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This study proposes a dynamic reasoning model of medical dialogue intentions that integrates BERT
and reinforcement learning, aiming to solve the recognition difficulties caused by complex multiple
rounds of interaction contexts and changeable user intentions in medical scenarios. Although the
traditional BERT model is excellent in semantic modeling, it has limitations such as poor adaptability
and static response strategy in the face of dynamic changes in intention expression in medical dialogue.
Therefore, this paper introduces reinforcement learning mechanism, and realizes dynamic intention
reasoning and policy optimization through state modeling, reward function and policy network. The
experimental results highlight the robustness of our model in complex and dynamic medical dialogue
scenarios. In high-complexity intent recognition tasks, our model achieved an accuracy improvement of
8.5%. Moreover, in extended multi-round dialogues, the BRL model demonstrated a significant increase
in recognition accuracy—from 32% in the 70th round to 60% in the 140th round. This performance was

notably better than that of the BLN model, which achieved about 40% accuracy. These improvements
underscore the effectiveness of integrating reinforcement learning to adapt to evolving user intents and
provide more accurate and contextually relevant responses in long-duration medical dialogues. In the
sensitivity analysis of reward function, different reward functions have a significant impact on the model
performance. Among them, RWA and RWF perform best when the weight numbers are 2 and 4, with an
accuracy rate of more than 70%, while RWN and RWS are often below 40%. To sum up, the model
combining BERT and reinforcement learning not only improves semantic understanding capabilities,
but also realizes dynamic strategy adaptation, providing an efficient and intelligent intentional
reasoning solution for medical dialogue systems.

Povzetek: Studija predlaga model, ki zdruzi model BERT in okrepljeno ucenje za boljse prepoznavanje

namenov v veckroznih medicinskih pogovorih, pri cemer se dinamicno prilagaja spreminjajocim se
uporabniskim namenom in opazno izboljsa natancnost.

Introduction

Building a medical dialogue system with dynamic

With the continuous development of artificial
intelligence technology, the application of Natural
Language Processing (NLP) in the medical field has
gradually deepened, and the medical dialogue system
has become one of the research hotspots [1]. This
system is designed to provide services such as
diagnostic suggestions, symptom analysis and health
consultation through natural language communication
with patients. However, compared with general dialogue
systems, medical dialogue has higher professionalism
and accuracy requirements. It must accurately identify
user intentions and adjust interaction strategies promptly
to achieve efficient and reliable communication.

reasoning ability has become a key challenge in this
context.

In recent years, the BERT (Bidirectional Encoder
Representations from Transformers) model has been
widely used in intent recognition tasks because of its
excellent performance in semantic understanding [2].
BERT can effectively capture semantic context
relationships through deep bidirectional language
modeling, providing a powerful semantic representation
basis for medical intention recognition [3]. However,
BERT still has the problem of insufficient response
when faced with real medical scenarios with frequent
changes in dialogue context and changeable user
intentions. Its static feature modeling mechanism makes
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it difficult to cope with the policy adjustment
requirements in dynamic interaction, which limits the
model's performance in practical applications.

To solve the above problems, the introduction of
the Reinforcement Learning (RL) mechanism has
become an effective path [4]. Reinforcement learning
can dynamically adjust the strategy according to the
dialogue state and environmental feedback so that the
system can continuously optimize the accuracy and
decision-making efficiency of intentional reasoning in
interaction with users [5]. By integrating reinforcement
learning with the BERT model, the system can not only
retain the advantages of BERT in semantic
understanding but also enhance its reasoning ability in
complex dialogue scenarios with the help of the
adaptive characteristics of reinforcement learning and
improve the overall intelligence level of the medical
dialogue system.

Although the integration of BERT's powerful
semantic understanding and adaptive reinforcement
learning is indeed innovative, it is crucial to place our
model in the context of current research. The most
advanced existing models, such as BERT based intent
recognition  systems, perform well in  static
understanding of user input, but are difficult in terms of
the dynamics of medical conversations, especially in
multi round conversations. On the other hand,
reinforcement learning (RL) models have achieved
success in dynamic decision-making, but often lack the
powerful semantic foundation required for accurate
medical intent recognition. The method in this article
combines the advantages of both, using BERT for
in-depth  semantic understanding and RL for
dynamically adapting to the constantly changing nature
of medical conversations. This hybrid approach not only
improves the accuracy of intent recognition by
enhancing the system's ability to understand context, but
also optimizes decision-making strategies. Compared
with traditional BERT based systems, the model
proposed in this paper has achieved significant
improvements in high complexity intent recognition,
with a performance improvement of 8.5% in multi round
medical conversations. Compared to models that only
use reinforcement learning, our method benefits from a
stronger semantic foundation, resulting in responses that
are more context relevant and accurate.

