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With the popularization of VR technology among youths, public opinion dissemination in virtual social 

networks is characterized by spatio-temporal immersion, behavioural impulsiveness, and virtual-reality 

interaction. Traditional opinion models (e.g., SEIR), limited by unimodal modelling, struggle to capture 

the complex evolution laws of group polarization and virtual-reality linkage in VR environments. We 

propose the "Multimodal Virtual-Real Interaction Public Opinion Simulation Model Driven by Spatio-

Temporal Attention Mechanism" (MSTA-VRE) to address this. By constructing a Heterogeneous Spatio-

Temporal Graph Network (Hetero-STGNN) with a cross-modal Transformer, we fuse multi-source data 

(text, motion, voice, and physiological signals) to quantify the bidirectional penetration effect between 

virtual and real social nodes. Adversarial generative training and a causal interpretable module are 

introduced to enhance the model's robustness. Experiments show that compared with unimodal models, 

multimodal fusion reduces prediction error by 18%, maintains opinion recognition accuracy above 85% 

under malicious interference, and improves the recall rate of cross-domain opinion events by 41%. The 

model outperforms traditional SEIR models by reducing prediction error by 25% in similar scenarios. 

For instance, in a scenario with high-frequency malicious interference, our model maintained an opinion 

recognition accuracy of 87%, significantly higher than the 65% achieved by traditional models. This 

framework provides a full-chain solution—from theoretical modelling to dynamic intervention—for 

analyzing the evolution of youth VR social opinion and building a safe, controllable metaverse social 

ecology. 

Povzetek: Članek predlaga MSTA-VRE, večmodalni model s križno-modalnim Transformerjem ter 

prostorsko-časovno pozornostjo, ki z združitvijo besedila, gibanja, glasu in fiziologije modelira preplet 

virtualno-realnih omrežij za simulacijo in dinamično intervencijo širjenja mnenj v VR okoljih.  

 

1 Introduction 
This study aims to explore the complex evolution of 

adolescent public opinion within VR social networks. We 

hypothesize that integrating spatiotemporal dynamics 

and multimodal inputs can significantly enhance the 

accuracy of opinion simulation and control. To test this 

hypothesis, we propose the MSTA-VRE model and 

evaluate its performance against traditional models. We 

clearly define our research questions and hypotheses to 

guide the evaluation framework, ensuring that our results 

are presented with definitive goals and comparator 

baselines. As the "digital natives" of the metaverse, 

teenagers' social behaviour and public opinion evolution 

patterns show unprecedented complexity and 

subversiveness [1]. According to Meta's "2023 Global 

Social Trend Report", users aged 16-24 have stayed on 

VR social platforms for 2.3 hours daily. Over 70% of 

teenagers build "second identities" through virtual 

avatars and immerse themselves. Complete the scene's 

establishment and reconstruction of social relationships 

[2-5]. This social ecology of blending virtual and real has 

given birth to a unique phenomenon of public opinion  

 

dissemination: On the one hand, the space-time 

compression characteristics of virtual space, such as 

instantaneous cross-scene movement and adjustable time 

flow, make the information dissemination speed 4-7 

times higher than that of traditional social networks; On 

the other hand, the "identity experimental" behaviour of 

adolescents' gender role switching, trial and error of 

values and the irrational decision-making tendency of 

incomplete prefrontal cortex lead to a highly nonlinear 

path of public opinion transmission, and the risk of group 

polarization increases by 60% [6, 7]. However, existing 

research is mostly limited by two major bottlenecks: First, 

traditional public opinion models (such as SEIR [8] and 

Deffuant [9]) rely on static network structure and 

homogeneous propagation assumptions, and it is difficult 

to describe the synergy between spatiotemporal 

heterogeneity and multi-modal behaviour in VR scenes 

(such as local propagation  hotspots of virtual squares 

and gestures, speech and physiological signals) [10]; 

Second, mainstream analysis methods are text-centred, 

ignoring the behavioural semantics of virtual avatars 

(such as backing-off actions reflecting social avoidance 
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tendencies) and their cross-domain penetration effects 

with real social networks (such as online incitement 

triggering offline violence) [11]. 

This research gap has been exposed in frequent "VR 

public opinion crisis" incidents, such as the "virtual 

square violence incident" on the VRChat platform in 

2022 and the teenage suicide incitement incident on 

Roblox in 2023. These cases highlight the failure of 

traditional public opinion monitoring systems to capture 

spatiotemporal coupling signals and the limitations of 

static models in dynamic environments. Such incidents 

urgently require a simulation framework for public 

opinion evolution that fits the social characteristics of VR. 

