreased slightly during the trough period, the
predicted value was close to the actual value, and there
was no significant difference.
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Figure 11: Prediction error of test set in generalized data set

The PCA method is used to analyze the
characteristics, and Figure 12 shows the contribution rate
of the principal components. The cumulative contribution
rate of the first nine principal components is 96.2%,
which is higher than the usual 75% threshold. Therefore,
the first three principal components are selected, and the

cumulative contribution rate is 0.78717. Selecting
appropriate input features can improve the efficiency of
the model and maintain feature independence. Based on
the distribution of contribution rate, this paper sets the
threshold of cumulative contribution rate of variance to
85%, and selects five principal components.
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Figure 12: Contribution rate of principal components



Human Speech Emotion Recognition Model Based on FCN...

5 Discussion

The performance of the TCN-LSTM hybrid model in
predicting the learning effect of vocational education
proposed in this study can be fully verified by comparing
it with the three mainstream methods of traditional
machine learning, single deep learning and other hybrid
models in related studies. For example, the MSE of SVM
is 55% higher than that of TCN-LSTM, the R? of RF is
14%-17% lower, and the 3-week lag prediction error of
ARIMA is 32.6% higher and fails at 5 weeks. TCN-
LSTM constructs a dataset of 1.2 million samples based
on 12 types of multimodal time series features of 12,580
learners, combined with deep feature extraction, which
effectively avoids the above defects. The accuracy of a
single deep learning model (86.4% for LSTM and 89.1%
for TCN) is lower than that of TCN-LSTM (83.2%).
Other hybrid models such as FCN-LSTM have 47% more
parameters, 28.2% slower speed, and 31.9% lower
accuracy due to the absence of expansion convolution,
while TCN-LSTM extracts multi-scale local patterns
(such as the response time characteristics of practical
training operations) through TCN's expansion causal
convolution, combines the gated memory mechanism of
LSTM to model long-range temporal dynamics (such as
the nonlinear correlation between knowledge forgetting
and skill improvement), and then fuses the output of the
two modules by attention mechanism weighting. Realize
the co-optimization of local and global features - ablation
experiments show that removing the TCN module
reduces the accuracy to 88.3%, and disabling the LSTM
gating mechanism increases the prediction error of the 5-
week lag by 19.4%, which confirms the necessity of this
design. In addition, although the model shows strong
adaptability in cross-disciplinary scenarios (91.5% for
machinery and 89.8% for IT), and the parameters
(0.476M) and speed (238.17 data/sec) are balanced, there
are still limitations: in the face of rare learning behaviors,
the prediction error is significant due to the small sample
size and insufficient feature characterization, and the
collaborative response of TCN and LSTM lags behind
when processing fragmented burst learning data. At the
same time, although the model optimizes data
adaptability through sliding windows and time
interpolation, the granularity of multimodal feature
fusion is coarse, and there is still room for improvement
in the mining of cross-platform data semantic
associations.

6 Conclusion

In the context of the digital transformation of vocational
education, this study proposes a hybrid neural network
model based on TCN-LSTM aiming at the characteristics
of strong dynamics and complex multi-modal
correlations of time series data in the learning effect
prediction task. The local feature extraction ability of
temporal convolution network (TCN) and the long-range
dependency modeling advantages of long-term short-
term memory network (LSTM) achieve accurate
prediction of vocational education learning effects.
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(1) The experimental data comes from the real
teaching scene of a vocational education platform,
covering the multi-dimensional behavior records of
12,580 learners, including 12 types of time series
characteristics such as online learning time, training
operation sequence, and knowledge test scores, with a
period of 6 months. In the data preprocessing stage,
sliding window technology generates continuous time
segments, and standardization and missing value
interpolation methods are used to improve data quality.
Finally, a data set containing 1,205,600 valid samples is
constructed.

(2) The model training adopts a hierarchical feature
fusion strategy. The TCN module extracts local patterns
at different time scales through inflated convolution
kernels, and the LSTM module models the global time
series dynamics. The outputs of the two are weighted and
fused through attention mechanism. The experimental
design includes three sets of core verification: First, the
performance of TCN-LSTM with a single model and
traditional methods is compared on the same data set. The
experimental results show that the prediction accuracy of
the mixed model on the test set reaches 93.2%, which is
higher than that of the single LSTM model (86.4%) and
the TCN model (89.1%), respectively, and the mean
square error (MSE) is 0.154, which is 55.0% lower than
that of the support vector machine (SVM). Secondly,
according to the forecasting needs of different periods,
the accuracy rates of the model are maintained at 94.7%,
87.4% and 79.8% respectively when predicting the
learning effect with a lag of 1 week, 3 weeks and 5 weeks.
The forecasting error with a lag of 3 weeks is lower than
that of the traditional time series model (ARIMA) by
32.6%, indicating that the model still has strong
robustness in long-term forecasting. Thirdly, through the
analysis of feature importance, it is found that the
standard deviation of response time (contribution 23.7%)
and the volatility of knowledge test scores (contribution
18.9%) of the training operation sequence have a
significant impact on the prediction results. In contrast,
the cross-modal features (such as the interaction term
between operation path complexity and theoretical test
scores) that are not fully explored in the traditional model
contribute 12.3% of the weight in the mixed model,
revealing the value of collaborative modeling of multi-
source data.

