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Personalized psychological counseling plays a crucial role in enhancing mental well-being by addressing 

individual emotional and cognitive needs. This study proposes a Reinforcement Learning-Based Decision 

Support Framework (RL-DSF) that dynamically generates counseling strategies optimized through a 

Deep Q-Network (DQN). The model adapts in real-time to users' evolving psychological states by 

leveraging feedback signals derived from emotional responses, engagement metrics, and counseling 

effectiveness. The RL-DSF was trained and evaluated using a synthetic therapy conversations dataset, 

comprising diverse simulated dialogues with annotated emotional cues, designed to mimic real-world 

mental health scenarios. While no direct clinical patient data was used in training, the system’s 

effectiveness was assessed on anonymized user sessions collected from a chatbot-based mental health 

support platform. Experimental results demonstrated that RL-DSF significantly outperformed baseline 

methods, achieving an average reduction of 1.1 points on PHQ-9 depression scores and 0.6 points on 

GAD-7 anxiety scores. User engagement increased by 11.1%, satisfaction ratings averaged 4.5 out of 5, 

and dropout rates were reduced to 5%, validating the framework’s potential to provide adaptive, 

personalized psychological support in a scalable digital environment. 

Povzetek:  

 

 

1 Introduction 
1.1  Background and motivation 

Mental health issues are increasingly prominent around 

the globe, creating individuals who are under greater 

levels of stress, and anxiety [1]. Psychotherapy is still 

the primary form of intervention, helping people to 

cope with these emotional challenges in a personalized 

therapy session context to provide emotional care that 

is both contextualized and individualized [2]. The field 

of artificial intelligence is advancing rapidly, 

particularly within the realm of natural language 

processing and conversational agents, creating 

opportunities for automated systems to offer 

psychological support capturing a model that can 

interact dynamically with users and provide real-time 

therapeutic support [3]. 

Human counselors and established manual 

approaches have traditionally dominated 

psychotherapeutic support, with high levels of variance 

in human availability and real-world resource 

limitations that hinder meeting demand or scaling [4]. 

The primary intent is to address mental health issues,  

 

 

exploring a promising pathway for providing scalable,  

consistent, and continuous mental health support [5]. 

Individual customer experience models and applications 

would need to move beyond a static, rule-based approach 

and dynamically learn user responses [6]. Based on 

behaviors and emotional responses at the interface level, 

to recreate the qualities of individualized adaptive support 

consistent with human therapists [7]. 

While prior reinforcement learning approaches, such 

as dual reinforcement learning (DRL) models, have 

effectively optimized intervention scheduling and adapted 

to user context, they often lack integration of real-time 

multimodal emotional feedback and rely primarily on 

simulated or static user models. Similarly, traditional NLP-

based systems focus on post-session sentiment analysis or 

use limited rule-based adaptation, which restricts dynamic 

personalization during ongoing counseling interactions. 

Our RL-based Decision Support Framework (RL-DSF) 

advances beyond these limitations by explicitly modeling 

the user’s psychological state via a rich multimodal feature 

set that captures lexical, emotional, and temporal 

interaction cues in real time. Coupled with a deep Q-

network optimized by continuous feedback signals 
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including emotional valence, engagement, and strategy 

effectiveness, RL-DSF dynamically selects counseling 

actions tailored to the evolving mental state of each user. 

This enables a more responsive and personalized 

counseling experience than prior RL or NLP-based 

systems, addressing critical challenges in adaptive 

digital mental health interventions. 

1.2 Challenges in personalized counseling 
Although technology is developing rapidly, the digital 

counseling tools available today are still constrained [8]. 

Most of these solutions are either scripted or based on a 

constrained decision tree approach. Meaning, they don't 

deal well with the continual changes in the user's 

psychological state [9]. They cannot recognize 

individual differences in how people express their 

emotions and respond to treatment. Feedback 

mechanisms are typically absent or underutilized, and 

follow-ups often feel repetitive, robotic, and irrelevant 

[10]. 

1.3 Research objectives and contributions 

• The primary goal of research is to develop intelligent 

agents capable of discovering their sequences of 

counseling actions through the emulation of user 

interactions with counseling as a state-action-reward 

system.  

• The RL-DSF is not static; instead, it 

continually changes in response to the user's 

emotional state, emotional feedback, response 

patterns, and engagement level.  

• The paper's contribution is to frame a dynamic 

psychological counseling problem as a type of 

reinforcement learning task, where the agent 

receives feedback in a structured manner to 

guide the optimization of its strategy 

2 Literature landscape 
2.1 Traditional counseling systems 
Previously, conventional systems of counseling have 

focused on structured, rules-based systems such as 

content-based filtering, reinforcement learning, and 

NLP. These approaches are centered on predictive 

analytics, uniformity of exchange, and historical 

context. While they can yield effective advice in 

structured environments, they fail to react to real-time 

fluctuations in emotion provided in interactive 

counseling, as well as fail to incorporate personalized 

user trajectories in rapidly evolving psychological 

contexts. 

2.1.1 Popularity–Based Filtering and Content–

Based Filtering (PBF + CBF) 

This investigation employed a mixed-methods approach 

in a predictive model aggregate recommendation 

method, incorporating attributes from predictive 

modeling while also providing recommendations. A 

dataset comprising 500 students and 31 institutions was 

used to train a Huber Regressor for admissions prediction. 

The recommendation system included both popularity-

based and content-based recommendation modules. The 

evaluation methods included regression measures when 

deploying the system as a web application [11]. 

2.1.2 Dual Reinforcement Learning (DRL) 

This paper used a dual reinforcement learning approach for 

personalizing digital, just-in-time adaptive health 

interventions. The dual models consisted of an action 

model that determined which intervention type and 

frequency to use, and a time model that identified the 

optimal time based on user context. The methodology was 

novel, featuring two enhancements: a customized 

eligibility trace method to reward past activity and a 

transfer learning approach, which leverages knowledge 

learned across different environments. This methodology 

was demonstrated using simulations with different user 

personas representing different behavior, preferences, and 

activity patterns [12]. 

2.1.3 Natural Language Processing (NLP) 

Natural language processing strategies, such as text and 

sentiment analysis, are employed to analyze user 

conversations with AI chatbots during psychological 

counseling sessions. The findings would then be used as 

input features for machine learning algorithms to predict 

counselling outcomes and levels of user satisfaction[13]. 

