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This study proposes a dynamic reasoning model of medical dialogue intentions that integrates BERT 

and reinforcement learning, aiming to solve the recognition difficulties caused by complex multiple 

rounds of interaction contexts and changeable user intentions in medical scenarios. Although the 

traditional BERT model is excellent in semantic modeling, it has limitations such as poor adaptability 

and static response strategy in the face of dynamic changes in intention expression in medical dialogue. 

Therefore, this paper introduces reinforcement learning mechanism, and realizes dynamic intention 

reasoning and policy optimization through state modeling, reward function and policy network. The 

experimental results highlight the robustness of our model in complex and dynamic medical dialogue 

scenarios. In high-complexity intent recognition tasks, our model achieved an accuracy improvement of 

8.5%. Moreover, in extended multi-round dialogues, the BRL model demonstrated a significant increase 

in recognition accuracy—from 32% in the 70th round to 60% in the 140th round. This performance was 

notably better than that of the BLN model, which achieved about 40% accuracy. These improvements 

underscore the effectiveness of integrating reinforcement learning to adapt to evolving user intents and 

provide more accurate and contextually relevant responses in long-duration medical dialogues. In the 

sensitivity analysis of reward function, different reward functions have a significant impact on the model 

performance. Among them, RWA and RWF perform best when the weight numbers are 2 and 4, with an 

accuracy rate of more than 70%, while RWN and RWS are often below 40%. To sum up, the model 

combining BERT and reinforcement learning not only improves semantic understanding capabilities, 

but also realizes dynamic strategy adaptation, providing an efficient and intelligent intentional 

reasoning solution for medical dialogue systems. 

Povzetek: Študija predlaga model, ki združi model BERT in okrepljeno učenje za boljše prepoznavanje 

namenov v večkrožnih medicinskih pogovorih, pri čemer se dinamično prilagaja spreminjajočim se 

uporabniškim namenom in opazno izboljša natančnost. 

 

 

1 Introduction 
With the continuous development of artificial 

intelligence technology, the application of Natural 

Language Processing (NLP) in the medical field has 

gradually deepened, and the medical dialogue system 

has become one of the research hotspots [1]. This 

system is designed to provide services such as 

diagnostic suggestions, symptom analysis and health 

consultation through natural language communication 

with patients. However, compared with general dialogue 

systems, medical dialogue has higher professionalism 

and accuracy requirements. It must accurately identify 

user intentions and adjust interaction strategies promptly 

to achieve efficient and reliable communication.  

 

Building a medical dialogue system with dynamic 

reasoning ability has become a key challenge in this  

context. 

In recent years, the BERT (Bidirectional Encoder  

Representations from Transformers) model has been  

widely used in intent recognition tasks because of its 

excellent performance in semantic understanding [2]. 

BERT can effectively capture semantic context 

relationships through deep bidirectional language 

modeling, providing a powerful semantic representation 

basis for medical intention recognition [3]. However, 

BERT still has the problem of insufficient response 

when faced with real medical scenarios with frequent 

changes in dialogue context and changeable user 

intentions. Its static feature modeling mechanism makes 
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it difficult to cope with the policy adjustment 

requirements in dynamic interaction, which limits the 

model's performance in practical applications. 

To solve the above problems, the introduction of 

the Reinforcement Learning (RL) mechanism has 

become an effective path [4]. Reinforcement learning 

can dynamically adjust the strategy according to the 

dialogue state and environmental feedback so that the 

system can continuously optimize the accuracy and 

decision-making efficiency of intentional reasoning in 

interaction with users [5]. By integrating reinforcement 

learning with the BERT model, the system can not only 

retain the advantages of BERT in semantic 

understanding but also enhance its reasoning ability in 

complex dialogue scenarios with the help of the 

adaptive characteristics of reinforcement learning and 

improve the overall intelligence level of the medical 

dialogue system. 

Although the integration of BERT's powerful 

semantic understanding and adaptive reinforcement 

learning is indeed innovative, it is crucial to place our 

model in the context of current research. The most 

advanced existing models, such as BERT based intent 

recognition systems, perform well in static 

understanding of user input, but are difficult in terms of 

the dynamics of medical conversations, especially in 

multi round conversations. On the other hand, 

reinforcement learning (RL) models have achieved 

success in dynamic decision-making, but often lack the 

powerful semantic foundation required for accurate 

medical intent recognition. The method in this article 

combines the advantages of both, using BERT for 

in-depth semantic understanding and RL for 

dynamically adapting to the constantly changing nature 

of medical conversations. This hybrid approach not only 

improves the accuracy of intent recognition by 

enhancing the system's ability to understand context, but 

also optimizes decision-making strategies. Compared 

with traditional BERT based systems, the model 

proposed in this paper has achieved significant 

improvements in high complexity intent recognition, 

with a performance improvement of 8.5% in multi round 

medical conversations. Compared to models that only 

use reinforcement learning, our method benefits from a 

stronger semantic foundation, resulting in responses that 

are more context relevant and accurate. 

