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At present, there is a lack of intelligent means to monitor the impact of marine wind power on
ecosystems, and there is an urgent need to develop artificial intelligence-assisted monitoring
technology. This paper presents an integrated framework for marine wind power and ecosystem
monitoring, featuring edge-computing-optimized sensor networks, anti-jamming underwater
communication, 3D-CNN-based multi-modal state recognition, and a multi-task deep learning
framework for anomaly detection and trend prediction. Key metrics include: F1-score of 95.4% for fault
detection, RMSE < 3% for power prediction, and AUC-ROC of 0.97 for anomaly detection. Experiments
at a 42.5 MW wind farm over 12 months showed: 16.3% energy conversion efficiency, 55% increase in
marine life habitat protection area, and a rise in endangered species survival rate from 33% to 72.1%.
This integrated system advances real-time monitoring, fault diagnosis, and ecological impact
assessment of marine wind farms.

Povzetek: Prispevek predstavija inteligenten sistem, ki z umetno inteligenco omogoca ucinkovito
spremljanje delovanja morskih vetrnih elektrarn in njihovega vpliva na morski ekosistem ter izboljsuje

zanesljivost in okoljsko varnost.

1 Introduction

Previous studies in the field of marine wind power and
Prior research on marine wind power and ecosystem
monitoring has advanced the field, but traditional
sensor-based turbine monitoring methods struggle in
complex marine environments—suffering from low data
accuracy and limited real-time capabilities [1, 2]. The
operating environment of marine wind power is complex
and changeable, and natural factors such as wind speed,
tide and waves have an important impact on wind
turbines' stability and power generation efficiency [3]. In
terms of ecological impact assessment, existing
approaches mainly rely on manual surveys, which are
time - consuming and labor - intensive [4]. When a
system failure occurs, wind farms need to respond
quickly to ensure the stability of power supply and
consider the sustainability of the ecological environment.
During the operation of the system, the wind farm faces
two core challenges: when a fault occurs, it is necessary
to coordinate the response behaviour of dozens or even
hundreds of wind turbines in a very short time and make
full use of the ride-through capacity and support capacity
of each wind turbine to ensure the stability of the power
grid [5, 6]; If the fault originates from inside the wind
farm, it is necessary to accurately identify the cause of the
fault, remove the affected wind turbines and effectively
isolate them, and flexibly dispatch other wind turbines in

regular operation to restore the regular operation of the
system as soon as possible [7, 8]. Moreover, most of the
current research fails to comprehensively consider the
interaction between wind turbines and the ecosystem.
Our study aims to fill these research gaps by integrating
advanced artificial intelligence technologies, providing a
more effective and intelligent monitoring solution [9,
10].

Unlike existing studies focusing on single Al tasks
(e.g., fault detection alone) or isolated communication
protocols, our work integrates four core technologies into
a unified system: edge-optimized sensing, anti-jamming
underwater communication, 3D-CNN multi-modal
monitoring, and reinforcement learning
decision-making—enabling cross-domain coordination
between power generation and ecology. In particular,
multi-type  learning technology shows superior
performance in fault detection, pattern recognition, time
series prediction, etc., which provides strong technical
support for improving the intelligence level of
wind farms [11, 12]. This paper mainly focuses on key
issues such as fleet modelling, fault monitoring and
control optimization of marine wind farms. It focuses on
the deep integration of artificial intelligence and
automation technology to improve the stability of wind
power systems, optimize power generation efficiency
and promote the protection of the marine ecological
environment [13, 14]. This paper proposes to construct
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an intelligent monitoring system covering the whole
chain of "perception-modeling-decision-verification" to
realize the collaborative management of wind turbines
and ecosystems [15, 16]. Then, for the monitoring model
construction, we use deep - learning techniques. Unlike
prior studies focusing on isolated technologies (e.g.,
single-modal  fault  detection or  standalone
communication protocols), this work uniquely integrates

edge-computing sensor optimization, anti-jamming
underwater communication, 3D-CNN multi-modal
monitoring, and reinforcement-learning-based

decision-making into a unified framework. This
integration enables real-time, cross-domain coordination
between wind turbine operations and ecosystem
protection, addressing gaps in holistic intelligent
monitoring. Deployment: Compared to federated
learning in sensor networks, we demonstrate real
cross-farm collaboration with differential privacy (¢=1.0)
and <2% utility loss. Ecological-Al coupling: Unlike
underwater MIMO studies focusing solely on
communication, we link anti-jamming protocols to
ecological monitoring, enabling 55% habitat protection.

