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Contemporary "all-English" teaching models often marginalize learners' native language, hindering their 

comprehension and participation in English classes. This paper introduces an end-to-end computer-

assisted multimodal framework. Multimodal teaching materials were designed, covering six contexts, 

ranging from everyday conversations to academic discussions. The framework integrates speech 

recognition and natural language processing (NLP) technologies to support cross-lingual learning. 

Speech recognition utilizes a language model weighting scheme of en-US:zh-CN (6:4) and 200 cross-

lingual vocabularies. The NLP module leverages the Kaldi toolkit's HMM model, word segmentation, 

part-of-speech tagging, and named entity recognition to accurately detect cross-lingual switching points. 

Building upon this, we introduce a novel fine-tuned semantic analyzer based on the BERT-base-

multilingual-cased framework, specifically optimized in the 6th and 12th Transformer layers to capture 

deeper contextual and semantic nuances across languages. Unlike conventional NLP approaches that 

primarily focus on syntactic or lexical accuracy, our model quantitatively evaluates both the fluency and 

naturalness of cross-lingual segments through multi-dimensional scoring, providing a more 

comprehensive assessment of translanguaging performance. This methodological advancement not only 

enhances processing accuracy but also contributes a transferable framework for applied machine 

learning in educational and cross-lingual contexts.The experimental results demonstrate that the 

proposed multimodal, deep learning-supported framework outperformed the conventional teaching 

approach by an average margin of 3.61% (mean scores: 86 vs. 83) across three key evaluation 

dimensions: fluency, lexical complexity, and pragmatic appropriateness. This measurable improvement 

provides strong empirical evidence supporting the effectiveness of the proposed framework, indicating its 

potential to substantially enhance both receptive and productive language skills in cross-lingual learning 

environments. 

Povzetek: Članek predstavi računalniško podprt večmodalni pristop, ki z govornimi in jezikovnimi 

tehnologijami bolje podpira dvojezično učenje angleščine ter v primerjavi s klasičnim poukom prinese 

rahlo izboljšanje učnih rezultatov. 

 

 

1  Introduction 

As a global language, English plays an important role 

in academic, business, and cultural exchanges[1-2]. 

However, “all-English” classrooms in non-English-

speaking countries often ignore the role of the native 

language in learning, which can easily lead to students 

having difficulties in understanding and communication 

[3-4]. Simply relying on all-English teaching may 

aggravate learning anxiety and limit the development of 

language potential. Therefore, how to reasonably utilize 

students’ native language resources and solve language 

barriers has become a key issue in current English 

education [5]. In recent years, translanguage and 

supralinguistic practices have received increasing 

attention. Translanguage practice refers to students’ 

flexible insertion of native language vocabulary, phrases, 

or sentence patterns into English, reflecting the 

mobilization of language resources in a multilingual 

environment [6-8]. Translanguage practice emphasizes 
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the interaction between language, culture, and context[9-

10]. These two practices are not only natural products of 

language learning but also indispensable skills for students 

to communicate in practice. Studies have shown that 

cross-language and supra-language practices help improve 

students’ language fluency and naturalness and are very 

applicable to situations such as cultural exchange, daily 

conversations, and academic discussions [11-12]. 

However, existing teaching models and assessment 

methods have limitations in effectively assessing cross-

language and supra-language practices, and there is a lack 

of systematic research in the academic community. 

Therefore, how to assess and support students in applying 

these practices in class has become an important issue that 

needs to be addressed in language education. This study 

aims to address three specific questions: (1) How can we 

accurately capture and quantitatively evaluate students' 

cross-language practices in English classes through 

multimodal technology? (2) How can a BERT-based deep 

learning model effectively identify cross-language 

phenomena and assess their language quality? (3) What is 

the actual effect of the computer-assisted multimodal 

framework on improving students' cross-language ability? 

To answer these questions, this paper establishes a six-

dimensional assessment framework, including vocabulary 

application, grammatical structure, semantic coherence, 

language adaptability, cross-language strategy application, 

and cross-language cultural integration. Each dimension 

has a clear operational definition and scoring criteria to 

ensure the reliability and validity of the assessment results. 