This study aims to construct a dynamic reasoning 

model of medical dialogue intent that integrates BERT 

and reinforcement learning. The model can flexibly 

identify and reason user intent according to c, context 

changes in medical dialogue by introducing a state 

representation module, action decision mechanism, and 

reward feedback system. In this paper, systematic 

research will be carried out from the aspects of model 

structure design, strategy training methods, and 

experimental verification to improve the response 

intelligence and semantic accuracy of the medical 

dialogue system and provide theoretical support and a 

technical path for building a more humanized and 

efficient, intelligent medical service system. 

2 Theoretical basis and related 

research 

2.1 BERT and reinforcement learning 

algorithm theory 

BERT is a pre-trained language model based on the 

Transformer structure, and its core advantage lies in the 

simultaneous capture of context information through a 

bidirectional encoder, thereby generating semantically 

rich word vector representations [6, 7]. The BERT 

pre-training process includes two tasks: Masked 

Language Model (MLM) and Next Sentence Prediction 

(NSP) so that it can understand the deep semantic 

structure of the language [8]. As a basic model in natural 

language processing, BERT performs well in tasks such 

as question-answering systems, text classification, and 

named entity recognition. It is especially suitable for 

modeling complex semantic relationships and user 

intention recognition in medical dialogue systems. 

However, BERT is essentially a static encoder 

model, and its inference mechanism relies on fixed 

parameters and offline training data, lacking 

responsiveness to user behavior changes in real-time 

interactions [9]. In medical dialogue scenarios, user 

intentions often change dynamically with the deepening 

of symptom descriptions or the adjustment of problem 

feedback, which puts forward higher adaptability 

requirements for the model. Therefore, relying solely on 

BERT to be competent for the intention recognition task 

with strong strategy and heavy context dependence in 

multi-round dialogue is difficult. To enhance the 

flexibility and adaptability of the system, it is necessary 

to introduce a dynamic mechanism that can handle 

sequence decision-making and environmental feedback 

to make up for the shortcomings of BERT in real-time 

interactive modeling [10]. 

As a learning mechanism centered on the 

interaction between agent and environment, RL is 

suitable for dealing with tasks with delayed feedback 

and state transition characteristics [11]. In the dialogue 

system, reinforcement learning can realize the joint 

optimization of intention recognition and dialogue 

strategy by constructing state space, action set, and 

reward function [12]. Specifically, the model can select 

the optimal response strategy according to the current 

user input (state) and continuously adjust the strategy 

parameters through user feedback, thereby forming the 

optimal intention reasoning path during training. The 

introduction of reinforcement learning improves the 

system's response to dynamic changes and enables the 

model to have the ability of online learning and strategy 

iteration. 

Integrating BERT and reinforcement learning can 

achieve complementary semantic understanding and 

policy decision-making advantages. In the system 

architecture, BERT is a semantic encoder to provides 

semantic representation input for dialogue state 

modeling. At the same time, reinforcement learning 

guides the model to make optimal response judgments 
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in the policy selection module [13, 14]. This fusion 

method enhances the model's accuracy in medical 

semantic understanding. It optimizes the intention 

recognition strategy through continuous interaction, 

making it more aligned with the diversity and dynamics 

of patient expressions in real medical scenarios. 

Through this multi-level and collaborative-driven design 

idea, the intelligent reasoning ability of the medical 

dialogue system can be effectively improved, and more 

reliable and humanized support can be provided for 

intelligent health consultation. 

 

2.2 Current status of healthcare 

conversational intent in BERT and 

reinforcement learning 

Currently, medical dialogue systems are widely used in 

intelligent consultation, disease screening, and health 

consultation scenarios. One of their core tasks is to 

identify user intentions accurately. However, due to the 

complexity of technical terms and diverse expressions in 

the medical field, traditional intention recognition 

methods are often difficult to meet high precision 

requirements [15]. Many systems rely on rule templates 

or shallow classification models for intention 

recognition. Such methods have limited expressiveness 

in the face of semantic ambiguity or multiple rounds of 

dialogue. They are difficult to cope with patients' 

contextual changes and dynamic demands during the 

expression process, resulting in the system response 

lacking flexibility and semantic depth. 

With the development of deep learning, pre-trained 

language models such as BERT have been introduced 

into medical intent recognition tasks, which greatly 

improves the system's ability to understand natural 

language semantics [16]. BERT is trained through many 

unsupervised corpora, has strong context modeling and 

semantic abstraction capabilities, and performs well in 

medical questions and answers, medical record 

summaries, and other tasks. When applied to medical 

conversations, BERT can effectively capture key 

information in patient statements, thus improving the 

accuracy of intent classification. However, existing 

studies mostly use BERT as a static feature extraction 

tool, ignoring the dynamic characteristics of user 

intention evolving within the context of medical 

dialogue. This often makes it difficult for the model to 

accurately track the transfer and development of user 

intention in actual interaction [17]. 