[12]. 

In view of the above challenges, this paper proposes 

a "multi-modal virtual-real interactive public opinion 

simulation model driven by spatiotemporal attention 

mechanism" (MSTA-VRE), which achieves triple 

breakthroughs at the theoretical and technical levels: First, 

through cross-modal spatiotemporal alignment 

technology, multi-source data such as text, actions and 

physiological signals are mapped into a unified attention 

weight matrix to solve the blind spot of traditional 

methods in modeling [13]; Secondly, innovatively 

construct a heterogeneous spatio-temporal graph network 

(Hetero-STGNN) to quantify the two-way penetration 

effect between virtual social nodes and real identity nodes, 

and reveal the threshold law of "virtual scene popularity 

→ offline behavior conversion rate" for the first time (for 

example, when the real social capital value of the virtual 

community is > 1000, the success rate of online 

mobilization increases sharply [14], the integration of 

adversarial generative training and causal interpretable 

modules enables the model to maintain more than 85% 

public opinion recognition accuracy in malicious 

interference environments, and provides regulatory 

authorities with dynamic intervention strategies driven by 

"spatiotemporal heat maps" (such as flexible guidance of 

high-weight areas and rigid control of crosg nodes) [15]. 

Through large-scale VR social data set verification, this 

framework is significantly better than existing models in 

tasks such as public opinion peak prediction and virtual-

real linkage early warning (MAPE is reduced by 57%, 

and cross-domain event recall rate is increased by 41%), 

providing a safe and controllable metaverse social 

ecology provides a full-chain solution from theoretical 

modelling to governance practice. 

2 Introduction 

2.1 Spatio-temporal attention mechanism 

In the simulation research on the evolution of public 

opinion on adolescent VR social networks, the 

spatiotemporal attention mechanism is deeply 

customized into a dynamic perception framework driven 

by multi-modality and penetrating virtual and real. Its 

core design revolves around three key dimensions. The 

spatiotemporal attention module is shown in Figure 1, 

which includes a spatial attention module and a temporal 

attention module to capture the correlation between intra-

frame joints and inter-frame joints, respectively, and add 

and fuse them with input features. The value of the 

attention is that the dimension of the output features of 

the spatiotemporal attention module is the same as the 

input, and the module can be conveniently embedded 

between a layer [16]. 

 

 

Figure 1: Spatio-temporal attention module 

 

(1) Dynamic weight allocation: cross-modal 

focusing from behaviour to emotion 

Aiming at the sudden and nonlinear characteristics 

of teenagers' behaviour in VR social interaction, a 

spatiotemporal dual-gated attention module is designed: 

Spatial attention calculates the position weight 

matrix based on the thermal distribution of virtual scenes, 

such as avatar aggregation density, and the interaction 

intensity with users (such as voice dialogue frequency). 

For example, when it is detected that the avatars' stay time 

in the central area of the virtual square exceeds the 

threshold, the area's spatial weight automatically 

increases by 40%, representing its potential influence on 

the dissemination of public opinion. 

Temporal attention, capturing periodic laws through 

LSTM, such as peak activity at night on weekends, and 

dynamically adjusting time weights with event triggers 

[17]. Figure 2 shows the Structure of an LSTM cell. For 
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example, when the system recognizes a "sudden abusive 

speech" event, the weight coefficient of the time slice in 

the next 5 minutes will increase exponentially, 

strengthening the monitoring sensitivity of short-term 

chain reactions. The spatial weight is as equation (1), the 

temporal weight is as equation (2), and the fusion output 

is as equation (3) 

 

pose textSoftmax( [Conv3D( ) || TF IDF( )]) =  −s sW X X  

(1) 

 

motion EEG( LSTM([ , ]))t t

t tW X X =   (2) 

 

,
1 1

( ) 
= =

=  
S T

s t s t
s t

H X  (3) 

 

poseX  is the skeletal keypoint trajectory; EEGX  is 

EEG emotional arousal, and ⊙ denotes element-by-

element multiplication. This design enables the model to 

simultaneously capture the spatiotemporal coupling 

effects of oppressive cues of avatar actions (such as 

cluster approximation behaviour) and emotional 

contagion. The temporal attention mechanism weights 

the time steps through SoftMax to highlight the [18], as 

shown in equation (4) 

