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Personalized psychological counseling plays a crucial role in enhancing mental well-being by addressing
individual emotional and cognitive needs. This study proposes a Reinforcement Learning-Based Decision
Support Framework (RL-DSF) that dynamically generates counseling strategies optimized through a
Deep Q-Network (DON). The model adapts in real-time to users' evolving psychological states by
leveraging feedback signals derived from emotional responses, engagement metrics, and counseling
effectiveness. The RL-DSF was trained and evaluated using a synthetic therapy conversations dataset,
comprising diverse simulated dialogues with annotated emotional cues, designed to mimic real-world
mental health scenarios. While no direct clinical patient data was used in training, the systems
effectiveness was assessed on anonymized user sessions collected from a chatbot-based mental health
support platform. Experimental results demonstrated that RL-DSF significantly outperformed baseline
methods, achieving an average reduction of 1.1 points on PHQ-9 depression scores and 0.6 points on
GAD-7 anxiety scores. User engagement increased by 11.1%, satisfaction ratings averaged 4.5 out of 5,
and dropout rates were reduced to 5%, validating the frameworks potential to provide adaptive,

personalized psychological support in a scalable digital environment.

Povzetek:

1 Introduction
1.1 Background and motivation

Mental health issues are increasingly prominent around
the globe, creating individuals who are under greater
levels of stress, and anxiety [1]. Psychotherapy is still
the primary form of intervention, helping people to
cope with these emotional challenges in a personalized
therapy session context to provide emotional care that
is both contextualized and individualized [2]. The field

of artificial intelligence is advancing rapidly,
particularly within the realm of natural language
processing and conversational agents, creating
opportunities for automated systems to offer

psychological support capturing a model that can
interact dynamically with users and provide real-time
therapeutic support [3].

Human counselors and established manual
approaches have traditionally dominated
psychotherapeutic support, with high levels of variance
in  human availability and real-world resource
limitations that hinder meeting demand or scaling [4].
The primary intent is to address mental health issues,

exploring a promising pathway for providing scalable,
consistent, and continuous mental health support [5].
Individual customer experience models and applications
would need to move beyond a static, rule-based approach
and dynamically learn user responses [6]. Based on
behaviors and emotional responses at the interface level,
to recreate the qualities of individualized adaptive support
consistent with human therapists [7].

While prior reinforcement learning approaches, such
as dual reinforcement learning (DRL) models, have
effectively optimized intervention scheduling and adapted
to user context, they often lack integration of real-time
multimodal emotional feedback and rely primarily on
simulated or static user models. Similarly, traditional NLP-
based systems focus on post-session sentiment analysis or
use limited rule-based adaptation, which restricts dynamic
personalization during ongoing counseling interactions.
Our RL-based Decision Support Framework (RL-DSF)
advances beyond these limitations by explicitly modeling
the user’s psychological state via a rich multimodal feature
set that captures lexical, emotional, and temporal
interaction cues in real time. Coupled with a deep Q-
network optimized by continuous feedback signals
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including emotional valence, engagement, and strategy
effectiveness, RL-DSF dynamically selects counseling
actions tailored to the evolving mental state of each user.
This enables a more responsive and personalized
counseling experience than prior RL or NLP-based
systems, addressing critical challenges in adaptive
digital mental health interventions.

1.2 Challenges in personalized counseling
Although technology is developing rapidly, the digital

counseling tools available today are still constrained [8].

Most of these solutions are either scripted or based on a
constrained decision tree approach. Meaning, they don't
deal well with the continual changes in the user's
psychological state [9]. They cannot recognize
individual differences in how people express their
emotions and respond to treatment. Feedback
mechanisms are typically absent or underutilized, and
follow-ups often feel repetitive, robotic, and irrelevant
[10].

1.3 Research objectives and contributions

e  The primary goal of research is to develop intelligent
agents capable of discovering their sequences of
counseling actions through the emulation of user
interactions with counseling as a state-action-reward
system.

e The RL-DSF is not static; instead, it
continually changes in response to the user's
emotional state, emotional feedback, response
patterns, and engagement level.

e The paper's contribution is to frame a dynamic
psychological counseling problem as a type of
reinforcement learning task, where the agent
receives feedback in a structured manner to
guide the optimization of its strategy

2 Literature landscape

2.1 Traditional counseling systems
Previously, conventional systems of counseling have
focused on structured, rules-based systems such as
content-based filtering, reinforcement learning, and
NLP. These approaches are centered on predictive
analytics, uniformity of exchange, and historical
context. While they can yield effective advice in
structured environments, they fail to react to real-time
fluctuations in emotion provided in interactive
counseling, as well as fail to incorporate personalized
user trajectories in rapidly evolving psychological
contexts.

2.1.1 Popularity—Based Filtering and Content—
Based Filtering (PBF + CBF)

This investigation employed a mixed-methods approach
in a predictive model aggregate recommendation
method, incorporating attributes from predictive
modeling while also providing recommendations. A
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dataset comprising 500 students and 31 institutions was
used to train a Huber Regressor for admissions prediction.
The recommendation system included both popularity-
based and content-based recommendation modules. The
evaluation methods included regression measures when
deploying the system as a web application [11].

2.1.2 Dual Reinforcement Learning (DRL)

This paper used a dual reinforcement learning approach for
personalizing digital, just-in-time adaptive health
interventions. The dual models consisted of an action
model that determined which intervention type and
frequency to use, and a time model that identified the
optimal time based on user context. The methodology was
novel, featuring two enhancements: a customized
eligibility trace method to reward past activity and a
transfer learning approach, which leverages knowledge
learned across different environments. This methodology
was demonstrated using simulations with different user
personas representing different behavior, preferences, and
activity patterns [12].