To make up for the shortcomings of static 

modeling, researchers gradually try to introduce 

reinforcement learning into medical dialogue systems 

and use its decision optimization ability to improve the 

interactive intelligence of the system. Reinforcement 

learning enables the system to learn when to confirm 

transfer or ask in-depth questions in multiple rounds of 

dialogue by constructing dialogue state space and 

reward mechanism and then dynamically adjusting the 

intention recognition strategy [18]. This method has 

shown positive effects in some medical scenarios, such 

as driving system strategy optimization through user 

feedback so that intention recognition relies on semantic 

features and considers interaction history and behavioral 

feedback. However, this kind of research is still 

relatively preliminary, and the generalization ability and 

training efficiency of reinforcement learning in 

high-dimensional medical semantic space still face 

challenges. 

Therefore, combining the semantic understanding 

advantages of BERT with the strategy dynamic 

optimization ability of reinforcement learning is 

considered an important path to improving the 

performance of medical dialogue intention recognition 

[19]. By building a linkage mechanism, the system can 

not only make full use of BERT for fine semantic 

modeling but also realize continuous self-adjustment 

and optimization of intention recognition strategies with 

the help of reinforcement learning to be closer to 

complex interaction scenarios in actual diagnosis and 

treatment. The exploration of this direction at home and 

abroad is gradually deepening. Related research focuses 

on key issues such as model collaborative mechanism 

design, state representation selection, and multi-round 

dialogue task adaptation, which lays the foundation for 

building a medical dialogue system with adaptive 

reasoning ability 

3 Establishment of dynamic 

reasoning model of medical 

dialogue intention based on BERT 

and reinforcement learning 

3.1 Design and implementation of model 

framework 

This study proposes a dynamic reasoning model of 

medical dialogue intention that combines BERT and 

reinforcement learning, aiming at improving the 

dialogue system's semantic understanding ability and 

dynamic reasoning ability in multiple rounds of 

interaction [20, 21]. The overall model architecture 

consists of two main modules: semantic understanding 

and state representation module, policy decision-making 

and intention reasoning module. The model design 

follows the three stages of 

"perception-decision-feedback". The system can use 

online reasoning and strategy self-optimization by 

combining the pre-trained language model BERT with 

the reinforcement learning strategy network while 

understanding user semantics [22]. This model is 

especially suitable for the interaction needs of complex 

user intentions, changeable semantic expressions, and 

long feedback chains in medical scenarios. The formula 

of the user input semantic vector extraction function is 

shown in (1). 

 

( )t th BERT u=  (1) 
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Where ht represents the semantics of the user input 

statement at time t, ut represents the user input text of 

the t round, BERTθ represents the pre-trained language 

model, and d represents the hidden dimension of the 

BERT output. The multi-round semantic state 

construction formula is shown in (2). 

 

1( , )t state t ts F s h−=  (2) 

 

Among them, st represents the state of the dialogue 

at time t, st−1 represents the state of the previous round, 

ht represents the semantic vector of the current round, 

and Fstate represents the state update function. 

The reason for choosing this model is that 

traditional static intent recognition models, such as 

classifier or RNN-based structures, are difficult to adapt 

to the needs of dynamic intent evolution in medical 

dialogue. Although BERT has advantages in semantic 

modeling, it lacks the ability of strategic selection in 

dialogue. Reinforcement learning is good at optimal 

strategy learning in a dynamic environment [23]. 

Therefore, integrating the two can build an intelligent 

system that can understand semantics and dynamically 

reason, improving the accuracy and rationality of user 

experience and system response. In addition, the model 

also introduces the context state tracking mechanism to 

make the model have the ability of "memory" and 

enhance the semantic coherence modeling of multiple 

rounds of dialogue. The flow chart of designing a 

dynamic reasoning model of medical dialogue intention 

integrating BERT and reinforcement learning is shown 

in Figure 1. 

The system begins by processing the original text 

of the medical dialogue, generating dynamic context 

vectors through data preprocessing, which includes 

tokenization and cleaning. These vectors are then input 

into the BERT model, which extracts high-dimensional 

semantic features that represent the underlying meaning 

of the user input. The semantic vectors produced by 

BERT are fed into the reinforcement learning (RL) 

module, where they are used to construct the current 

state representation. In this process, the RL module 

evaluates the state and makes action selections based on 

predefined policy networks. These actions drive the 

process of intent recognition by identifying the most 

relevant intents from the dialogue context, which are 

then used to refine the system's response strategy. The 

output from this interaction is a decision or response that 

is contextually informed by both semantic 

understanding and the RL-based dynamic reasoning 

process. The recognition results are evaluated by intent 

classification, and the reward signal is fed back to 

update the policy network, thus forming a closed-loop 

learning mechanism to optimize the accuracy of intent 

classification continuously. Finally, the system 

generates responses and outputs diagnoses or 

suggestions based on the classification results, realizing 

end-to-end intelligent medical dialogue intention 

recognition and response. This process realizes the deep 

integration of semantic understanding, policy 

optimization, and dynamic feedback and reflects the 

intelligent reasoning ability of the model. 