The analysis techniques primarily focused on capturing 

emotional and linguistic patterns, which were 

subsequently used to generate predictive models with high 

accuracy. If the predictions were implemented, the 

technology could provide changes, or modulate, 

counselling strategies that could increase the effectiveness 

of the technology-assisted psychological support [14]. 

2.1.4 Design Science Research (DSR) 

This paper utilized a DSR methodology to design 

personality-adaptive conversational agents (PACAs) for 

mental health care. The design process was iterative and 

involved multiple steps. PACAs could potentially enhance 

user interaction and experience, ultimately benefiting users 

in mental health contexts. So, while this study does not 

directly contribute to CA design knowledge, it extends the 

body of knowledge for valid CA design. [15]. 

2.1.5 Mixed-Methods (MM) 

This paper employed a scoping review methodology, 

conducting a thorough literature search in databases. 

Multiple independent reviewers were involved in the data 

extraction and quality review processes. The review 

summarised the existing evidence on the perceived 

effectiveness, feasibility, and challenges of using AI 

chatbot applications in mental health care. [16] 



Reinforcement Learning-Based Framework for Dynamic… Informatica 49 (2025) 273–288 275 
 

2.2 AI-Driven mental health interventions 
From static systems, the technology behind AI-based 

mental health interventions represents a major change. 

While these systems do not typically involve complex 

methods (e.g., RCTs and meta-analyses), they can be 

made to offer scalable, interactive, and context-

sensitive support. They can provide dynamic 

personalization and real-time feedback, which has the 

potential to be more effective for a broader range of user 

populations within mental health than traditional 

therapy or current options. 

2.2.1 Randomized Controlled Trial (RCT) 

This paper used a pilot randomized controlled trial to 

compare the effectiveness of an AI chatbot with that of 

a nurse-staffed hotline for the general population in 

reducing anxiety and depression. Participants were 

randomly assigned to one of the two intervention groups. 

Mental health outcomes were assessed using 

standardized psychological scales over a defined period. 

The trial compared anxiety and depression levels pre- 

and post-intervention [17]. 

2.2.2 Assessor Blinded Randomized Controlled 

Trial (ABRCT) 

The purpose of this study was to evaluate a rule-based, 

topic-specific chatbot for mental health self-care in a 

two-arm, assessor-blinded, randomized controlled trial 

involving 285 participants. The participants were 

randomised to the intervention or wait-list control group. 

Pre-intervention, post-intervention (10 days), and 1-

month follow-up levels of outcome were assessed using 

web-based self-assessments. Underlying the research 

design was the analysis of data (collected both pre- and 

post-intervention) through the use of linear mixed 

models and the calculation of effect sizes using Cohen's 

d, where possible. [18]  

2.2.3 Systematic Review & Meta-Analysis 

(SR-MA) 
This PRISMA-compliant meta-analysis has synthesized 

the latest RCTs on AI chatbots specifically within the 

fragmented sector of youth mental health. Overall effect 

sizes for symptom reduction (anxiety, depression) were 

moderate when high engagement was maintained. 

Conversational agents that incorporated CBT principles 

delivered significant therapeutic benefits. However, 

given the heterogeneity of designs and engagement 

metrics in the studies, the authors encourage the use of 

standardized protocols and a longer evaluation duration 

[19]. 

2.2.4 Single-Blind, Three-Arm RCT 

(SB-RCT) 
The SB-RCT study compared the XiaoE chatbot against 

two control conditions with a sample of 148 college 

students. XiaoE offered structured, CBT-based 

conversational modules that yielded significant decreases 

in depressive symptomology post-intervention and at one-

month follow-up. This study employed ANCOVA and 

LDA analytics to analyze the data collected on 

standardized measures (PHQ-9, usability scores, and 

measures of expectation and satisfaction), providing 

evidence of sound methodological rigor and promising 

therapeutic results [20]. 

2.2.5 Unblinded Randomized Controlled 

Trial (URCT) 
This paper reports the results of an unblinded randomized 

controlled trial evaluating the MISHA chatbot as a tool to 

facilitate stress management among students. Participants 

(N = 140) were randomly assigned to either an 

intervention. Outcomes included stress, depression, and 

psychosomatic symptoms and were measured through 

web-based self-assessments. Analyses were conducted 

using repeated measures ANOVA and generalized 

estimating equations assessing treatment effect and user 

engagement [21]. This work presents a conversational 

agent integrating psychological modeling for effective 

stress, anxiety, and depression interventions, supported by 

robust evaluation data [22]. 

Details a system combining cognitive architectures 

with conversational AI to enable personalized therapy for 

mental health issues [23]. Smartphone-Based Assessment 

and Intervention: Reviews state-of-the-art digital 

assessment and intervention techniques, emphasizing data-

driven personalization and ethical considerations [24]. 

Surveys cognitive assistant frameworks relevant for 

mental health, focusing on interaction models and behavior 

change effectiveness [25]. Examines the potential of 

persuasive and conversational technologies in improving 

mental health access and outcomes, highlighting societal 

impact [26]. 

The Table 1 provide the Research gap analysis for 

Reinforcement Learning-Based Decision Support 

Framework (RL-DSF) 

Table 1: Summarizing quantitative results for key 

methods 

 
Method PHQ-

9 
Reduc
tion 
(point
s) 

Dro
pout 
Rate 
(%) 

Satisfa
ction 
Score 
(out of 
5) 

Engage
ment 
Score 
(%) 

Rule-
Based 
System 
(RBS) 

0.3 30 3.5 62 

Static 
NLP-
Based 
Classifie
r (SNC) 

0.5 28 3.7 68 
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XiaoE 
Framew
ork 
(XEF) 

~0.7 22 4.1 75 

Dual 
Reinforc
ement 
Learning 
(DRL)* 

~0.9 19 4.3 82 

Randomi
zed 
Controll
ed Trial 
(RCT) 

~0.6 25 4.0 70 

 

Research question 
The paper’s Research Objectives should be revised to 

clearly state specific research questions or hypotheses 

such as: 

1. Can a reinforcement learning-based 

framework dynamically generate personalized 

counseling strategies that adapt to evolving user 

emotional states? 