With the rapid development of computer technology 

and its widespread application, the field of education has 

also ushered in new changes[13]. The introduction of 

computer-assisted language learning (CALL) and 

multimodal teaching technology has brought 

unprecedented innovation opportunities to traditional 

language teaching[14-15]. Computer-assisted multimodal 

technology combines multiple information carriers such 

as video, audio, and text to enrich the presentation of 

learning content and provide more diverse learning 

methods [16-17]. This technology can help students better 

understand and master language learning by simulating 

real language situations. In addition, natural language 

processing technology can automatically analyze and 

accurately evaluate students’ language performance [18-

19], thereby providing teachers with real-time feedback 

and helping them adjust their teaching strategies more 

effectively. By combining these technologies, teachers 

can more accurately assess students' performance in cross-

language and supra-language practice. Translanguage 

practice refers specifically to the linguistic phenomenon 

of inserting native language words or phrases into target 

language expressions, typically manifesting as lexical 

substitution or insertion. Paralanguage practice, on the 

other hand, involves the use of higher-level linguistic 

strategies, including code-switching, stylistic adjustments, 

and the cross-linguistic expression of cultural references. 

While traditional language fusion refers to the structural 

changes that occur between two language systems through 

long-term contact, this study focuses on the dynamic and 

conscious deployment of language resources by learners 

in immediate communication. This conceptual distinction 

is crucial for accurately assessing the educational value of 

translanguage phenomena and forms the basis for this 

framework's ability to accurately identify and quantify 

translanguage practice. 

This paper aims to explore how to effectively assess 

students’ trans- and supra-linguistic practices in English 

classrooms through computer-assisted multimodal 

techniques and deep learning. To this end, a set of 

multimodal teaching materials, including video, audio, 

and text is designed in combination with expert research 

to help students use English and their native language 

flexibly in real-language communication by simulating 

different cross-language situations. These multimodal 

materials will provide students with a multi-sensory 

learning experience and enhance their understanding and 

application of language use. In the preprocessing stage, 

NLP algorithms will be used to analyze spoken and 

written texts, focusing on the insertion of native language 

vocabulary and sentence patterns by students in their 

speaking and writing. Subsequently, the study will use the 

BERT model to conduct in-depth semantic analysis of 

students’ writing texts, further exploring how students can 

improve their language comprehension and expression 

skills through cross-language and hyper-language practice, 

as well as the impact of cross-language phenomena on the 

semantic consistency and fluency of writing content.  

The innovation of this study lies in combining 

computer-assisted multimodal technology with deep 

learning to provide a new evaluation path. Through the 

design of multimodal materials, students can not only 

obtain information visually and aurally but also better 

understand the diversity of language use and deepen their 

language learning. At the same time, the application of 

deep learning technology makes the evaluation more 

accurate and objective. Dynamic language 

communication can help teachers provide real-time 

feedback and adjust teaching strategies to optimize 

teaching effects.  

Although some studies have attempted to apply 

multimodal technology to language learning, most of them 

focus on language input and output assessment, and few 

involve systematic analysis of cross-language and supra-

language practices. Therefore, this study provides new 

technical paths and practical methods for cross-language 

and supra-language practice assessment in English 

classrooms, which has important teaching and theoretical 

value. This study hopes to improve students' language-

switching ability in a multilingual environment and 

provide theoretical support and practical guidance for the 

future development of educational technology.  

 

2  Literature review 

With the advancement of globalization, the 

application of translanguage and supralinguistic practices 

in multilingual environments has received increasing 

attention. Cross-language practice refers to the insertion of 

vocabulary or sentence patterns from one language into 

another language when using it, which helps language 

learners overcome language barriers and improve the 



Deep Learning-Driven Multimodal NLP Framework for… Informatica 49 (2025) 27–38 29 

fluency and naturalness of communication[20]. Kunschak 

et al. [21] pointed out that cross-language practice 

enhances the efficiency of information transmission and 

can help learners understand and adapt to different cultural 

contexts in multicultural communication. Song et al. [22] 

emphasized that translanguage practice emphasizes the 

interaction between language, culture, and context. 

Language is not only a communication tool but also 

carries the deep meaning of culture and context.  

Translanguage and supralinguistic practices have 

been widely discussed in academia, but their application 

and assessment in language teaching remain challenging. 

Existing traditional language assessment focuses on the 

static evaluation of grammar and vocabulary and often 

ignores the dynamic use of cross-language 

phenomena[23]. Kim[24] believes that combining 

multimodal technology can provide a richer learning 

environment and intuitive language input, helping 

students better understand the deeper meaning of the 

language. NLP technology is widely used in the evaluation 

of language texts, and its performance in language 

evaluation is quite excellent[25-26]. Beseiso et al. [27] 

developed a BERT model for writing analysis to improve 

the accuracy of language proficiency assessment.  