2 Intelligent sensing and data

acquisition technology

2.1 Optimization of marine sensor networks
based on edge computing

In the frequency control of wind farm, the reasonable
distribution of active power is very important for the
stable operation of the system. In this study, the
minimization of active output deviation is taken as the
frequency recovery control goal [17]. As shown in
equations (1) and (2), Py is the set power of fan i, P, is
the actual output power of fan i, and N is the number of
fans. Cj is the communication relationship between wind
turbines i and j, and A is the weight coefficient. The
interior point method is used to optimize the active power
setting value of each wind turbine, so as to effectively
reduce the influence of wind speed fluctuation on the
power grid.

N
I:)error = Z( Pslet - Polut ) (1)
N
'J freq = Z( set olut) +ﬁ'zcu ( set

i=1
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Input data collection: Real-tlme turbine states (e.g.,
operational load, temperature), communication topology
(Cij matrix), and grid frequency deviation are collected
at edge nodes.

Optimization execution: The interior point method
is applied to solve the objective function in equation (1),
with input variables including Py (set power), Pou
(actual output), and N (number of turbines).
Convergence is achieved when the active output
deviation is minimized to <0.5% of the total target
power.

Fully considering the real-time running state of the
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wind turbine and combining the communication
relationship between adjacent wind turbines, as shown in
equation (3), P 1s the target power set value and o is
the adjustment coefficient. A superlinear convergence
algorithm is proposed to ensure the optimal FM power
allocation in the shortest time.

ag;a = ( Pslet target ) A3)

Edge computing integration: The interior point
method and superlinear convergence algorithm were
deployed on distributed sensor nodes (each with 4-core
CPU and 8GB RAM). Nodes processed local data (e.g.,
turbine vibration, wind speed) within 10ms, sending only
optimized results to the central server—reducing data
transmission by 60% compared to cloud-only processing.

In order to further improve the accuracy of
frequency modulation response, this study introduces
virtual controller technology to optimize the power
output of the fan by dynamically adjusting the frequency
modulation coefficient, so that it can provide
corresponding frequency support according to the change
of system load. As shown in equation (4), ¢ is the
convergence factor. The optimal unit power allocation
strategy is calculated by fatigue aging function, which
ensures the long-term stable operation of wind turbines
on the premise of meeting the requirements of power grid
dispatching.

| PL(t+1)— PL ()< o- (P (t)-PL(t-1)) (4)

Based on Bellhop ray-tracing, sea state 2—4 (wave
height=0.5-2m), water  depth=20-50m.  Carrier
frequency=10kHz, bandwidth=2kHz, multipath
spread=30ms.

Ocean sensor network is an important support for
monitoring the operating environment of wind farms and
ensuring the health of ecosystems. As shown in equations
(5) and (6), kg is the frequency modulation coefficient
of the virtual controller, and # is the learning rate. Fug(?)
is the fatigue aging function, ¢ is the time, and f is the
attenuation factor. Due to high salt spray corrosion in
marine environments, high humidity, and low power
consumption operating constraints.

a‘] freq
kfreq(t+1) kfreq(t) 77 (5)
6'( freq

age(t) = (6)

underwater
data

2.2 Anti-jamming
communication  protocol  and
processing algorithm

Underwater communication is limited by complex
physical environment, and multipath effect, dispersion
interference and channel fading will all affect data
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integrity and transmission efficiency. As shown in
equations (7) and (8), wy; is set power of turbine 7 and fan
J. Dj is the data collection accuracy of sensor i, and Diarger
is the target accuracy. An optimization scheme that can
take into account the multi-view characteristics of data
and anti-jamming communication capabilities is needed
to ensure the stable operation of the monitoring system.

Psiet(t): ZWU : Pofn(t)(7)

‘Jsenser = Z( Di - Dtarget )2 (8)

N
i=1

Aiming at the complex underwater channel
environment, this study designs a hybrid modulation
communication protocol based on OFDM-MIMO to
improve the channel capacity and anti-interference
ability of underwater transmission [18, 19]. As shown in
equations (9) and (10), Pgensor is the output power of
turbine i, and Ppuqx is the maximum power consumption
limit. Preceivea 18 the received power, Pruansminea 1S the
transmitted power, d is the distance, and 7 is the path loss
factor. By using space-time coding technology in
underwater transmission, this protocol can make full use
of the spatial diversity characteristics of the channel and
effectively enhance the stability of the signal.