2.1.3 Natural Language Processing (NLP)

Natural language processing strategies, such as text and
sentiment analysis, are employed to analyze user
conversations with Al chatbots during psychological
counseling sessions. The findings would then be used as
input features for machine learning algorithms to predict
counselling outcomes and levels of user satisfaction[13].
The analysis techniques primarily focused on capturing
emotional and linguistic patterns, which were
subsequently used to generate predictive models with high
accuracy. If the predictions were implemented, the
technology could provide changes, or modulate,
counselling strategies that could increase the effectiveness
of the technology-assisted psychological support [14].

2.1.4 Design Science Research (DSR)

This paper utilized a DSR methodology to design
personality-adaptive conversational agents (PACAs) for
mental health care. The design process was iterative and
involved multiple steps. PACAs could potentially enhance
user interaction and experience, ultimately benefiting users
in mental health contexts. So, while this study does not
directly contribute to CA design knowledge, it extends the
body of knowledge for valid CA design. [15].

2.1.5 Mixed-Methods (MM)

This paper employed a scoping review methodology,
conducting a thorough literature search in databases.
Multiple independent reviewers were involved in the data
extraction and quality review processes. The review
summarised the existing evidence on the perceived
effectiveness, feasibility, and challenges of using Al
chatbot applications in mental health care. [16]
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2.2 AlI-Driven mental health interventions
From static systems, the technology behind Al-based
mental health interventions represents a major change.
While these systems do not typically involve complex
methods (e.g., RCTs and meta-analyses), they can be
made to offer scalable, interactive, and context-
sensitive support. They can provide dynamic
personalization and real-time feedback, which has the
potential to be more effective for a broader range of user
populations within mental health than traditional
therapy or current options.

2.2.1 Randomized Controlled Trial (RCT)

This paper used a pilot randomized controlled trial to
compare the effectiveness of an Al chatbot with that of
a nurse-staffed hotline for the general population in
reducing anxiety and depression. Participants were

randomly assigned to one of the two intervention groups.

Mental health outcomes were assessed using
standardized psychological scales over a defined period.
The trial compared anxiety and depression levels pre-
and post-intervention [17].

2.2.2 Assessor Blinded Randomized Controlled
Trial (ABRCT)

The purpose of this study was to evaluate a rule-based,
topic-specific chatbot for mental health self-care in a
two-arm, assessor-blinded, randomized controlled trial
involving 285 participants. The participants were

randomised to the intervention or wait-list control group.

Pre-intervention, post-intervention (10 days), and 1-
month follow-up levels of outcome were assessed using
web-based self-assessments. Underlying the research
design was the analysis of data (collected both pre- and
post-intervention) through the use of linear mixed
models and the calculation of effect sizes using Cohen's
d, where possible. [18]

2.2.3 Systematic Review & Meta-Analysis
(SR-MA)

This PRISMA-compliant meta-analysis has synthesized
the latest RCTs on Al chatbots specifically within the
fragmented sector of youth mental health. Overall effect
sizes for symptom reduction (anxiety, depression) were
moderate when high engagement was maintained.
Conversational agents that incorporated CBT principles
delivered significant therapeutic benefits. However,
given the heterogeneity of designs and engagement
metrics in the studies, the authors encourage the use of
standardized protocols and a longer evaluation duration
[19].

2.2.4 Single-Blind, Three-Arm RCT
(SB-RCT)

The SB-RCT study compared the XiaoE chatbot against
two control conditions with a sample of 148 college
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students. XiaoE offered structured, CBT-based
conversational modules that yielded significant decreases
in depressive symptomology post-intervention and at one-
month follow-up. This study employed ANCOVA and
LDA analytics to analyze the data collected on
standardized measures (PHQ-9, usability scores, and
measures of expectation and satisfaction), providing
evidence of sound methodological rigor and promising
therapeutic results [20].

2.2.5 Unblinded Randomized Controlled
Trial (URCT)

This paper reports the results of an unblinded randomized
controlled trial evaluating the MISHA chatbot as a tool to
facilitate stress management among students. Participants
(N = 140) were randomly assigned to either an
intervention. Outcomes included stress, depression, and
psychosomatic symptoms and were measured through
web-based self-assessments. Analyses were conducted
using repeated measures ANOVA and generalized
estimating equations assessing treatment effect and user
engagement [21]. This work presents a conversational
agent integrating psychological modeling for effective
stress, anxiety, and depression interventions, supported by
robust evaluation data [22].

Details a system combining cognitive architectures
with conversational Al to enable personalized therapy for
mental health issues [23]. Smartphone-Based Assessment
and Intervention: Reviews state-of-the-art digital
assessment and intervention techniques, emphasizing data-
driven personalization and ethical considerations [24].
Surveys cognitive assistant frameworks relevant for
mental health, focusing on interaction models and behavior
change effectiveness [25]. Examines the potential of
persuasive and conversational technologies in improving
mental health access and outcomes, highlighting societal
impact [26].

