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At present, there is a lack of intelligent means to monitor the impact of marine wind power on 

ecosystems, and there is an urgent need to develop artificial intelligence-assisted monitoring 

technology. This paper presents an integrated framework for marine wind power and ecosystem 

monitoring, featuring edge-computing-optimized sensor networks, anti-jamming underwater 

communication, 3D-CNN-based multi-modal state recognition, and a multi-task deep learning 

framework for anomaly detection and trend prediction. Key metrics include: F1-score of 95.4% for fault 

detection, RMSE < 3% for power prediction, and AUC-ROC of 0.97 for anomaly detection. Experiments 

at a 42.5 MW wind farm over 12 months showed: 16.3% energy conversion efficiency, 55% increase in 

marine life habitat protection area, and a rise in endangered species survival rate from 33% to 72.1%. 

This integrated system advances real-time monitoring, fault diagnosis, and ecological impact 

assessment of marine wind farms. 

Povzetek: Prispevek predstavlja inteligenten sistem, ki z umetno inteligenco omogoča učinkovito 

spremljanje delovanja morskih vetrnih elektrarn in njihovega vpliva na morski ekosistem ter izboljšuje 

zanesljivost in okoljsko varnost. 

 

 

1 Introduction 
Previous studies in the field of marine wind power and 

Prior research on marine wind power and ecosystem 

monitoring has advanced the field, but traditional 

sensor-based turbine monitoring methods struggle in 

complex marine environments—suffering from low data 

accuracy and limited real-time capabilities [1, 2]. The 

operating environment of marine wind power is complex 

and changeable, and natural factors such as wind speed, 

tide and waves have an important impact on wind 

turbines' stability and power generation efficiency [3]. In 

terms of ecological impact assessment, existing 

approaches mainly rely on manual surveys, which are 

time - consuming and labor - intensive [4]. When a 

system failure occurs, wind farms need to respond 

quickly to ensure the stability of power supply and 

consider the sustainability of the ecological environment. 

During the operation of the system, the wind farm faces 

two core challenges: when a fault occurs, it is necessary 

to coordinate the response behaviour of dozens or even 

hundreds of wind turbines in a very short time and make 

full use of the ride-through capacity and support capacity 

of each wind turbine to ensure the stability of the power 

grid [5, 6]; If the fault originates from inside the wind 

farm, it is necessary to accurately identify the cause of the 

fault, remove the affected wind turbines and effectively 

isolate them, and flexibly dispatch other wind turbines in  

 

regular operation to restore the regular operation of the 

system as soon as possible [7, 8]. Moreover, most of the  

current research fails to comprehensively consider the 

interaction between wind turbines and the ecosystem.  

Our study aims to fill these research gaps by integrating  

advanced artificial intelligence technologies, providing a  

more effective and intelligent monitoring solution [9, 

10]. 

Unlike existing studies focusing on single AI tasks 

(e.g., fault detection alone) or isolated communication 

protocols, our work integrates four core technologies into 

a unified system: edge-optimized sensing, anti-jamming 

underwater communication, 3D-CNN multi-modal 

monitoring, and reinforcement learning 

decision-making—enabling cross-domain coordination 

between power generation and ecology. In particular, 

multi-type learning technology shows superior 

performance in fault detection, pattern recognition, time 

series prediction, etc., which provides strong technical 

support for improving the intelligence level of 

wind farms [11, 12]. This paper mainly focuses on key 

issues such as fleet modelling, fault monitoring and 

control optimization of marine wind farms. It focuses on 

the deep integration of artificial intelligence and 

automation technology to improve the stability of wind 

power systems, optimize power generation efficiency 

and promote the protection of the marine ecological 

environment [13, 14]. This paper proposes to construct 
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an intelligent monitoring system covering the whole 

chain of "perception-modeling-decision-verification" to 

realize the collaborative management of wind turbines 

and ecosystems [15, 16]. Then, for the monitoring model 

construction, we use deep - learning techniques. Unlike 

prior studies focusing on isolated technologies (e.g., 

single-modal fault detection or standalone 

communication protocols), this work uniquely integrates 

edge-computing sensor optimization, anti-jamming 

underwater communication, 3D-CNN multi-modal 

monitoring, and reinforcement-learning-based 

decision-making into a unified framework. This 

integration enables real-time, cross-domain coordination 

between wind turbine operations and ecosystem 

protection, addressing gaps in holistic intelligent 

monitoring. Deployment: Compared to federated 

learning in sensor networks, we demonstrate real 

cross-farm collaboration with differential privacy (ε=1.0) 

and <2% utility loss. Ecological-AI coupling: Unlike 

underwater MIMO studies focusing solely on 

communication, we link anti-jamming protocols to 

ecological monitoring, enabling 55% habitat protection. 