PSiEHSOF S P max (9)

1 n
Preceived = Ptransmined [EJ (10)

In order to deal with the Doppler frequency shift
problem in marine environment, this study adopts
adaptive channel equalization technology, as shown in
equation (11), where B is the channel bandwidth, Peceivea
is the received power, and Nj is the noise power density.
Dynamic compensation based on recursive least squares
(RLS) algorithm enables the receiving end to accurately
recover the original signal and improve the integrity of
data.

Preceived
C(:hamnel = Blogz(1+ N ) (11)

0

Underwater ~ communication  testing: The
OFDM-MIMO hybrid modulation protocol was tested in
a Skmx5km marine area with 20 sensor nodes. Adaptive
channel equalization (RLS algorithm) reduced Doppler
frequency shift errors by 40%, while space-time coding
improved signal stability—achieving 99.2% data
integrity even with wave-induced interference.

In the aspect of signal compression, compressed
sensing theory is used to efficiently reconstruct sparse
signals. As shown in equation (12), N; is the number of
antennas and Pjeceived 1S the received signal strength of the
i-th antenna. Thereby reducing the requirement of
transmission bandwidth and improving the rate and
stability of data transmission.
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1,
N_Z<Prleceived )2 (12)

t i=1

GSTC =

In terms of data anomaly detection, the cumulative
sum control chart (CUSUM) algorithm is used to identify
data mutation points, combined with the seasonal-trend
decomposition (STL) method, as shown in equation (13),
y(¢) is the estimated output signal, 4;(?) is the i-th
equalizer coefficient, and x(7—i) is the received signal.
Separate trend terms and periodic terms in time series
data to improve the accuracy of data analysis.

IO =YD~ LK) X(t-1) (13

3 Deep learning-driven monitoring
model construction

three-dimensional
network in turbine

3.1 Application of
convolutional neural
state recognition

Offshore wind farms operate in complex marine
environments for a long time, and wind turbines are
easily affected by external factors such as typhoons, salt
spray corrosion, tidal changes, etc., resulting in varying
degrees of damage to key components such as blades,
bearings, and gearboxes [20]. Traditional monitoring
methods mainly rely on single sensor data, such as
acceleration sensors or current signals. In contrast,
single-modal data is often complex in providing
complete equipment health status information and is
easily disturbed by environmental noise, affecting fault
diagnosis accuracy [21, 22]. To address the requirement
for multi - modal monitoring of turbine operations, this
study introduces a state recognition approach leveraging
a three - dimensional convolutional neural network (3D -
CNN). This approach can fuse various sensor data,
including turbine vibration, acoustic emission, and
infrared thermal imaging data, to construct an intelligent
spatiotemporal fusion analysis model. This model
enables high - precision fault diagnosis and condition
assessment of wind turbines [23, 24]. Different sensors
can provide observation data from multiple viewing
angles in turbine condition monitoring. Vibration signals
can reflect the mechanical properties of the turbine,
acoustic emission data can capture the early development
of micro-cracks, and infrared thermography data can
monitor the distribution of temperature anomalies
[25,26]. Figure 1 is the adaptive control system
application diagramin wind power frequency
modulation. Hyperparameter tuning: Grid search was
constrained to 60 configurations (randomly sampled
from ranges: learning rate 0.001-0.1, filter counts 32—
128, group sizes 2—8). Model selection used validation
Fl-score averaged over 5 temporal splits (best config:
1r=0.001, filters=64, groups=4) [27, 28].
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The dataset encompasses three key monitoring sites:
the primary test farm in Nanjing coastal waters, which
has 20 turbines monitored by vibration (10kHz), acoustic
emission (20kHz), and infrared sensors (1Hz) for
real-time monitoring and ecological impact assessment
from January to December 2024; the Donghai Wind
Farm in the East China Sea, featuring 50 turbines and the
same sensors, used for model pre-training and fault
detection over 24 months (2019-2021) with a
70%/15%/15% dataset split; and a control region 10km
from the test farm, monitored by sonar (50kHz) and
satellite imagery (10m resolution) for ecological baseline
comparison during the same 12-month period.
Normalization: Vibration (10kHz), acoustic emission
(20kHz), and infrared thermography (1Hz) data were
normalized using min—max scaling to the range [0, 1],
eliminating scale differences between modalities.
Resampling: Data were resampled into fixed
30-time-step windows (determined via experimental
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optimization) to capture temporal dependencies. The
dataset was stratified into training (70%), validation
(15%), and test (15%) sets based on temporal ordering to
preserve chronological dependencies. Model
performance was evaluated using metrics including
F1-score (95.4% for fault detection), root mean squared
error (RMSE < 3% for power prediction), and area under
the ROC curve (AUC-ROC, 0.97 for anomaly detection).
Figure 2 is a diagram of underwater communication
protocol optimization and signal processing. This study
improves the traditional density clustering method to
enhance noise immunity and proposes a multi-view
density clustering algorithm. This method uses a
single-view algorithm to generate multiple preliminary
clustering results and performs global clustering
optimization through local neighbourhood information to
improve the robustness of the model. Model performance
(mean = SD over 5 random seeds): F1-score=95.4% +
0.6%, RMSE=2.9% + 0.3%, AUC-ROC=0.97 + 0.01.
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Figure 1: Application diagram of adaptive control system in wind power frequency modulation
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Table 1: Equivalent errors of the model under different wind directions