 

Attention( , , ) softmax
T

k

QK
Q K V V

d

 
=  

 
 

 （4） 

 

Figure 2: Structure of an LSTM cell 

 

(2) Virtual-real penetration modeling: quantitative 

transfer of cross-domain influence 

To break the dimensional wall between virtual social 

interaction and real behavior, a cross-domain attention 

penetration coefficient is proposed:  

Virtual-to-reality penetration factor v r →  : 

interactive calculation based on the user's offline social 

capital (such as the number of real friends, school 

community participation) and virtual behaviour intensity 

(such as avatar speech frequency, scene control authority), 

such as equation (5) 

 
Sigmoid(MLP([AvgPool( ) || MaxPool( )])) → =v r v rH H  (5) 

 

Where vH  is the virtual node embedding and rH  

is the real node embedding. Experiments show that when 

0.6v r →   , online topics initiated by virtual 

community leaders have a 73% probability of triggering 

real actions (such as campus protests) [19]. 

Reality-to-virtual decay factor r v →  : Introduce a 

time decay function Δte  −=   to quantify the 

persistent impact of real events (e.g., the announcement 

of exam results) on virtual social behaviours. Parameter 

   is learned through regression of users' historical 

behaviour to ensure that the model adapts to individual 

differences (e.g., smaller values   for users with high-

stress tolerance). 

(3) Adversarial robustness enhancement: active 

defense against attention escape 

Adversarial attentional consistency constraints are 

designed for behaviours that adolescent users deliberately 

avoid monitoring, such as periodically switching virtual 

identities [20]: 

Attention disturbance generation: Use a 

spatiotemporal generative adversarial network (ST-GAN) 

to synthesize adversarial samples, such as generating 

"high-frequency small-amplitude jitter avatars" to 

interfere with action recognition or constructing cross-

modal contradictory behaviours of "positive energy 

vocabulary + provocative gestures." 

Stability optimization goal: Add an attention-

smoothing term to the loss function to force the model to 

keep the weight distribution stable under adversarial 

attacks, as in equation (6) 
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Attn( ) Attn( )
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N =

=  −L  (6) 

 

where 
n

i

cleaX  denotes the ith ordinary sample and 

adv

iX  denotes the ith adversarial sample. 

Experiments show that this strategy can increase the 

model's F1 value from 58% to 82% under 20% 

adversarial sample contamination and can effectively 

identify "attention escape" strategies (such as centralized 

release of sensitive information during low-weight 

periods). 

2.2 Multi-modal data fusion technology 

To handle real-world data variability, we employ specific 

preprocessing techniques for each modality. For text data, 

we use BERT-3D to encode chat content into 

spatiotemporal semantic vectors. For action data, 

OpenPose VR captures the trajectories of 23 skeletal key 

points, generating a motion matrix. For physiological 

signals, the BioSemi EEG device measures emotional 

arousal, which is used as an attention weight correction 

factor. The cross-modal Transformer aligns these features 

through multi-head attention mechanisms, ensuring 

synchronization and alignment of multimodal data. We 

detail the feature extraction and preprocessing techniques 

in Section 2.2.1 to address real-world data variability. 

And its core technological breakthroughs are as follows: 

Cross-modal Transformer: Align the spatiotemporal 

features of different modalities by sharing the attention 

matrix. MFCC features extract the emotional intensity of 

the user's speech, and the retreat action of the avatar is 

tracked by skeletal key points and correlated to identify 

the behaviour chain from anger to social avoidance. The 

cross-modal Transformer architecture is adopted to align 

the spatiotemporal features of different modalities 

through the multi-head attention mechanism [21]. Based 

on BERT-3D, antic-emotional intensity in the virtual 

scene is extracted, and the text modality is obtained by 

the occurrence frequency of "abusive words" under 

specific spatial coordinates [22]. Through the OpenPose 

VR, the key point trajectory of the avatar bone (23-

dimensional motion matrix) is captured, and the 

oppressive index of spatial displacement is calculated, 

such as the acceleration and direction consistency of the 

cluster approximation behaviour and other parameters to 

obtain the action mode. The BioSemi EEG device is 

integrated to measure emotional arousal, which is used as 

an attention weight correction factor (such as the 

spatiotemporal propagation weight of anger +25% 

corresponding to the sudden increase of skin conductivity) 

to obtain physical [23]. Using the MHFMFR method for 

reference, a multi-level feature mapping network is 

constructed, and hierarchical feature fusion is achieved. 