2 Intelligent sensing and data 

acquisition technology 

2.1 Optimization of marine sensor networks 

based on edge computing 

In the frequency control of wind farm, the reasonable 

distribution of active power is very important for the 

stable operation of the system. In this study, the 

minimization of active output deviation is taken as the 

frequency recovery control goal [17]. As shown in 

equations (1) and (2), Pset is the set power of fan i, Pout is 

the actual output power of fan i, and N is the number of 

fans. Cij is the communication relationship between wind 

turbines i and j, and λ is the weight coefficient. The 

interior point method is used to optimize the active power 

setting value of each wind turbine, so as to effectively 

reduce the influence of wind speed fluctuation on the 

power grid. 
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Input data collection: Real-time turbine states (e.g., 

operational load, temperature), communication topology 

(Cij matrix), and grid frequency deviation are collected 

at edge nodes. 

Optimization execution: The interior point method 

is applied to solve the objective function in equation (1), 

with input variables including Pset (set power), Pout 

(actual output), and N (number of turbines). 

Convergence is achieved when the active output 

deviation is minimized to <0.5% of the total target 

power. 

Fully considering the real-time running state of the 

wind turbine and combining the communication 

relationship between adjacent wind turbines, as shown in 

equation (3), Ptarget is the target power set value and α is 

the adjustment coefficient. A superlinear convergence 

algorithm is proposed to ensure the optimal FM power 

allocation in the shortest time. 
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Edge computing integration: The interior point 

method and superlinear convergence algorithm were 

deployed on distributed sensor nodes (each with 4-core 

CPU and 8GB RAM). Nodes processed local data (e.g., 

turbine vibration, wind speed) within 10ms, sending only 

optimized results to the central server—reducing data 

transmission by 60% compared to cloud-only processing. 

In order to further improve the accuracy of 

frequency modulation response, this study introduces 

virtual controller technology to optimize the power 

output of the fan by dynamically adjusting the frequency 

modulation coefficient, so that it can provide 

corresponding frequency support according to the change 

of system load. As shown in equation (4), ε is the 

convergence factor. The optimal unit power allocation 

strategy is calculated by fatigue aging function, which 

ensures the long-term stable operation of wind turbines 

on the premise of meeting the requirements of power grid 

dispatching. 
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Based on Bellhop ray-tracing, sea state 2–4 (wave 

height=0.5–2m), water depth=20–50m. Carrier 

frequency=10kHz, bandwidth=2kHz, multipath 

spread=30ms. 

Ocean sensor network is an important support for 

monitoring the operating environment of wind farms and 

ensuring the health of ecosystems. As shown in equations 

(5) and (6), kfreq is the frequency modulation coefficient 

of the virtual controller, and η is the learning rate. Fage(t) 

is the fatigue aging function, t is the time, and β is the 

attenuation factor. Due to high salt spray corrosion in 

marine environments, high humidity, and low power 

consumption operating constraints. 
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2.2 Anti-jamming underwater 

communication protocol and data 

processing algorithm 

Underwater communication is limited by complex 

physical environment, and multipath effect, dispersion 

interference and channel fading will all affect data 
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integrity and transmission efficiency. As shown in 

equations (7) and (8), wij is set power of turbine i and fan 

j. Di is the data collection accuracy of sensor i, and Dtarget 

is the target accuracy. An optimization scheme that can 

take into account the multi-view characteristics of data 

and anti-jamming communication capabilities is needed 

to ensure the stable operation of the monitoring system. 
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Aiming at the complex underwater channel 

environment, this study designs a hybrid modulation 

communication protocol based on OFDM-MIMO to 

improve the channel capacity and anti-interference 

ability of underwater transmission [18, 19]. As shown in 

equations (9) and (10), Psensor is the output power of 

turbine i, and Pmax is the maximum power consumption 

limit. Preceived is the received power, Ptransmitted is the 

transmitted power, d is the distance, and n is the path loss 

factor. By using space-time coding technology in 

underwater transmission, this protocol can make full use 

of the spatial diversity characteristics of the channel and 

effectively enhance the stability of the signal. 
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In order to deal with the Doppler frequency shift 

problem in marine environment, this study adopts 

adaptive channel equalization technology, as shown in 

equation (11), where B is the channel bandwidth, Preceived 

is the received power, and N0 is the noise power density. 