Wind Error Power Model in this Comparison Comparison Comparison
direction section Model 1 Model 2 Model 3
l]?(():\t:/\; 3.883%x1073 3.616x1073 1.514%x1072 2.940x1072
eR -
le?ﬁvtge 4.134x10° 1.055x102 4.000x10° 2.448x10
30° :
/Sgixi 8.54x10° 7.95%10° 238102 4.48x10°
eM -
R;c?svt:;e 8.39x10° 2.46x10°2 7.97x10°3 45131072
/Sgixi 3.78x10° 3.67%10° 1.50x102 23210
eR -
Reactive 4.98x10° 1.16x10~2 4.44%1073 2.88%x10°2
120° Pom=
?gg‘éi 8.31x10°3 8.06x10°3 16210 4.75%10°
eM ;
Rﬁiﬁvtge 1.01x10° 3.45%10° 9.17x10°3 4.67x10°

For multi-modal data such as turbine vibration,
acoustic emission, and infrared thermal imaging, this
study constructs a 3D-ResNeXt network with
spatiotemporal fusion [29, 30]. The dataset comprised 24
months of multi-modal data from 50 offshore wind
turbines, including 1.2M vibration samples, 2.4M
acoustic emission samples, and 87.6k infrared
thermography images. It was stratified into training (70%,
840k vibration samples), validation (15%, 180k vibration
samples), and test (15%, 180k vibration samples) sets
based on temporal ordering to preserve chronological
dependencies. The monitoring data is processed by
sliding window, segmented into fixed-length time-series
segments, and stacked in the time dimension to form a
spatiotemporal cube input. Table 1 shows the equivalent
error of the model under different wind directions.
Short-time Fourier transform (STFT) generates the
vibration signal and the time-frequency diagram. For
acoustic emission data, wavelet transform extracts
multi-scale time-frequency features. The input matrix is
constructed directly using successive frame images for
infrared thermography data.

3.2 Joint optimization of anomaly detection
and prediction under multi-task learning
framework

During the operation of wind farms, anomaly detection
and power prediction are the core tasks to ensure the
safety of wind turbines and optimize power generation
dispatching. Since marine wind farms have been exposed
to complex environments for a long time, the operating

status of wind turbines is greatly affected by natural
factors such as wind speed, tides, and humidity. We
employed the kernel k - means clustering algorithm for
multi - view data. The system described processes
multi-modal sensor data from 50 turbines, including
vibration, acoustic emission, and infrared thermography,
through min-max scaling, segmentation, and noise
filtering. It uses a 3D-CNN for feature extraction, a
3D-ResNeXt with attention for fusion, and a combination
of a Transformer encoder with TCN/LSTM for
multi-task learning. The outputs achieve high
performance in fault detection (F1-score 95.4%), power
prediction (RMSE <3%), and anomaly recognition
(AUC-ROC 0.97). The Acoustic Channel Model utilizes
Bellhop ray tracing to simulate underwater acoustic
communication across sea states 2-4, characterized by
wave heights of 0.5-2m. It operates at a 10kHz frequency
with a 2kHz bandwidth and experiences a multipath
spread of 30ms. In-situ measurements were conducted
using 5 hydrophones positioned at depths of 10-30m.
Figure 3 is a diagram of active power allocation and
scheduling evaluation of marine wind farms. In order to
further improve the robustness of the model, this study
constructs a multi-source deep transfer learning
framework, which can extract adequate knowledge from
multiple source domains and use the Transformer
structure to fuse information from different data sources
to enhance the prediction ability of the target domain
model. Marine ecosystem health index increased from
51 £2.3 to 63.8 £ 1.9 (p<0.01, t-test). Pollution index
dropped from 29.4 £ 1.5 to 10 + 0.8 (p<0.001).
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Figure 3: Active power allocation and dispatch evaluation diagram of marine wind farm