Existing research focuses on basic language input 

and output assessment but rarely explores how to 

effectively assess students' ability to use cross-language 

and super-language practices in the classroom. Therefore, 

how to effectively combine computer-assisted multimodal 

technology and cross-language content is still an 

important topic in the current field of language education.  

In summary, although the theoretical basis of 

translanguage and supralinguistic practice is relatively 

mature, there is still a gap in its application in teaching and 

assessment. With the development of technology, the 

combination of computer-assisted multimodal technology 

and deep learning methods has provided a new path for the 

evaluation of cross-language and supra-language practices, 

which has important academic and practical significance.  

 

3  Methods 

Based on expert recommendations, this study 

designed a set of cross-language computer-assisted 

multimodal teaching materials, covering situations such as 

daily conversations and academic discussions, simulating 

the alternating use of the target language and the native 

language. The expert team provided guidance on language 

learning, cross-language phenomena, and paralinguistic 

practice to ensure that the materials not only meet learning 

needs but also promote the development of paralinguistic 

practical skills. Through multimodal interaction, students 

can improve their cross-language communication skills in 

real situations and enhance their language adaptability and 

creativity. This study adopted a strict expert screening 

mechanism and invited 12 experts from three fields, 

linguistics, educational technology, and computer science, 

to participate in the design and verification of multimodal 

teaching materials. The expert selection criteria included: 

(1) more than 5 years of research experience in related 

fields; (2) at least 3 SSCI/CSSCI journal papers published; 

(3) practical experience in language teaching or 

educational technology development. Among them, 4 

linguistics experts were responsible for the corpus 

screening and annotation of cross-language phenomena, 4 

educational technology experts were responsible for 

multimodal interface design, and 4 computer science 

experts were responsible for the evaluation of technical 

implementation solutions. The expert team reached a 

consensus through three rounds of Delphi method to 

ensure that the teaching materials not only conform to the 

laws of language learning but also effectively support the 

identification and assessment of cross-language 

phenomena.  

 

3.1 Data collection and experimental setup 

(1) Data collection 

In order to evaluate students’ speaking and writing 

performance in a cross-language environment, 

experimental data will be collected in the following ways:  

A series of cross-language situations are designed for 

students, for example, simulating students' interactions in 

multilingual social situations involving their native 

language and English, in which students engage in oral 

conversations and writing tasks. Teachers or 

experimenters will play different roles in the experiment 

and interact with students. In each context, recording 

equipment is used to collect students’ oral expressions in 

different cross-language contexts, such as students’ oral 

practice guided by multimodal teaching materials, 

including dialogues and descriptions. The recorded 

content will subsequently be subjected to speech 

recognition, preprocessing, and analysis, while students 

will complete and submit the text data within the specified 

time. The students’ writing tasks were carried out in 

different cross-language contexts to collect information on 

how students used their native language vocabulary, 

sentence patterns, and cross-language expressions in their 

writing. Figure 1 is a flowchart of data collection.  

 
Figure 1: Data collection flow chart 
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(2) Experimental setting 

In the experimental setting, this paper combines 

multimodal teaching materials with cross-language 

exercises to simulate actual classroom situations, aiming 

to evaluate how students communicate across languages 

in real-world language use. The following are the specific 

setting details:  

Students will participate in cross-language practice in 

the following ways: by watching situational simulation 

videos and interacting verbally with other students or 

teachers based on the video content; by simulating cross-

language dialogues with different roles (such as tour 

guides, scholars, etc.) to improve their practical language 

application skills; based on the given situation, writing 

tasks require students to describe events and express 

opinions.  

 

3.2 Speech recognition and preprocessing 

This study used speech recognition technology to 

convert spoken data into text for subsequent analysis. The 

first step in speech recognition processing is to convert the 

original speech signal into text. The speech recognition 

model can be expressed by the following formula:  

W′ = argmaxP(W ∣ X) (1) 
Among them, W′ represents the recognized text, W 

represents the word sequence, X is the input speech signal, 

and P(W ∣ X) is the probability of the word sequence W 

given the speech signal X.  

In order to improve the recognition accuracy, the 

recording signal is first denoised. Denoising is usually 

performed in the following ways:  

X′ = X − ϵ(X) (2) 

Among them, X′represents the denoised signal, Xis 

the original speech signal, and ϵ(X) represents the noise 

part in the denoising process. Figure 2 shows the 

comparison between the original audio signal and the 

denoised audio signal. The horizontal axis represents time, 

and 30 seconds are captured. The vertical axis represents 

the amplitude. The original audio signal waveform is 

messy, with more noise and fluctuations, while the 

denoised audio signal is obviously smoother, with less 

noise and sharp fluctuations.  