This study aims to construct a dynamic reasoning
model of medical dialogue intent that integrates BERT
and reinforcement learning. The model can flexibly
identify and reason user intent according to ¢, context
changes in medical dialogue by introducing a state
representation module, action decision mechanism, and
reward feedback system. In this paper, systematic
research will be carried out from the aspects of model
structure design, strategy training methods, and
experimental verification to improve the response
intelligence and semantic accuracy of the medical
dialogue system and provide theoretical support and a
technical path for building a more humanized and
efficient, intelligent medical service system.
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2 Theoretical basis and related

research

2.1 BERT and reinforcement
algorithm theory

BERT is a pre-trained language model based on the
Transformer structure, and its core advantage lies in the
simultaneous capture of context information through a
bidirectional encoder, thereby generating semantically
rich word vector representations [6, 7]. The BERT
pre-training process includes two tasks: Masked
Language Model (MLM) and Next Sentence Prediction
(NSP) so that it can understand the deep semantic
structure of the language [8]. As a basic model in natural
language processing, BERT performs well in tasks such
as question-answering systems, text classification, and
named entity recognition. It is especially suitable for
modeling complex semantic relationships and user
intention recognition in medical dialogue systems.

However, BERT is essentially a static encoder
model, and its inference mechanism relies on fixed
parameters and offline training data, lacking
responsiveness to user behavior changes in real-time
interactions [9]. In medical dialogue scenarios, user
intentions often change dynamically with the deepening
of symptom descriptions or the adjustment of problem
feedback, which puts forward higher adaptability
requirements for the model. Therefore, relying solely on
BERT to be competent for the intention recognition task
with strong strategy and heavy context dependence in
multi-round dialogue is difficult. To enhance the
flexibility and adaptability of the system, it is necessary
to introduce a dynamic mechanism that can handle
sequence decision-making and environmental feedback
to make up for the shortcomings of BERT in real-time
interactive modeling [10].

As a learning mechanism centered on the
interaction between agent and environment, RL is
suitable for dealing with tasks with delayed feedback
and state transition characteristics [11]. In the dialogue
system, reinforcement learning can realize the joint
optimization of intention recognition and dialogue
strategy by constructing state space, action set, and
reward function [12]. Specifically, the model can select
the optimal response strategy according to the current
user input (state) and continuously adjust the strategy
parameters through user feedback, thereby forming the
optimal intention reasoning path during training. The
introduction of reinforcement learning improves the
system's response to dynamic changes and enables the
model to have the ability of online learning and strategy
iteration.

Integrating BERT and reinforcement learning can
achieve complementary semantic understanding and
policy decision-making advantages. In the system
architecture, BERT is a semantic encoder to provides
semantic representation input for dialogue state
modeling. At the same time, reinforcement learning
guides the model to make optimal response judgments

learning



Dynamic BERT-Reinforcement Learning Model for Intent...

in the policy selection module [13, 14]. This fusion
method enhances the model's accuracy in medical
semantic understanding. It optimizes the intention
recognition strategy through continuous interaction,
making it more aligned with the diversity and dynamics
of patient expressions in real medical scenarios.
Through this multi-level and collaborative-driven design
idea, the intelligent reasoning ability of the medical
dialogue system can be effectively improved, and more
reliable and humanized support can be provided for
intelligent health consultation.

healthcare
BERT and

2.2 Current status of
conversational intent in
reinforcement learning

Currently, medical dialogue systems are widely used in
intelligent consultation, disease screening, and health
consultation scenarios. One of their core tasks is to
identify user intentions accurately. However, due to the
complexity of technical terms and diverse expressions in
the medical field, traditional intention recognition
methods are often difficult to meet high precision
requirements [15]. Many systems rely on rule templates
or shallow classification models for intention
recognition. Such methods have limited expressiveness
in the face of semantic ambiguity or multiple rounds of
dialogue. They are difficult to cope with patients'
contextual changes and dynamic demands during the
expression process, resulting in the system response
lacking flexibility and semantic depth.

With the development of deep learning, pre-trained
language models such as BERT have been introduced
into medical intent recognition tasks, which greatly
improves the system's ability to understand natural
language semantics [16]. BERT is trained through many
unsupervised corpora, has strong context modeling and
semantic abstraction capabilities, and performs well in
medical questions and answers, medical record
summaries, and other tasks. When applied to medical
conversations, BERT can effectively capture key
information in patient statements, thus improving the
accuracy of intent classification. However, existing
studies mostly use BERT as a static feature extraction
tool, ignoring the dynamic characteristics of user
intention evolving within the context of medical
dialogue. This often makes it difficult for the model to
accurately track the transfer and development of user
intention in actual interaction [17].