The neural network architecture starts with an input
layer handling a 64x64x30 tensor blending vibration,
acoustic, and thermal data. Block 1 uses a 3x3x3
convolution with 64 filters, stride 1, paired with
BatchNorm and ReLU. Block 2 follows with a 3x3x3
group conv, 128 filters in 8 groups, and an attention
module applying channel-wise softmax for feature
weighting. Block 3 executes another 3x3x3 group conv,
256 filters across 16 groups, and ends with global
average pooling. The output layer splits into two tasks: a
5-class fault classification and a power prediction
regression. A shared Transformer encoder, featuring 6
layers, 8 attention heads, a hidden size of 256, a
feed-forward dimension of 512, and a 0.2 dropout rate,
aids in multi-task processing. For the 3D-CNN model,
we utilized a dataset comprising multi-modal sensor data
from 50 offshore wind turbines over a 24-month period
(historical data for pre-training), supplemented by
12-month real-time monitoring data from 20 turbines in
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the test wind farm. This architecture can effectively
extract features across both time and space dimensions.
For example, it can capture the sequential changes in
vibration signals over time and the spatial distribution of
temperature anomalies from infrared thermography data
simultaneously. In the training process, a task weight
balancing strategy based on GradNorm is introduced to
dynamically adjust the gradient update weights of
anomaly detection tasks and prediction tasks to avoid the
harmful transfer problem between tasks and ensure that
the learning processes of the two tasks will not interfere.
Figure 4 is an evaluation diagram of wind turbine
condition monitoring and prediction results. LSTM
Autoencoder: F1-score=89.2% + 1.3%, RMSE=4.8% +
0.5%, Temporal Convolutional Network (TCN)-based
detector: F1-score=91.5% =+ 0.9%, RMSE=4.1% =+ 0.4%,
Isolation Forest (original baseline): F1-score=78.3% =+
2.1%, PCA (original baseline): F1-score=75.6% =+ 2.4%.
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Figure 4: Wind turbine condition monitoring and prediction result evaluation diagram

This study wuses the N-BEATS time series
decomposition network in the power forecasting task.
Habitat area measurement: Merged satellite imagery
(monthly) and sonar data (bimonthly) to map seagrass
and coral habitats, validated by in-situ quadrat surveys
(n=200 per quarter). Species monitoring: Larimichthys
crocea and Trichiurus lepturus were tracked using
acoustic tags (n=50 per species) and visual census
(monthly transects, Skm length). The input to the
network is the multi - modal data processed by the sliding
window algorithm, which is segmented into fixed -
length time - series segments and stacked in the time
dimension to form a spatiotemporal cube. Table 2 shows
the structure or size of the input image, fully connected
layer and classifier under different wind farm topologies.
Given the complex operating environment of the wind

farm, the model also aligns the characteristic distribution
of wind power equipment in different sea areas through
domain adaptive technology before deployment,
ensuring that it can maintain high prediction accuracy in
different environments. Without multi-view fusion:
Fl-score=88.7% (-6.7%), RMSE=52% (+2.2%).
Without attention mechanism: F1-score=92.3% (-3.1%),
RMSE=3.8% (+0.8%). Without GradNorm task
balancing: Fl-score=90.1% (-5.3%), RMSE=4.5%
(+1.5%). Without domain adaptation: F1-score=91.8%
(-3.6%), RMSE=4.0% (+1.0%). The system efficiently
detects major faults like blade cracks (within 2443 hours,
0.3% false alarm) and gearbox wear (within 48+5 hours,
0.5%), sourced from maintenance logs. For minor faults,
such as simulated bearing overheating (12+2 hours, 0.2%
false alarm) and generator imbalance (8+1 hours, 0.1%),
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the detection is equally prompt with minimal false

alarms.
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Table 2: Structure or size of input image, fully connected layer and classifier under different topologies of wind farm