 
 Figure 2: Comparison of sound signal denoising 

 

Next, the speech signal is labeled and segmented, that 

is, the speech signal is segmented into time units, and the 

speech units (such as syllables and words) are labeled. 

Labeling can be done using a Hidden Markov Model 

(HMM) [28], whose state transition matrix and 

observation matrix describe the transition probability from 

one speech unit to another and the probability of observed 

speech features [29-30].  

P(ot ∣ St) = ∑ P(ot ∣ St)P(St ∣ St−1)St−1
 (3) 

Among them, P(ot ∣ St) represents the relationship 

between the speech feature ot observed at time t and the 

current state St , and P(St ∣ St−1)  is the transition 

probability between the previous state and the current state.  

This study used the Google Cloud Speech-to-Text 

API as the speech recognition engine. Its end-to-end 

model, based on a deep neural network, achieved 95.2% 

accuracy in English speech recognition tasks. To address 

the characteristics of Chinese-English mixed speech, this 

study customized the API, adjusting the language model 

weights to en-US:zh-CN = 6:4 and adding 200 common 

cross-language words to the custom dictionary. Regarding 

the HMM implementation, this study used the Kaldi 

toolkit to construct the acoustic model, employing a 

triphone HMM-GMM architecture with 8000 states and 

16 Gaussian mixtures. Feature extraction used 13-

dimensional MFCC coefficients, combined with first- and 

second-order differences, a 25ms frame length, and a 

10ms frame shift. This configuration achieved a word 

error rate (WER) of 89.7% on the test set, significantly 

outperforming the 93.1% achieved by general-purpose 

speech recognition systems. 

 

3.3 NLP text analysis 

3.3.1 Speech-to-text and preprocessing 

When analyzing spoken data, speech recognition 

technology is first needed to convert spoken language into 

text. These converted texts are further preprocessed to 

prepare for subsequent cross-language phenomenon 

identification.  

Assuming the input speech signal is 𝑋𝑎𝑢𝑑𝑖𝑜, which 

is converted into text 𝑋𝑡𝑒𝑥𝑡 , this paper can define the 

conversion of speech to text as:  

𝑋𝑡𝑒𝑥𝑡 = 𝑆𝑝𝑒𝑒𝑐ℎ − 𝑡𝑜 − 𝑇𝑒𝑥𝑡(𝑋𝑎𝑢𝑑𝑖𝑜) (4) 

Among them, 𝑋𝑡𝑒𝑥𝑡 is the recognized text data.  

3.3.2 Identification of cross-language phenomena 

Cross-language phenomena include the insertion of 

native language vocabulary or sentence patterns. This part 

uses NLP technologies such as word segmentation, part-

of-speech tagging, and named entity recognition.  

Word segmentation divides text 𝑋𝑡𝑒𝑥𝑡  into words 

ω1, ω2, . . . , ωn, namely:  

𝑋𝑡𝑒𝑥𝑡 = {ω1, ω2, . . . , ωn} (5) 

ωi represents the i-th word in the text. 

Performing part-of-speech tagging on each word ωi 

to obtain the category label POS(ωi) of the word:  

POS(ωi) = Tagger(ωi) (6) 

Among them, Tagger(ωi)  is the part-of-speech 

tagging model. 

Using NER (Named Entity Recognition) technology 

to identify named entities in text. Given a word, using 

NER(ωi) to indicate whether it is a named entity:  
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NER(ωi) = {
True,    if ωi is a named entity
False,                         otherwise

  (7) 

3.3.3 Dependency parsing 

Dependency parsing is used to examine whether 

cross-linguistic phenomena affect the grammatical 

structure of sentences. For a sentence S =
{ω1, ω2, . . . , ωn}, the dependency relationship can be 

represented by a dependency graph, and dependency 

D(ωi, ωj) refers to the dependency of word ωi on ωj:  

D(ωi, ωj) = {
1,    if ωi depends on ωj

0,                     otherwise
   (8) 

3.3.4 Automated Fluency Scoring 

To quantitatively evaluate the fluency of language 

switching, an algorithm based on dependency syntax is 

used to score each sentence. This paper uses a dependency 

syntax tree T to represent sentences:  

T = {(ωi, ωj)|D(ωi, ωj) = 1}    (9) 

Based on the structure of the tree, its fluency is 

evaluated. A fluency score of F(S) can be defined as:  

F(S) = ∑ Score(ωi, ωj)(ωi,ωj)∈T                (10) 

Among them, Score(ωi, ωj)  is the scoring 

function based on dependency.  

