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To address the issues of low resolution and detail loss in digital media visual image reconstruction, this
paper proposes a super-resolution reconstruction algorithm based on a dual-channel mask-guided
convolutional neural network (CNN). This algorithm innovatively designs a parallel guidance channel
that utilizes edge masks generated from the input image as prior knowledge to enhance the main channel's
ability to extract high-frequency structural features. Through multi-layer feature fusion and improved
Adam optimizer, the model achieves a balance between reconstruction quality and efficiency. Tested on
the CIFAR-10 and ILSVRC2020 datasets, and validated using image quality assessment metrics, it was
found that under super-resolution tasks, the peak signal-to-noise ratio of the research method improved
by an average of about 1.1 dB, with a maximum of 37.12 dB. The structural similarity index improved by
an average of about 2.1%, with a maximum of 0.9682. At the same time, the algorithm demonstrated
excellent efficiency advantages while maintaining high performance, with model parameters reduced to
1.2M, which was only 1/35 of advanced models in the same category. The average inference time for a
single image has been reduced to about 20 ms, which was about 45% faster than the baseline method and
demonstrated superior overall performance. The improved algorithm offers improved reconstruction
quality and achieves a balance between quality and efficiency when the number of parameters is limited.
Improving CNN through dual channel collaborative design and feature reuse mechanisms can provide
new technological solutions for digital media image processing.

Povzetek: Predlagan je ucinkovit dvo-kanalni CNN algoritem za super-locljivost slik, ki z uporabo robnih

mask izboljSa kakovost rekonstrukcije ob hkratnem zmanjSanju Stevila parametrov in ¢asa izvajanja.

1 Introduction

In recent years, digital media (DM) has emerged as a
prominent focus of research due to its increasing
applications in communication, visualization, and
technology-driven solutions. The enhancement and
reconstruction of visual images in the DM domain are key
research areas, with a focus on improving image quality,
resolution, and interpretability. The purpose is to develop
methodologies for designing and reconstructing DM
visuals to achieve higher realism and fidelity [1]. With
advancements in relevant technology, image generation
(1G) has found extensive applications in computer vision,
including virtual reality (VR), augmented reality (AR),
and automated image synthesis [2]. At present, there are
many methods for designing and reconstructing DM
images. However, high computational complexity may
occur during the operation of these methods. This is
mainly due to extensive parameter tuning and the need for
large datasets. These issues lead to longer training times,
and issues such as low image resolution often result in
suboptimal reconstruction quality, limiting the practicality

of these methods [3]. The development of current visual
interactive images is hindered by factors such as low
resolution, dynamic lighting changes, occlusion, and scale
variations. Traditional super-resolution reconstruction
algorithms primarily rely on either frequency domain or
spatial domain features, with limited integration of both
[4-5]. The current DM visual image reconstruction faces
three major technological bottlenecks: 1. Insufficient
feature  utilization:  Traditional ~ super-resolution
algorithms, such as interpolation and sparse coding, rely
on artificially designed features and are difficult to
adaptively extract multi-scale semantic information (such
as edges and textures) from images. This results in
problems such as edge blurring and loss of detail that often
appear in the reconstruction results. 2. Conventional
machine learning-based super-resolution reconstruction
algorithms have disadvantages such as large data volume,
complex computation, and inability to utilize some prior
features of images, making it difficult to meet real-time
requirements. 3. Lack of prior knowledge: The existing
methods do not fully utilize the inherent features of the
image, such as occluded edges, resulting in insufficient
robustness to occlusion and dynamic lighting [6-7].
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In response to the above challenges, various deep
learning architectures have emerged in recent years. U-
Net achieves multi-scale feature fusion through encoder-
decoder structure and skip connections, and performs
excellently in image reconstruction tasks [8]. Generative
adversarial networks (GANSs) enhance visual realism
through adversarial training and are widely used in
perception-oriented super-resolution reconstruction [9].
However, the complex structure of U-Net may result in
high computational overhead, while the training of GAN
is unstable and prone to introducing artifacts. In addition,
existing methods rely heavily on network self-learning
features and lack explicit guidance on image structure
priors, which limits the accuracy in detail restoration and
noise balance. This study aims to solve the above technical
bottlenecks and meet the urgent demand for high-fidelity
image reconstruction technology in digital imaging
applications such as VR/AR and intelligent film and
television production. It attempts to improve the quality of
image feature fusion and reconstruction, and release the
potential of hybrid modeling technology that combines
data-driven and existing knowledge. Therefore, on the
basis of existing research, this paper takes advantage of
the super-resolution convolutional neural network
(SRCNN) and proposes an improved CNN image super-
resolution reconstruction algorithm under dual-channel-
guided convolution. Moreover, guidance channels and
mask images are introduced to enhance feature extraction
capabilities. The innovation of this study is reflected in
two aspects: First, the mask-guided dual-channel
architecture. That is, based on the classic SRCNN, a
second channel is introduced to specifically input the
mask image generated by the residual transformation. It
explicitly enhances high-frequency detail reconstruction
through an adaptive feature fusion mechanism and prior
edges to achieve a balance between noise reduction and
detail preservation. The second is a lightweight design
architecture. That is, the local structure is enhanced
through the guidance channel, avoiding complex encoding
and decoding or adversarial training, and improving the
reconstruction efficiency and stability while maintaining a
low number of parameters.