To make up for the shortcomings of static
modeling, researchers gradually try to introduce
reinforcement learning into medical dialogue systems
and use its decision optimization ability to improve the
interactive intelligence of the system. Reinforcement
learning enables the system to learn when to confirm
transfer or ask in-depth questions in multiple rounds of
dialogue by constructing dialogue state space and
reward mechanism and then dynamically adjusting the
intention recognition strategy [18]. This method has
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shown positive effects in some medical scenarios, such
as driving system strategy optimization through user
feedback so that intention recognition relies on semantic
features and considers interaction history and behavioral
feedback. However, this kind of research is still
relatively preliminary, and the generalization ability and
training efficiency of reinforcement learning in
high-dimensional medical semantic space still face
challenges.

Therefore, combining the semantic understanding
advantages of BERT with the strategy dynamic
optimization ability of reinforcement learning is
considered an important path to improving the
performance of medical dialogue intention recognition
[19]. By building a linkage mechanism, the system can
not only make full use of BERT for fine semantic
modeling but also realize continuous self-adjustment
and optimization of intention recognition strategies with
the help of reinforcement learning to be closer to
complex interaction scenarios in actual diagnosis and
treatment. The exploration of this direction at home and
abroad is gradually deepening. Related research focuses
on key issues such as model collaborative mechanism
design, state representation selection, and multi-round
dialogue task adaptation, which lays the foundation for
building a medical dialogue system with adaptive
reasoning ability

3 Establishment of dynamic
reasoning model of medical
dialogue intention based on BERT
and reinforcement learning

3.1 Design and implementation of model
framework

This study proposes a dynamic reasoning model of
medical dialogue intention that combines BERT and
reinforcement learning, aiming at improving the
dialogue system's semantic understanding ability and
dynamic reasoning ability in multiple rounds of
interaction [20, 21]. The overall model architecture
consists of two main modules: semantic understanding
and state representation module, policy decision-making
and intention reasoning module. The model design
follows the three stages of
"perception-decision-feedback”. The system can use
online reasoning and strategy self-optimization by
combining the pre-trained language model BERT with
the reinforcement learning strategy network while
understanding user semantics [22]. This model is
especially suitable for the interaction needs of complex
user intentions, changeable semantic expressions, and
long feedback chains in medical scenarios. The formula
of the user input semantic vector extraction function is
shown in (1).

h =BERT,(W) ()
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Where ht represents the semantics of the user input
statement at time t, ut represents the user input text of
the t round, BERTO represents the pre-trained language
model, and d represents the hidden dimension of the
BERT output. The multi-round semantic state
construction formula is shown in (2).

S = Fstate (St—l’ ht) (2

Among them, st represents the state of the dialogue
at time t, st—1 represents the state of the previous round,
ht represents the semantic vector of the current round,
and Fstate represents the state update function.

The reason for choosing this model is that
traditional static intent recognition models, such as
classifier or RNN-based structures, are difficult to adapt
to the needs of dynamic intent evolution in medical
dialogue. Although BERT has advantages in semantic
modeling, it lacks the ability of strategic selection in
dialogue. Reinforcement learning is good at optimal
strategy learning in a dynamic environment [23].
Therefore, integrating the two can build an intelligent
system that can understand semantics and dynamically
reason, improving the accuracy and rationality of user
experience and system response. In addition, the model
also introduces the context state tracking mechanism to
make the model have the ability of "memory" and
enhance the semantic coherence modeling of multiple
rounds of dialogue. The flow chart of designing a
dynamic reasoning model of medical dialogue intention
integrating BERT and reinforcement learning is shown
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in Figure 1.

The system begins by processing the original text
of the medical dialogue, generating dynamic context
vectors through data preprocessing, which includes
tokenization and cleaning. These vectors are then input
into the BERT model, which extracts high-dimensional
semantic features that represent the underlying meaning
of the user input. The semantic vectors produced by
BERT are fed into the reinforcement learning (RL)
module, where they are used to construct the current
state representation. In this process, the RL module
evaluates the state and makes action selections based on
predefined policy networks. These actions drive the
process of intent recognition by identifying the most
relevant intents from the dialogue context, which are
then used to refine the system's response strategy. The
output from this interaction is a decision or response that
is contextually informed by both semantic
understanding and the RL-based dynamic reasoning
process. The recognition results are evaluated by intent
classification, and the reward signal is fed back to
update the policy network, thus forming a closed-loop
learning mechanism to optimize the accuracy of intent
classification continuously. Finally, the system
generates responses and outputs diagnoses or
suggestions based on the classification results, realizing
end-to-end intelligent medical dialogue intention
recognition and response. This process realizes the deep
integration of semantic understanding, policy
optimization, and dynamic feedback and reflects the
intelligent reasoning ability of the model.