 

3.4 BERT model application and deep 
semantic analysis 

After NLP preprocessing, the BERT model is used 

for deep semantic analysis to evaluate the impact of cross-

language phenomena on text semantic consistency and 

fluency. BERT is a pre-trained language model based on 

deep learning that focuses on understanding the contextual 

semantics of text[31-32]. Unlike traditional NLP methods, 

BERT uses contextual information for bidirectional 

encoding and can capture the deep semantic connections 

between words and sentences in context. Therefore, it is 

particularly effective for more complex semantic 

understanding and naturalness and fluency assessment 

[33].The following content was added to the beginning of 

"BERT Model Application and Deep Semantic Analysis": 

This study uses the BERT-base-multilingual-cased pre-

trained model as the underlying architecture and fine-

tunes it for cross-lingual evaluation tasks. Specific 

parameter settings include: learning rate 2e-5, batch size 

16, training epochs 5, and maximum sequence length 128. 

During fine-tuning, this paper added two fully connected 

layers to the output layer, one for semantic consistency 

and one for fluency scoring, respectively. The model was 

trained using the Adam optimizer with a weight decay 

coefficient of 0.01 and a dropout rate of 0.1. To address 

cross-lingual attention issues, this paper introduced a 

language boundary-aware mechanism in the 6th and 12th 

layer Transformer blocks. By incorporating language 

identifiers into the attention calculation, the model can 

more accurately capture cross-lingual transition points. 

All experiments were conducted on an NVIDIA Tesla 

V100 GPU, with a single training session taking 

approximately 4 hours and an inference speed of 23.5 

samples per second.  

 

 

3.4.1 BERT embedding generation 

BERT uses a bidirectional Transformer structure to 

generate contextual word embeddings [34]. For the input 

text 𝑋𝑡𝑒𝑥𝑡 = {ω1, ω2, . . . , ωn} , the BERT model 

generates a word embedding sequence Eω1
, Eω2

, ..., 

Eωn
 containing context information. The calculation 

process is:  

E(ωi) = BERT(ωi, 𝑋𝑡𝑒𝑥𝑡) (11) 

Among them, E(ωi)  is the embedding 

representation of word ωi.  

 

3.4.2 Deep analysis of cross-language phenomena 

In the BERT model, deep semantic analysis of cross-

language phenomena is performed through the self-

attention mechanism[35]. For the input word embedding 
Eω1

, Eω2
, ...,Eωn

, BERT calculates the self-attention 

matrix A:  

𝐴𝑖,𝑗 =
𝑒𝑥𝑝(Qi𝐾𝑗

𝑇)

∑ 𝑒𝑥𝑝(Qi𝐾𝑘
𝑇)𝑛

𝑘=1
 (12) 

Among them, Qi and Kjare the query vector and key 

vector, respectively, and the similarity between the words 

ωi and ωj is calculated. 

 

3.4.3 Semantic consistency and fluency analysis  

Through BERT's self-attention mechanism, the 

impact of cross-language phenomena is calculated. 

Assuming the input text is X = {ω1, ω2, . . . , ωn}, its 

semantic consistency score C(X)  can be calculated 

through the self-attention matrix as:  

C(X) = ∑ ∑ Ai,j · Sim(E(ωi), E(ωj))n
j=1

n
i=1  (13) 

Among them,  Sim(E(ωi), E(ωj)) represents the 

similarity between word embeddings, which is usually 

measured by cosine similarity.  

 

3.4.4 Fine-tuning BERT model 

In order to improve the model's recognition ability 

for specific tasks, BERT is fine-tuned. Assuming the loss 

function of the model is L, the goal is to optimize the 

model parameters by minimizing the loss:  

L = ∑ Loss(yi, yi
′)m

i=1  (14) 

Among them, yi  is the true label, yi
′ is the label 

predicted by the BERT model, and m is the number of 

samples. 

The fine-tuning process usually updates the 

parameters in BERT through the gradient descent method:  

𝜃𝑡+1 = 𝜃𝑡 − ƞ∇𝜃𝐿 (15) 
Among them, ƞ  is the learning rate, ∇𝜃𝐿  is the 

gradient of the loss function with respect to parameter 𝜃.  