The research content is mainly divided into four
sections. The subsequent section is organized as the
literature section, which reviews the classic methods of
image super-resolution reconstruction and related deep
learning methods. The third section introduces the
SRCNN reconstruction method and improvement ideas,
including the addition of a guidance channel. The fourth
section introduces the experimental design details and
reconstruction performance of the improved CNN
algorithm. The final section introduces the conclusions
and future scope of the current research, as well as
research prospects.

2 Related works

DM has gained traction in recent years due to its wide
range of applications in communication, entertainment,
and computational imaging. Wang et al. proposed a multi-
scale extended CNN framework for image compression
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sensing and reconstruction by jointly training a fully
convolutional structure measurement network and a
reconstruction network. The results show that it
outperforms existing methods in terms of peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM)
[10]. Chen et al. proposed a two-stage image restoration
(IR) network based on a parallel network and contextual
attention to solve problems such as blurring and texture
distortion in infrared. The results showed that this method
could achieve a more realistic reduction effect [11].
Nakamura T utilized wave-optical deconvolution filters
and color channel image synthesis to refine image
reconstruction. The results showed that the research
method overcame the traditional limitations and
effectively improved the image resolution [12]. Pan X et
al. proposed a transformer-based fully connected neural
network for mask-based frameless image reconstruction,
which improves the reconstruction ability through global
feature inference. The results showed that it was superior
to model-based and fully convolutional network methods
[13]. Low-resolution images often resulted in loss of fine-
grained details due to insufficient sampling rate and
compression artifacts, and Chen et al. suggested that the
low-frequency and high-frequency components of feature
maps were treated equally in existing image super-
resolution reconstruction methods [14]. Low-resolution
images were difficult to accurately depict complex surface
structures, and the complexity of spatial variations and
structural features made it difficult to restore image
structures, especially in some photometric stereoscopic
images [15]. Yang et al. believed that sparse structural
similarity could be used to evaluate the quality of distorted
images, thereby improving the evaluation of image quality
by ignoring the shortcomings of image structure. The
results showed that the Pearson correlation coefficient of
this method was 0.929, which could effectively improve
the objectivity and accuracy of image quality assessment
[16]. Low-resolution images often fail to provide
sufficient data for analysis when containing scene-related
information such as lighting, shadows, and reflections,
thereby limiting the ability to extract effective information
from the image. The challenges faced by low image
resolution are particularly evident in image processing and
reconstruction. Improving image quality through
intelligent technology and next-generation super-
resolution algorithms remains a key research focus,
especially in addressing dynamic environments and
hardware limitations.