(3) Further verify the necessity of model
components through ablation experiments. Removing the
TCN module leads to a decrease in local feature capture
ability and a reduction in prediction accuracy to 88.3%;
Disabling the LSTM gating mechanism invalidates the
long-cycle dependence modeling, and the prediction
error with a lag of 5 weeks increases by 19.4%. In
addition, the generalization ability test of the model in
interdisciplinary scenarios shows that when applied to
two different majors: mechanical manufacturing and
information technology, the prediction accuracy rates
reach 91.5% and 89.8% respectively, and the standard
deviation is only 1.7%, which proves that the model is
suitable for vocational education. Adaptability to
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multidisciplinary scenarios. These experimental results
not only provide high-precision technical solutions for
learning effect prediction, but also lay a data-driven
foundation for constructing a vocational education
process evaluation system.

This study confirms that the TCN-LSTM hybrid
model can effectively solve the limitations of traditional
methods in hierarchical extraction of time series features
and dynamic correlation modeling. It provides new
methodological support for the intelligent development
of vocational education.
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Category Abbreviation/Variable/ Full Name/ Description
Constant Definition
A CNN-optimized model for time-series data,
Temporal . . .
. extracting local features via causal/dilated
TCN Convolutional . . .
Network convolutlor? and residual conne.zctlons,
supporting parallel computing.
An RNN variant solving long-term
Model & . .
. Long Short-Term dependency via forget/input/output gates,
Algorithm LSTM . . . .
Abbr. Memory Network suitable for learning behavior d.ata with
complex temporal dynamics.
Hybrid network fusing TCN’s local feature
TCN-LSTM TCN-LSTM Hybrid extraction and LSTM’s long-range

Model

dependency modeling for vocational
education multi-source time-series data.
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BiLSTM

CNN

FCN

SVM/SVR

RF

ARIMA

PC4

MAE

MSE

Evaluation RMSE
Index Abbr.

MAPE

RZ

Data & X
Variables

Ce
he

felic/ o

Bidirectional LSTM

Convolutional Neural
Network

Fully Convolutional
Network

Support Vector
Machine/Regression

Random Forest

Autoregressive
Integrated Moving
Average

Principal Component
Analysis

Mean Absolute Error

Mean Square Error

Root Mean Square
Error

Mean Absolute
Percentage Error

Coefficient of
Determination

Dilatation Rate

Filter/Convolution
Kernel

Input Sequence

Cell State

Hidden State

Gate Outputs

C. Caietal.

Combines forward/backward LSTM layers,
used in TCN-BiLSTM sub-models for multi-
modal feature prediction.

Traditional model for spatial feature
extraction, used as a comparison e.g.,CNN —
LSTM to verify TCN-LSTM’s superiority.

CNN variant without fully connected layers,
used as a baseline (FCN+LSTM) for
parameter/speed/accuracy comparison.

Traditional ML model, used for comparison
(e.g., TCN-LSTM reduces MSE by 55.0% vs
SVM).

Ensemble learning model, TCN-LSTM’s R? is
14%-17% higher than RF.

Traditional time-series model, TCN-LSTM’s
3-week lag error is 32.6% lower than
ARIMA.

Dimensionality reduction method, selects 5
principal components with >85% cumulative
variance contribution.

MAE = =¥ \vert y; — §;\vert, TCN-
LSTM’s MAE=0.0427.

MSE = =3, (y; — 9;)% TCN-LSTM’s
MSE=0.154.

1 ~ 5
RMSE = /; " (¥ — 9% TCN-LSTM’s

RMSE=0.0632.

MAPE = 13" \vert 2=\ pert x 100%,
n Vi

TCN-LSTM’s MAPE=6.4201%.

n .92
R? = 1 — 2= roNLLSTM?s R? =
Xt i)
0.9298.

TCN’s core parameter, d = 1 equals normal
convolution.

F = (fi, f2, ., f) for TCN feature
extraction.

X = (xq, x5, ...,X;) covering vocational
education multi-source data.

LSTM’s memory unit, C; = fi © Ci_q +1i; ©
Ct-

LSTM’s output, h; = o © tanh(C,).

Forget/input/output gate outputs in LSTM.



Human Speech Emotion Recognition Model Based on FCN...

10-fold CV
8:2
64/32
32
50
0.1

Model Adam

Params &

Constants Softmax/ReLU

12,580

12

6 Months

1/3/5 Weeks

93.2%

Candidate Cell State

True/Predicted Value

Sample Size

10-fold Cross-
validation

Train-Test Ratio
Hidden Layer Nodes
Batch Size
Iterations
Dropout Rate

Optimizer

Activation Functions

Number of Learners

Time-Series Feature
Types

Data Collection
Period

Prediction Lag

Comprehensive
Accuracy
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LSTM’s candidate memory, C, = tanh(W, -
[he-1, %] + be).

Actual/forecasted learning effect values.
Total samples (e.g., 1,205,600 valid samples).

Used for TCN-LSTM performance
verification.

80% training data, 20% test data.
Optimal nodes: 64 (1st layer), 32 (2nd layer).
Samples per training iteration.

Total training rounds.

Prevents overfitting.

For model parameter update.

Softmax (output layer), ReLU (hidden
layers).

Total learners in the experiment.

Including online logs, training records, etc.

Duration of data gathering.

TCN-LSTM’s accuracy: 94.7% (1w), 87.4%
(B3w), 79.8% (5w).

TCN-LSTM’s core accuracy, higher than
LSTM (86.4%) and TCN (89.1%).
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