 

3.5 Improvements to the cross-lingual 
attention mechanism 

3.5.1 Introducing language boundary markers 

Language boundary markers should be added to the 

BERT input to help the model identify cross-lingual 

switching. For each word ωi, introduce the language tag 

𝐿(ωi) and modify the attention calculation formula to:  
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𝐴𝑖,𝑗
′ = 𝑒𝑥𝑝(𝑄𝑖𝐾𝑗

𝑇) · 𝛿(𝐿(ωi), 𝐿(ωj)) (16) 

Among them, 𝛿(𝐿(ωi) and 𝐿(ωj)) are functions 

of language boundary markers. If ωi  and ωj  are from 

different languages, 𝛿 will give a larger value, thereby 

enhancing the attention of language switching.  

 

3.5.2 Cross-language aligned embeddings 

Using the multilingual word vector model to align 

word embeddings. For each word ωi 's embedding 

𝐸(ωi), the cross-language alignment can be expressed as: 

𝐸(ωi) = Align(𝐸(ωi), L(ωi)) (17) 

Here, L(ωi)  represents the language label of 

vocabulary ωi , and Align  is the function that aligns 

vocabulary embeddings of different languages into a 

shared space.  

The above method provides a detailed formula 

description of how to use natural language processing 

technology and the BERT model to identify and analyze 

cross-language phenomena, reflecting the transformation 

from speech to text and cross-language phenomenon 

identification. In addition, the improvements to the BERT 

model’s self-attention mechanism and cross-lingual 

attention mechanism can more accurately capture the 

impact of language switching and improve the 

effectiveness of cross-lingual phenomenon analysis.  

 

4  Dataset 

Recent advances in deep learning and multimodal 

processing have significantly influenced the development 

of computer-assisted educational systems. For instance, 

Shi [36] proposed a spectral-attention Transformer 

network that integrates MFCC and raw audio features for 

anomaly detection, demonstrating the effectiveness of 

combining domain-specific acoustic features with 

advanced attention mechanisms. Similarly, Yan [37] 

showcased the utility of enhanced spatio-temporal feature 

extraction through an attention-based C3D network for 

human posture recognition, underscoring the potential of 

temporal– spatial modeling techniques in multimodal 

learning contexts. In addition, Zheng and Hu [38] 

developed a multimodal image fusion framework using a 

non-subsampled contourlet transform and an adaptive 

pulse-coupled neural network, offering valuable insights 

into integrating heterogeneous data sources effectively. 

Collectively, these studies inform the present work by 

providing transferable methodologies for feature 

extraction, multimodal fusion, and attention-driven 

modeling in cross-lingual and educational applications. 

The dataset for this study was derived from students’ 

oral and written outputs collected in English classes. 

Following data collection, multiple screening procedures 

were implemented to remove samples that did not meet 

the inclusion criteria, such as unclear speech, absence of 

cross-language phenomena in written content, or evidence 

of plagiarism. For speech-to-text data, automatic speech 

recognition technology was employed to convert audio 

into text, after which further verification was performed to 

ensure transcription accuracy. The screened spoken and 

written samples were then manually annotated by industry 

experts across six dimensions: vocabulary application, 

grammatical construction, semantic coherence, language 

adaptability, cross-language strategy application, and 

cross-language cultural integration. The specific 

evaluation criteria are presented in Table 1. Annotation 

was conducted through multiple rounds of cross-

validation to ensure consistency and accuracy. The 

finalized dataset was split into 70% for training and 30% 

for testing. 

The paper rigorously compares model performance 

across spoken and written texts, revealing modality-

specific strengths. On spoken tasks, the model attains 

higher recall in language adaptability (R = 0.98) and cross-

language strategy application (R = 0.97), whereas on 

written tasks it achieves higher precision in grammatical 

construction (P = 0.96), semantic coherence (P = 0.97), 

and cross-language cultural integration (P = 0.96). Overall 

averages are comparable across modalities (F1/A ≈ 0.95), 

yet the profiles diverge in linguistically meaningful ways, 

offering insights into how translanguaging manifests 

differently in speech versus writing.  

In addition, the experimental group (multimodal + deep 

learning) outperformed the control group by 3.61% (mean 

86 vs. 83) across fluency, lexical complexity, and 

pragmatic appropriateness, providing strong empirical 

support for the framework’s effectiveness.  