At the same time, CNN image research is relatively
mature. Zhang et al. proposed an infrared and visible
image fusion algorithm based on ResNet-152 to extract
multi-layer features by decomposing the low-frequency
and high-frequency parts of the image. Experiments
showed that the proposed method was superior to the
comparison algorithm in retaining important features and
obtaining more details [17]. Shao G et al. proposed a
subpixel CNN for image super-resolution reconstruction,
converting RGB to YCbCr mode, and introducing residual
networks and upsampled subpixel convolutional layers
(CLs) for improvement. Experimental results showed that
it outperformed many traditional methods in terms of
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accuracy and time consumption [18]. Jin Z proposed a
flexible deep CNN framework for processing in computer
vision, which utilized the frequency characteristics of
different types of workpieces. By adjusting the
architecture, the same method could be utilized for various
IR tasks. The results illustrated that the framework was
more excellent than other methods [19]. Zhang Y designed
a universal image fusion model for CNN. This study first
utilized two CLs to extract image features from the II.
Then, the features of the Il were fused by selecting
appropriate fusion rules. The results showed that
compared with other fusion models, the research model
had better pan-Chinese ability and achieved better fusion
results [20]. Zhu F et al. proposed a CNN-based denoising
method for better obtaining clean images from noise.
Combining some different rate expansion convolutions
with common convolutions enriched the features extracted
from multi-layer convolutions. The results showed that the
denoising effect of the research method was excellent
[21]. To improve the edge detection performance of noisy
images, Yuan S et al. proposed an edge detection method
based on nonlinear structural tensors, which determined
image edges by calculating the tensor product,
eigenvalues, and eigenvectors of noisy images. The results
indicated that this method could detect more monitoring
points compared to other methods, with a shorter average
detection time and overall better detection performance
[22].

In summary, DM has brought convenience to people's
lives. There is relatively abundant research on visual
Image Design (ID) and image reconstruction, but there is
relatively little research on CNNs. The development of
CNN is relatively mature and has achieved good results in
image denoising, feature extraction, and detection. In view
of this, this study proposes a new CNN-based DM visual
ID and image reconstruction method.

3 ID and image reconstruction
method for CNN algorithm

To improve the reconstruction quality of DM visual
images, a SRCNN dual-channel reconstruction algorithm
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mask-guided parallel channels to provide powerful
structural priors for super-resolution reconstruction. Its
mechanism is essentially different from traditional
implicit feature learning or simple multi-scale fusion, and
can greatly improve the quality of image reconstruction.

3.1 SRCNN reconstruction algorithm

There are various methods for image super-resolution,
including instance-based, interpolation-based, and
reconstruction-based methods and deep learning
algorithms [23]. In CNN algorithms, SRCNN is a
representative algorithm applied to image super-
resolution, which can learn the unique connections
between high-resolution and low-resolution images and
use these connections as constraints to generate high-
resolution images. Research has shown that using multi-
layer network structures can enable models to learn more
complex features and patterns, which is particularly
important for generating high-quality images and
reconstruction tasks [24]. Figure 1 shows the relevant
framework.

As shown in Figure 1, the three CLs are utilized for
feature extraction, nonlinear mapping, and high-resolution
image reconstruction. The entire process is to first extract
small blocks from the interpolated low-resolution image
and represent the extracted small blocks in the form of
high-dimensional vectors. Then, it transforms all high-
dimensional vectors nonlinearly and maps them onto other
high-dimensional vectors [25]. Finally, it aggregates all
high-resolution small blocks to form the final high-
resolution image, which should be similar to the ideal
high-resolution image corresponding to the low-resolution
image. The SRCNN algorithm mainly uses convolution
operations to train and process input images during
forward and backward propagation. The CL can convert
digital signals into low-dimensional vectors and store the
extracted features in the feature vectors. The convergence
rate of the algorithm is restricted by the selection of the
Loss function. This study uses the fast convergence cross-
entropy as the loss function and adds a minimum value to
it, as shown in equation (1).

is proposed, which adds guided channels and uses masked y=Yy+o 1)
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Figure 1: The network framework of SRCNN.
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As shown in equation (1), the predicted output is
represented by ¥ . The actual output is represented by vy .

o represents the minimum value. The commonly used
CNN algorithm is aimed at the gradient descent method.
Although it has good performance, it also has
disadvantages, such as difficulty in choosing an
appropriate learning rate, and easy occurrence of saddle
points and local extremum problems [26]. Therefore, an
adaptive learning rate is selected to overcome the
shortcomings. The Adam algorithm is selected in this
study. The Adam algorithm can dynamically adjust the
learning rate of each parameter, and it can retain historical
gradient information, accelerate the convergence process,
and reduce oscillation phenomena. The random gradient
descent algorithm for the Adam algorithm is shown in
equation (2).