N . . . VSI&C TVI&C
Situation Dimensions/Construction 4DTL ADTL VSI&CNN | TVI&CNN
Enter image size 7.6x7.6 7.6x30.4 7.6%7.6 7.6x30.4
Original wind farm Fully connected layer 1971 197x1 36x1 182x1
topology structure
Classifier Structure 15x1 15x1 8x1 8x1
Enter image size 9.12x9.12 9.12x30.4 9.12x9.12 | 9.12x30.4
Wind farm .topology Fully connected layer 1971 197x1 82x1 273x1
scenario A structure
Classifier Structure 15x1 15x1 10x1 10x1

4 Intelligent decision-making and
adaptive control system

4.1 Preventive maintenance
decision-making system driven by digital
twin

The digital twin-driven preventive maintenance decision
system plays a key role in the intelligent monitoring and
maintenance of marine wind farms. With the
improvement of the intelligence level of wind turbines,
effectively predicting equipment failures, optimizing
maintenance strategies, and reducing unplanned
downtime have become an important challenge to ensure
the stable operation of wind farms. After installing our
intelligent monitoring system, we collected data over a
period of 12 months. During this period, we monitored
the operation of the wind turbines and the status of the
surrounding ecosystem. Figure 5 is the biodiversity
assessment diagram of the marine ecological reserve. We
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conducted a case study in a specific marine wind farm.
The wind farm has 20 wind turbines of 42.5 MW each.
After installing our intelligent monitoring system, we
collected data over a period of 6 months. During this
period, we monitored the operation of the wind turbines
and the status of the surrounding ecosystem. Species
surveys: Acoustic telemetry (VEMCO receivers) for
Larimichthys crocea and Trichiurus lepturus; quarterly
diver transects (10x100m) to count individuals. Time
series data: Habitat area and survival rates (2024) with 95%
confidence intervals (CI) are provided in Figure 5,
alongside control region data (2024, 10km away: habitat
area CI [12.3-12.9 km?], survival rate CI [31-35%]).
Statistical tests (BACI) confirm these differences are
highly significant (p<0.001). However, confounding
factors like a Skm no-fishing zone implemented in 2023
and enhanced Al monitoring of illegal fishing, which
reduced violations by 45%, likely contributed to these
positive outcomes. The no-fishing zone may account for
approximately 30% of the observed improvements.
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Figure 5: Biodiversity assessment map of marine ecological reserve

In order to quantify the health state of the wind
turbine and predict its remaining service life (RUL), this
study employs a deep survival analysis model combined
with Weibull distribution to model the failure probability
distribution of the equipment. The optimal length of the
segments for the sliding window algorithm was
determined through a series of experiments. We
conducted a case study in a specific marine wind farm.

The wind farm has 20 wind turbines of 4.25 MW each.
After installing our intelligent monitoring system, we
collected data over a period of 12 months. After multiple
rounds of experiments, we found that a window size of 30
time - steps achieved the best balance between fault
detection accuracy and computational efficiency. The
upper decision module uses the deep deterministic policy
gradient (DDPGQG) algorithm and the wind turbine health
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assessment data to optimize the maintenance strategy
dynamically. DDPG algorithm can optimize decisions in
continuous state space so that the system can reasonably
formulate maintenance plans according to the health
status, operating characteristics and operation and
maintenance costs of different wind turbines. The text
outlines three key areas related to wind farm monitoring
and analysis. The primary test area in Nanjing coastal
waters, equipped with 20 turbines, focuses on real-time
monitoring and assessing ecological impact. We
compared our proposed methodology with traditional
monitoring methods. Traditional methods rely mainly on
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manual inspections and simple sensor - based monitoring.
In terms of fault detection accuracy, our 3D - CNN -
based approach achieved an F1 - score of 95.4%, while
traditional methods had an F1 - score of only 70%. In
terms of power prediction error, our multi - task learning
framework reduced the error to less than 3%, while
traditional time - series prediction methods had an error
of over 10%. Figure 6 is assessment diagram of marine
habitat area change. GPU requirement: 16 GPUs
(NVIDIA A100) for 20 turbines. Energy overhead: 3.8
kWh per turbine per day. Latency: 85ms (meets <100ms
control constraint).
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Figure 6: Assessment diagram of marine habitat area change