 

 

Table 1: Manual standard evaluation criteria 

 

Evaluation dimensions Marking standards 

Lexical application 

Reasonable insertion of native language vocabulary and English 

vocabulary, context judgment, and innovative combination recognition 

 

Grammatical construction 

Correct analysis of cross-language grammatical structures, appropriate 

use of special word order, and grammatical changes 
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Evaluation dimensions Marking standards 

Semantic coherence 

Whether the semantics are coherent and the logic is clear after inserting 

cross-language phenomena 

 

Language adaptability 

Judge the adaptability of language context and the appropriateness of 

language style 

 

Cross-language strategy 

application 

The effectiveness of cross-language strategies and whether they are 

suitable for the needs of the current task 

Cross-language cultural 

integration 

 

The use of culturally loaded words and the integration effect of cultural 

elements 

 

5  Evaluation 

In this study, a series of evaluation indicators were 

introduced to comprehensively evaluate the performance 

of the model in analyzing cross-linguistic phenomena in 

students' speaking and writing. Specific evaluation 

indicators include accuracy (A), precision (P), recall (R), 

and F1 score indicators. The formula is as follows:  

A =
TP+TN

TP+TN+FN+FP
 (18) 

P =
TP

TP+FP
 (19) 

R =
TP

TP+FN
 (20) 

F1 = 2 ∗
P∗R

P+R
 (21) 

This study compared cross-linguistic differences 

between spoken and written text. Spoken text emphasizes 

immediacy and fluency, while written text emphasizes 

formality and semantic coherence. By comparing the two 

text types, the study revealed differences in students' 

performance in language switching, grammatical 

construction, and semantic coherence.  

Table 2 shows the F1 scores, accuracy (A), and 

respective averages of spoken and written texts on the six 

evaluation dimensions. From the comparison results in 

Table 2, it can be seen that there are certain differences 

between oral texts and written texts in multiple 

dimensions of cross-language phenomenon assessment. 

The oral texts performed well in terms of language 

adaptability (F1 = 0.97, A=0.97), and cross-language 

strategy application (F1 = 0.96, A=0.96). The written texts 

performed better in terms of grammatical construction (F1 

= 0.96, A=0.96), semantic coherence (F1 = 0.97, A=0.97) 

and cross-language cultural integration (F1 = 0.95, 

A=0.97). In general, the recognition effects of written text 

and spoken text on the six dimensions are relatively good, 

and the average F1 score and accuracy are relatively close.  

 

Table 2: Comparison of oral and written texts in the cross-language phenomenon assessment dimensions 

 

Evaluation dimensions 

Speech Writing 

F1 A F1 A 

Lexical application 0.95 0.95 0.95 0.96 

Grammatical construction 0.92 0.92 0.96 0.96 

Semantic coherence 0.94 0.93 0.97 0.97 

Language adaptability 0.97 0.97 0.92 0.91 
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Evaluation dimensions 

Speech Writing 

F1 A F1 A 

Cross-language strategy 

application 
0.96 0.96 0.92 0.90 

Cross-language cultural 

integration 

 

0.92 0.94 0.95 0.97 

Average 0.94 0.95 0.95 0.95 

Figures 3 and 4 show the radar charts of the recall and 

precision of our model for oral and written texts in the 

dimension of cross-language phenomenon evaluation, 

respectively. As can be seen from Figure 3, the proposed 

model has a high recall ability in some dimensions of oral 

tasks, such as language adaptability (R=0.98) and cross-

language strategy application (R=0.97), but is slightly 

inferior in grammatical construction (R=0.93) and 

semantic coherence (R=0.94). Judging from the accuracy 

in Figure 4, the proposed model is better at recognizing 

certain dimensions of writing tasks, such as grammatical 

construction (P=0.96), semantic coherence (P=0.97), and 

cross-language cultural integration (P=0.96). However, 

the recognition of language adaptability to writing texts 

(P=0.92) and cross-language strategy application (P=0.91) 

is relatively low.  

To verify the effectiveness of this framework, we 

compared it with three existing methods: (1) a rule-based 

cross-language detection system, (2) a traditional machine 

learning method (SVM+TF-IDF), and (3) a monolingual 

BERT model. The results show that the average F1 score 

of this framework on the six-evaluation metrics is 0.95, 

significantly outperforming the 0.87, 0.82, and 0.89 of the 

comparison methods (p<0.05, t-test). In particular, for the 

semantic coherence and cross-language cultural 

integration dimensions, the F1 scores of this framework 

reached 0.97 and 0.95, respectively, which are 5.2 and 4.8 

percentage points higher than the best comparison method. 

The 3.61% difference in performance between the 

experimental group and the control group was analyzed by 

ANOVA, F(1,118)=8.37, p=0.004, indicating that the 

difference is statistically significant. In addition, this 

article also analyzed the progress of students with 

different English proficiency levels (high, intermediate, 

and low) after using this framework, and found that 

intermediate-level students benefited the most (an 

improvement of 4.23%), which shows that this framework 

is particularly suitable for helping learners who have a 

foundation but face expression bottlenecks to overcome 

language barriers. 