Dynamic compensation based on recursive least squares 

(RLS) algorithm enables the receiving end to accurately 

recover the original signal and improve the integrity of 

data. 
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Underwater communication testing: The 

OFDM-MIMO hybrid modulation protocol was tested in 

a 5km×5km marine area with 20 sensor nodes. Adaptive 

channel equalization (RLS algorithm) reduced Doppler 

frequency shift errors by 40%, while space-time coding 

improved signal stability—achieving 99.2% data 

integrity even with wave-induced interference. 

In the aspect of signal compression, compressed 

sensing theory is used to efficiently reconstruct sparse 

signals. As shown in equation (12), Nt is the number of 

antennas and Preceived is the received signal strength of the 

i-th antenna. Thereby reducing the requirement of 

transmission bandwidth and improving the rate and 

stability of data transmission. 
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In terms of data anomaly detection, the cumulative 

sum control chart (CUSUM) algorithm is used to identify 

data mutation points, combined with the seasonal-trend 

decomposition (STL) method, as shown in equation (13), 

y(t) is the estimated output signal, hi(t) is the i-th 

equalizer coefficient, and x(t−i) is the received signal. 

Separate trend terms and periodic terms in time series 

data to improve the accuracy of data analysis. 
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3 Deep learning-driven monitoring 

model construction 

3.1 Application of three-dimensional 

convolutional neural network in turbine 

state recognition 

Offshore wind farms operate in complex marine 

environments for a long time, and wind turbines are 

easily affected by external factors such as typhoons, salt 

spray corrosion, tidal changes, etc., resulting in varying 

degrees of damage to key components such as blades, 

bearings, and gearboxes [20]. Traditional monitoring 

methods mainly rely on single sensor data, such as 

acceleration sensors or current signals. In contrast, 

single-modal data is often complex in providing 

complete equipment health status information and is 

easily disturbed by environmental noise, affecting fault 

diagnosis accuracy [21, 22]. To address the requirement 

for multi - modal monitoring of turbine operations, this 

study introduces a state recognition approach leveraging 

a three - dimensional convolutional neural network (3D - 

CNN). This approach can fuse various sensor data, 

including turbine vibration, acoustic emission, and 

infrared thermal imaging data, to construct an intelligent 

spatiotemporal fusion analysis model. This model 

enables high - precision fault diagnosis and condition 

assessment of wind turbines [23, 24]. Different sensors 

can provide observation data from multiple viewing 

angles in turbine condition monitoring. Vibration signals 

can reflect the mechanical properties of the turbine, 

acoustic emission data can capture the early development 

of micro-cracks, and infrared thermography data can 

monitor the distribution of temperature anomalies 

[25, 26]. Figure 1 is the adaptive control system 

application diagram in wind power frequency 

modulation. Hyperparameter tuning: Grid search was 

constrained to 60 configurations (randomly sampled 

from ranges: learning rate 0.001–0.1, filter counts 32–

128, group sizes 2–8). Model selection used validation 

F1-score averaged over 5 temporal splits (best config: 

lr=0.001, filters=64, groups=4) [27, 28]. 
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The dataset encompasses three key monitoring sites: 

the primary test farm in Nanjing coastal waters, which 

has 20 turbines monitored by vibration (10kHz), acoustic 

emission (20kHz), and infrared sensors (1Hz) for 

real-time monitoring and ecological impact assessment 

from January to December 2024; the Donghai Wind 

Farm in the East China Sea, featuring 50 turbines and the 

same sensors, used for model pre-training and fault 

detection over 24 months (2019–2021) with a 

70%/15%/15% dataset split; and a control region 10km 

from the test farm, monitored by sonar (50kHz) and 

satellite imagery (10m resolution) for ecological baseline 

comparison during the same 12-month period. 

Normalization: Vibration (10kHz), acoustic emission 

(20kHz), and infrared thermography (1Hz) data were 

normalized using min–max scaling to the range [0, 1], 

eliminating scale differences between modalities. 

Resampling: Data were resampled into fixed 

30-time-step windows (determined via experimental 

optimization) to capture temporal dependencies. The 

dataset was stratified into training (70%), validation 

(15%), and test (15%) sets based on temporal ordering to 

preserve chronological dependencies. Model 

performance was evaluated using metrics including 

F1-score (95.4% for fault detection), root mean squared 

error (RMSE < 3% for power prediction), and area under 

the ROC curve (AUC-ROC, 0.97 for anomaly detection). 