Feedback Loop

Policy Network
Update

Intent Classification Result

!

Generate Response

J

State Update

!

Y

RL Reasoning Module

State Representation

Output Diagnosis/Advice

Figure 1: Design flow chart of medical dialogue intention dynamic reasoning model integrating BERT and
reinforcement learning

This model is a fusion architecture that can
combine semantic understanding and behavioral
decision-making into a linkage system, avoiding the
stage break in the
"understanding-classification-response” process of the
traditional model and continuously optimizing the
reward mechanism in the interaction between the policy

network and the environment, so that the model forms
the optimal intention recognition path in the long-term
interaction process [24]. This capability is particularly
suitable for scenarios that include complex strategic
operations such as confirmation, questioning, and
guidance in medical conversations. The model's design
supports soft state transition and explicit feedback
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embedding, which improves the system's processing
ability of unstructured medical expressions. The joint
embedding representation function formula is shown in

(3).
Zt = I:joint (htlst—l) (3)

Among them, zt represents the semantics-policy at
time t, ht represents the current round semantic vector
extracted by BERT, st—1 represents the dialogue state of
the previous round, and Fjoint represents the linkage
function. The probabilistic state transition function
formula is shown in (4).

s =01-2)-s,+1-2, ¥

Where st represents the state at the current time, A
represents the state fusion coefficient, st=1 represents
the state at the previous time, and zt represents the
current semantic-policy embedding. To verify the actual
effect of the model, this paper constructs a simulated
medical dialogue scenario including multiple rounds of
question and answer, including the stages of user
description of symptoms, system inquiry, user
clarification, and systematic reasoning suggestions.
When the user first describes "I've been dizzy recently”,
the system judges that the user may have neurological
symptoms through state representation and then further
refines the intention in multiple rounds of interaction,
from "dizziness" to "whether it is accompanied by
tinnitus" and "whether it lasts for a long time" etc.
Sub-intention levels. Finally, the most likely dialogue
path is judged through the strategy network, and
diagnostic suggestions or medical advice are provided.
The two modules included in the model-semantic
understanding and state representation module, policy
decision and intention reasoning module, work together
in this process and constitute the key supporting
structure of the complete reasoning process [25].

3.2 Semantic understanding and state
representation module

The core of the semantic understanding and state
representation module is the BERT model, which
transforms users’ natural language input into
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high-dimensional semantic vector representation as the
input basis for subsequent decision modules [26]. In
medical conversations, the language patients use is often
ambiguous, non-normative, and highly
context-dependent, so the context-aware ability of
BERT s particularly important. We can obtain a more
accurate and semantically consistent dialogue
representation by splicing the patient input with the
dialogue context and feeding it into the BERT encoder.
In addition, the module also uses the representation of
[CLS] bits as a global semantic feature, which plays a
digest role in subsequent state modeling. The
multi-round dialogue context stitching function formula
is shown in (5).

T, =Concat(u,_,,u,) (5)

Where Tt represents the complete input text of the t
round, ut-1 represents the dialogue history text, ut
represents the current round user input, and Concat
represents the text stitching operation. The output
formula of intent classification is shown in (6).

y = softmax(Wv; +b) (6)

Where W denotes the weight matrix, b denotes the
bias term, and y denotes the intent class probability
distribution. In terms of state representation, this study
designs a joint representation method, which integrates
BERT semantic encoding of the current round of
dialogue, state embedding of historical dialogue, and
user feedback signal. This method not only retains the
current input high-level semantic information but also
abstractly models the dialogue history by memorizing
the network structure to realize the modeling of
contextual semantic continuity [27]. At the same time, a
multi-layer perceptron is introduced to transform and
dimension compression of the state vector to adapt to
the state space requirements of the reinforcement
learning strategy network. After this treatment, the
system state has "current semantics” in the linguistic
sense and "historical logic" in interactive behavior. The
flow chart of dialogue state representation of semantic
coding and state modeling is shown in Figure 2.



88  Informatica 50 (2026) 83-96

Input Layer—+

C. Cheng et al.

Userlnput ‘Recent headache, which should I visit?" |

headache which visit
Dull ache Where Consult
Nausea When Check up

BERT

System response: *'Do you have accompanying fever?"* |

te Modelin
st State Representation Network Reward Function

Contextual intent embedding

L]

Semantic Encoding

Medical entity linking

Policy Network .
Fusion Layer
RL
. 7 N
- /
/ Dynamic attention
/
— /
~—— /
T =) / . . .
/ Feature interaction matrix
/ \ Generates intent inference actions \

Historical state memory

Construct a dynamic state space based on historical dialogue states

Dynamic Inference & Output

Figure 2: Flowchart of dialogue state representation integrating semantic coding and state modeling