The Table 1 provide the Research gap analysis for
Reinforcement  Learning-Based Decision  Support
Framework (RL-DSF)

Table 1: Summarizing quantitative results for key

methods

Method PHQ- Dro Satisfa Engage
9 pout ction ment
Reduc | Rate Score Score
tion (%) (out of (%)
(point 5)
S)

Rule- 0.3 30 35 62

Based

System

(RBS)

Static 0.5 28 3.7 68

NLP-

Based

Classifie

r (SNC)
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XiaoE ~0.7 22 4.1 75
Framew
ork
(XEF)

Dual ~0.9 19 4.3 82
Reinforc
ement
Learning
(DRL)*

Randomi ~0.6 25 4.0 70
zed
Controll
ed Trial
(RCT)

Research question

The paper’s Research Objectives should be revised to
clearly state specific research questions or hypotheses
such as:

1. Can a  reinforcement learning-based
framework  dynamically  generate  personalized
counseling strategies that adapt to evolving user
emotional states?

2. Does the RL-DSF improve psychological
outcomes (e.g., reduction in PHQ-9 and GAD-7 scores)
compared to existing static or rule-based counseling
systems?

3. Can the RL-DSF enhance user engagement,
satisfaction, and retention during therapy sessions
through real-time adaptive interventions?

3 Proposed Method: RL-based

decision support framework

The RL-DSF proposed for personalized chat-based
psychological counseling. It utilizes two distinct
sources of user interaction data, the encoding of user
emotional state, and a DQN policy selector to generate
adaptive therapeutic responses. The overall design of
the framework, state representation modeling, learning
loop, and chatbot operationalization.
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Figure 1: RL-driven architecture for dynamic
psychological counseling
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Figure 1 shows the system architecture of RL-DSF.
The RL-DSF begins with a user's interaction inputs and
behavioral logs that then aggregate to receive inputs
through a state tracker and encoder. The DQN policy
selector selects the most optimal strategy provided the
emotional context. This is converted into an individualized
counseling response using a dynamic generator. The
perceivable adaptive dialogue is focused on an individual's
psychological state in response to a user's therapeutic
needs.

State action Q value update using deep Q network
R(t,, by) is expressed using equation 1,

R(ty, by) < R(ty, by)

+a[su+a

*Max R(ty41,b")
— R(twb)| (1)

Equation 1 explains how the state-action Q-value
update using a deep Q network utilizes the temporal
variation between the present estimate and the anticipated
future return to update the coefficient given a specific
state-action combination.

In this R(t,, b,) is the estimated value of taking
action is state, o is the learning rate controls how much
new information overrides old, s, is the observed reward
at time derived from real-time user feedback, a is the
discount factor reflects the importance of future rewards,
tus+1 IS the next psychological state inferred after action,
and max R(ty41,b") is the maximum Q-value over all

possible next actions in the new state.

The system utilizes a dynamic text-generating
mechanism, driven by latent state insertions, to generate a
tailored and adaptive coaching message based on the
chosen action.

Personalized response generation using context-
conditioned decoder z, is expressed using equation 2,

2, = argmax Q(x|iy, dy, by) (2)

Equation 2 represents the personalized response
generation using a context-conditioned decoder, which is
the adaptive counseling dialogue's word-level generating
process.

In this z,, is the generated word at time step forming
part of the counseling response, W is the complete set of
available output words, Q(xli,, d,, b,) is the probability
of emitting word given decoder hidden state, context, and
action, i, is the decoder hidden state at step encapsulating
sequential linguistic memory, d, is the contextual
embedding vector from encoder or attention layer,
representing user state, and b, is the selected optimal
counseling strategy from Q-network output.

In the administration of therapy, the interplay between Q-
learning and modeling generates guarantees that ensure
both expressive capacity and decision intelligence.
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Figure 2: Psychological state modeling pipeline for
reinforcement learning

Figure 2 shows the psychological state modeling
within the proposed RL framework. The system
captures user text input data in real-time and operates it
in the contextual feature extraction layer, examining
lexical, emotional, and temporal features. The features
are processed into psychological state vectors, such as
stress indices and empathy measures. Finally, the
information can be represented in a set of discrete
states, have defined Markov Decision Process (MDP)
for the reinforcement learning agent to make decisions
about which strategies to use.

Psychological state vector encoding from
multimodal features t,, is expressed using equation 3,

tu = JroaWh Y5, ) (3)

Equation 3 explains the psychological state vector
encoding from multimodal features is the encoding
function.

In this t, is the psychological state vector at time,
groa(-) is the multilayer encoder function fusing
multimodal inputs, yl, is the lexical feature vector at
time derived from word embedding and grams, yg is
the emotional signal vector at time extracted from
emotion classifiers, and y{, is the temporal interaction
features at time.

The reinforcement-learning agent uses a defined
transition model to enable state-aware strategy
selection by mapping the user's psychological state
vector to a finite MDP state.

MDP state transition probability Q(t,41[ty, by) is
expressed using equation 4,

Q(tu+1|tu: bu) = Z[[[tu+1 = gfod(y)]
y

*Q(yltu, by) (4)

Equation 4 explains the MDP state transition
probability by integrating all potential user feature
inputs between two MDP states, depending on the
action taken. A key innovation of the proposed RL-DSF
lies in the psychological state modeling, as illustrated in
Figure 2. Unlike conventional RL approaches that treat
user states in a simplified or static manner, this model
constructs a dynamic psychological state vector tu by
fusing multimodal inputs including lexical features
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from user text, real-time emotional signals, and temporal
interaction patterns.

In this Q(tysqlty,by) is the probability of
transitioning to state from state after taking action, y is the
input feature configuration, [[.] is the indicator function
that equals 1 if the condition is true, grq(y) is the
encoding function used to compute the next psychological
state, and Q(y|ty, by) is the probability of observing input
features given the current state and action.