m =p *m_ +(1-p)*0g,
N =p, *nt71+(1_,02)*912
. m
R
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In equation (2), the gradient is represented by g,. p,
and p, are the decay rates. m is the first-order moment
of the gradient. M, is the moment estimate after deviation
correction of the first-order moment of the gradient. n, is
the second-order moment of the gradient. A, is the

moment estimate after deviation correction of the second-
order moment of the gradient. Learning rate is expressed
in . & represents the minimum constant. A large
number of pooling operations may result in blurry feature
information. Therefore, a soft max function classifier is

added after the fully connected layer to convert complex
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result values into relative probabilities that are easy to
compare and understand. There are a large number of
shared layers between different neurons, which can
effectively reduce the amount of data. Research has been
conducted to improve traditional neurons by using random
deactivation, as shown in equation (3).

r® ~ Bernoulli( p)
POROINNG)
e — 3! 4 pte
a(|+l) _ f(cl+l)
As shown in equation (3), the selected neuron is
represented by &" ; The sample subset of Bernoulli

distribution satisfying probability p is represented by
1+1)

(3)

r® . a" represents I+1 layer output. |+1 input
weighting and vector are represented by ¢"* . The weight

of I+1-layer is represented by w'*? . b"*" is the 1+1-
layer bias. f() is the excitation function.

3.2 Design of Improved SRCNN Dual-
Channel Mask-Guided Network
Architecture Based on Image
Reconstruction

3.2.1 Overall Network Architecture

Although SRCNN has good recognition and image
reconstruction performance, its network structure relies
heavily on its own neural network structure, resulting in
limited learning ability. Therefore, to improve SRCNN,
this study introduces a parallel guidance channel and
utilizes edge masks explicitly extracted from the input
image as structural priors to guide the feature learning
process of the main channel. The purpose is to enhance the
network's ability to recover high-frequency details and
further improve the reconstruction performance of the
neural network. The improved algorithm structure is
shown in Figure 2.
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Figure 2: Improved SRCNN algorithm structure.
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Figure 3: The process of obtaining a training image set.
As shown in Figure 2, the improved network has three  downsampling, after double triple interpolation,

CLs and two channels. The solid line represents forward
conduction, while the red dashed line represents reverse
conduction. The red part represents the improved part,
which is the newly added second channel. After adding
channels, five modules are added, namely the first guiding
layer, the second guiding layer, the first CL, the second
CL, and the mask image dataset. By introducing additional
guidance channels and using masked images of input
images, new dimensions can be added to feature learning,
thereby improving network efficiency. Specifically, the
guidance channel can provide additional information at
different scales related to the main input image, thereby
enhancing the network's perception ability of different
features. Mask images are used to emphasize important
features such as edges, textures, and structures in the
image, and utilize these features to guide the original
convolutional channels.

3.2.2 Mask generation module

To provide clear edge guidance information to the
network, a corresponding mask image is first generated for
each input image. The specific method is to use different
interpolation algorithms to address the differences in edge
processing characteristics. Firstly, the original low-
resolution image is interpolated using bicubic
interpolation and nearest neighbor interpolation to obtain
two images, which are then subtracted and subjected to a
nonlinear transformation to enhance the edges. The image
training method can be specifically shown in Figure 3.

In Figure 3, firstly, the images obtained from the
training set are transferred from the RGB color space to
the YCbCr color space, and the image YO is obtained
through the illumination channel. During image

overlapping small blocks are extracted from the
interpolated image, and then the extracted small blocks are
aggregated to form a training image set Y. Bicubic
interpolation and nearest neighbor interpolation are used
to upsample the original low-resolution image, and then
the two resulting images are subtracted and the edges of
the image are enhanced through nonlinear transformation.
This process can be represented by equation (4).

Ymask = tanh(ﬂ*l fb (Yds)_ fn (Yds) |) (4)
As shown in equation (4), the mask image is
represented by Y, . . The sampled image is represented

by Y, . Bicubic interpolation is represented by f, . The
nearest neighbor interpolation is represented by f . The

transformation size coefficient of nonlinear
transformation is represented by £, which is generally

negative. tanh() is the hyperbolic tangent activation

function, which normalizes the mask values between (-1,1)
to make the edge features more prominent. By performing
differential  operations on bicubic interpolation
(preserving smooth regions) and nearest neighbor
interpolation (highlighting edge step effects), high-
frequency edge information in the image can be enhanced,
mask image M can be generated, and the network can be
guided to focus on structural features. Traditional SRCNN
relies solely on CL learning for low-resolution to high-
resolution mapping, lacking explicit utilization of inherent
image features such as edges and textures. The addition of
a guiding channel can optimize the input mask image
through dual-channel collaboration, preserving its details
and improving its image reconstruction effect. The
acquisition of labels is shown in Figure 4.
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Figure 4: Acquisition of labels.