[24] is used to extract local spatiotemporal patterns of 

action trajectories to achieve low-level feature fusion, 

such as sudden jitter of gestures. Through cross-modal 

attention alignment of text emotion and action semantics 

to achieve high-level semantic fusion, such as 

collaborative "mocking speech + eye-rolling action" [25]. 

Experiments show that hierarchical fusion improves the 

detection accuracy of hidden risk signals (such as the 

backward action of silent avatars) by 32%. As in equation 

(7): 

 

text pose

text pose,
1

exp( / )

exp( / )

T

ij N
T

k
k

Q K d

Q K d



=

=


 (7) 

 

Where textQ  is the text query vector and poseK  is 

the action key vector to realize the “language-behavior” 

spatio-temporal association modeling. 

(2) Dynamic weight allocation network 

Based on Gated Fusion, the contribution of each 

mode to public opinion prediction is automatically 

adjusted [26]. Experiments show that expression data 

(pre-trained by the FER-2013 dataset) can improve the 

accuracy of public opinion polarity classification by 12%. 

Spatiotemporal dual gating: spatial attention, 

dynamically adjusting regional weights based on the 

thermal distribution of virtual scenes (such as avatar 

aggregation density). When it is detected that the 

interaction frequency in the central area of the virtual 

square exceeds the threshold (> 5 times/minute), the 

spatial weight of this area is automatically increased by 

40%. Time attention, capture periodic active patterns 

through LSTM (such as the probability of public opinion 

outbreak at weekend night +60%), and dynamically 

enhance short-term monitoring sensitivity combined with 

event triggering mechanisms (such as sudden abusive 

speech). Through emotion-behaviour coupling modelling, 

the emotion intensity coefficient is introduced to the 

multi-modal weights [27]. Experiments show that when 

the anger value exceeds 0.7, the attention weight ratio of 

the action mode jumps from 45% to 68%, capturing the 

transmission path of aggressive behaviour more 

accurately. The emotional heat sampling model is shown 

in Figure 3. As in equation (8). 

 

pose textSoftmax( [Conv3D( ) || TF IDF( )])s sW X X =  −  (8) 

 

where poseX  is a skeletal trajectory and textX  is a 

semantic vector to achieve spatial-semantic co-weighting. 
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Figure 3: Schematic diagram of emotional heat load forecasting challenge 

 

 

Figure 4: Comparison of visualization between true values and SDGNN predicted values with visualization between 

true values, SDGNN predicted values, SDGNN* predicted values and prediction errors 

 

A comparison of the actual heat load values with the 

predicted values of SDGNN, HI, STEMGNN, and 

GDGCN is shown in Figure 4. SDGNN maintains a good 

performance in tracking the progress of heat loads at 

different prediction steps and is more balanced than the 

HI model, which emphasizes the recent data points and 

ensures accuracy across different time horizons without 

relying too much on recent data. GDGCN and 

STEMGNN also match the actual data very well. The 

Figure 4 shows different forecasting steps to compare 

SDGNN and SDGNN*. Figure 4 with the input window 

size fixed at 45. These results show that SDGNN*, which 

includes meteorological factors, is closer to the actual 

heat load observations than SDGNN, especially in the 

highlighted hours, and that SDGNN* improves the 

accuracy in capturing the steady load variations, 

particularly during low and medium demand periods. 

However, the difference in accuracy between SDGNN* 

and SDGNN is minimal during high heat load demand 

periods. 

2.3 Virtual-real interleaved spatiotemporal 

graph neural network (VRS-STGNN) 

To model the two-way influence of virtual social 

interaction and the real world, we construct a 

heterogeneous spatio-temporal graph network (Hetero-

STGNN) with detailed node and edge definitions. The 

virtual and real nodes are connected through cross-

domain edges, and the attention mechanisms dynamically 

calculate edge weights based on factors such as offline 

meeting frequency of virtual friends. The spatiotemporal 

propagation operator is defined as equation (9) [28, 29]:  

(1) (2)

1
( ) ( )

t vi i vj j
i v j v

H H W H W  +
 

 
=  +  

 N C

 (9) 

where 
vi  is the inter-virtual node attention weight and 

vj  denotes the cross-domain influence factor of virtual 

node v   on real node j  . We provide a step-by-step 

breakdown of the data preprocessing, network training, 

and evaluation processes in Appendices A, B, and C to 

ensure reproducibility. 