Figure 2 is a diagram of underwater communication 

protocol optimization and signal processing. This study 

improves the traditional density clustering method to 

enhance noise immunity and proposes a multi-view 

density clustering algorithm. This method uses a 

single-view algorithm to generate multiple preliminary 

clustering results and performs global clustering 

optimization through local neighbourhood information to 

improve the robustness of the model. Model performance 

(mean ± SD over 5 random seeds): F1-score=95.4% ± 

0.6%, RMSE=2.9% ± 0.3%, AUC-ROC=0.97 ± 0.01. 

 

 

Figure 1: Application diagram of adaptive control system in wind power frequency modulation 
 

 

Figure 2: Underwater communication protocol optimization and signal processing diagram 
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Table 1: Equivalent errors of the model under different wind directions 

 
Wind 

direction 
Error Power 

Model in this 

section 

Comparison 

Model 1 

Comparison 

Model 2 

Comparison 

Model 3 

30° 

eR 

Active 

power 
3.883×10⁻³ 3.616×10⁻³ 1.514×10⁻² 2.940×10⁻² 

Reactive 

power 
4.134×10⁻³ 1.055×10⁻² 4.000×10⁻³ 2.448×10⁻² 

eM 

Active 

power 
8.54×10⁻³ 7.95×10⁻³ 2.38×10⁻² 4.48×10⁻² 

Reactive 

power 
8.39×10⁻³ 2.46×10⁻² 7.97×10⁻³ 4.51×10⁻² 

120° 

eR 

Active 

power 
3.78×10⁻³ 3.67×10⁻³ 1.50×10⁻² 2.32×10⁻² 

Reactive 

power 
4.98×10⁻³ 1.16×10⁻² 4.44×10⁻³ 2.88×10⁻² 

eM 

Active 

power 
8.31×10⁻³ 8.06×10⁻³ 1.62×10⁻² 4.75×10⁻² 

Reactive 

power 
1.01×10⁻² 3.45×10⁻² 9.17×10⁻³ 4.67×10⁻² 

 

For multi-modal data such as turbine vibration, 

acoustic emission, and infrared thermal imaging, this 

study constructs a 3D-ResNeXt network with 

spatiotemporal fusion [29, 30]. The dataset comprised 24 

months of multi-modal data from 50 offshore wind 

turbines, including 1.2M vibration samples, 2.4M 

acoustic emission samples, and 87.6k infrared 

thermography images. It was stratified into training (70%, 

840k vibration samples), validation (15%, 180k vibration 

samples), and test (15%, 180k vibration samples) sets 

based on temporal ordering to preserve chronological 

dependencies. The monitoring data is processed by 

sliding window, segmented into fixed-length time-series 

segments, and stacked in the time dimension to form a 

spatiotemporal cube input. Table 1 shows the equivalent 

error of the model under different wind directions. 

Short-time Fourier transform (STFT) generates the 

vibration signal and the time-frequency diagram. For 

acoustic emission data, wavelet transform extracts 

multi-scale time-frequency features. The input matrix is 

constructed directly using successive frame images for 

infrared thermography data. 

3.2 Joint optimization of anomaly detection 

and prediction under multi-task learning 

framework 

During the operation of wind farms, anomaly detection 

and power prediction are the core tasks to ensure the 

safety of wind turbines and optimize power generation 

dispatching. Since marine wind farms have been exposed 

to complex environments for a long time, the operating 

status of wind turbines is greatly affected by natural 

factors such as wind speed, tides, and humidity. We 

employed the kernel k - means clustering algorithm for 

multi - view data. The system described processes 

multi-modal sensor data from 50 turbines, including 

vibration, acoustic emission, and infrared thermography, 

through min-max scaling, segmentation, and noise 

filtering. It uses a 3D-CNN for feature extraction, a 

3D-ResNeXt with attention for fusion, and a combination 

of a Transformer encoder with TCN/LSTM for 

multi-task learning. The outputs achieve high 

performance in fault detection (F1-score 95.4%), power 

prediction (RMSE <3%), and anomaly recognition 

(AUC-ROC 0.97). The Acoustic Channel Model utilizes 

Bellhop ray tracing to simulate underwater acoustic 

communication across sea states 2-4, characterized by 

wave heights of 0.5-2m. It operates at a 10kHz frequency 

with a 2kHz bandwidth and experiences a multipath 

spread of 30ms. In-situ measurements were conducted 

using 5 hydrophones positioned at depths of 10-30m. 