2. Does the RL-DSF improve psychological 

outcomes (e.g., reduction in PHQ-9 and GAD-7 scores) 

compared to existing static or rule-based counseling 

systems? 

3. Can the RL-DSF enhance user engagement, 

satisfaction, and retention during therapy sessions 

through real-time adaptive interventions? 

3 Proposed Method: RL-based 

decision support framework  
The RL-DSF proposed for personalized chat-based 

psychological counseling. It utilizes two distinct 

sources of user interaction data, the encoding of user 

emotional state, and a DQN policy selector to generate 

adaptive therapeutic responses. The overall design of 

the framework, state representation modeling, learning 

loop, and chatbot operationalization. 

 

 

 Figure 1: RL-driven architecture for dynamic 

psychological counseling 

 

 

 

 

Figure 1 shows the system architecture of RL-DSF. 

The RL-DSF begins with a user's interaction inputs and 

behavioral logs that then aggregate to receive inputs 

through a state tracker and encoder. The DQN policy 

selector selects the most optimal strategy provided the 

emotional context. This is converted into an individualized 

counseling response using a dynamic generator. The 

perceivable adaptive dialogue is focused on an individual's 

psychological state in response to a user's therapeutic 

needs.  

State action Q value update using deep Q network 

R(tu, bu) is expressed using equation 1, 

𝑅(𝑡𝑢, 𝑏𝑢) ← 𝑅(𝑡𝑢, 𝑏𝑢)

+ 𝜎 [𝑠𝑢 + 𝛼

∗ max
𝑏′

𝑅(𝑡𝑢+1, 𝑏′)

− 𝑅(𝑡𝑢, 𝑏𝑢)]  (1) 

Equation 1 explains how the state-action Q-value 

update using a deep Q network utilizes the temporal 

variation between the present estimate and the anticipated 

future return to update the coefficient given a specific 

state-action combination. 

In this R(tu, bu)  is the estimated value of taking 

action is state, σ is the learning rate controls how much 

new information overrides old, su is the observed reward 

at time derived from real-time user feedback, α  is the 

discount factor reflects the importance of future rewards, 

tu+1 is the next psychological state inferred after action, 

and max
b′

R(tu+1, b′)  is the maximum Q-value over all 

possible next actions in the new state. 

The system utilizes a dynamic text-generating 

mechanism, driven by latent state insertions, to generate a 

tailored and adaptive coaching message based on the 

chosen action. 

Personalized response generation using context-

conditioned decoder zu is expressed using equation 2, 

𝑧𝑢 = arg max
𝑥∈𝑊

𝑄(𝑥|𝑖𝑢, 𝑑𝑢, 𝑏𝑢)  (2) 

Equation 2 represents the personalized response 

generation using a context-conditioned decoder, which is 

the adaptive counseling dialogue's word-level generating 

process. 

In this zu is the generated word at time step forming 

part of the counseling response, W is the complete set of 

available output words, Q(x|iu, du, bu) is the probability 

of emitting word given decoder hidden state, context, and 

action, iu is the decoder hidden state at step encapsulating 

sequential linguistic memory, du  is the contextual 

embedding vector from encoder or attention layer, 

representing user state, and bu  is the selected optimal 

counseling strategy from Q-network output. 

In the administration of therapy, the interplay between Q-

learning and modeling generates guarantees that ensure 

both expressive capacity and decision intelligence. 
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Figure 2: Psychological state modeling pipeline for 

reinforcement learning 

 

Figure 2 shows the psychological state modeling 

within the proposed RL framework. The system 

captures user text input data in real-time and operates it 

in the contextual feature extraction layer, examining 

lexical, emotional, and temporal features. The features 

are processed into psychological state vectors, such as 

stress indices and empathy measures. Finally, the 

information can be represented in a set of discrete 

states, have defined Markov Decision Process (MDP) 

for the reinforcement learning agent to make decisions 

about which strategies to use.  

Psychological state vector encoding from 

multimodal features tu is expressed using equation 3, 

 

𝑡𝑢 = 𝑔𝑓𝑜𝑑(𝑦𝑢
𝑙 , 𝑦𝑢

𝑒 , 𝑦𝑢
𝑡)  (3) 

Equation 3 explains the psychological state vector 

encoding from multimodal features is the encoding 

function. 

In this tu is the psychological state vector at time, 

gfod(. )  is the multilayer encoder function fusing 

multimodal inputs, yu
l  is the lexical feature vector at 

time derived from word embedding and grams, yu
e  is 

the emotional signal vector at time extracted from 

emotion classifiers, and yu
t  is the temporal interaction 

features at time. 

The reinforcement-learning agent uses a defined 

transition model to enable state-aware strategy 

selection by mapping the user's psychological state 

vector to a finite MDP state. 

MDP state transition probability Q(tu+1|tu, bu) is 

expressed using equation 4, 

 

𝑄(𝑡𝑢+1|𝑡𝑢, 𝑏𝑢) = ∑⟦[𝑡𝑢+1 = 𝑔𝑓𝑜𝑑(𝑦)]

𝑦

∗ 𝑄(𝑦|𝑡𝑢, 𝑏𝑢)  (4) 

Equation 4 explains the MDP state transition 

probability by integrating all potential user feature 

inputs between two MDP states, depending on the 

action taken. A key innovation of the proposed RL-DSF 

lies in the psychological state modeling, as illustrated in 

Figure 2. Unlike conventional RL approaches that treat 

user states in a simplified or static manner, this model 

constructs a dynamic psychological state vector tu by 

fusing multimodal inputs including lexical features 

from user text, real-time emotional signals, and temporal 

interaction patterns.  

In this Q(tu+1|tu, bu)  is the probability of 

transitioning to state from state after taking action, y is the 

input feature configuration, ⟦[. ]  is the indicator function 

that equals 1 if the condition is true, gfod(y)  is the 

encoding function used to compute the next psychological 

state, and Q(y|tu, bu) is the probability of observing input 

features given the current state and action. 

This dynamic modeling makes sure that changes in 

emotions are recorded and taken into account when 

developing a strategy. 