 

 
 

Figure 1: Design flow chart of medical dialogue intention dynamic reasoning model integrating BERT and 

reinforcement learning 

 
This model is a fusion architecture that can 

combine semantic understanding and behavioral 

decision-making into a linkage system, avoiding the 

stage break in the 

"understanding-classification-response" process of the 

traditional model and continuously optimizing the 

reward mechanism in the interaction between the policy 

network and the environment, so that the model forms 

the optimal intention recognition path in the long-term 

interaction process [24]. This capability is particularly 

suitable for scenarios that include complex strategic 

operations such as confirmation, questioning, and 

guidance in medical conversations. The model's design 

supports soft state transition and explicit feedback 
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embedding, which improves the system's processing 

ability of unstructured medical expressions. The joint 

embedding representation function formula is shown in 

(3). 

 

int 1( , )t jo t tz F h s −=  (3) 

 

Among them, zt represents the semantics-policy at 

time t, ht represents the current round semantic vector 

extracted by BERT, st−1 represents the dialogue state of 

the previous round, and Fjoint represents the linkage 

function. The probabilistic state transition function 

formula is shown in (4). 

 

1(1 )t t ts s z −= −  +   (4) 

 

Where st represents the state at the current time, λ 

represents the state fusion coefficient, st−1 represents 

the state at the previous time, and zt represents the 

current semantic-policy embedding. To verify the actual 

effect of the model, this paper constructs a simulated 

medical dialogue scenario including multiple rounds of 

question and answer, including the stages of user 

description of symptoms, system inquiry, user 

clarification, and systematic reasoning suggestions. 

When the user first describes "I've been dizzy recently", 

the system judges that the user may have neurological 

symptoms through state representation and then further 

refines the intention in multiple rounds of interaction, 

from "dizziness" to "whether it is accompanied by 

tinnitus" and "whether it lasts for a long time" etc. 

Sub-intention levels. Finally, the most likely dialogue 

path is judged through the strategy network, and 

diagnostic suggestions or medical advice are provided. 

The two modules included in the model-semantic 

understanding and state representation module, policy 

decision and intention reasoning module, work together 

in this process and constitute the key supporting 

structure of the complete reasoning process [25]. 

3.2 Semantic understanding and state 

representation module 

The core of the semantic understanding and state 

representation module is the BERT model, which 

transforms users' natural language input into 

high-dimensional semantic vector representation as the 

input basis for subsequent decision modules [26]. In 

medical conversations, the language patients use is often 

ambiguous, non-normative, and highly 

context-dependent, so the context-aware ability of 

BERT is particularly important. We can obtain a more 

accurate and semantically consistent dialogue 

representation by splicing the patient input with the 

dialogue context and feeding it into the BERT encoder. 

In addition, the module also uses the representation of 

[CLS] bits as a global semantic feature, which plays a 

digest role in subsequent state modeling. The 

multi-round dialogue context stitching function formula 

is shown in (5). 

 

1( , )t t tT Concat u u−=  (5) 

 

Where Tt represents the complete input text of the t 

round, ut−1 represents the dialogue history text, ut 

represents the current round user input, and Concat 

represents the text stitching operation. The output 

formula of intent classification is shown in (6). 

 

( )Ty softmax Wv b= +  (6) 

 

Where W denotes the weight matrix, b denotes the 

bias term, and y denotes the intent class probability 

distribution. In terms of state representation, this study 

designs a joint representation method, which integrates 

BERT semantic encoding of the current round of 

dialogue, state embedding of historical dialogue, and 

user feedback signal. This method not only retains the 

current input high-level semantic information but also 

abstractly models the dialogue history by memorizing 

the network structure to realize the modeling of 

contextual semantic continuity [27]. At the same time, a 

multi-layer perceptron is introduced to transform and 

dimension compression of the state vector to adapt to 

the state space requirements of the reinforcement 

learning strategy network. After this treatment, the 

system state has "current semantics" in the linguistic 

sense and "historical logic" in interactive behavior. The 

flow chart of dialogue state representation of semantic 

coding and state modeling is shown in Figure 2. 
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Figure 2: Flowchart of dialogue state representation integrating semantic coding and state modeling 

 

The system first receives user input and embeds 

keywords semantically through BERT. Then, the system 

links medical entities and embeds contextual intentions 

in the semantic coding stage to enhance the 

understanding of users' semantics. Subsequently, the 

system uses the historical dialogue state to construct a 

dynamic state space. It generates intent reasoning 

actions through the reinforcement learning module's 

state representation network, reward function, and 

policy network. Finally, the fusion layer realizes the 

deep fusion of semantics and inference state through the 

dynamic attention mechanism and feature interaction 

matrix, outputs dynamic inference results, and generates 

responses, such as "Do you have accompanying fever?". 

The overall process implements a closed-loop dialogue 

intention recognition system from semantic 

understanding and state modeling to reasoning 

decision-making, improving the model's accuracy and 

context sensitivity in multiple rounds of medical 

dialogue. 