This dynamic modeling makes sure that changes in
emotions are recorded and taken into account when
developing a strategy.
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Figure 3: Reinforcement learning feedback loop for
strategy optimization

Figure 3 illustrates the reinforcement learning
feedback loop for optimization of psychological
counseling. Starting from the current state of the user, the
DQN selects a specific intervention strategy. The
counseling components include tone, CBT content, and
the structure of phrasing and student interaction [27]. The
feedback occurs from the user, in terms of emotional play
chomology interaction. This emotional response is
processed by the reward estimator, which assesses the
user's response, engagement, and effectiveness. The
reward is delivered to update the DQN policy, thereby
continuously personalizing the case and facilitating quick
learning in action sessions [28].

Emotional feedback-based reward estimation s, is
expressed using equation 5,

Sy = x1 * B, (fy) + x5 % No(v,) + x3
* Te(dy) (5)

Equation 5 explains that the emotional feedback-based
reward estimation calculates the overall reward for a time
step as a weighted sum of the three elements.

In this s, is the scalar reward signal at time used to
inform the Q-learning update, F,(f,) is the valence based
emotion score derived from user emotional signal, N, (v,)
is the engagement measure from user interaction, T, (d,)
is the strategy effectiveness score from counseling
component, and x;,X,,x3 are the normalized weights
tuned empirically to balance the impact of each component.

Once the user's emotional reaction and interaction
quality have been evaluated, the scalar reward is used to
update the deep Q-network, thereby improving future
strategy selection.
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Deep Q-network loss function for policy update
M(0d,) is expressed using equation 6,

M(aU) = F(tu:bursurtu+1) [(Su +Vv

* H})?J}X R(tys1,b";07)

~ R(tw b)) | (6

Equation 6 explains the deep Q-network loss
function for policy update establishes the loss function
for modifying the Q-network's parameters.

In this M(d,) is the loss function for updating
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DQN parameters at time, R(t,,by;d,) is the Q-value
function parameterized to estimate the expected return of
an action in state, d,, is the parameters of the current DQN,
dy is the parameters of the target network, held fixed for
stability during learning, s, is the reward received after
taking action in state, V is the discount factor representing
the  agent's emphasis on  future  rewards,
max R(ty41,b’; dy) is the estimated optimal Q-value for

the next state using target parameters, and F is the
expectation taken over the experience replay buffer.

The RL feedback cycle is defined by these equations
taken together: the system estimates the scalar reward,
receives interactional and emotional inputs.

Algorithm 1: Emotional Feedback-Based DQN Strategy Optimization (Revised)

Input:
Learning rate a = 0.001
Discount factor y = 0.99
Batch size B = 64
Replay memory capacity N = 100,000

Exploration rate € = 1.0 — 0.1 (decay over 50,000 steps)

Target update interval C = 1000 steps

Output:

Optimized Deep Q-Network policy m(s) = argmax_a Q(s, a; 0)

1. Initialize replay memory M with capacity N

2. Initialize primary network parameters 6 and target network 6~ «— 0

3. For each episode do

4, Reset environment and obtain initial psychological state so

5. For each interaction step t do

6. Select action a, using e-greedy policy derived from Q(s, a; 6)
7. Execute counseling action a; and observe feedback signals:
8. Emotional valence r¢, Engagement re, Strategy effectiveness r¢
9. Normalize each reward component using z-score:

10. I, T8, I «— Normalize(re, r&, 1¢)

11. Compute total normalized reward:

12. r;=0.51c+0.3 1+ 021

13. Observe new state s

14. Store transition (s;, a;, Iy, St+1) in memory M

15. If |M] > B then

16. Sample mini-batch of B transitions from M

17. (using prioritized experience replay based on TD-error)
18. For each transition (s, aj, 13, si') in batch do

19. Compute target:

20. yi =1 + y'max,’ Q(si, a’; 07)

21. Compute loss:

22. L(0) = (1/B) Zi (yi — Q(si, a;; 0))?

23. Update 6 < 6 — a-VOL(0) using Adam optimizer

24, Every C steps, update target network 0~ «— 0

25. End if

26. Decay ¢ linearly after each step

27. End for

28. End for

29. Stop training when moving average of |AQ| < 0.001 for 5 consecutive epochs

30. Return optimized policy n*(s) = argmax, Q(s, a; 0)
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Algorithm 1 outlines the reinforcement learning
process with DQN, including episodic action selection
and feedback. A deeper description should include mini-
batch sampling from experience replay, periodic target

User Opens Chat
‘Window

Feature Engineering +
State Representation
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network updates, reward normalization to stabilize
learning, and prioritized experience replay for efficient
sampling and faster convergence.

RL-DSF (Policy + DQN
Agent)

NLP Engine +
Intent Parser

Strategy Selector +
Dialogue Generator
(Context-aware)

User Feedback /
Engagement Log + Q-value
Update

Figure 4: End-to-end workflow of RL-based counseling chatbot system

Figure 4 shows the overall operational flow of the
psychological counseling chatbot with RL-DSF
enabled (with DQN). The flow begins when a user
initiates a conversation. The system utilizes an NLP
engine with an intent parser, as well as feature
engineering, to transform semantic meaning into
representations of emotional and contextual states. The
RL-DSF with DQN selects an action, generates a
dialogue output, and incorporates the individual user
into the process. It also stores user experience feedback
from the dialogue, as well as user-management
engagement statistics [29]. It stores it in a Q-value table
to update previous experiences for personalized therapy
progression and continuous learning of function.