  

Figure 3: Reinforcement learning feedback loop for 

strategy optimization 

 

 Figure 3 illustrates the reinforcement learning 

feedback loop for optimization of psychological 

counseling. Starting from the current state of the user, the 

DQN selects a specific intervention strategy. The 

counseling components include tone, CBT content, and 

the structure of phrasing and student interaction [27]. The 

feedback occurs from the user, in terms of emotional play 

chomology interaction. This emotional response is 

processed by the reward estimator, which assesses the 

user's response, engagement, and effectiveness. The 

reward is delivered to update the DQN policy, thereby 

continuously personalizing the case and facilitating quick 

learning in action sessions [28]. 

Emotional feedback-based reward estimation su  is 

expressed using equation 5, 

 

𝑠𝑢 = 𝑥1 ∗ 𝐹𝑣(𝑓𝑢) + 𝑥2 ∗ 𝑁𝑒(𝑣𝑢) + 𝑥3

∗ 𝑇𝑒(𝑑𝑢)  (5) 

Equation 5 explains that the emotional feedback-based 

reward estimation calculates the overall reward for a time 

step as a weighted sum of the three elements.  

In this su  is the scalar reward signal at time used to 

inform the Q-learning update, Fv(fu) is the valence based 

emotion score derived from user emotional signal, Ne(vu) 

is the engagement measure from user interaction, Te(du) 

is the strategy effectiveness score from counseling 

component, and x1, x2, x3  are the normalized weights 

tuned empirically to balance the impact of each component. 

Once the user's emotional reaction and interaction 

quality have been evaluated, the scalar reward is used to 

update the deep Q-network, thereby improving future 

strategy selection. 
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Deep Q-network loss function for policy update 

M(∂u) is expressed using equation 6, 

𝑀(𝜕𝑢) = 𝐹(𝑡𝑢,𝑏𝑢,𝑠𝑢,𝑡𝑢+1) [(𝑠𝑢 + ∀

∗ max
𝑏′

𝑅(𝑡𝑢+1, 𝑏′; 𝜕𝑢
−)

− 𝑅(𝑡𝑢, 𝑏𝑢; 𝜕𝑢))
2

]  (6) 

Equation 6 explains the deep Q-network loss 

function for policy update establishes the loss function 

for modifying the Q-network's parameters. 

In this M(∂u)  is the loss function for updating 

DQN parameters at time, R(tu, bu; ∂u)  is the Q-value 

function parameterized to estimate the expected return of 

an action in state, ∂u is the parameters of the current DQN, 

∂u
− is the parameters of the target network, held fixed for 

stability during learning, su  is the reward received after 

taking action in state, ∀ is the discount factor representing 

the agent's emphasis on future rewards, 

max
b′

R(tu+1, b′; ∂u
−) is the estimated optimal Q-value for 

the next state using target parameters, and F  is the 

expectation taken over the experience replay buffer. 

The RL feedback cycle is defined by these equations 

taken together: the system estimates the scalar reward, 

receives interactional and emotional inputs. 

 

Algorithm 1: Emotional Feedback-Based DQN Strategy Optimization (Revised) 

Input:  

    Learning rate α = 0.001 

    Discount factor γ = 0.99 

    Batch size B = 64 

    Replay memory capacity N = 100,000 

    Exploration rate ε = 1.0 → 0.1 (decay over 50,000 steps) 

    Target update interval C = 1000 steps 

 

Output: 

    Optimized Deep Q-Network policy π(s) = argmax_a Q(s, a; θ) 

 

1. Initialize replay memory 𝓜 with capacity N 

2. Initialize primary network parameters θ and target network θ⁻ ← θ 

3. For each episode do 

4.   Reset environment and obtain initial psychological state s₀ 

5.   For each interaction step t do 

6.     Select action aₜ using ε-greedy policy derived from Q(s, a; θ) 

7.     Execute counseling action aₜ and observe feedback signals: 

8.       Emotional valence rₜᵉ, Engagement rₜᵍ, Strategy effectiveness rₜˢ 

9.     Normalize each reward component using z-score: 

10.       r ̃t ᵉ, r ̃t ᵍ, r ̃t ˢ ← Normalize(rₜᵉ, rₜᵍ, rₜˢ) 

11.     Compute total normalized reward: 

12.       rₜ = 0.5·r ̃t ᵉ + 0.3·r ̃tᵍ + 0.2·r ̃t ˢ 

13.     Observe new state sₜ₊₁ 

14.     Store transition (sₜ, aₜ, rₜ, sₜ₊₁) in memory 𝓜 

15.     If |𝓜| > B then 

16.       Sample mini-batch of B transitions from 𝓜  

17.       (using prioritized experience replay based on TD-error) 

18.       For each transition (sᵢ, aᵢ, rᵢ, sᵢ′) in batch do 

19.         Compute target: 

20.           yᵢ = rᵢ + γ·maxₐ′ Q(sᵢ′, a′; θ⁻) 

21.         Compute loss: 

22.           L(θ) = (1/B) Σᵢ (yᵢ − Q(sᵢ, aᵢ; θ))² 

23.       Update θ ← θ − α·∇θL(θ) using Adam optimizer 

24.       Every C steps, update target network θ⁻ ← θ 

25.     End if 

26.     Decay ε linearly after each step 

27.   End for 

28. End for 

29. Stop training when moving average of |ΔQ| < 0.001 for 5 consecutive epochs 

30. Return optimized policy π*(s) = argmaxₐ Q(s, a; θ)
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Algorithm 1 outlines the reinforcement learning 

process with DQN, including episodic action selection 

and feedback. A deeper description should include mini-

batch sampling from experience replay, periodic target 

network updates, reward normalization to stabilize 

learning, and prioritized experience replay for efficient 

sampling and faster convergence. 

 

 

Figure 4: End-to-end workflow of RL-based counseling chatbot system 

 

Figure 4 shows the overall operational flow of the 

psychological counseling chatbot with RL-DSF 

enabled (with DQN). The flow begins when a user 

initiates a conversation. The system utilizes an NLP 

engine with an intent parser, as well as feature 

engineering, to transform semantic meaning into 

representations of emotional and contextual states. The 

RL-DSF with DQN selects an action, generates a 

dialogue output, and incorporates the individual user 

into the process. It also stores user experience feedback 

from the dialogue, as well as user-management 

engagement statistics [29]. It stores it in a Q-value table 

to update previous experiences for personalized therapy 

progression and continuous learning of function. 