The system first receives user input and embeds
keywords semantically through BERT. Then, the system
links medical entities and embeds contextual intentions
in the semantic coding stage to enhance the
understanding of users' semantics. Subsequently, the
system uses the historical dialogue state to construct a
dynamic state space. It generates intent reasoning
actions through the reinforcement learning module's
state representation network, reward function, and
policy network. Finally, the fusion layer realizes the
deep fusion of semantics and inference state through the
dynamic attention mechanism and feature interaction
matrix, outputs dynamic inference results, and generates
responses, such as "Do you have accompanying fever?".
The overall process implements a closed-loop dialogue
intention  recognition  system  from  semantic
understanding and state modeling to reasoning
decision-making, improving the model's accuracy and
context sensitivity in multiple rounds of medical
dialogue.

We also introduce a dialogue context selection
strategy based on the attention mechanism to improve
the accuracy of representation and context
understanding ability. This strategy dynamically
determines which parts of the historical round are more
critical to the current intention judgment, thus avoiding
redundant information interfering with the model
judgment. For example, the "history of allergies"
mentioned by a user earlier is very critical under the
intention of "rash", but it has less impact on the
intention of "headache". By introducing a contextual
attention mechanism, the model can automatically and
selectively memorize or forget information, thus
improving state vectors' discrimination and intention
expression ability. The formula of the semantic coding
sequence of the historical wheel is shown in (7).

Lintent =

C
—i:Zlyilogy )

Where yi denotes the true label, y'i denotes the
prediction probability, and C denotes the total number of
categories. The MDP five-tuple definition formula is
shown in (8).

M =(S,AP,R,») (8

Among them, S denotes the state space, A denotes
the action space, P denotes the state transition
probability, R denotes the reward function, and vy
denotes the discount factor. The function of this module
in the whole system is mainly to provide stable and
informative  semantic  state input for policy
decision-making. Through BERT's strong semantic
coding of input information and historical state
modeling, the model can generate a semantic state
vector with accurate expression and a clear hierarchy for
each round of dialogue. The design of this module
ensures that the system can have a complete
understanding of the user's semantic intention before the
policy is executed, thus providing a solid foundation for
downstream reasoning and response.

3.3 Policy decision and intention reasoning
module

The strategy decision-making and intention reasoning
module mainly comprises three parts: reinforcement
learning strategy network, action set, and reward
mechanism, which selects the optimal intention
reasoning path in a dynamic environment. This module
takes the semantic state vector as input. It outputs the
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optimal action that should be taken, such as confirming
the intent, requesting more information, or responding
directly through the policy network [28]. The adopted
strategy network is a deep Q network structure, which
combines empirical playback and target network
mechanism to improve training stability and strategy
convergence efficiency. The model makes action
decisions according to the current state in each round of
dialogue to realize the dynamic adjustment of intention.
The formula for calculating the DQN target value is
shown in (9).

c=aYy,+(1-a)c, 9
Where ct represents the cumulative confidence, o
represents the update rate, and yi represents the current
prediction probability ct—1 represents the confidence.
The information gain is used for intent discrimination
equation as shown in (10).

IG=H(Y)-H(Y[X) (10)

Where H(Y) represents the label prior entropy, and
H (Y | X) represents the conditional entropy. In action
design, this module divides possible system behaviors
into a variety of strategic actions, such as "confirming
current intention”, "asking clarification questions",
"changing topic guidance,"” or “entering diagnosis
mode". Each action closely corresponds to the actual
medical consultation strategy, which makes the system
more realistic and interactive in the reasoning process
[29]. This design effectively supports the hierarchical
evolution process of complex intentions, such as
developing from "pain” to "abdominal pain” and then
specifically to "severe pain in the right lower abdomen™
and judging it as "appendicitis risk", and guiding the
dialogue to a meaningful direction through the strategy
network. Evolution. The intention recognition target
aggregation reward function formula is shown in (11).

k.
th.Zly‘ (11)
J:

Where Rt denotes the aggregate reward of the
current dialog round, y denotes the discount factor, and
k denotes the prediction round number window. The
design of the reward mechanism is one of the key parts
of this module. This paper sets the real-time reward
value for each action, and the global task completion
reward and error penalty are introduced. For example, if
the user confirms that the system infers the correct
intent, a high reward is given; If the system deviates
from the user's intention or causes the user's disgust, a
penalty is imposed. In addition, the model also
calculates the total return through evaluation indicators
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such as accuracy and satisfaction when the dialogue is
completed, driving strategy learning to move closer to
better goals. This reinforcement mechanism makes the
model pursue short-term response correctness and
optimize long-term interaction paths [30].