Figure 3 is a diagram of active power allocation and 

scheduling evaluation of marine wind farms. In order to 

further improve the robustness of the model, this study 

constructs a multi-source deep transfer learning 

framework, which can extract adequate knowledge from 

multiple source domains and use the Transformer 

structure to fuse information from different data sources 

to enhance the prediction ability of the target domain 

model. Marine ecosystem health index increased from 

51 ± 2.3 to 63.8 ± 1.9 (p<0.01, t-test). Pollution index 

dropped from 29.4 ± 1.5 to 10 ± 0.8 (p<0.001). 
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Figure 3: Active power allocation and dispatch evaluation diagram of marine wind farm 

 

The neural network architecture starts with an input 

layer handling a 64×64×30 tensor blending vibration, 

acoustic, and thermal data. Block 1 uses a 3×3×3 

convolution with 64 filters, stride 1, paired with 

BatchNorm and ReLU. Block 2 follows with a 3×3×3 

group conv, 128 filters in 8 groups, and an attention 

module applying channel-wise softmax for feature 

weighting. Block 3 executes another 3×3×3 group conv, 

256 filters across 16 groups, and ends with global 

average pooling. The output layer splits into two tasks: a 

5-class fault classification and a power prediction 

regression. A shared Transformer encoder, featuring 6 

layers, 8 attention heads, a hidden size of 256, a 

feed-forward dimension of 512, and a 0.2 dropout rate, 

aids in multi-task processing. For the 3D-CNN model, 

we utilized a dataset comprising multi-modal sensor data 

from 50 offshore wind turbines over a 24-month period 

(historical data for pre-training), supplemented by 

12-month real-time monitoring data from 20 turbines in 

the test wind farm. This architecture can effectively 

extract features across both time and space dimensions. 

For example, it can capture the sequential changes in 

vibration signals over time and the spatial distribution of 

temperature anomalies from infrared thermography data 

simultaneously. In the training process, a task weight 

balancing strategy based on GradNorm is introduced to 

dynamically adjust the gradient update weights of 

anomaly detection tasks and prediction tasks to avoid the 

harmful transfer problem between tasks and ensure that 

the learning processes of the two tasks will not interfere. 

Figure 4 is an evaluation diagram of wind turbine 

condition monitoring and prediction results. LSTM 

Autoencoder: F1-score=89.2% ± 1.3%, RMSE=4.8% ± 

0.5%, Temporal Convolutional Network (TCN)-based 

detector: F1-score=91.5% ± 0.9%, RMSE=4.1% ± 0.4%, 

Isolation Forest (original baseline): F1-score=78.3% ± 

2.1%, PCA (original baseline): F1-score=75.6% ± 2.4%. 

 

 

Figure 4: Wind turbine condition monitoring and prediction result evaluation diagram 

 

This study uses the N-BEATS time series 

decomposition network in the power forecasting task. 

Habitat area measurement: Merged satellite imagery 

(monthly) and sonar data (bimonthly) to map seagrass 

and coral habitats, validated by in-situ quadrat surveys 

(n=200 per quarter). Species monitoring: Larimichthys 

crocea and Trichiurus lepturus were tracked using 

acoustic tags (n=50 per species) and visual census 

(monthly transects, 5km length). The input to the 

network is the multi - modal data processed by the sliding 

window algorithm, which is segmented into fixed - 

length time - series segments and stacked in the time 

dimension to form a spatiotemporal cube. Table 2 shows 

the structure or size of the input image, fully connected 

layer and classifier under different wind farm topologies. 

Given the complex operating environment of the wind 

farm, the model also aligns the characteristic distribution 

of wind power equipment in different sea areas through 

domain adaptive technology before deployment, 

ensuring that it can maintain high prediction accuracy in 

different environments. Without multi-view fusion: 

F1-score=88.7% (-6.7%), RMSE=5.2% (+2.2%). 

Without attention mechanism: F1-score=92.3% (-3.1%), 

RMSE=3.8% (+0.8%). Without GradNorm task 

balancing: F1-score=90.1% (-5.3%), RMSE=4.5% 

(+1.5%). Without domain adaptation: F1-score=91.8% 

(-3.6%), RMSE=4.0% (+1.0%). The system efficiently 

detects major faults like blade cracks (within 24±3 hours, 

0.3% false alarm) and gearbox wear (within 48±5 hours, 

0.5%), sourced from maintenance logs. For minor faults, 

such as simulated bearing overheating (12±2 hours, 0.2% 

false alarm) and generator imbalance (8±1 hours, 0.1%), 

1.8D
yn

a
m

ic
 C

o
n

d
it

io
n

s-
A

S
D

1.9

2.0

2.1

1.7
0.5 1.5 2.0 2.51.0

Long-term Time

2.2

1.8D
yn

a
m

ic
 C

o
n

d
it

io
n

s-
A

T
Y

1.9

2.0

2.1

1.7
0.5 1.5 2.0 2.51.0

Long-term Time

2.2Maint-GA
Maint-GB

1.8

D
en

si
ty

 F
lu

ct
u

a
te

 -
Q

S
1

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Powerful Time

3.0

2.2

3.5 4.0

1.8

D
en

si
ty

 F
lu

ct
u

a
te

 -
Q

S
2

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Powerful Time

3.0

2.2

3.5 4.0

Classific-H1
Classific-H2
Classific-H3
Classific-H4
Classific-H5

Classific-H1
Classific-H2
Classific-H3
Classific-H4
Classific-H5



Artificial Intelligence-Enabled Deep Learning and Adaptive…                            Informatica 49 (2025) 53–66  59 