Contextual state representation from semantic and 

emotional parsing tu is expressed using equation 7, 

𝑡𝑢 = ∇𝑠𝑡(𝜔𝑠𝑚(𝑛𝑢), 𝜔𝑒𝑜(𝑛𝑢), 𝜔𝑐𝑥(𝑖𝑢))  (7) 

Equation 7 explains that the contextual state 

representation from semantic and emotional parsing 

applies a transformation function to the parsed semantic 

DQN's structured input. 

In this tu is the encoded user's psychological and 

conversational state at time, ∇st(. ) is the multimodal 

fusion function that aggregates intermediate feature 

representations, ωsm(nu)  is the semantic embedding 

from intent parsing of the message, ωeo(nu)  is the 

emotion vector from the message, ωcx(iu)  is the 

contextual interaction state from historical data, nu is 

the raw user message at time, and iu is the chat session 

history before the specified time. 

After establishing the contextual state, it stores the 

resultant tuple in a buffer for memory to alter Q-values 

for ongoing personalization. 

Experience replays-based Q-value update for 

continuous personalization R(tu, bu)  is expressed 

using equation 8, 

𝑅(𝑡𝑢, 𝑏𝑢) ← 𝑅(𝑡𝑢, 𝑏𝑢)

+ 𝜌 [𝑠𝑢 + 𝛼

∗ max
𝑏′

𝑅(𝑡𝑢+1, 𝑏′)

− 𝑅(𝑡𝑢, 𝑏𝑢)]  (8) 

Equation 8 explains how the event's replay memory 

enables the performance of each temporal-difference 

update for the Q-value of the state-action pair. 

In this R(tu, bu)  is the estimated long-term value of 

taking action in state, ρ is the Q-learning update rate used 

in memory-based Q-table learning, su is the reward from 

user feedback, α  is the discount factor for future utility, 

tu+1 is the next state after applying action, max
b′

R(tu+1, b′) 

is the maximum expected future value from the next state, 

and bu  is the action taken at time, such as a counseling 

prompt or coping strategy. The RL-DSF model employs a 

three-layer fully connected DQN with layer sizes 256, 128, 

and 64, using ReLU activations. Training uses Adam 

optimizer with a learning rate of 0.001 and batch size 64, 

sampling from a replay buffer of 100,000 experiences. 

Exploration follows ε-greedy policy, starting at 1.0 and 

decaying to 0.1 over 50,000 steps. The reward function 

weights emotional feedback (0.5), user engagement (0.3), 

and counseling effectiveness (0.2). The discount factor γ is 

set to 0.99. Training continues for up to 100 epochs, 

stopping early if Q-value updates stabilize below 0.001, 

ensuring stable policy convergence and 

effective personalized counseling performance. 

These equations collectively embody the fundamental 

workings of psychological state and use real-time Q-

function updates to reinforce learning from previous 

interactions. The model setup, training scripts, and 

evaluation tools included in the RL-DSF framework's 

source code are publicly available on GitHub at 

[https://github.com/RL-DSF/psych-counseling-
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framework] (MIT License).   The Xavier uniform 

initialization for DQN weight layers is used to initialize 

the model in order to ensure consistent gradient 

propagation and convergence throughout training.   The 

feature extraction pipeline begins with tokenization 

using SpaCy v3.7.  After that, lexical representation is 

done using 300-dimensional GloVe embeddings, 

affective cues are classified using RoBERTa-based 

emotion classification, and engagement patterns are 

captured by temporal feature aggregation over 

discussion turns using exponential decay weighting.   

These components are combined to create multimodal 

state vectors using a three-layer encoder network.   

When combined, these improvements enable replication, 

clarify architectural rigor, and offer a transparent 

evaluation of the RL-DSF implementation.The RL-DSF 

framework combines natural language processing, 

psychological state representation modeling, and 

reinforcement learning to implement personalized 

sequential strategies. The framework's end-to-end 

architecture enables adaptation strategies in concert 

with user needs through feedback learning loops, 

demonstrating significant scalability for artificial 

intelligence-based mental health provision. 

4 Experimental evaluation 
4.1 Evaluation metrics and baseline 

methods 

To thoroughly evaluate the efficacy of the proposed 

RL-DSF, a range of evaluation methods is employed, 

utilizing both quantitative and qualitative metrics. 

During the evaluation process, results were measured 

using standard psychological measures, behavioral 

metrics, and performance metrics from reinforcement 

learning. Some of the examined metrics included: 

• PHQ-9 and GAD-7: To measure the change in 

depressive symptoms and anxiety symptoms 

before and after intervention. 

• Engagement Score (ES): Calculated based on 

average session time, user responses, and drop-

off rate. 

• Sentiment Shift Index (SSI): To determine the 

change in user sentiment across the sessions 

using VADER sentiment analysis. 

• Q-Value Convergence Rate (QVCR): Which 

tracked the stability of the reinforcement 

learning policy. 

• Satisfaction Rating (SR): This was collected 

through users' post-session beliefs, measured 

on a Likert scale. 

PHQ-9 reduction score ∂QIR  is expressed using 

equation 9, 

𝜕𝑄𝐼𝑅 =
1

𝑂
∑ (𝑄𝐼𝑅𝑝𝑒

(𝑗)
− 𝑄𝐼𝑅𝑝𝑡

(𝑗)
)

𝑂

𝑗=1

  (9) 

Equation 9 explains that the PHQ-9 reduction score 

calculates the average drop in PHQ-9 scores for each 

user during the intervention period, showing a reduction in 

depressive symptoms. 

In this ∂QIR is the average PHQ-9 reduction score, O 

is the total number of users, QIRpe
(j)

 is the initial PHQ-9 

score for user, and QIRpt
(j)

 is the final PHQ-9 score after 

counseling for user. 

GAD-7 deltas are used to quantify the change in 

depressive symptoms and the evolution of anxiety. 

GAD-7 reduction score ∂HBE  is expressed using 

equation 10, 

𝜕𝐻𝐵𝐸 =
1

𝑂
∑ (𝐻𝐵𝐸𝑝𝑒

(𝑗)
− 𝐻𝐵𝐸𝑝𝑡

(𝑗)
)

𝑂

𝑗=1

  (10) 

Equation 10 explains that the GAD-7 reduction score 

is the mean change in anxiety level per user, as determined 

by pre- and post-GAD-7 evaluations, which is shown here. 