During the implementation process, the user
described "the abdomen is a little uncomfortable
recently”, and the system initially predicted the intention
of "stomach disease”. However, according to the
historical dialogue and state representation, it was found
that the wuser had previously mentioned “lower
abdomen”, and the strategy network guided the system
to ask further "whether the pain is located in the right
lower abdomen", and then accurately reasoned it as
possible appendicitis and recommended medical
treatment. This multi-round, state-driven strategy
reasoning ability is the advantage of this module. With
the introduction of this module, the whole model can
continuously interact with users, dynamically update
intention judgment, and optimize dialogue strategy.

4 Experimental results and analysis

This study used the MedDialog Chinese Medical
Dialogue dataset as the experimental data source,
covering multiple rounds of consultation dialogues in
different medical departments in China, suitable for
intent recognition and dialogue strategy modeling tasks.
Before model training, the dataset undergoes several
preprocessing  steps, including text  cleaning,
tokenization, and filtering out irrelevant conversations.
Then divide each conversation into separate rounds to
capture the dynamic nature of the conversation and
ensure that the model can understand the constantly
changing user intentions. In addition, to address
potential data imbalance issues, especially for rare
medical intentions, we use data augmentation techniques
to generate synthetic dialogues, ensuring strong training
and coverage for frequent and infrequent intention
categories. After standardization, the data are divided
into training sets, verification sets, and test sets to ensure
the accuracy and reliability of experimental evaluation.
The experiment was conducted on a deep learning
server running the Ubuntu system, with the hardware
configuration consisting of an NVIDIA RTX 3090
graphics card, an Intel Xeon processor, and 128GB of
memory. The software environment was built using
Python, leveraging the PyTorch framework. The BERT
model was loaded using the transformers library, and
reinforcement learning was implemented via OpenAl
Gym, which provided a stable environment for training
and evaluating the model. This setup ensures robust
performance during the training process, with an
emphasis on the integration of BERT and reinforcement
learning for medical dialogue intent recognition. Model
performance comparisons are shown in Table 1.
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Table 1: Model performance comparison

Models Accuracy (%) Recall rate (%) F1 value (%) Inference time (ms)
BiLSTM 82.1 80.5 81.3 35
BERT 89.3 88.9 89.1 58
BERT + RL 91.7 90.8 91.2 61
Our model 945 93.8 94.1 63

The model proposed in this paper leads all over the dynamic intent inference mechanism is extremely

four indicators. The accuracy rate reaches 94.5%, 12.4%
higher than the benchmark model and 5.2% higher than
the standard BERT model. The increase in F1 value is
12.8% and 5%, significantly better than traditional and
deep language models without integrated reinforcement
learning. The inference time is slightly increased (5ms
more than BERT), but the performance improvement far
exceeds the cost increase, indicating that the introduced
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Figure 3: Influence of model structure

As you can see from the chart, in the range of
complexity levels 1 to 10 in the left figure, the accuracy
rate of the BRL model (fusing BERT and reinforcement
learning) has increased from about 10% to nearly 90%,
which is always significantly better than BLN (BERT
only) and RNN, especially when the complexity is
greater than 5, the gap widens. In the figure on the right,
in the range of complexity levels 2 to 20, the recognition
accuracy of the BRL model steadily rises to more than
75%, while BLN and RNN finally stay at about 65%
and 60%. The overall display shows that the BRL model
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cost-effective. Especially in medical scenarios, accuracy
precedes response speed, and model selection strategies
are more reasonable.

This paper analyzes the influence of different
model structures on the accuracy of intent recognition in
order to evaluate this influence, and the results are
shown in Figure 3.
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has stronger expression and reasoning ability when
dealing with high-complexity intentions, and the
structural optimization significantly improves the
system's understanding accuracy of complex semantics.

This paper analyzes the changes in intention
recognition accuracy under different conversation
rounds to verify whether the model can maintain the
stability and accuracy of intention understanding in
multiple rounds of medical answering and answering.
The results are shown in Figure 4.
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Figure 4: Changes of intent recognition accuracy under different session rounds

According to the data in the figure, the BRL in the
left figure achieves a recognition accuracy of about 32%
in 70 rounds of dialogue, which is significantly higher
than that of BLN and other traditional models such as

RNN and GRU. In the figure on the right, as the number
of session rounds is expanded to 140 rounds, the
recognition accuracy of BRL is further improved to
about 60%. In contrast, the highest accuracy of BLN,
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SENSOR, and SVM remains at about 40%. This shows
that BRL has a stronger intention understanding and
adaptability in long-round interaction scenarios, and the
reinforcement  learning  mechanism  significantly
enhances the model's contextual reasoning ability and
robustness.

This paper analyzes the sensitivity of reinforcement
learning reward function weights on model performance
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to explore the influence of three weight adjustments of
"semantic matching," "context consistency," and "action
selection confidence" in different reward functions on
model performance and analyze the model's dependence
on the policy feedback structure. The results are shown
in Figure 5.