We also introduce a dialogue context selection 

strategy based on the attention mechanism to improve 

the accuracy of representation and context 

understanding ability. This strategy dynamically 

determines which parts of the historical round are more 

critical to the current intention judgment, thus avoiding 

redundant information interfering with the model 

judgment. For example, the "history of allergies" 

mentioned by a user earlier is very critical under the 

intention of "rash", but it has less impact on the 

intention of "headache". By introducing a contextual 

attention mechanism, the model can automatically and 

selectively memorize or forget information, thus 

improving state vectors' discrimination and intention 

expression ability. The formula of the semantic coding 

sequence of the historical wheel is shown in (7). 

 

'
C

intent i i
i 1

L y logy
=

= −  (7) 

 

Where yi denotes the true label, y'i denotes the 

prediction probability, and C denotes the total number of 

categories. The MDP five-tuple definition formula is 

shown in (8). 

 

( , , , , )M S A P R =  (8) 

 

Among them, S denotes the state space, A denotes 

the action space, P denotes the state transition 

probability, R denotes the reward function, and γ 

denotes the discount factor. The function of this module 

in the whole system is mainly to provide stable and 

informative semantic state input for policy 

decision-making. Through BERT's strong semantic 

coding of input information and historical state 

modeling, the model can generate a semantic state 

vector with accurate expression and a clear hierarchy for 

each round of dialogue. The design of this module 

ensures that the system can have a complete 

understanding of the user's semantic intention before the 

policy is executed, thus providing a solid foundation for 

downstream reasoning and response. 

3.3 Policy decision and intention reasoning 

module 

The strategy decision-making and intention reasoning 

module mainly comprises three parts: reinforcement 

learning strategy network, action set, and reward 

mechanism, which selects the optimal intention 

reasoning path in a dynamic environment. This module 

takes the semantic state vector as input. It outputs the 

User input: "Recent headache, which department should I visit?"

Input Layer

headache

Dull ache

Nausea

which

Where

When
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Consult

Check-up
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Ward
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System response: "Do you have accompanying fever?"
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Semantic Encoding
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optimal action that should be taken, such as confirming 

the intent, requesting more information, or responding 

directly through the policy network [28]. The adopted 

strategy network is a deep Q network structure, which 

combines empirical playback and target network 

mechanism to improve training stability and strategy 

convergence efficiency. The model makes action 

decisions according to the current state in each round of 

dialogue to realize the dynamic adjustment of intention. 

The formula for calculating the DQN target value is 

shown in (9). 

 

1( )t t tc y 1 c  −=  + −   (9) 

Where ct represents the cumulative confidence, α 

represents the update rate, and yi represents the current 

prediction probability ct−1 represents the confidence. 

The information gain is used for intent discrimination 

equation as shown in (10). 

 

( ) ( | )IG H Y H Y X= −  (10) 

 

Where H(Y) represents the label prior entropy, and 

H (Y | X) represents the conditional entropy. In action 

design, this module divides possible system behaviors 

into a variety of strategic actions, such as "confirming 

current intention", "asking clarification questions", 

"changing topic guidance," or "entering diagnosis 

mode". Each action closely corresponds to the actual 

medical consultation strategy, which makes the system 

more realistic and interactive in the reasoning process 

[29]. This design effectively supports the hierarchical 

evolution process of complex intentions, such as 

developing from "pain" to "abdominal pain" and then 

specifically to "severe pain in the right lower abdomen" 

and judging it as "appendicitis risk", and guiding the 

dialogue to a meaningful direction through the strategy 

network. Evolution. The intention recognition target 

aggregation reward function formula is shown in (11). 

 
k

j

t
j 1

R 
=

=   (11) 

 

Where Rt denotes the aggregate reward of the 

current dialog round, γ denotes the discount factor, and 

k denotes the prediction round number window. The 

design of the reward mechanism is one of the key parts 

of this module. This paper sets the real-time reward 

value for each action, and the global task completion 

reward and error penalty are introduced. For example, if 

the user confirms that the system infers the correct 

intent, a high reward is given; If the system deviates 

from the user's intention or causes the user's disgust, a 

penalty is imposed. In addition, the model also 

calculates the total return through evaluation indicators 

such as accuracy and satisfaction when the dialogue is 

completed, driving strategy learning to move closer to 

better goals. This reinforcement mechanism makes the 

model pursue short-term response correctness and 

optimize long-term interaction paths [30]. 

During the implementation process, the user 

described "the abdomen is a little uncomfortable 

recently", and the system initially predicted the intention 

of "stomach disease". However, according to the 

historical dialogue and state representation, it was found 

that the user had previously mentioned "lower 

abdomen", and the strategy network guided the system 

to ask further "whether the pain is located in the right 

lower abdomen", and then accurately reasoned it as 

possible appendicitis and recommended medical 

treatment. This multi-round, state-driven strategy 

reasoning ability is the advantage of this module. With 

the introduction of this module, the whole model can 

continuously interact with users, dynamically update 

intention judgment, and optimize dialogue strategy. 