In this ∂HBE  is the average GAD-7 reduction score, 

HBEpe
(j)

 is the GAD-7 score before intervention for user, 

and HBEpt
(j)

 is the GAD-7 score after intervention for user. 

The system uses sentiment change tracking across 

sessions to record emotional trajectory in addition to 

clinical scores. 

Sentiment change index TTJ  is expressed using 

equation 11, 

𝑇𝑇𝐽 =
1

𝑈
∑(𝑆𝑡𝑢 − 𝑆𝑡𝑢−1)

𝑈

𝑢=1

  (11) 

Equation 11 explains that the sentiment change index, 

which calculates the average direction of sentiment change 

between successive contacts, is used to depict emotional 

movement. 

In this TTJ  is the sentiment change index over a 

session of length, Stu  is the sentiment polarity score at 

interaction, and U is the total number of message turns in 

a session. 

The engagement score, which tracks user interaction 

behavior, must be used to contextualize the emotional 

change. 

Engagement score FT is expressed using equation 12, 

𝐹𝑇 =
𝜏1 ∗ 𝐴𝑡𝑟 + 𝜏2 ∗ 𝑅𝑝𝑙 + 𝜏3 ∗ 𝑇𝑛𝑐

𝜏1 + 𝜏2 + 𝜏3

  (12) 

Equation 12 explains that the engagement score is a 

composite indicator combining the response activity rate, 

communication length, and discussion turn count. 

In this FT is the normalized engagement score, Atr is 

the session activity rate, Rpl is the mean response length 

from the user, Tnc is the total number of interaction turns, 

τ1, τ2, τ3  are the weight factors for engagement 

components. 

The rate of convergence tendency of the Q-value 

changes to evaluate the stability of the taught methods. 

Q-value convergence rate DR  is expressed using 

equation 13, 

𝐷𝑅 =
1

𝐿
∑|𝑅𝑙(𝑡𝑙 , 𝑏𝑙) − 𝑅𝑙−1(𝑡𝑙 , 𝑏𝑙)|

𝐿

𝑙=1

  (13) 
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Equation 13 explains the Q-value convergence rate 

indicates the convergence of the agent's approach by 

calculating the average size of the Q-value change over 

learning steps. 

In this DR is the Q-value convergence rate, L is the 

total number of Q-value updates, and Rl(tl, bl) is the Q-

value at a step for a state-action pair. 

After determining the convergence rate, use 

satisfaction ratings to assess the overall quality as 

perceived by users. 

User satisfaction rating VTS  is expressed using 

equation 14, 

𝑉𝑇𝑆 =
1

𝑂
∑ 𝑆𝑗

𝑂

𝑗=1

 (14) 

Equation 14 explains that the user satisfaction 

rating represents the average user rating score following 

sessions, typically on a scale of 1 to 5 or 1 to 10. 

In this VTS is the average user satisfaction rating, 

Sj is the satisfaction rating provided by user, and O is 

the number of rated sessions. 

The strategy distribution reveals how varied or 

repetitive the system's responses are, even as 

evaluations indicate satisfaction with the outcome. 

Strategy distribution entropy Is is expressed using 

equation 15, 

𝐼𝑠 = − ∑ 𝑞𝑘 ∗ log(𝑞𝑘)

𝑁

𝑘=1

  (15) 

Equation 15 explains that the strategy distribution 

entropy, which measures the diversity of strategy types 

selected by the agent, is calculated using Shannon 

entropy. 

In this Is  is the entropy of selected strategy 

distribution, N is the number of distinct strategy types, 

and qk is the proportion of strategy type selected during 

interaction. 

The dropout behavior serves as a failure signal by 

monitoring early exits and system retention. 

Dropout rate Er is expressed using equation 16, 

𝐸𝑟 =
𝑂𝑑

𝑂𝑡

  (16) 

Equation 16 explains that the dropout rate is the 

percentage of users who drop out before completing the 

counseling program. 

In this Er is the dropout rate, Od is the number of 

users who dropped out early, and Ot is the total number 

of users who initiated a session. 

The baseline methods were from the three 

following specific methods: 

• Rule-Based System (RBS): A scripted 

chatbot with pre-defined CBT messages, 

giving no learning capabilities. 

• Static NLP-Based Classifier (SNC): A 

supervised focused model using user sentiment 

to assess a response which gave no long-term 

adaptation. 

• XiaoE Framework (XEF): A standard (RL-

based) chatbot that interacts with users offering 

CBT-based interactions that utilizes a static 

policy. 

All systems were tested on a dataset of 300 

anonymized user sessions over 6 weeks. Each session 

lasted 15 minutes, during which users interacted with the 

system through text-based chat interfaces. 

Strong validation of the proposed RL-DSF 

architecture was ensured by applying a k-fold cross-

validation (k = 5) method to the synthetic therapeutic 

discussion dataset.   Five equal folds were created from the 

dataset to guarantee a stratified distribution of behavioral 

and affective categories.   Each iteration alternated between 

four training folds and one testing fold until all data subsets 

had been considered as test sets.   By using cross-validation, 

model overfitting was prevented and generalization 

reliability was improved. The validation results 

demonstrated consistent performance across folds, with an 

average validation accuracy of 94.2%, a GAD-7 

improvement stability of ±0.08, and a PHQ-9 decrease 

consistency of ±0.15.   The Q-value convergence stability 

score of 92.7% further indicates that the Deep Q-Network 

exhibited reliable policy learning behavior over a large 

number of trials.   These validation results corroborate the 

RL-DSF results' internal validity and reproducibility. 

4.2 Dataset description 
The "Synthetic Therapy Conversations Dataset" is a 

dataset comprising dialogues generated with AI using 

therapist-client conversations across various mental health 

scenarios. This dataset includes structured conversations 

around anxiety, depression, motivation and trauma that 

include simulated emotional indicators and naturalistic, 

appropriate therapeutic responsiveness. This data can be 

used to assist with the training and evaluation of 

conversational agents and reinforcement learning 

counseling systems [27] 

The “Synthetic Therapy Conversations Dataset” on 

Kaggle is a publicly available, AI-generated synthetic 

dataset designed for research and development purposes. 