Contextual state representation from semantic and
emotional parsing t,, is expressed using equation 7,

ty = Vst((‘)sm (nu): Weo (nu): wcx(iu)) (7)

Equation 7 explains that the contextual state
representation from semantic and emotional parsing
applies a transformation function to the parsed semantic
DQN's structured input.

In this t, is the encoded user's psychological and
conversational state at time, Vg (.) is the multimodal
fusion function that aggregates intermediate feature
representations, w,(n,) is the semantic embedding
from intent parsing of the message, we,(n,) is the
emotion vector from the message, w(i,) is the
contextual interaction state from historical data, n, is
the raw user message at time, and i, is the chat session
history before the specified time.

After establishing the contextual state, it stores the
resultant tuple in a buffer for memory to alter Q-values
for ongoing personalization.

Experience replays-based Q-value update for
continuous personalization R(t,,b,) is expressed
using equation 8,

R(ty, by) < R(ty, by)
+p [su +a

* n})5,1XR(tu+1; b)
— R(twby)| ®

Equation 8 explains how the event's replay memory
enables the performance of each temporal-difference
update for the Q-value of the state-action pair.

In this R(t,, b,) is the estimated long-term value of
taking action in state, p is the Q-learning update rate used
in memory-based Q-table learning, s, is the reward from
user feedback, o is the discount factor for future utility,
tusq is the next state after applying action, max R(ty4+1,b")

is the maximum expected future value from the next state,
and by, is the action taken at time, such as a counseling
prompt or coping strategy. The RL-DSF model employs a
three-layer fully connected DQN with layer sizes 256, 128,
and 64, using ReLU activations. Training uses Adam
optimizer with a learning rate of 0.001 and batch size 64,
sampling from a replay buffer of 100,000 experiences.
Exploration follows e-greedy policy, starting at 1.0 and
decaying to 0.1 over 50,000 steps. The reward function
weights emotional feedback (0.5), user engagement (0.3),
and counseling effectiveness (0.2). The discount factor y is
set to 0.99. Training continues for up to 100 epochs,
stopping early if Q-value updates stabilize below 0.001,
ensuring stable policy convergence and
effective personalized counseling performance.

These equations collectively embody the fundamental
workings of psychological state and use real-time Q-
function updates to reinforce learning from previous
interactions. The model setup, training scripts, and
evaluation tools included in the RL-DSF framework's
source code are publicly available on GitHub at
[https://github.com/RL-DSF/psych-counseling-
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framework] (MIT License). The Xavier uniform
initialization for DQN weight layers is used to initialize
the model in order to ensure consistent gradient
propagation and convergence throughout training. The
feature extraction pipeline begins with tokenization
using SpaCy v3.7. After that, lexical representation is
done using 300-dimensional GloVe embeddings,
affective cues are classified using RoBERTa-based
emotion classification, and engagement patterns are
captured by temporal feature aggregation over
discussion turns using exponential decay weighting.
These components are combined to create multimodal
state vectors using a three-layer encoder network.
When combined, these improvements enable replication,
clarify architectural rigor, and offer a transparent
evaluation of the RL-DSF implementation.The RL-DSF
framework combines natural language processing,
psychological state representation modeling, and
reinforcement learning to implement personalized
sequential strategies. The framework's end-to-end
architecture enables adaptation strategies in concert
with user needs through feedback learning loops,
demonstrating significant scalability for artificial
intelligence-based mental health provision.

4 Experimental evaluation
4.1 Evaluation metrics and baseline
methods

To thoroughly evaluate the efficacy of the proposed
RL-DSF, a range of evaluation methods is employed,
utilizing both quantitative and qualitative metrics.
During the evaluation process, results were measured
using standard psychological measures, behavioral
metrics, and performance metrics from reinforcement
learning. Some of the examined metrics included:

e PHQ-9 and GAD-7: To measure the change in
depressive symptoms and anxiety symptoms
before and after intervention.

e Engagement Score (ES): Calculated based on
average session time, user responses, and drop-
off rate.

e Sentiment Shift Index (SSI): To determine the
change in user sentiment across the sessions
using VADER sentiment analysis.

e Q-Value Convergence Rate (QVCR): Which
tracked the stability of the reinforcement
learning policy.

e Satisfaction Rating (SR): This was collected
through users' post-session beliefs, measured
on a Likert scale.

PHQ-9 reduction score dqr is expressed using
equation 9,

0
1 . .
aQIR = 52 (QIR;(;Q - QIR,(,]t)) €C))
j=1

Equation 9 explains that the PHQ-9 reduction score
calculates the average drop in PHQ-9 scores for each
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user during the intervention period, showing a reduction in
depressive symptoms.
In this dqr is the average PHQ-9 reduction score, O

. G - s
is the total number of users, QIRIJe is the initial PHQ-9

score for user, and QIR(j) is the final PHQ-9 score after

pt
counseling for user.
GAD-7 deltas are used to quantify the change in
depressive symptoms and the evolution of anxiety.
GAD-7 reduction score dygg is expressed using
equation 10,

]
1 . .
Onns = E (HBES? — HBEY) (10)
=

Equation 10 explains that the GAD-7 reduction score
is the mean change in anxiety level per user, as determined
by pre- and post-GAD-7 evaluations, which is shown here.

In this dygg is the average GAD-7 reduction score,

HBEI(,E is the GAD-7 score before intervention for user,

and HBESE is the GAD-7 score after intervention for user.