4  Experimental results and analysis 
This study used the MedDialog Chinese Medical 

Dialogue dataset as the experimental data source, 

covering multiple rounds of consultation dialogues in 

different medical departments in China, suitable for 

intent recognition and dialogue strategy modeling tasks. 

Before model training, the dataset undergoes several 

preprocessing steps, including text cleaning, 

tokenization, and filtering out irrelevant conversations. 

Then divide each conversation into separate rounds to 

capture the dynamic nature of the conversation and 

ensure that the model can understand the constantly 

changing user intentions. In addition, to address 

potential data imbalance issues, especially for rare 

medical intentions, we use data augmentation techniques 

to generate synthetic dialogues, ensuring strong training 

and coverage for frequent and infrequent intention 

categories. After standardization, the data are divided 

into training sets, verification sets, and test sets to ensure 

the accuracy and reliability of experimental evaluation. 

The experiment was conducted on a deep learning 

server running the Ubuntu system, with the hardware 

configuration consisting of an NVIDIA RTX 3090 

graphics card, an Intel Xeon processor, and 128GB of 

memory. The software environment was built using 

Python, leveraging the PyTorch framework. The BERT 

model was loaded using the transformers library, and 

reinforcement learning was implemented via OpenAI 

Gym, which provided a stable environment for training 

and evaluating the model. This setup ensures robust 

performance during the training process, with an 

emphasis on the integration of BERT and reinforcement 

learning for medical dialogue intent recognition. Model 

performance comparisons are shown in Table 1. 
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Table 1: Model performance comparison 

Models Accuracy (%) Recall rate (%) F1 value (%) Inference time (ms) 

BiLSTM 82.1 80.5 81.3 35 

BERT 89.3 88.9 89.1 58 

BERT + RL 91.7 90.8 91.2 61 

Our model 94.5 93.8 94.1 63 

 

The model proposed in this paper leads all over the 

four indicators. The accuracy rate reaches 94.5%, 12.4% 

higher than the benchmark model and 5.2% higher than 

the standard BERT model. The increase in F1 value is 

12.8% and 5%, significantly better than traditional and 

deep language models without integrated reinforcement 

learning. The inference time is slightly increased (5ms 

more than BERT), but the performance improvement far 

exceeds the cost increase, indicating that the introduced 

dynamic intent inference mechanism is extremely 

cost-effective. Especially in medical scenarios, accuracy 

precedes response speed, and model selection strategies 

are more reasonable. 

This paper analyzes the influence of different 

model structures on the accuracy of intent recognition in 

order to evaluate this influence, and the results are 

shown in Figure 3. 

 

 
Figure 3: Influence of model structure on intention recognition accuracy 

 

As you can see from the chart, in the range of 

complexity levels 1 to 10 in the left figure, the accuracy 

rate of the BRL model (fusing BERT and reinforcement 

learning) has increased from about 10% to nearly 90%, 

which is always significantly better than BLN (BERT 

only) and RNN, especially when the complexity is 

greater than 5, the gap widens. In the figure on the right, 

in the range of complexity levels 2 to 20, the recognition 

accuracy of the BRL model steadily rises to more than 

75%, while BLN and RNN finally stay at about 65% 

and 60%. The overall display shows that the BRL model 

has stronger expression and reasoning ability when 

dealing with high-complexity intentions, and the 

structural optimization significantly improves the 

system's understanding accuracy of complex semantics. 

This paper analyzes the changes in intention 

recognition accuracy under different conversation 

rounds to verify whether the model can maintain the 

stability and accuracy of intention understanding in 

multiple rounds of medical answering and answering. 

The results are shown in Figure 4. 

 

 
Figure 4: Changes of intent recognition accuracy under different session rounds 

 

According to the data in the figure, the BRL in the 

left figure achieves a recognition accuracy of about 32% 

in 70 rounds of dialogue, which is significantly higher 

than that of BLN and other traditional models such as 

RNN and GRU. In the figure on the right, as the number 

of session rounds is expanded to 140 rounds, the 

recognition accuracy of BRL is further improved to 

about 60%. In contrast, the highest accuracy of BLN, 
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SENSOR, and SVM remains at about 40%. This shows 

that BRL has a stronger intention understanding and 

adaptability in long-round interaction scenarios, and the 

reinforcement learning mechanism significantly 

enhances the model's contextual reasoning ability and 

robustness. 

This paper analyzes the sensitivity of reinforcement 

learning reward function weights on model performance 

to explore the influence of three weight adjustments of 

"semantic matching," "context consistency," and "action 

selection confidence" in different reward functions on 

model performance and analyze the model's dependence 

on the policy feedback structure. The results are shown 

in Figure 5. 

 

 
Figure 5: Sensitivity analysis of reinforcement learning reward function weights to model performance 

 

It can be seen from the figure that there are obvious 

differences in the influence of different reward functions 

on the accuracy of model intent recognition under 

different weight configuration numbers. RWA and RWF 

perform best when the weight configuration numbers are 

2 and 4, and the recognition accuracy rate reaches more 

than 70%, which is close to the yellow area in the figure. 