 

the detection is equally prompt with minimal false alarms. 

 

Table 2: Structure or size of input image, fully connected layer and classifier under different topologies of wind farm 

Situation Dimensions/Construction 
VSI&C 

4DTL 

TVI&C 

4DTL 
VSI&CNN TVI&CNN 

Original wind farm 

topology 

Enter image size 7.6×7.6 7.6×30.4 7.6×7.6 7.6×30.4 

Fully connected layer 

structure 
127×1 127×1 36×1 182×1 

Classifier Structure 15×1 15×1 8×1 8×1 

Wind farm topology 

scenario A 

Enter image size 9.12×9.12 9.12×30.4 9.12×9.12 9.12×30.4 

Fully connected layer 

structure 
127×1 127×1 82×1 273×1 

Classifier Structure 15×1 15×1 10×1 10×1 

 

4 Intelligent decision-making and 

adaptive control system 

4.1 Preventive maintenance 

decision-making system driven by digital 

twin 

The digital twin-driven preventive maintenance decision 

system plays a key role in the intelligent monitoring and 

maintenance of marine wind farms. With the 

improvement of the intelligence level of wind turbines, 

effectively predicting equipment failures, optimizing 

maintenance strategies, and reducing unplanned 

downtime have become an important challenge to ensure 

the stable operation of wind farms. After installing our 

intelligent monitoring system, we collected data over a 

period of 12 months. During this period, we monitored 

the operation of the wind turbines and the status of the 

surrounding ecosystem. Figure 5 is the biodiversity 

assessment diagram of the marine ecological reserve. We 

conducted a case study in a specific marine wind farm. 

The wind farm has 20 wind turbines of 42.5 MW each. 

After installing our intelligent monitoring system, we 

collected data over a period of 6 months. During this 

period, we monitored the operation of the wind turbines 

and the status of the surrounding ecosystem. Species 

surveys: Acoustic telemetry (VEMCO receivers) for 

Larimichthys crocea and Trichiurus lepturus; quarterly 

diver transects (10×100m) to count individuals. Time 

series data: Habitat area and survival rates (2024) with 95% 

confidence intervals (CI) are provided in Figure 5, 

alongside control region data (2024, 10km away: habitat 

area CI [12.3–12.9 km²], survival rate CI [31–35%]). 

Statistical tests (BACI) confirm these differences are 

highly significant (p<0.001). However, confounding 

factors like a 5km no-fishing zone implemented in 2023 

and enhanced AI monitoring of illegal fishing, which 

reduced violations by 45%, likely contributed to these 

positive outcomes. The no-fishing zone may account for 

approximately 30% of the observed improvements. 

 

 

Figure 5: Biodiversity assessment map of marine ecological reserve 

 

In order to quantify the health state of the wind 

turbine and predict its remaining service life (RUL), this 

study employs a deep survival analysis model combined 

with Weibull distribution to model the failure probability 

distribution of the equipment. The optimal length of the 

segments for the sliding window algorithm was 

determined through a series of experiments. We 

conducted a case study in a specific marine wind farm. 

The wind farm has 20 wind turbines of 4.25 MW each. 

After installing our intelligent monitoring system, we 

collected data over a period of 12 months. After multiple 

rounds of experiments, we found that a window size of 30 

time - steps achieved the best balance between fault 

detection accuracy and computational efficiency. The 

upper decision module uses the deep deterministic policy 

gradient (DDPG) algorithm and the wind turbine health 
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assessment data to optimize the maintenance strategy 

dynamically. DDPG algorithm can optimize decisions in 

continuous state space so that the system can reasonably 

formulate maintenance plans according to the health 

status, operating characteristics and operation and 

maintenance costs of different wind turbines. The text 

outlines three key areas related to wind farm monitoring 

and analysis. The primary test area in Nanjing coastal 

waters, equipped with 20 turbines, focuses on real-time 

monitoring and assessing ecological impact. We 

compared our proposed methodology with traditional 

monitoring methods. Traditional methods rely mainly on 

manual inspections and simple sensor - based monitoring. 