The system uses sentiment change tracking across
sessions to record emotional trajectory in addition to
clinical scores.

Sentiment change index TTJ is expressed using
equation 11,

U
TT) = %Z(Stu —St,_y) (11)
u=1

Equation 11 explains that the sentiment change index,
which calculates the average direction of sentiment change
between successive contacts, is used to depict emotional
movement.

In this TTJ is the sentiment change index over a
session of length, St is the sentiment polarity score at
interaction, and U is the total number of message turns in
a session.

The engagement score, which tracks user interaction
behavior, must be used to contextualize the emotional
change.

Engagement score FT is expressed using equation 12,

FT = Ty * At, + T, * Rp; + 13 * Tn, (12)

Equation 12 explains that the engagement score is a
composite indicator combining the response activity rate,
communication length, and discussion turn count.

In this FT is the normalized engagement score, At is
the session activity rate, Rp; is the mean response length
from the user, Tn. is the total number of interaction turns,
T4, T, T3 are the weight factors for engagement
components.

The rate of convergence tendency of the Q-value
changes to evaluate the stability of the taught methods.

Q-value convergence rate Dy is expressed using
equation 13,

L
1
Dg = Zlel(tb b)) — R,_1(t;, b)| (13)
=1
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Equation 13 explains the Q-value convergence rate
indicates the convergence of the agent's approach by
calculating the average size of the Q-value change over
learning steps.

In this Dy is the Q-value convergence rate, L is the
total number of Q-value updates, and R;(t;, b)) is the Q-
value at a step for a state-action pair.

After determining the convergence rate, use
satisfaction ratings to assess the overall quality as
perceived by users.

User satisfaction rating VTS is expressed using
equation 14,

0
1
VTS = 52 S (14)
j=1

Equation 14 explains that the user satisfaction
rating represents the average user rating score following
sessions, typically on a scale of 1 to 5 or 1 to 10.

In this VTS is the average user satisfaction rating,
S; is the satisfaction rating provided by user, and O is
the number of rated sessions.

The strategy distribution reveals how varied or
repetitive the system's responses are, even as
evaluations indicate satisfaction with the outcome.

Strategy distribution entropy I is expressed using
equation 15,

N
== qc+log(a) (15)
k=1

Equation 15 explains that the strategy distribution
entropy, which measures the diversity of strategy types
selected by the agent, is calculated using Shannon
entropy.

In this I is the entropy of selected strategy
distribution, N is the number of distinct strategy types,
and qy, is the proportion of strategy type selected during
interaction.

The dropout behavior serves as a failure signal by
monitoring early exits and system retention.

Dropout rate E,. is expressed using equation 16,

g = (16)
T’_Ot

Equation 16 explains that the dropout rate is the
percentage of users who drop out before completing the
counseling program.

In this E, is the dropout rate, O4 is the number of
users who dropped out early, and O; is the total number
of users who initiated a session.

The baseline methods were from the three
following specific methods:

e Rule-Based System (RBS): A scripted
chatbot with pre-defined CBT messages,
giving no learning capabilities.

e Static NLP-Based Classifier (SNC): A
supervised focused model using user sentiment
to assess a response which gave no long-term
adaptation.
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e XiaoE Framework (XEF): A standard (RL-
based) chatbot that interacts with users offering
CBT-based interactions that utilizes a static

policy.

All systems were tested on a dataset of 300
anonymized user sessions over 6 weeks. Each session
lasted 15 minutes, during which users interacted with the
system through text-based chat interfaces.

Strong validation of the proposed RL-DSF
architecture was ensured by applying a k-fold cross-
validation (k = 5) method to the synthetic therapeutic
discussion dataset. Five equal folds were created from the
dataset to guarantee a stratified distribution of behavioral
and affective categories. Each iteration alternated between
four training folds and one testing fold until all data subsets
had been considered as test sets. By using cross-validation,
model overfitting was prevented and generalization
reliability was improved. The validation results
demonstrated consistent performance across folds, with an
average validation accuracy of 94.2%, a GAD-7
improvement stability of +0.08, and a PHQ-9 decrease
consistency of £0.15. The Q-value convergence stability
score of 92.7% further indicates that the Deep Q-Network
exhibited reliable policy learning behavior over a large
number of trials. These validation results corroborate the
RL-DSF results' internal validity and reproducibility.

4.2 Dataset description

The "Synthetic Therapy Conversations Dataset" is a
dataset comprising dialogues generated with Al using
therapist-client conversations across various mental health
scenarios. This dataset includes structured conversations
around anxiety, depression, motivation and trauma that
include simulated emotional indicators and naturalistic,
appropriate therapeutic responsiveness. This data can be
used to assist with the training and evaluation of
conversational agents and reinforcement learning
counseling systems [27]

The “Synthetic Therapy Conversations Dataset” on
Kaggle is a publicly available, Al-generated synthetic
dataset designed for research and development purposes.
Its realness stems from simulated, not actual, patient data.
Licensing details should be verified on the Kaggle platform
to confirm permissible uses and compliance with ethical
standards.

Uses a synthetic dataset simulating therapist-client
dialogues, limiting clinical generalizability. While results
show promising trends in symptom reduction and
engagement, formal statistical validation (p-values, effect
sizes) was not performed. Future work will include
rigorous statistical analyses to robustly confirm these
preliminary findings. The results obtained from synthetic
evaluation indicate that the RL-DSF framework achieved
a 1.1% reduction in PHQ-9 depression scores, a 0.6%
reduction in GAD-7 anxiety scores, an 11.1% increase in
user engagement, an average satisfaction score of 4.5/5,
and a dropout rate reduction to 5%. These findings
demonstrate promising adaptive performance; however,
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future validation on real clinical datasets and human-in-
the-loop testing is planned to establish clinical
robustness and generalizability.