Figure 4 shows the specific extraction process of label
X. This is a randomly selected image from the training set,
displaying mask image blocks, training image blocks, and
label blocks, respectively. The purpose of the first CL is
feature extraction, extracting small blocks from images Y,
and Y), to obtain 11 feature F1(Y), which is similar to the

case through a set of filters, and its expression is shown in
equation (5).
{Flaof ) = max(0,W,, *Y, +B,,) )
Fy, (Y) = max(0,W,, *Y, + B,)

As shown in equation (5), the two channels are
denoted by a and b. F,(Y) is the content feature map
output by the main channel in the first layer, and F, (Y)
is the structural feature map output by the guiding channel
in the first layer. The convolution kernels (CKs) of the two
channels are represented by W,, and W, , respectively.
Y, and Y, represent training images and mask images,
respectively. = represents convolution operation. The
bias vectors of the two channels are represented by B,
and B,

3.2.3  Dual-channel feature extraction and fusion

After the mask is generated, the upsampled image and the
mask image are fed into the main and guide channels,
respectively. The main channel is responsible for learning
the overall content and texture information of the image,
and the guide channel is responsible for learning the
structure and edge information of the image. The dual-
channel separation design can avoid feature confusion and
provide prior structural constraints. The purpose of the
second layer of CL is nonlinear mapping, that is, to
transform the feature vector of low-resolution space into
high-resolution space. At this time, the output feature is
F,(Y), and its expression is shown in equation (6).

F,, (Y) =max(0,W,, *G,(Y)+B,,)

{FZb (Y) = maX(O1W2b * Flb (Y) + sz) (6)

As shown in equation (6), the CK of two channels are
represented by W, and W, , respectively. The output of
the first guidance layer is represented by G,(Y) . The
output of the first CL is represented by F, (Y). The bias
vectors of the two channels are represented by B,, and

B,, . The nonlinear mapping of the second layer

convolution can map low-dimensional features to high-
dimensional space and fuse dual-channel information.
Guide channel features can enhance edge consistency and
prevent reconstruction blurring. The purpose of the third
layer convolution is to reconstruct high-resolution image.
The final generated high-resolution image is F(Y), and

its expression is shown in equation (7).

F(Y) =W3*GZ(Y)+B3 (7)

As shown in equation (7), the CK is represented by
W, . The output of the second guidance layer is
represented by G, (Y). The bias vector is represented by
B,. The third layer does not need to undergo nonlinear
transformation, as the W, of the third layer can be
regarded as a filter, and the reconstruction process can be
considered as a linear transformation process. The mask
image in Figure 4 shows that it can represent edge
features, and these features are used to guide the
convolutional channel. The formula for the guidance layer
is shown in equation (8).

G(Y)=F,(xF,(Y) =12 ()

As shown in equation (8), F(Y) represents the

output image of the i -th CL. The research method
requires training parameters
(W, Wy, W, W, Wy, By, By, B}, and  the training

process is actually a part of parameter optimization and
estimation. By reducing the loss between high-resolution
image and reconstructed images, the optimal solution of
the parameters is found. The visualization of guide layer
features validates the effective utilization of edge
information. To train the network parameters, the study
aims to optimize the model by minimizing the mean
square error (MSE) between the reconstructed image and
the real high-resolution image, and its expression is shown
in equation (9).

L©) =37 JF et ©

As shown in equation (10), the reconstructed image is
represented by F(Y;;®X,) . The number of training
samples is represented by n. The high-resolution image
set is represented by {Xi} . The set of processed images
with the same size as the original image is represented by

i
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4 Result analysis of ID and image
reconstruction methods for CNN
algorithm