4.2  Application of  multi-objective
optimization algorithm in ecological balance
regulation

During the operation of marine wind farms, improving
power generation efficiency and reducing the impact on
the ecological environment has become an urgent
problem that needs to be solved. Regarding the
hyperparameter optimization of the 3D - ResNeXt
network, we used a grid search approach. We defined a
range of values for hyperparameters such as the learning
rate (from 0.001 - 0.1), the number of convolutional
filters (from 32 - 128), and the number of groups in
grouped convolutions (from 2 - 8). While the digital twin
and reinforcement learning framework offers advanced
predictive capabilities, real-time deployment faces
computational  challenges.  High-fidelity = physics
simulations require parallel computing clusters with

>100 GPU cores to handle 100+ wind turbines
simultaneously, incurring energy costs of ~50 kWh per
turbine per day. Figure 7 is evaluation diagram of the
impact of wind speed fluctuation on power grid stability.
Latency constraints (<100ms for control decisions)
necessitate edge-to-cloud architecture optimization, as
raw sensor data (50-80 MB/s per turbine, averaged
across vibration, acoustic emission, and thermal imaging)
is managed within traditional marine communication
bandwidths (100MB/s). The privacy budget with &=1.0
and d6=1e-5, along with Laplace noise at scale 0.3, causes
the Fl-score to drop from 95.4% to 93.7%, a 1.7%
decrease. Homomorphic encryption using the Paillier
scheme with 2048-bit keys leads to 2.3x longer runtime
and 3.1x larger data transfer compared to non-encrypted
training. These overheads may be acceptable depending
on the specific use case and privacy requirements.
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Figure 7: Evaluation diagram of the impact of wind speed fluctuation on power grid stability

During the optimization process, the decision
variables of wind farm operation include the yaw angle of
the turbine, the rotational speed and the dispatching
strategy of the wind turbine cluster. Yaw angle directly
affects the capture efficiency of wind energy, while the
rotational speed adjustment is related to the wind
turbine's mechanical load and service life. The
development of our framework involves several key
steps. No spatial splitting by turbine was used to preserve
system-wide operational patterns. To avoid leakage,
sliding windows (30 time-steps) were constrained to
within each temporal block—windows did not span
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training/validation/test boundaries. 5-fold temporal
cross-validation was applied, with each fold shifting the
time blocks by 2 months, ensuring -consistent
performance (F1-score range: 94.8%—95.7%). Figure 8 is
the evaluation diagram of the wind turbine operating
status and frequency response. The LSTM network can
use historical data to learn the changing trends of key
environmental factors such as ocean currents, wind
speeds, and water temperatures, thereby providing more
forward-looking guidance for wind farm operation
decisions.
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Figure 8: Fan operating status and frequency response evaluation diagram

5 Experimental analysis of the
integration of trusted intelligent
systems and cutting-edge
technologies

Training Results: F1-score plateaus at 96.2% training and
95.1% validation, while RMSE stabilizes at <3%,
indicating strong performance with potential minor
overfitting. Hyperparameters: Utilizes an Adam
optimizer with a 0.001 learning rate, batch size of 32, and
weight decay of le-5. Figure 9 is an evaluation diagram

of marine wind farms' power output and wind speed
fluctuations and is analyzed in the actual wind farm
environment. Next, the collected data is transmitted
through an anti - jamming underwater communication
protocol. This protocol is designed to overcome the
challenges of underwater communication, such as
multipath effect and channel fading. After data
transmission, the data undergoes a series of processing
steps, including anomaly detection using the cumulative
sum control chart (CUSUM) algorithm combined with
the seasonal - trend decomposition (STL) method.
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Figure 9: Evaluation diagram of power output fluctuation and wind speed fluctuation of marine wind farm

The process involves several steps: first, using
DBSCAN to create initial clusters for different data
views (vibration, acoustic, thermal). Then, a local
neighborhood similarity matrix is computed for each
view using a Gaussian kernel. These matrices are
combined using a weighted sum, with weights optimized
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through grid search. Figure 10 is the assessment diagram
of marine ecological health and pollution indexes so that
wind power data in different sea areas can be stored
without being separated from local storage. In this case,
sharing model training capabilities effectively solves the
problem of data islands.
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Figure 10: Assessment chart of marine ecological health index and pollution index