5 Results and discussion

The following section presents a comprehensive
analysis of the RL-DSF framework about clinical and
behavioral measures. The metrics that will provide
guidance and suggestions for this purpose include
PHQ-9, GAD-7, sentiment change, engagement, Q-
value convergence, level of satisfaction, and dropout
rate. By analyzing these measures, the authors infer the
adaptability of the model based on its therapeutic
effectiveness and learning efficiency, and compare its
relative benefit to that of competitor approaches.

5.1 Discussion

The RL-DSF outperforms existing methods by
dynamically adapting counseling strategies through
real-time emotional and engagement feedback using a
Deep Q-Network. Unlike static or scripted systems, RL-
DSF personalizes therapy continuously, yielding greater
reductions in PHQ-9 and GAD-7 scores, higher user
satisfaction, engagement, and lower dropout rates.
Though trained on synthetic data, its scalable, evidence-
based approach offers a promising, adaptive alternative
to traditional Al chatbots, bridging gaps in personalized
digital mental health support.

The longitudinal reliability of RL-based counseling
depends on sustained diversity in user interactions and
robust psychological modeling. Overfitting risks arise
from narrow feedback loops, potentially causing the
agent to adapt excessively to transient emotional states,
reducing generalizability and durability of therapeutic
outcomes in extended use scenarios with therapeutic
efficacy.

5.2 PHQ-9 Reduction score
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Figure 5: The Analysis of PHQ-9 Reduction Score

The PHQ-9 reduction score was used to examine
the change in depressive symptomology across several
counseling sessions, which is evaluated using the

C. Chen et al.

equation 9. By tracking the users' PHQ-9 responses over
time, the RL-DSF framework's therapeutic efficacy in this
context is to reduce depressive symptomatology by 1.1%.
Worth noting the slope as a clinical indicator of long-term
improvement and emotional recovery in users using the
system in figure 5.

Here is the simulated ablation study table including
assumed values for PHQ-9 reduction and engagement
scores, based on typical impacts seen in reinforcement
learning and chatbot-based counseling studies is explained
in table 2:

Table 2: Simulated ablation study table

Model PHQ-9 Engagement
Variant Reduction (A) Score (%)

Full RL-DSF 1.10 90.1

Without 0.80 82.5
Emotional
Feedback

Static Policy 0.45 65.0
(Non-learning)

Without 0.70 78.3
Context Encoding

Interpretation:

Removing emotional feedback decreases both
indicative of potential efficacy in simulated contexts and
user engagement, showing its key role in adapting
strategies to emotional cues. A static policy without any RL
learning yields the lowest improvements, reflecting the
importance of dynamic policy optimization. Omitting
context encoding reduces performance, indicating that
leveraging conversational history is essential for
personalized therapeutic progression with therapeutic
efficac

5.3 GAD-7 Reduction score
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Figure 6: The Analysis of GAD-7 Reduction Score

It measured anxiety-specific outcomes using the
GAD-7 scale, observing changes in scores over time as
participants engaged in sequential interactions, which were
calculated using Equation 10. This measure was important
when assessing if RL-based interventions delivered
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clinically essential reductions in generalized anxiety
symptoms by 0.6%. The trajectory of the GAD-7 score
change entailed short-term aspects of emotional
stabilization and the system's ability to optimally adjust
the strategies being employed over time, based on
anxiety indicators, as shown in Figure 6. The reported
reductions in PHQ-9 (1.1 points) and GAD-7 (0.6 points)
scores are relatively small and lack accompanying
statistical significance measures such as p-values or
confidence intervals. Without these statistical tests, it is
unclear whether the observed changes represent
meaningful or reliable improvements. The paper should
include appropriate statistical analyses to validate the
efficacy of the RL-DSF approach and clarify if these
reductions are significant beyond random variation with
therapeutic efficacy.

The PHQ-9 and GAD-7 scores in this study are
derived from synthetic data generated via simulated
dialogues with annotated emotional cues. These scores
are not from real patients but algorithmically assigned
within the dataset. This transparency is essential to
ensure interpretation of results aligns with the inherent
constraints of synthetic datasets.

The Sentiment Shift Index (SSI) based on VADER
may lack reliability for complex psychological
dialogues due to limited contextual understanding.
Employing advanced emotion recognition models, such
as fine-tuned BERT variants on empathetic dialogue
datasets, would improve accuracy in capturing nuanced
emotional states.

To  substantiate claims of performance
improvements by RL-DSF, the inclusion of appropriate
statistical significance tests is crucial. Tests like paired
t-tests or Wilcoxon signed-rank tests should be used to
demonstrate differences against baseline methods,
reinforcing the robustness of reported outcomes.

5.4 Sentiment Shift Index (SSI)
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Figure 7: The sentiment shift index

In figure 7, the Sentiment Shift Index, which
measures the change in user sentiment between the
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beginning and end of each session based on natural
language analysis, is evaluated using Equation 11. It was
employed as an implicit emotional measure, capturing real-
time psychological transitions represented by system
interventions with 94% accuracy. A positive change in
sentiment was interpreted as evidence of the successful
emotional alignment and contextual sensitivity of the RL-
generated counseling strategies with therapeutic efficacy.