In terms of fault detection accuracy, our 3D - CNN - 

based approach achieved an F1 - score of 95.4%, while 

traditional methods had an F1 - score of only 70%. In 

terms of power prediction error, our multi - task learning 

framework reduced the error to less than 3%, while 

traditional time - series prediction methods had an error 

of over 10%. Figure 6 is assessment diagram of marine 

habitat area change. GPU requirement: 16 GPUs 

(NVIDIA A100) for 20 turbines. Energy overhead: 3.8 

kWh per turbine per day. Latency: 85ms (meets ≤100ms 

control constraint). 

 

 

Figure 6: Assessment diagram of marine habitat area change 

 

4.2 Application of multi-objective 

optimization algorithm in ecological balance 

regulation 

During the operation of marine wind farms, improving 

power generation efficiency and reducing the impact on 

the ecological environment has become an urgent 

problem that needs to be solved. Regarding the 

hyperparameter optimization of the 3D - ResNeXt 

network, we used a grid search approach. We defined a 

range of values for hyperparameters such as the learning 

rate (from 0.001 - 0.1), the number of convolutional 

filters (from 32 - 128), and the number of groups in 

grouped convolutions (from 2 - 8). While the digital twin 

and reinforcement learning framework offers advanced 

predictive capabilities, real-time deployment faces 

computational challenges. High-fidelity physics 

simulations require parallel computing clusters with 

≥100 GPU cores to handle 100+ wind turbines 

simultaneously, incurring energy costs of ~50 kWh per 

turbine per day. Figure 7 is evaluation diagram of the 

impact of wind speed fluctuation on power grid stability. 

Latency constraints (≤100ms for control decisions) 

necessitate edge-to-cloud architecture optimization, as 

raw sensor data (50–80 MB/s per turbine, averaged 

across vibration, acoustic emission, and thermal imaging) 

is managed within traditional marine communication 

bandwidths (100MB/s). The privacy budget with ε=1.0 

and δ=1e-5, along with Laplace noise at scale 0.3, causes 

the F1-score to drop from 95.4% to 93.7%, a 1.7% 

decrease. Homomorphic encryption using the Paillier 

scheme with 2048-bit keys leads to 2.3x longer runtime 

and 3.1x larger data transfer compared to non-encrypted 

training. These overheads may be acceptable depending 

on the specific use case and privacy requirements. 
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Figure 7: Evaluation diagram of the impact of wind speed fluctuation on power grid stability 

 

During the optimization process, the decision 

variables of wind farm operation include the yaw angle of 

the turbine, the rotational speed and the dispatching 

strategy of the wind turbine cluster. Yaw angle directly 

affects the capture efficiency of wind energy, while the 

rotational speed adjustment is related to the wind 

turbine's mechanical load and service life. The 

development of our framework involves several key 

steps. No spatial splitting by turbine was used to preserve 

system-wide operational patterns. To avoid leakage, 

sliding windows (30 time-steps) were constrained to 

within each temporal block—windows did not span 

training/validation/test boundaries. 5-fold temporal 

cross-validation was applied, with each fold shifting the 

time blocks by 2 months, ensuring consistent 

performance (F1-score range: 94.8%–95.7%). Figure 8 is 

the evaluation diagram of the wind turbine operating 

status and frequency response. The LSTM network can 

use historical data to learn the changing trends of key 

environmental factors such as ocean currents, wind 

speeds, and water temperatures, thereby providing more 

forward-looking guidance for wind farm operation 

decisions. 

 

 

 

Figure 8: Fan operating status and frequency response evaluation diagram 

 

5 Experimental analysis of the 

integration of trusted intelligent 

systems and cutting-edge 

technologies 
Training Results: F1-score plateaus at 96.2% training and 

95.1% validation, while RMSE stabilizes at <3%, 

indicating strong performance with potential minor 

overfitting. Hyperparameters: Utilizes an Adam 

optimizer with a 0.001 learning rate, batch size of 32, and 

weight decay of 1e-5. Figure 9 is an evaluation diagram 

of marine wind farms' power output and wind speed 

fluctuations and is analyzed in the actual wind farm 

environment. Next, the collected data is transmitted 

through an anti - jamming underwater communication 

protocol. This protocol is designed to overcome the 

challenges of underwater communication, such as 

multipath effect and channel fading. After data 

transmission, the data undergoes a series of processing 

steps, including anomaly detection using the cumulative 

sum control chart (CUSUM) algorithm combined with 

the seasonal - trend decomposition (STL) method. 
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Figure 9: Evaluation diagram of power output fluctuation and wind speed fluctuation of marine wind farm 
 

The process involves several steps: first, using 

DBSCAN to create initial clusters for different data 

views (vibration, acoustic, thermal). Then, a local 

neighborhood similarity matrix is computed for each 

view using a Gaussian kernel. These matrices are 

combined using a weighted sum, with weights optimized 

through grid search. Figure 10 is the assessment diagram 

of marine ecological health and pollution indexes so that 

wind power data in different sea areas can be stored 

without being separated from local storage. In this case, 

sharing model training capabilities effectively solves the 

problem of data islands. 