RWA

RWF

RRL

— RBL
RWC
RWE
RWN

RWD

RWS
4 5

Figure 5: Sensitivity analysis of reinforcement learning reward function weights to model performance

It can be seen from the figure that there are obvious
differences in the influence of different reward functions
on the accuracy of model intent recognition under
different weight configuration numbers. RWA and RWF
perform best when the weight configuration numbers are
2 and 4, and the recognition accuracy rate reaches more
than 70%, which is close to the yellow area in the figure.

However, the accuracy of RWN and RWS models is
concentrated between 20% and 40% in most
configurations, and the performance is poor. Reward
function design and weight allocation are highly
sensitive to model performance. Reasonable selection of
reinforcement learning reward mechanism is a key
factor in improving model accuracy.

Table 2: Recognition accuracy under different intention complexity

Intent complexity Number of BERT Accuracy Model accuracy in this Improvement
level samples (%) paper (%) (%)
Low 240 92,5 95.2 +2.7
Medium 310 88.1 91.6 +3.5
High 180 79.4 87.9 +8.5

The recognition accuracy under different intention
complexity is shown in Table 2. The model shows
significant advantages in high-complexity intent
recognition. Especially in the "merge intent" scenario,
the model's accuracy in this paper has increased by 8.5
percentage points, indicating that the reinforcement
learning mechanism  effectively enhances the
multi-intent recognition ability of the model. The
improvement in medium complexity intentions also
reached 3.5%, reflecting that the dynamic reasoning
strategy helps understand the semantic dependencies

implicit in the context. Overall, the more complex the
model is, the more obvious the advantages of this
method are, and it is suitable for actual medical dialogue
scenarios with multiple rounds of interaction and
multi-intent recognition.

This article analyzes the relationship between the
proportion of different intent categories in the data set
and the classification accuracy of the model to evaluate
the impact of data imbalance on model performance.
The result is shown in Figure 6.
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Figure 6: Relationship between intent category distribution and classification accuracy

In the figure on the left, when the category
frequency is less than 5, most classification accuracy
rates are concentrated between 0% and 40%. In contrast,
when the frequency is increased to more than 15, the
accuracy rate can reach more than 60% and even close
to 90% in some areas. The figure on the right shows a
similar trend. Still, the overall accuracy range is lower,
mostly between 15% and 45%, indicating that the
model's accuracy is significantly limited when dealing
with low-frequency categories. This shows that the
model has a better learning effect on high-frequency

categories under the long-tail intent distribution.
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However, there are still obvious shortcomings in
recognizing low-frequency categories, emphasizing the
necessity of introducing mechanisms such as
reinforcement learning to enhance intention recognition
with few samples.

This paper compares the visualization of the model
reasoning path before and after the dynamic reasoning
module is enabled to compare the model's path changes
during the reasoning process and show the dynamic
reasoning module's optimization effect on the model
decision path. The results are shown in Figure 7.
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30 I REF
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0

5 10 15 20 25
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Figure 7: Visual comparison of model inference paths before and after the dynamic inference module is enabled

It can be observed in the figure that when the
dynamic reasoning module is not enabled, the number of
reasoning steps of the basic model (BAS) is generally
high, and the reasoning path of multiple samples
exceeds 30 steps. After the dynamic inference module is
enabled, the inference steps of the DYN model in most
samples are significantly shortened, and multiple
samples are concentrated between 10 and 20 steps,
which is significantly close to the reference path (REF)
labeled by experts. For example, when the sample
numbers are 2 and 10, the inference steps of the DYN
model are about 15 and 10, respectively, while that of

the BAS model is about 30 and 28, respectively.
Overall, DYN is superior to BAS in inference efficiency
and path compactness, indicating that the dynamic
inference module can effectively optimize the decision
path of the model and make it closer to the expert level.
To observe the changing trend of the loss value of
the verification set with the rounds during the training
process and judge whether the model is overfitted or
under fitted, this paper analyzes the changing trend of
the loss function of the model training rounds and the
verification set, and the results are shown in Figure 8.
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Figure 8: Model training rounds and verification set loss function change trend diagram

According to the data in the figure, the model
(BRL) that combines BERT and reinforcement learning
shows an overall downward trend in the verification set
loss during the training process, from about 0.9 to a
minimum of about 0.3. Although the fluctuation is large,
the final convergence effect is obvious. Although the
model using only BERT (BLN) has a slight downward
trend in the left figure, the overall change is relatively
gentle. In the right figure, there is even a phenomenon
that the verification loss increases with the training
rounds, from 0.8 to close to 1.0, showing the potential
overfitting risk. This comparison result shows that the
BRL model is more stable in the training process and
has stronger generalization ability on the validation set.
The reinforcement learning module has a significant
optimization effect on the model training effect.