However, the accuracy of RWN and RWS models is 

concentrated between 20% and 40% in most 

configurations, and the performance is poor. Reward 

function design and weight allocation are highly 

sensitive to model performance. Reasonable selection of 

reinforcement learning reward mechanism is a key 

factor in improving model accuracy. 

 

Table 2: Recognition accuracy under different intention complexity 

 

Intent complexity 

level 

Number of 

samples 

BERT Accuracy 

(%) 

Model accuracy in this 

paper (%) 

Improvement 

(%) 

Low 240 92.5 95.2 +2.7 

Medium 310 88.1 91.6 +3.5 

High 180 79.4 87.9 +8.5 

 

The recognition accuracy under different intention 

complexity is shown in Table 2. The model shows 

significant advantages in high-complexity intent 

recognition. Especially in the "merge intent" scenario, 

the model's accuracy in this paper has increased by 8.5 

percentage points, indicating that the reinforcement 

learning mechanism effectively enhances the 

multi-intent recognition ability of the model. The 

improvement in medium complexity intentions also 

reached 3.5%, reflecting that the dynamic reasoning 

strategy helps understand the semantic dependencies 

implicit in the context. Overall, the more complex the 

model is, the more obvious the advantages of this 

method are, and it is suitable for actual medical dialogue 

scenarios with multiple rounds of interaction and 

multi-intent recognition. 

This article analyzes the relationship between the 

proportion of different intent categories in the data set 

and the classification accuracy of the model to evaluate 

the impact of data imbalance on model performance. 

The result is shown in Figure 6. 

 

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Weight configuration number

R
ec

o
g

n
it

io
n

 a
cc

u
ra

cy
 (

%
)

RWS

RWD

RWN

RWE

RWC

RBL

RRL

RWF

RWA



92   Informatica 50 (2026) 83–96                                                                                C. Cheng et al. 

 

 

 
Figure 6: Relationship between intent category distribution and classification accuracy 

 

In the figure on the left, when the category 

frequency is less than 5, most classification accuracy 

rates are concentrated between 0% and 40%. In contrast, 

when the frequency is increased to more than 15, the 

accuracy rate can reach more than 60% and even close 

to 90% in some areas. The figure on the right shows a 

similar trend. Still, the overall accuracy range is lower, 

mostly between 15% and 45%, indicating that the 

model's accuracy is significantly limited when dealing 

with low-frequency categories. This shows that the 

model has a better learning effect on high-frequency 

categories under the long-tail intent distribution. 

However, there are still obvious shortcomings in 

recognizing low-frequency categories, emphasizing the 

necessity of introducing mechanisms such as 

reinforcement learning to enhance intention recognition 

with few samples. 

This paper compares the visualization of the model 

reasoning path before and after the dynamic reasoning 

module is enabled to compare the model's path changes 

during the reasoning process and show the dynamic 

reasoning module's optimization effect on the model 

decision path. The results are shown in Figure 7. 

 

 
Figure 7: Visual comparison of model inference paths before and after the dynamic inference module is enabled 

 

It can be observed in the figure that when the 

dynamic reasoning module is not enabled, the number of 

reasoning steps of the basic model (BAS) is generally 

high, and the reasoning path of multiple samples 

exceeds 30 steps. After the dynamic inference module is 

enabled, the inference steps of the DYN model in most 

samples are significantly shortened, and multiple 

samples are concentrated between 10 and 20 steps, 

which is significantly close to the reference path (REF) 

labeled by experts. For example, when the sample 

numbers are 2 and 10, the inference steps of the DYN 

model are about 15 and 10, respectively, while that of 

the BAS model is about 30 and 28, respectively. 

Overall, DYN is superior to BAS in inference efficiency 

and path compactness, indicating that the dynamic 

inference module can effectively optimize the decision 

path of the model and make it closer to the expert level. 

To observe the changing trend of the loss value of 

the verification set with the rounds during the training 

process and judge whether the model is overfitted or 

under fitted, this paper analyzes the changing trend of 

the loss function of the model training rounds and the 

verification set, and the results are shown in Figure 8. 
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Figure 8: Model training rounds and verification set loss function change trend diagram 

 
According to the data in the figure, the model 

(BRL) that combines BERT and reinforcement learning 

shows an overall downward trend in the verification set 

loss during the training process, from about 0.9 to a 

minimum of about 0.3. Although the fluctuation is large, 

the final convergence effect is obvious. Although the 

model using only BERT (BLN) has a slight downward 

trend in the left figure, the overall change is relatively 

gentle. In the right figure, there is even a phenomenon 

that the verification loss increases with the training 

rounds, from 0.8 to close to 1.0, showing the potential 

overfitting risk. This comparison result shows that the 

BRL model is more stable in the training process and 

has stronger generalization ability on the validation set. 