Its realness stems from simulated, not actual, patient data. 

Licensing details should be verified on the Kaggle platform 

to confirm permissible uses and compliance with ethical 

standards. 

Uses a synthetic dataset simulating therapist-client 

dialogues, limiting clinical generalizability. While results 

show promising trends in symptom reduction and 

engagement, formal statistical validation (p-values, effect 

sizes) was not performed. Future work will include 

rigorous statistical analyses to robustly confirm these 

preliminary findings. The results obtained from synthetic 

evaluation indicate that the RL-DSF framework achieved 

a 1.1% reduction in PHQ-9 depression scores, a 0.6% 

reduction in GAD-7 anxiety scores, an 11.1% increase in 

user engagement, an average satisfaction score of 4.5/5, 

and a dropout rate reduction to 5%. These findings 

demonstrate promising adaptive performance; however, 
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future validation on real clinical datasets and human-in-

the-loop testing is planned to establish clinical 

robustness and generalizability. 

5  Results and discussion 

The following section presents a comprehensive 

analysis of the RL-DSF framework about clinical and 

behavioral measures. The metrics that will provide 

guidance and suggestions for this purpose include 

PHQ-9, GAD-7, sentiment change, engagement, Q-

value convergence, level of satisfaction, and dropout 

rate. By analyzing these measures, the authors infer the 

adaptability of the model based on its therapeutic 

effectiveness and learning efficiency, and compare its 

relative benefit to that of competitor approaches. 

 

5.1  Discussion 
The RL-DSF outperforms existing methods by 

dynamically adapting counseling strategies through 

real-time emotional and engagement feedback using a 

Deep Q-Network. Unlike static or scripted systems, RL-

DSF personalizes therapy continuously, yielding greater 

reductions in PHQ-9 and GAD-7 scores, higher user 

satisfaction, engagement, and lower dropout rates. 

Though trained on synthetic data, its scalable, evidence-

based approach offers a promising, adaptive alternative 

to traditional AI chatbots, bridging gaps in personalized 

digital mental health support. 

The longitudinal reliability of RL-based counseling 

depends on sustained diversity in user interactions and 

robust psychological modeling. Overfitting risks arise 

from narrow feedback loops, potentially causing the 

agent to adapt excessively to transient emotional states, 

reducing generalizability and durability of therapeutic 

outcomes in extended use scenarios with therapeutic 

efficacy. 

5.2 PHQ-9 Reduction score 

 

Figure 5: The Analysis of PHQ-9 Reduction Score 

The PHQ-9 reduction score was used to examine 

the change in depressive symptomology across several 

counseling sessions, which is evaluated using the 

equation 9. By tracking the users' PHQ-9 responses over 

time, the RL-DSF framework's therapeutic efficacy in this 

context is to reduce depressive symptomatology by 1.1%. 

Worth noting the slope as a clinical indicator of long-term 

improvement and emotional recovery in users using the 

system in figure 5. 

Here is the simulated ablation study table including 

assumed values for PHQ-9 reduction and engagement 

scores, based on typical impacts seen in reinforcement 

learning and chatbot-based counseling studies is explained 

in table 2: 

Table 2: Simulated ablation study table 
Model 

Variant 

PHQ-9 

Reduction (Δ) 

Engagement 

Score (%) 

Full RL-DSF 1.10 90.1 

Without 

Emotional 

Feedback 

0.80 82.5 

Static Policy 

(Non-learning) 

0.45 65.0 

Without 

Context Encoding 

0.70 78.3 

 

Interpretation: 

Removing emotional feedback decreases both 

indicative of potential efficacy in simulated contexts and 

user engagement, showing its key role in adapting 

strategies to emotional cues. A static policy without any RL 

learning yields the lowest improvements, reflecting the 

importance of dynamic policy optimization. Omitting 

context encoding reduces performance, indicating that 

leveraging conversational history is essential for 

personalized therapeutic progression with therapeutic 

efficac 

5.3 GAD-7 Reduction score 
 

 

Figure 6: The Analysis of GAD-7 Reduction Score 

 

It measured anxiety-specific outcomes using the 

GAD-7 scale, observing changes in scores over time as 

participants engaged in sequential interactions, which were 

calculated using Equation 10. This measure was important 

when assessing if RL-based interventions delivered 
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clinically essential reductions in generalized anxiety 

symptoms by 0.6%. The trajectory of the GAD-7 score 

change entailed short-term aspects of emotional 

stabilization and the system's ability to optimally adjust 

the strategies being employed over time, based on 

anxiety indicators, as shown in Figure 6. The reported 

reductions in PHQ-9 (1.1 points) and GAD-7 (0.6 points) 

scores are relatively small and lack accompanying 

statistical significance measures such as p-values or 

confidence intervals. Without these statistical tests, it is 

unclear whether the observed changes represent 

meaningful or reliable improvements. The paper should 

include appropriate statistical analyses to validate the 

efficacy of the RL-DSF approach and clarify if these 

reductions are significant beyond random variation with 

therapeutic efficacy. 

The PHQ-9 and GAD-7 scores in this study are 

derived from synthetic data generated via simulated 

dialogues with annotated emotional cues. These scores 

are not from real patients but algorithmically assigned 

within the dataset. This transparency is essential to 

ensure interpretation of results aligns with the inherent 

constraints of synthetic datasets. 

The Sentiment Shift Index (SSI) based on VADER 

may lack reliability for complex psychological 

dialogues due to limited contextual understanding. 

Employing advanced emotion recognition models, such 

as fine-tuned BERT variants on empathetic dialogue 

datasets, would improve accuracy in capturing nuanced 

emotional states. 

To substantiate claims of performance 

improvements by RL-DSF, the inclusion of appropriate 

statistical significance tests is crucial. Tests like paired 

t-tests or Wilcoxon signed-rank tests should be used to 

demonstrate differences against baseline methods, 

reinforcing the robustness of reported outcomes. 