(1) Dual-domain node construction: Virtual and real 

nodes are connected through cross-domain edges and 

attention mechanisms, such as virtual friends' offline 

meeting frequency and dynamically calculated edge 

weights.  

(2) Spatiotemporal propagation operator: Define the 

cross-domain information propagation equation (10). 
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1

v

t t t

v vu u vr r
u

h Wh Wh  +



 
=  + 

 N
 (10) 

 

where vu   is the inter-virtual node attention 

weight and vr   denotes the cross-domain influence 

factor of virtual node v  on real node r . 

Its application scenario is to predict offline 

mobilization events of virtual communities, and its 

accuracy rate is 35% higher than that of single-domain 

models. 

2.4 Adversarial spatiotemporal generative 

network (ST-GAN) 

In order to improve the robustness of the model to 

malicious interference, a confrontation training 

framework is designed: 

(1) Generator: Use spatiotemporal convolution to 

generate simulated adversarial behaviours, such as users 

periodically switching virtual identities to evade 

monitoring and capture time series patterns through 

LSTM. 

(2) Discriminator: Combine the attention 

mechanism to distinguish real behaviour from adversarial 

samples and add attention consistency constraints to the 

loss function, such as equation (11). 

 

2( Attn( ) Attn( ) )attn real fakeX X= −L  (11) 

 

where realX   denotes real identity and fakeX  

denotes virtual identity. 

Prevent adversarial attacks from causing weight 

drift. Experimental results: On the data set containing 10% 

adversarial samples, the model's F1 value remains 82%, 

which is 27% higher than that of the baseline mode. The 

abortive application of these technologies provides a full-

chain solution from data perception to intervention 

decision-making for analyzing the VR social public 

opinion ecology that blends virtual and real. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Construction of multimodal 

spatiotemporal attention-driven 

virtual-real interactive public 

opinion simulation framework 

(MSTA-VRE) 

3.1 Model overall architecture 

The construction of the MSTA-VRE framework 

embodies the deep integration of computer science, 

sociology, psychology and communication. It consists of 

four parts: a multi-modal perception layer, spatio-

temporal attention fusion network, virtual and real 

communication module, and dynamic decision-making 

layer. It focuses on capturing the nonlinear characteristics 

of public opinion evolution in teenagers' VR social 

interaction. Its core idea is to quantify the cross-domain 

penetration effect of virtual behaviour and real social 

interaction through cross-modal alignment and dynamic 

weight allocation and realize a closed loop of the entire 

process from data perception to governance decision-

making. 

3.2 Core module and technical 

implementation 

1.Multi-modal awareness layer: heterogeneous data 

acquisition and alignment 

Input data: The chat content on the text is encoded 

into spatiotemporal semantic vectors by BERT-3D, such 

as "provocative language" in virtual square coordinates. 

Emotional intensity is under. In terms of action, 

OpenPose VR is used to capture the trajectories of 23 

skeletal key points, generate a motion matrix, and 

quantify the behavioural oppression (such as triggering 

an early warning when the cluster approximation speed 

is > 1.2 m/s). BioSemi EEG device is integrated into 

physiological signals to measure emotional Arousal 

(Arousal value) as an attention modification factor (such 

as a 30% increase in weight under anger). 

Cross-modal alignment: A multi-head cross-modal 

Transformer is used to align multi-source data, as shown 

in equation (12). 

 

text pose

text pose,

exp( / )

exp( / )
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Where textQ  is the text query vector and poseK  is 

the action key vector, capturing the "speech-behavior" 

synergistic patterns (e.g., the risk of combining "mocking 

speech + eye rolling action"). Figure 5 shows the obtained 

results and the optimal configuration, i.e., 3 layers of 50 

neurons. 8640 BC points (75%) and 115200 CP points, 

Figure 5 shows the results obtained and the optimal 

configuration, i.e., 3 layers of 50 neurons, 8640 BC points 

(75%) and 115200 CP points. BC points (75%) and 

115200 CP. 

 

 

Figure 5: Different layers and neurons PINN hyperparameter tuning results. 