4.1 Experimental design platform and
related parameter settings

To evaluate the proposed CNN-based DM visual ID and
image reconstruction method, multiple 1G tasks are
selected in this experiment. It includes facial recognition,
facial IR, IG, and IR, with multiple publicly available
datasets. This study first selects the parameters of the CNN
and then tests and verifies the performance of the
algorithm. To avoid experimental errors caused by
different equipment, the study uses the same computer for
the experiment, using Intel Core i7-9700 3.00GHz CPU
and 20GB memory. Operating System: Ubuntu 20.04
LTS, with the deep learning framework of PyTorch 1.10.
The core library is CUDA 11.3, Python 3.8, and OpenCV
4.5. The experiment uniformly adjusts the input image to
256 x 256 pixels (based on common preprocessing
standards such as CIFAR-10 and ILSVRC2020) to meet
the requirements of multi-scale feature extraction. The
size of the first CK is 9x9 (large kernel captures global
structure), the size of the second CK is 6x6 (moderate
kernel balances details and computational complexity),
and the size of the third CK is 5x5 (small kernel refines
local features). Stride defaults to 1 to ensure high-
resolution feature preservation (applicable to all CLs). In
addition, in the second layer of the guidance channel,
Stride=2 is used to downsample the mask image to reduce
computational complexity. The AF of the first- and
second-layer channels is LeakyReLU (0=0.2), which
alleviates the problem of gradient vanishing. The third
layer channel is linearly activated (without AF), as the
reconstruction task requires retaining all intensity values.
ReLU is used throughout the guidance channel to enhance
the sparsity of edge features. The initial learning rate is
0.0001, and the optimizer is Adam (B1=0.9, B>=0.999, and
g¢=1e-8). Image blocks of 96*96 pixels are randomly
cropped from the high-resolution image. The
corresponding low-resolution image block is obtained by
performing bicubic downsampling (magnification factor
x3) on the high-resolution image block. To increase data
diversity and improve model generalization ability, online
data augmentation is applied to the training data, including
random horizontal flipping and 90-degree rotation. The
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optimizer uses improved Adam, and the initial learning
rate is set to 1e-4. After every 20 rounds, the learning rate
decays to 0.5 times the original value. Table 1 shows the
experimental parameter settings.

4.2 Dataset source and related information

The CIFAR-10 dataset and ILSVRC2020 dataset have a
wide range of applications and can be used to evaluate
image processing and reconstruction algorithms. The
CIFAR-10 dataset contains a variety of color image
categories and has rich visual effects, which can
effectively test the algorithm's processing effect on visual
images. The ILSVRC2020 dataset has a large amount of
data, rich sample size, and high image resolution, making
it more suitable for complex scenes and high detail testing
content. The use of CIFAR-10 and ILSVRC2020 datasets
to evaluate the performance of ID and image
reconstruction algorithms is due to their widespread
application and recognized benchmark position in the field
of computer vision. Moreover, their diversity, rich
content, differences in data volume and structure, as well
as balanced data distribution, facilitate the comprehensive
evaluation of algorithm performance and robustness from
multiple aspects. This study selects 100 images from the
CIFAR-10 and ILSVRC2020 datasets for testing
experiments. 100 images are randomly selected from
CIFAR-10 and ILSVRC2020 as the test set, and the
remaining data are used for training. The extraction of the
test set adopts stratified sampling, where CIFAR-10 is
uniformly selected into 10 categories, with 10 images per
category. ILSVRC2020 is grouped according to the
semantic hierarchy of ImageNet (such as animals and
artificial objects), with 20 images extracted from each
group. All experiments are repeated 5 times, with random
seeds fixed at {42, 123, 2023, 55, 17}, and the results are
taken as mean + standard deviation.

4.3 Parameter experiment of CNN
network structure

For selecting an appropriate size of CK, the interpolation
ratio is 3, the learning rate is 0.0001, and the quantity of
CK in the first layer is 64. The quantity of CK in the
second layer is 32, and an unimproved CNN algorithm is
introduced as a reference to compare the loss values (LVs)
of reconstructed images with CK sizes of 9-2-5, 9-4-5, and
9-6-5, respectively. The results are shown in Figure 5.

Table 1: Experimental parameter settings.

Parameter Numerical value
Batch Size 16
Epochs 100

Loss function

MSE + 0.5xMSSIM

Weight initialization

He follows a normal distribution

Decline in learning rate

2

CKsize

9-6-5

Guide channel downsampling Stride

2 (second layer only)
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Figure 5: Reconstruction image LV for different CK sizes.
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Figure 6: Loss of reconstructed images with different CK numbers.