The trends of training rounds and model
performance are shown in Table 3. From the perspective
of the training process, the model's performance has

improved significantly after 10 rounds. The peak
accuracy rate reached 94.5% in the 15th round, and the
loss value dropped to 0.21, which has tended to be
stable. Although the loss declined in the 20th round, the
accuracy rate fluctuated slightly, showing an overfitting
trend. It shows that the model structure design is
reasonable, the training efficiency is high, the optimal
performance can be achieved within 15 rounds, and the
training cost is well controlled. Using an early stop
strategy in actual deployment is recommended to avoid
overfitting.

This paper analyzes the changes in intent
recognition accuracy in multiple rounds of user
interactions to demonstrate the accuracy of intent
recognition in each of the 10 rounds of user interactions
and evaluate the stability and robustness of the system in
long-term dialogues. The results are shown in Figure 9.

Table 3: Training rounds and model performance change trends

Training rounds | Accuracy (%) Loss Learning rate Rate of convergence
5 85.6 0.42 le-4 Non-convergent
10 91.2 0.29 le-4 Accelerated descent phase
15 94.5 0.21 le-4 Achieve a stable optimum
20 94.4 0.20 le-4 Slight signs of overfitting

40%

Figure 9: Change of intention recognition accuracy in multiple rounds of user interaction

As can be seen from the figure, the model (BRL)
that combines BERT and reinforcement learning
accounts for 40% of the accuracy improvement
contribution in intention recognition in multiple rounds
of interaction and performs better than other models.
The BLN (using only BERT) model has the highest

contribution of 50%. Still, its promotion is mainly
concentrated in the first few rounds, and the overall
stability is slightly inferior to BRL's. However, the
contribution of the traditional RNN model is only 10%,
indicating that its intention recognition ability in a
multi-round interactive environment is significantly
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insufficient. This result confirms that the dynamic
reasoning mechanism proposed in this paper can more
effectively improve the understanding and response
accuracy of the model in complex interaction scenarios.

5 Conclusion

This study aims to enhance intention recognition in
medical interactions by introducing a reinforcement
learning strategy network and semantic state modeling,
showing strong performance in experiments. However,
it lacks real-world validation, and clinical testing with
expert benchmarking is needed to address complexities
like patient behavior variability and real-time feedback.
Challenges remain in handling rare medical conditions
and ambiguous patient inputs due to limited training
data. Future improvements will focus on data
augmentation and integrating domain-specific datasets
to overcome these issues. The specific conclusions are
as follows:

(1) The experimental results show that the model
proposed in this paper is better than traditional models
such as BERT and BiLSTM in terms of accuracy, recall
rate, and F1 value, with an accuracy rate of 94.5%,
which is 12.4 percentage points higher than BiLSTM
and 5.2 percentage points higher than BERT; The F1
value also increased from 89.1% of BERT to 94.1%, an
increase of 5 percentage points. This result fully proves
that the fusion of BERT and reinforcement learning
strategy has an important effect on complex medical
semantic modeling and intent reasoning.

(2) In multiple rounds of conversation testing, the
BRL model reached an accuracy of 32% in the 70th
round and increased to 60% in the 140th round, far
exceeding the BLN model. In addition, in scenarios with
high intention complexity, this model's accuracy rate
reaches 87.9%, which is 8.5 percentage points higher
than BERT. This shows that the model has good
long-term interactive context tracking ability and
complex intention understanding ability.

(3) In the sensitivity analysis of different reward
functions, the accuracy rate of RWA and RWF
strategies exceeds 70% when the weight configuration
numbers are 2 and 4. In contrast, the RWN strategy
without a reinforcement module is only about
30%-40%, showing that the reward mechanism
profoundly  impacts the quality of model
decision-making. At the same time, the model has
reached an accuracy rate of 94.5% in the 15th round of
training, and the Loss has dropped to 0.21. The training
convergence speed is fast, and the performance is stable.
However, the BLN model was overfitted during the
training process, and the verification loss increased from
0.8 to nearly 1.0, further highlighting the enhancement
effect of reinforcement learning on generalization
ability.

The dynamic reasoning model of medical dialogue
intention combines BERT and reinforcement learning
and has significant advantages in dealing with complex,
long-round, and highly semantic-dependent medical
dialogue tasks. The model not only realizes the linkage

C. Cheng et al.

optimization of semantic understanding and reasoning
strategies but also shows high accuracy, high robustness,
and high training efficiency in actual tests, which can
provide strong support for the implementation of
intelligent medical service systems. In the future,
research can further explore the directions of
multi-modal  input and  multi-intention  fusion
decision-making to promote the development of a
medical dialogue system to a more intelligent and
humanized.
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