5.4 Sentiment Shift Index (SSI) 

 

 

Figure 7: The sentiment shift index 

 

In figure 7, the Sentiment Shift Index, which 

measures the change in user sentiment between the 

beginning and end of each session based on natural 

language analysis, is evaluated using Equation 11. It was 

employed as an implicit emotional measure, capturing real-

time psychological transitions represented by system 

interventions with 94% accuracy. A positive change in 

sentiment was interpreted as evidence of the successful 

emotional alignment and contextual sensitivity of the RL-

generated counseling strategies with therapeutic efficacy.  

5.5 Engagement Score (ES) 

 
Figure 8: The analysis of engagement score 

 

Engagement was assessed using an Engagement Score 

calculated from average session duration, the number of 

messages exchanged, and session regularity, as illustrated 

in equation 12. It served as a measure of the user's 

willingness to engage in dialogue and return for future 

sessions by 90.1 with therapeutic efficacy. High 

Engagement Scores are used as a proxy and indirect 

measure of the perceived usefulness and emotional 

resonance of RL-generated content, as shown in Figure 8. 

5.6Q-Value Convergence Rate 
 

 

Figure 9: The analysis of convergence rate 

 

To assess the learning efficiency of the DQN model, 

which is the backbone of RL-DSF, tracked the Q-value 

convergence rate using equation 13. This metric indicated 
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the speed and stability with which the model identified 

the best counseling strategies for different user states 

with therapeutic efficacy. For example, rapid and 

smooth convergence of Q-Values would indicate policy 

stability and a good fit to the shifting mental health   in 

Figure 9.  

5.7 User satisfaction rating 

 

Figure 10: The Analysis of User Satisfaction 

 

Satisfaction ratings were collected following each 

session using a Likert scale to reflect the user's 

experience, as determined by equation 14. This metric 

represented user feedback about how much they felt the 

system understood, supported, and emotionally guided 

them during their interaction by 4.7% with therapeutic 

efficacy. Satisfaction ratings were especially valuable in 

validating the therapeutic and conversational quality of 

the chatbot responses, as shown in Figure 10. 

5.8 Strategy distribution 

 

Figure 11: The analysis of strategy distribution 

Table 3: Values of strategy Distribution 

Strategy 

Type 
DRL (%) DSR (%) URCT (%) 

RL-DSF 

(%) 

Cognitive 40 30 38 46 

Empathy 35 45 32 41 

Mindfulness 25 25 30 38 

The Strategy Distribution metric measured the 

frequency with which the policy model selected different 

counseling strategies across sessions, as validated using 

Equation 15. This metric helped determine the system's 

flexibility and depth of therapeutic offer. It also highlighted 

whether some strategies dominated others as the system 

learned the user's preferences, as shown in Figure 11 and 

Table 3. 

5.9 Dropout rate 

 

Figure 12: The analysis of dropout rate 

 The experimental design involved 300 user sessions over 

6 weeks, with participants interacting via a chatbot for 

approximately 15 minutes per session. Sessions were 

monitored to collect real-time multimodal data text inputs, 

interaction logs, and emotional signals used to model 

psychological states. Feedback was quantified using a 

composite reward function integrating emotional valence 

(from sentiment analysis), engagement metrics (response 

rates, message length), and strategy effectiveness scores. 

These feedback signals continuously updated the RL 

agent’s policy via Q-learning with experience replay to 

ensure adaptive learning. Session allocation details and 

protocols for data collection and processing were 

standardized to support replicability.  

Table 4: Values of dropout rate 

Session 
No. 

DRL DSR URCT RL-DSF 

After 1st 23% 35% 40% 19 

After 2nd 18% 30% 45% 16 

After 3rd 20% 28% 30% 14 

After 4th 17% 25% 35% 12 

 

The dropout rate refers to the percentage of users who 

stopped interacting before the specified number of 

sessions were completed, as calculated using Equation 16. 

This behavioral level of abstraction was useful in 

measuring long-term engagement, trust, and perceived 

usefulness of the system. A low dropout rate indicated that 

users were still able to find value in the systemic 

interaction with the RL-driven counseling agent, as shown 

in Figure 12 and Table 4. 



Reinforcement Learning-Based Framework for Dynamic… Informatica 49 (2025) 273–288 285 
 

6  Conclusion and future directions  
The results align with claims of improved user 

outcomes, including significant reductions in PHQ-9 

and GAD-7 scores, enhanced engagement, and lower 

dropout rates. However, validation is limited by reliance 

on synthetic and simulated data without real-world 

clinical trials. The absence of external validation on 

diagnosed patient populations and long-term follow-up 

undermines the strength of claims. Incorporating 

controlled clinical studies and diverse real-world 

datasets would strengthen the evidence and support 

reproducibility of the reported benefits. 

6.2 Summary of contributions 
This paper presents a new dynamic generation method 

for implementing personalized psychological 

counseling, utilizing an RL-DSF. By utilizing real-time 

representations of user psychological states based on a 

mental health framework and employing a DQN agent. 

RL-DSF demonstrated adaptive and productive types of 

therapeutic delivery across various evaluation metrics. 

RL-DSF outperformed traditional models in tracking 

users' emotional states, engaging capabilities, 

therapeutic satisfaction metrics, and symptom reduction. 

6.3 Potential extensions and research 

opportunities 
Future research can be directed toward using 

multimodal data collection methods, rather than relying 

solely on text, to create more immersive experiences. 

Additional considerations for patient safety and well-

being could be investigated by assessing this manual. In 

the case of Human-in-the-loop (HITL) systems of 

training, in conjunction with clinical feedback loops. It 

would also be reasonable to assume that researchers 

could extend the model to longitudinal therapy planning, 

supporting cross-lingual applications. Conducting these 

experiments with clinically diagnosed populations 

would further support the validity of the findings by the 

methodology utilized. 

6.4 Future research 
The current approach used a synthetic dataset built by 

artificial intelligence to ensure ethical safety and 

controlled testing. Despite effectively demonstrating 

the model's feasibility, this approach limits the model's 

practicality. Through real user interactions and IRB-

approved investigations, further research will confirm 

the therapeutic usefulness and reliability of the 

proposed framework.Future research will focus on 

validating the RL-based counseling framework on real-

world clinical datasets and populations, to establish 

external validity and evaluate practical therapeutic 

outcomes. Incorporation of multimodal real patient data 

and human-in-the-loop feedback mechanisms will 

further enhance model realism and clinical applicability. 
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