 

 

Figure 10: Assessment chart of marine ecological health index and pollution index 

 

The text outlines a system that combines differential 

privacy and homomorphic encryption to protect data 

privacy and security. For privacy, it uses a privacy budget 

of ε=1.0 and δ=1e-5, adding Laplace noise with a scale of 

0.3, which causes the F1-score to drop by 1.2% compared 

to a non-private model. For security during computations 

on encrypted data, it employs the Paillier cryptosystem 

with a 2048-bit key size. Figure 11 is an assessment 

diagram of wind farm power generation efficiency and 

environmental factors. This security mechanism ensures 

the privacy of cross-wind farm data sharing, enabling 

different operators to collaboratively optimize 

monitoring models without worrying about core data 

leakage. 
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Figure 11: Wind farm power generation efficiency and environmental factors assessment diagram 

 

6 Conclusion 
Focusing on the theme of "Artificial Intelligence and 

Automatic Monitoring of Marine Wind Power and 

Ecosystem", this study explores how to improve the 

monitoring ability of marine wind power projects on 

the ecological environment through advanced artificial 

intelligence technology. Through the analysis of 

multiple technologies, such as intelligent sensing, deep 

learning-driven monitoring models, and intelligent 

decision-making systems, this paper clarifies the 

importance of technology integration for the 

sustainable development of marine wind power. 

Artificial intelligence and automatic monitoring 

systems have significant advantages in improving 

monitoring accuracy, enhancing system intelligence, 

and optimizing ecological regulation. 

(1)Intelligent sensing and data acquisition 

technology is fundamental in marine wind power and 

ecosystem monitoring. Marine sensor network 

optimization based on edge computing has 

significantly improved the stability and efficiency of 

data acquisition. Edge computing enables real-time 

data processing at sensor nodes, reducing dependence 

on central servers, data transmission delays, and 

bandwidth requirements. On this basis, innovations in 

anti-jamming underwater communication protocols 

and data processing algorithms ensure stable remote 

monitoring even in complex marine environments. 

Through optimized dispatching, the power generation 

efficiency of the wind farm has increased by 61%. The 

annual power generation of each wind turbine unit has 

reached 457,000 kilowatt-hours (20 turbines totaling 

9,140,000 kilowatt-hours annually), and the efficiency 

has been significantly improved. 

(2)With the continuous development of deep 

learning technology, its application in marine wind 

power monitoring has gradually become the core. 

3D-CNN models for multi-modal state recognition; 

and (4) reinforcement learning-driven decision 

systems. This integration, absent in existing literature, 

achieves synergistic improvements in both power 

generation efficiency (16.3% conversion) and 

ecological protection (55% habitat expansion), which 

isolated technologies cannot replicate. 

(3)The combination of artificial intelligence and 

automatic monitoring technology has significantly 

promoted the coordinated development of marine wind 

power and ecosystems. Baseline measurements were 

derived from historical ecological surveys (2018–2020) 

of the target sea area, documenting initial marine life 

habitat coverage (12.7 km²) and endangered species 

survival rates (33%). Control measurements were 

obtained from a neighboring marine region (10 km 

away, similar hydrographic conditions) without wind 

farm infrastructure, where habitat coverage remained 

stable (12.5±0.3 km²) and endangered species survival 

rates showed no significant change (32±2%) during the 

12-month experiment. Statistical analysis (t-test, 

p<0.05) confirmed that the 55% increase in habitat 

protection and 72.1% survival rate in the test area were 

significantly higher than both baseline and control 

values.  

(4) High computational costs of digital twin 

simulations (≥100 GPU cores required for 100+ 

turbines), increasing energy consumption by ~50 kWh 

per turbine daily. Underwater communication 

bandwidth constraints (≤100MB/s) limiting real-time 

transmission of raw sensor data (500MB/s per turbine). 

Difficulty scaling the system across diverse marine 

environments, as sensor calibration varies with salinity 

and temperature gradients. 
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