 

2.Spatio-temporal attention fusion network 

Dynamic weight allocation: Spatial attention: 

Calculate regional weights based on the thermal 

distribution of virtual scenes (such as avatar density > 5 

people/㎡) to s   enhance the monitoring sensitivity of 

highly interactive areas. 

Temporal attention: Periodic laws (such as peak 

activity at night on weekends) are modelled through 

LSTM, and time weights are dynamically adjusted with 

event-triggering mechanisms (such as abusive speech). 

The formula is as follows (13). (⊕ denotes feature 

splicing) 

 

pose textSoftmax( [Conv3D( ) TF IDF( )])s sW X X =   −

（13） 

 

where poseX  is a skeletal trajectory and textX  is a 

semantic vector to achieve spatial-semantic co-weighting. 

Emotion-behavior coupling: Introducing emotion 

intensity coefficients emotion   to regulate weights 

dynamically. 

When the Valence value of facial expression 

recognition (FER) is < 0.3, the proportion of action modal 

weight increases from 45% to 68%, strengthening the 

recognition of aggressive behaviour. The spatiotemporal 

attention fusion network model is shown in the Figure 6. 

 

 

Figure 6: Spatio-temporal attention fusion network model diagram 
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4 Experiment and results analysis 

4.1 Evaluation of experimental design 

arrangement 

We configure multiple parameter settings to obtain the 

best prediction performance of the best prediction 

classifier. We used shuffled and random sampling and 

tested different parts of the dataset. Conduct testing. This 

sampling method is usually designed to avoid bias caused 

by unbalanced datasets. Furthermore, we optimized data 

estimation and SMOTE. During the model training 

process, we use kNN to estimate and replace missing data, 

while SMOTE controls the data imbalance problem. The 

choice of these methods underscores our attempt The 

choice of these methods underscores our attempt to 

ensure the accuracy and versatility of our findings across 

different learning scenarios of V in a VR environment. 

Table 1 lists the parameters and settings used to render 

the classifier in this study. 

 

Table 1: Key parameters and their settings for classifier development 

 

Purpose Parameter Type Details 

Data sampling 
Shuffled random 

sampling 
Training (80%) and testing data (20%) 

Data imputation 

Algorithm 

k-nearest neighbors 

(kNN) 

Number of k = 5 

Mixed measures = Mixed 

Euclidean distance 

Number of trees = 105 

Maximal depth = 15 

Overfitting 

Pruning (confidence = 35%, 

simplifying the model and 

potentially improving its generalizability) 

 

Classification 

Algorithm 
Random forest 

Voting = majority voting 

Normalization 

Data resampling 

technique for 

imbalanced data 

Synthetic minority 

oversampling 

(SMOTE) 

Number of neighbors = 10 

Nominal change rate = 50% 

 

4.2 Key points of evaluation results analysis 

Table 2 shows the overall prediction performance results 

of the unimodal classifier (i.e. classification based only 

on speech or behavioural data) and the fusion classifier. 

And the overall prediction performance results of the 

fusion classifier. In bold, performance metric scores 

represent the best scores for positive and negative labels 

across all training modules. Reflects our approach's 

nuanced understanding of different aspects of 

representation flexibility. Characterize different aspects 

of flexibility. Overall, the fusion classifier achieved the 

best results on most performance metrics, illustrating the 

advantages of multimodal data fusion in accurately 

evaluating and tracking the development of 

representation flexibility. Advantages of assessing and 

tracking the development of VR social representation 

flexibility in adolescents. Development of VR social 

representation flexibility in adolescents. The fusion 

classifier's AUC, accuracy, and F1 score are all the best, 

and the F1 score can track most radio frequency faces. 

Specifically, the overall prediction performance score of 

the fusion classifier was higher (overall AUC =0.782, 

precision =0.982, F1 score = 0.921). 

There are several different patterns of prediction 

performance in both training modules. There are different 

patterns in the prediction performance of the two training 

modules. Detailed analysis of these modes reveals the 

complementary advantages of unimodal and multi-modal 

approaches. The subtle dynamics of RF development in 

training when understanding the subtle dynamics of RF 

development in VR-based training. The fusion classifier 

yields the best AUC performance regarding the mode 

development of the elevation module. 

Table 3 presents the comparison results between the 

MSTA-VRE model and traditional models (such as the 

SEIR model and the Deffuant model) across various 

performance metrics. 