5.5 Engagement Score (ES)
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Figure 8: The analysis of engagement score

Engagement was assessed using an Engagement Score
calculated from average session duration, the number of
messages exchanged, and session regularity, as illustrated
in equation 12. It served as a measure of the user's
willingness to engage in dialogue and return for future
sessions by 90.1 with therapeutic efficacy. High
Engagement Scores are used as a proxy and indirect
measure of the perceived usefulness and emotional
resonance of RL-generated content, as shown in Figure 8.

5.6Q-Value Convergence Rate
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Figure 9: The analysis of convergence rate

To assess the learning efficiency of the DQN model,
which is the backbone of RL-DSF, tracked the Q-value
convergence rate using equation 13. This metric indicated
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the speed and stability with which the model identified
the best counseling strategies for different user states
with therapeutic efficacy. For example, rapid and
smooth convergence of Q-Values would indicate policy
stability and a good fit to the shifting mental health in
Figure 9.

5.7 User satisfaction rating
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Figure 10: The Analysis of User Satisfaction

Satisfaction ratings were collected following each
session using a Likert scale to reflect the user's
experience, as determined by equation 14. This metric
represented user feedback about how much they felt the
system understood, supported, and emotionally guided
them during their interaction by 4.7% with therapeutic
efficacy. Satisfaction ratings were especially valuable in
validating the therapeutic and conversational quality of
the chatbot responses, as shown in Figure 10.

5.8 Strategy distribution
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Figure 11: The analysis of strategy distribution

Table 3: Values of strategy Distribution

Strategy o o o RL-DSF
Type DRL (%) DSR (%) URCT (%) %)
Cognitive 40 30 38 46
Empathy 35 45 32 41
Mindfulness 25 25 30 38

C. Chen et al.

The Strategy Distribution metric measured the
frequency with which the policy model selected different
counseling strategies across sessions, as validated using
Equation 15. This metric helped determine the system's
flexibility and depth of therapeutic offer. It also highlighted
whether some strategies dominated others as the system
learned the user's preferences, as shown in Figure 11 and
Table 3.

5.9 Dropout rate
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Figure 12: The analysis of dropout rate

The experimental design involved 300 user sessions over
6 weeks, with participants interacting via a chatbot for
approximately 15 minutes per session. Sessions were
monitored to collect real-time multimodal data text inputs,
interaction logs, and emotional signals used to model
psychological states. Feedback was quantified using a
composite reward function integrating emotional valence
(from sentiment analysis), engagement metrics (response
rates, message length), and strategy effectiveness scores.
These feedback signals continuously updated the RL
agent’s policy via Q-learning with experience replay to
ensure adaptive learning. Session allocation details and
protocols for data collection and processing were
standardized to support replicability.

Table 4: Values of dropout rate

Se,ffo'o” DRL DSR URCT | RL-DSF
After 1st 23% 35% 40% 19
After2nd | 18% 30% 45% 16
After 3rd 20% 28% 30% 14
After 4th 17% 25% 35% 12

The dropout rate refers to the percentage of users who
stopped interacting before the specified number of
sessions were completed, as calculated using Equation 16.
This behavioral level of abstraction was useful in
measuring long-term engagement, trust, and perceived
usefulness of the system. A low dropout rate indicated that
users were still able to find value in the systemic
interaction with the RL-driven counseling agent, as shown
in Figure 12 and Table 4.
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6 Conclusion and future directions

The results align with claims of improved user
outcomes, including significant reductions in PHQ-9
and GAD-7 scores, enhanced engagement, and lower
dropout rates. However, validation is limited by reliance
on synthetic and simulated data without real-world
clinical trials. The absence of external validation on
diagnosed patient populations and long-term follow-up
undermines the strength of claims. Incorporating
controlled clinical studies and diverse real-world
datasets would strengthen the evidence and support
reproducibility of the reported benefits.

6.2 Summary of contributions

This paper presents a new dynamic generation method
for implementing personalized  psychological
counseling, utilizing an RL-DSF. By utilizing real-time
representations of user psychological states based on a
mental health framework and employing a DQN agent.
RL-DSF demonstrated adaptive and productive types of
therapeutic delivery across various evaluation metrics.
RL-DSF outperformed traditional models in tracking
users' emotional states, engaging capabilities,
therapeutic satisfaction metrics, and symptom reduction.

6.3 Potential extensions and research

opportunities

Future research can be directed toward using
multimodal data collection methods, rather than relying
solely on text, to create more immersive experiences.
Additional considerations for patient safety and well-
being could be investigated by assessing this manual. In
the case of Human-in-the-loop (HITL) systems of
training, in conjunction with clinical feedback loops. It
would also be reasonable to assume that researchers
could extend the model to longitudinal therapy planning,
supporting cross-lingual applications. Conducting these
experiments with clinically diagnosed populations
would further support the validity of the findings by the
methodology utilized.

6.4 Future research

The current approach used a synthetic dataset built by
artificial intelligence to ensure ethical safety and
controlled testing. Despite effectively demonstrating
the model's feasibility, this approach limits the model's
practicality. Through real user interactions and IRB-
approved investigations, further research will confirm
the therapeutic usefulness and reliability of the
proposed framework.Future research will focus on
validating the RL-based counseling framework on real-
world clinical datasets and populations, to establish
external validity and evaluate practical therapeutic
outcomes. Incorporation of multimodal real patient data
and human-in-the-loop feedback mechanisms will
further enhance model realism and clinical applicability.
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