The reinforcement learning module has a significant 

optimization effect on the model training effect.  

The trends of training rounds and model 

performance are shown in Table 3. From the perspective 

of the training process, the model's performance has 

improved significantly after 10 rounds. The peak 

accuracy rate reached 94.5% in the 15th round, and the 

loss value dropped to 0.21, which has tended to be 

stable. Although the loss declined in the 20th round, the 

accuracy rate fluctuated slightly, showing an overfitting 

trend. It shows that the model structure design is 

reasonable, the training efficiency is high, the optimal 

performance can be achieved within 15 rounds, and the 

training cost is well controlled. Using an early stop 

strategy in actual deployment is recommended to avoid 

overfitting. 

This paper analyzes the changes in intent 

recognition accuracy in multiple rounds of user 

interactions to demonstrate the accuracy of intent 

recognition in each of the 10 rounds of user interactions 

and evaluate the stability and robustness of the system in 

long-term dialogues. The results are shown in Figure 9. 

 

 

Table 3: Training rounds and model performance change trends 

Training rounds Accuracy (%) Loss Learning rate Rate of convergence 

5 85.6 0.42 1e-4 Non-convergent 

10 91.2 0.29 1e-4 Accelerated descent phase 

15 94.5 0.21 1e-4 Achieve a stable optimum 

20 94.4 0.20 1e-4 Slight signs of overfitting 

 

 

 
 

Figure 9: Change of intention recognition accuracy in multiple rounds of user interaction 

 

As can be seen from the figure, the model (BRL) 

that combines BERT and reinforcement learning 

accounts for 40% of the accuracy improvement 

contribution in intention recognition in multiple rounds 

of interaction and performs better than other models. 

The BLN (using only BERT) model has the highest 

contribution of 50%. Still, its promotion is mainly 

concentrated in the first few rounds, and the overall 

stability is slightly inferior to BRL's. However, the 

contribution of the traditional RNN model is only 10%, 

indicating that its intention recognition ability in a 

multi-round interactive environment is significantly 
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insufficient. This result confirms that the dynamic 

reasoning mechanism proposed in this paper can more 

effectively improve the understanding and response 

accuracy of the model in complex interaction scenarios. 

5 Conclusion 
This study aims to enhance intention recognition in 

medical interactions by introducing a reinforcement 

learning strategy network and semantic state modeling, 

showing strong performance in experiments. However, 

it lacks real-world validation, and clinical testing with 

expert benchmarking is needed to address complexities 

like patient behavior variability and real-time feedback. 

Challenges remain in handling rare medical conditions 

and ambiguous patient inputs due to limited training 

data. Future improvements will focus on data 

augmentation and integrating domain-specific datasets 

to overcome these issues. The specific conclusions are 

as follows: 

(1) The experimental results show that the model 

proposed in this paper is better than traditional models 

such as BERT and BiLSTM in terms of accuracy, recall 

rate, and F1 value, with an accuracy rate of 94.5%, 

which is 12.4 percentage points higher than BiLSTM 

and 5.2 percentage points higher than BERT; The F1 

value also increased from 89.1% of BERT to 94.1%, an 

increase of 5 percentage points. This result fully proves 

that the fusion of BERT and reinforcement learning 

strategy has an important effect on complex medical 

semantic modeling and intent reasoning. 

(2) In multiple rounds of conversation testing, the 

BRL model reached an accuracy of 32% in the 70th 

round and increased to 60% in the 140th round, far 

exceeding the BLN model. In addition, in scenarios with 

high intention complexity, this model's accuracy rate 

reaches 87.9%, which is 8.5 percentage points higher 

than BERT. This shows that the model has good 

long-term interactive context tracking ability and 

complex intention understanding ability. 

(3) In the sensitivity analysis of different reward 

functions, the accuracy rate of RWA and RWF 

strategies exceeds 70% when the weight configuration 

numbers are 2 and 4. In contrast, the RWN strategy 

without a reinforcement module is only about 

30%-40%, showing that the reward mechanism 

profoundly impacts the quality of model 

decision-making. At the same time, the model has 

reached an accuracy rate of 94.5% in the 15th round of 

training, and the Loss has dropped to 0.21. The training 

convergence speed is fast, and the performance is stable. 

However, the BLN model was overfitted during the 

training process, and the verification loss increased from 

0.8 to nearly 1.0, further highlighting the enhancement 

effect of reinforcement learning on generalization 

ability. 

The dynamic reasoning model of medical dialogue 

intention combines BERT and reinforcement learning 

and has significant advantages in dealing with complex, 

long-round, and highly semantic-dependent medical 

dialogue tasks. The model not only realizes the linkage 

optimization of semantic understanding and reasoning 

strategies but also shows high accuracy, high robustness, 

and high training efficiency in actual tests, which can 

provide strong support for the implementation of 

intelligent medical service systems. In the future, 

research can further explore the directions of 

multi-modal input and multi-intention fusion 

decision-making to promote the development of a 

medical dialogue system to a more intelligent and 

humanized. 
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