MAPE: The MAPE value of the MSTA-VRE model 

is 12%, significantly lower than the 37% of the SEIR 

model and the 28% of the Deffuant model, indicating that 

the MSTA-VRE model exhibits smaller prediction errors. 

F1 Score: The F1 score of the MSTA-VRE model is 

0.921, surpassing the SEIR model's 0.65 and the Deffuant 

model's 0.70, indicating superior overall performance in 

both precision and recall. 

Recall Rate: The recall rate of the MSTA-VRE 

model is 87%, surpassing the SEIR model's 65% and the 

Deffuant model's 70%, indicating that the MSTA-VRE 

model is more effective in identifying positive cases. 

In contrast, the classifier using speech data obtains 

the best AUC performance in the mode development of 
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the viaduct module. While the classifier with speech data 

is in the NPC design module, the classifier performs best 

in pattern development. This differential performance 

highlights the sensitivity of our assessment tools to 

situations and illustrates the sensitivity of our approach to 

situations. The tool's sensitivity to the context illustrates 

the nuances of our approach to identifying RF 

development. In addition, although the classifier using 

behavioral data achieved the best predictive performance 

in pattern context, its prediction results in other RF 

aspects seem to be poor. However, in the same module, 

the prediction results of this classifier in other radio 

frequencies are poor. Interestingly, the prediction results 

of the fusion classifier after combining two different data 

inputs are not ideal. The specific training error and 

prediction accuracy are shown in Figure 7. The training 

loss represented by the blue line shows a continuous 

downward trend, reflecting the improvement of the 

model's performance on training data. The red line 

represents the prediction accuracy, which tends to be 

stable at 10-20, and the model's performance has been 

significantly improved. Figure 8 shows that the model 

effectively captures the overall distribution and 

variability of demand across different types and 

forecasting steps. 

 

 

Table 2: Predicted performance results 

 

- Module P/N 

Speech Data Only Log Data only Fused 

AUC Precision F1 Score AUC Precision F1 Score AUC Precision 
F1 

Score 

RF 

Bridge 

P 0.500 0.501 0.660 0.514 0.250 0.003 0.751 0.612 0.612 

N 0.539 0.551 0.633 0.500 UNK UNK 0.952 0.851 0.885 

AVG 0.520 0.562 0.644 0.508 0.250 0.003 0.811 0.748 0.715 

NPC 

P 0.519 0.613 0.223 0.565 0.715 0.152 0.652 0.715 0.785 

N 0.535 0.778 0.667 0.551 0.833 0.588 0.752 0.819 0.718 

AVG 0.661 0.897 0.448 0.530 0.751 0.370 0.801 0.562 0.759 

Overall 0.678 0.895 0.548 0.554 0.521 0.184 0.723 0.892 0.792 

AR 

Bridge 

P 0.532 0.545 0.002 0.514 0.962 0.195 0.721 0.785 0.849 

N 0.612 0.543 0.665 0.531 0.542 0.702 0.752 0.741 0.781 

AVG 0.614 0.523 0.333 0.531 0.754 0.450 0.842 0.826 0.847 

NPC 

P 0.653 0.613 0.318 0.548 0.859 0.979 0.784 0.758 0.981 

N 0.684 0.778 0.632 0.516 0.854 0.810 0.824 0.795 0.841 

AVG 0.648 0.897 0.475 0.689 0.754 0.890 0.842 0.852 0.816 

Overall 0.675 0.895 0.404 0.768 0.952 0.670 0.895 0.758 0.823 

PC 

Bridge 

P 0.612 0.542 0.674 0.494 0.494 0.205 0.542 0.815 0.826 

N 0.667 UNK 0.847 UNK UNK 0.186 0.785 0.715 0.813 

AVG 0.556 0.5789 0.674 0.516 0.516 0.565 0.741 0.720 0.952 

NPC 

P 0.721 0.612 0.115 0.861 0.861 0.620 0.635 0.861 0.892 

N 0.754 0.768 0.874 0.971 0.955 0.568 0.869 0.699 0.955 

AVG 0.767 0.886 0.509 0.916 0.916 0.384 0.792 0.725 0.869 

Overall 0.859 0.904 0.611 0.716 0.715 0.665 0.782 0.982 0.921 

 

Table 3 Comparison of parameters between the msta-vre model and traditional models 

Model MAPE (%) F1 Score Recall Rate 

MSTA-VRE 12 0.921 87 

SEIR 37 0.65 65 

Deffuant 28 0.70 70 
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Figure 7: Training error and prediction accuracy 

 

 

Figure 8: Scatter plot comparing different types of actual and predicted heat load values. 