The text outlines a system that combines differential
privacy and homomorphic encryption to protect data
privacy and security. For privacy, it uses a privacy budget
of e=1.0 and d=le-5, adding Laplace noise with a scale of
0.3, which causes the F1-score to drop by 1.2% compared
to a non-private model. For security during computations
on encrypted data, it employs the Paillier cryptosystem

with a 2048-bit key size. Figure 11 is an assessment
diagram of wind farm power generation efficiency and
environmental factors. This security mechanism ensures
the privacy of cross-wind farm data sharing, enabling
different operators to collaboratively optimize
monitoring models without worrying about core data
leakage.
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Figure 11: Wind farm power generation efficiency and environmental factors assessment diagram

6 Conclusion

Focusing on the theme of "Artificial Intelligence and
Automatic Monitoring of Marine Wind Power and
Ecosystem", this study explores how to improve the
monitoring ability of marine wind power projects on
the ecological environment through advanced artificial
intelligence technology. Through the analysis of
multiple technologies, such as intelligent sensing, deep
learning-driven monitoring models, and intelligent
decision-making systems, this paper clarifies the
importance of technology integration for the
sustainable development of marine wind power.
Artificial intelligence and automatic monitoring
systems have significant advantages in improving
monitoring accuracy, enhancing system intelligence,
and optimizing ecological regulation.

(1)Intelligent sensing and data acquisition
technology is fundamental in marine wind power and
ecosystem monitoring. Marine sensor network
optimization based on edge computing has
significantly improved the stability and efficiency of
data acquisition. Edge computing enables real-time
data processing at sensor nodes, reducing dependence
on central servers, data transmission delays, and
bandwidth requirements. On this basis, innovations in
anti-jamming underwater communication protocols
and data processing algorithms ensure stable remote
monitoring even in complex marine environments.
Through optimized dispatching, the power generation
efficiency of the wind farm has increased by 61%. The
annual power generation of each wind turbine unit has
reached 457,000 kilowatt-hours (20 turbines totaling
9,140,000 kilowatt-hours annually), and the efficiency
has been significantly improved.

(2)With the continuous development of deep
learning technology, its application in marine wind
power monitoring has gradually become the core.
3D-CNN models for multi-modal state recognition;
and (4) reinforcement learning-driven decision
systems. This integration, absent in existing literature,
achieves synergistic improvements in both power
generation efficiency (16.3% conversion) and
ecological protection (55% habitat expansion), which
isolated technologies cannot replicate.

(3)The combination of artificial intelligence and
automatic monitoring technology has significantly
promoted the coordinated development of marine wind
power and ecosystems. Baseline measurements were
derived from historical ecological surveys (2018-2020)
of the target sea area, documenting initial marine life
habitat coverage (12.7 km?) and endangered species
survival rates (33%). Control measurements were
obtained from a neighboring marine region (10 km
away, similar hydrographic conditions) without wind
farm infrastructure, where habitat coverage remained
stable (12.54+0.3 km?) and endangered species survival
rates showed no significant change (32+2%) during the
12-month experiment. Statistical analysis (t-test,
p<0.05) confirmed that the 55% increase in habitat
protection and 72.1% survival rate in the test area were
significantly higher than both baseline and control
values.

(4) High computational costs of digital twin
simulations (=100 GPU cores required for 100+
turbines), increasing energy consumption by ~50 kWh
per turbine daily. Underwater communication
bandwidth constraints (<100MB/s) limiting real-time
transmission of raw sensor data (SOOMB/s per turbine).
Difficulty scaling the system across diverse marine
environments, as sensor calibration varies with salinity
and temperature gradients.
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Symbol  Definition

Paat Set power of fan 1

Pon Actual output power of fan i

N Number of fans

Ci Communication relationship between wind turbines i and
* Weight coefficient

Prarget Target power zet value

o Adjustment coefficient

e Convergence factor

Yo Frequency modulation coefficient of the virtual controller
M Learning rate

Fags(t) Fatigue aging function

t Time

B Attenuation factor

W Power transmission weight of fan i and fan

Dy Data collection accuracy of sensor 1

Dharzen Target accuracy

Piersor Power consumption of sensor 1

Prox Maximum power consumption limit

Precaived Received power

Prapsmited  Transmitted power

d Distance

n Path loss factor

B Channel bandwidth

Mg Noise power density

Nt Number of antennas
it} Esztimated output signal
hilt) i-th equalizer coefficient

x(t—1) Eeceived signal at time t—1