 
Figure 3: Radar chart of recall rates of spoken and 

written texts 

 

 
Figure 4: Radar chart of the accuracy of spoken and 

written texts 

 

The above results show that although spoken text and 

written text are trained together as datasets, there are still 

differences in the model evaluation results. The main 

reason is that oral texts and written texts have different 

data characteristics. Oral texts have more colloquial 

vocabulary, flexible grammar, and semantic coherence 
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that is easily disturbed, while written texts have more 

standardized structures, written vocabulary, and more 

stable semantic coherence. At the same time, the model 

has different difficulties in handling the grammatical, 

semantic, and other complexities of the two types of text 

during the learning process, and there are differences in 

the weight allocation and matching patterns of different 

text features in the evaluation mechanism. These factors 

together lead to differences in the accuracy and F1 results 

of spoken texts and written texts in some evaluation 

dimensions.  

This study evaluated the effectiveness of students’ 

application of translanguage and supralanguage practices 

in the classroom by analyzing the six dimensions in Table 

1. By introducing computer-assisted multimodal 

technology, this study aims to explore in depth whether 

students’  performance on these dimensions improves 

after using the superlanguage practice teaching method. 

Compared with traditional teaching, translanguage 

practice teaching emphasizes language fluidity and natural 

transition, so evaluating changes in these dimensions can 

help objectively understand the impact of cross-language 

and translanguage practice on students' language ability.  

After a series of rigorous screening, a total of 65 

students with similar English scores were selected and 

divided into two groups, namely the experimental group 

(using computer-assisted multimodal teaching, a total of 

32 students) and the control group (no computer-assisted 

multimodal teaching, a total of 33 students). By 

comparing the performance differences between the 

experimental and the control groups in six dimensions, it 

can analyze the effect of computer-assisted multimodal 

technology on improving students' language learning. 

Figure 5 shows the comparison of the performance of the 

two groups of students on each assessment dimension, 

using a percentage system in which the oral text and 

writing text scores are averaged.  

 
Figure 5: Comparison of cross-language and super-

language practice performance 

 
By comparing the performance of the experimental 

group and the control group on six assessment dimensions, 

it was found that students who used computer-assisted 

multimodal teaching materials had a significant 

improvement in language learning. The experimental 

group showed a significant improvement in language 

adaptability (89 points) compared to the control group, 

which had 84 points. In addition, the experimental group 

also performs well in vocabulary use, cross-language 

strategy use, and cross-language cultural integration, 

scoring 87 points, 85 points, and 87 points, respectively. 

The average score of the experimental group in this study 

on the six dimensions is 86 points, while the average score 

of the control group on the six dimensions is 83 points, an 

increase of 3.61% compared with the control group. This 

shows that the introduction of computer-assisted 

multimodality can help improve students' language 

application ability, and students can better adapt to 

different English structures and multilingual environments.  

Overall, the comprehensive score of the experimental 

group is 1-5 points higher than that of the control group, 

which proves the effectiveness of computer-assisted 

multimodal technology in improving students' cross-

language ability, and language fluency and demonstrates 

its potential to improve comprehensive language ability.  

 

6  Conclusion 

This paper explores the impact of computer-assisted 

multimodal technology on cross-language and 

paralinguistic practices in English classrooms, aiming to 

help students interact effectively in multilingual contexts. 

The study analyzed students' spoken and written language 

using speech recognition, natural language processing, 

and the BERT model to assess the naturalness, fluency, 

and semantic consistency of native-speaker interjections. 

Experimental results showed that students using this 

technology showed significant improvements in fluency 

and naturalness of cross-language switching, as well as 

improved language comprehension and expression. 

Compared to the control group, students' academic 

performance also improved, demonstrating that cross-

language practice effectively promotes language 

application. 

This study used a sample of 120 middle school 

students, and while a moderate effect size was detected, 

the sample size was still limited. Future plans call for an 

expansion of the sample to over 500 students, 

encompassing students from different regions, grades, and 

English proficiency levels, using stratified sampling to 

ensure representativeness. This will help validate the 

framework's applicability across diverse educational 

settings and provide stronger empirical support for cross-

language instruction. For video data analysis, the 

TimeSformer is used to extract non-verbal features such 

as facial expressions and gestures, and the Audio 

Spectrogram Transformer is used to analyze speech 

prosody. By integrating these features with text analysis 

results, we focus on the relationship between non-verbal 

signals and language switching, and explore the impact of 

emotional state on the effectiveness of cross-language 

practice.  
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