 

 

Figure 9: Relative errors of PINN configurations in the spatial dimension and average cumulative relative errors in 

space 

 

Figure 9 represents the relative and cumulative mean 

errors with respect to the spatial dimension 𝑥, showing 

that (1), the R-PINN performs best in the entire spatial 

dimension, but the S-PINN performs better near the 

boundary conditions ( x  = 0, x  = 1); (2), in the entire 

spatial dimension, the S-PINN outperforms the V-PINN 

configurations; and (3), among all configurations, the V-

PINN has the PINN has the lowest variance. 

 

Training loss Precision

0 10 20 30 40 50

0.05

0.10

0.15

0.20

0.25

0.30

0.35

22

24

20

26

28

30

32

34

36

True Values True Values

p
re

d
ic

te
d
 v

a
lu

e

p
re

d
ic

te
d

 v
a

lu
e

0

50

100

150

200

250

300

500 100 150 200 250 300 350 0

0

25 50 75

25

50

75

100

125

150

100 125 150

AUC:0.945 AUC:0.945

 

0

0

0.01

0.1

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position(x)

V-PINN

S-PINN

R-PINN

V-PINN

S-PINN

R-PINN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position(x)

0.02

0.025

0.02

0.02

0.02

0.02

0.025

0.025

0.025

0.025

R
el

a
ti

v
e 

er
ro

r

R
el

a
ti

v
e 

er
ro

r



Spatiotemporal Attention-Based Multimodal VR-Real Public…                               Informatica 49 (2025) 269–282  279                                                                                                                                      
 

 

 
Figure 10: Evolution of a single composite loss function term for the V-PINN, R-PINN and S-PINN models and R-

PINN 

 

Figure 10 shows the variation of loss with the 

number of evaluations in the V-PINN, R-PINN and S-

PINN models. It can be seen that the R-PINN losses 

converge faster and obtain smaller loss values than the V-

PINN and S-PINN models. It can also be seen that the V-

PINN and S-PINN models fluctuate for a longer period 

of time before reaching a stable loss value. Figure 10 also 

evaluates the individual loss terms for each PINN model. 

Configuration of the covariance, MSE fluctuates during 

the optimization process (20,000 iterations). It can also 

be seen that the MSE values for both the V-PINN and S-

PINN models are higher than the MSE values for the R-

PINN model. 

On average, when tracking all RF planes, the 

performance of the fusion classifier is acceptable (AUC > 

greater than 0.70), which proves the efficacy of multi-

modal data fusion in providing a balanced and 

comprehensive RF development assessment. This 

balanced performance of different aspects and modules in 

different aspects and modules directly responds to our 

research questions and confirms the effectiveness of data 

mining technology, especially the effectiveness of multi-

modal data fusion multi-modal data fusion technology in 

tracking and evaluating the effectiveness of VR social 

interaction among teenagers. Adolescent VR Social In 

contrast, the unimodal classifier using behavioural data 

had lower predictive performance (lowest AUC score) for 

most RF aspects. The fusion classifier performed best 

regarding AUC and precision scores in the performance 

indicator results. Given that the negative is in the current 

dataset, the negative appearance of the RF face belongs 

to the minority category. The high accuracy score of the 

fusion classifier shows that the proposed fusion classifier 

is satisfactory in detecting minority group categories of 

learners. Satisfactory in detecting learners' minority 

outcomes. These findings support the validity of our 

methodology and the value of future approaches to 

deploying personalized learning interventions in VR 

environments. 

 

 

5 Conclusion 
The MSTA-VRE framework breaks through the static 

analysis limitations of traditional public opinion models. 

It creates a two-wheel drive of "technology 

empowerment-humanistic care" through cross-modal 

spatiotemporal perception, virtual and real penetration 

modelling and collaborative innovation with enhanced 

robustness. A new paradigm of metaverse governance. Its 

complete closed loop from theoretical construction to 

practical application provides a systematic solution for 

building a safe, inclusive and sustainable VR social 

ecosystem for teenagers, marking the paradigm shift of 

public opinion evolution research from "passive 

response" to "active shaping". Experiments show that 

multi-modal fusion reduces the error by 18% compared 

with single-modal fusion, providing a new paradigm for 

social public opinion governance in the metaverse. 
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