Figure 5 shows the loss result graph plotted before
13,500 iterations. Compared with the unmodified CNN,
the improved CNN has a significantly faster rate of
convergence. At the iteration number of 4,000, the CNN
of each size has a significant convergence, and the LVs
are 0.10, 0.16, and 0.20 respectively, while the unmodified
CNN of each size has an LV of 0.15, 0.18, and 0.24, and
does not converge to the minimum value. Figure 5 also
indicates that as the size of the second CK increases, the
LV of the reconstructed image gradually decreases. This
indicates that an increase in the size of the second CK will
enable the neural network structure to learn more
information, reduce LV, and achieve better ID and image
reconstruction results. The number of CK also affects the
experimental results. Choosing the same parameters as
above, the fixed CK size is 9-6-5, the quantity of CK is
128 in the first layer, 64 in the second layer, 64 in the first
layer, 32 in the second layer, 32 in the first layer, and 16
in the second layer. The LV of reconstructed images with
different CK numbers is shown in Figure 6.

As shown in Figure 6, as the number of CK increases,
the neural network structure learns more information, the

LV of the reconstructed image is lower, and the image
effect is better. Compared to the unmodified CNN, the
improved CNN converges earlier. When the quantity of
convolutions in the first layer is 128, the quantity of
convolutions in the second layer is 64, and the quantity of
iterations is 7,000, the improved CNN convergence LV is
0.15. At this point, the LV of the unimproved CNN is 0.23
and has not yet converged to the minimum value.

4.4 Comparative analysis experiment of ID
and image reconstruction methods for
CNN

To verify the superiority of DM visual ID and image
reconstruction methods over CNN, an unimproved CNN
algorithm is further introduced for comparison. At this
point, the CK size is set to 9-6-5 and the quantity of CK in
the first layer is 128, while the quantity of CK in the
second layer is 64. The comparison results are shown in
Figure 7.
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Figure 7: Comparative experiments of two datasets.
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Figure 8: Comparison of accuracy of four methods.

Figure 7 (a) shows that in the dataset CIFAR-10, CNN
converges at 4,500, leading to an LV of 0.25. The
improved CNN converges at 7,500, leading to an LV of
0.16. Figure 7 (b) shows that in the dataset ILSVRC2020,
CNN converges at 6,000, leading to an LV of 0.29. The
improved CNN converges at 7,000, leading to an LV of
0.10. This indicates that the improved research method
results in lower LV and better results in obtaining the final
design and reconstruction images. To further validate the
superiority of the research algorithm, image
reconstruction methods are introduced: sparse regression
and natural image prior (KK) and sparse coding-based
method (SC) are used to compare the accuracy, error,
response time, and image evaluation results of the four
methods. In the CIFAR-10 dataset, images are divided
into high, medium, and low layers based on their edge
complexity (gradient amplitude calculated using the Sobel
operator). 30 images are randomly selected from each
layer to a ensure balanced distribution of structural
complexity among the three groups. The accuracy of the
four methods is shown in Figure 8.

Figure 8 shows that the improved CNN is superior to
the other three algorithms in accuracy on both datasets.
The accuracy of the algorithm is ranked from high to low
as Improved CNN, CNN, SC, and KK. In Figure 8 (a), the

improved CNN method achieves the highest accuracy of
97.23% and an average of 95.23% for the four sets of data.
In Figure 8 (b), the improved CNN method achieves the
highest accuracy of 98.23% and an average of 96.25% for
the four datasets. Overall, the accuracy of the improved
CNN performs well on both datasets. The mean absolute
percentage error (MAPE) of the four methods is shown in
Figure 9.

In Figure 9(a), the MAPE of the 20 images of the SC
and KK algorithms is 3.92% and 4.12%. The improved
CNN curve fluctuated the most, with a MAPE of 1.02%
for 20 images. In Figures 9(a) and (b), the improved CNN
has minimal MAPE. The proposed method includes guide
channel and mask images, which can effectively extract
image edge features and enhance feature extraction
capabilities. However, traditional sparse coding or
regression methods are often based on fixed prior
information and lack flexibility. Sparse regression and
natural image priors often rely on linear combinations,
which makes it difficult to capture complex features. The
improved CNN has good accuracy, error rate and response
time. Ten photos are selected from the two datasets for
testing. The response times of the four methods are shown
in Figure 10.
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Figure 10: Comparison of response times of four methods.

Figure 10 shows that the response time of the
improved CNN is lower than that of the other three
algorithms. The response times of these algorithms from
low to high are improved CNN, CNN, KK, and SC. Figure
10 (a) shows that the minimum response time of the
improved CNN method is 18 ms and the average value is
21 ms. Figure 10 (b) shows that the minimum response
time of the improved CNN method is 16 ms, and the
average value is 20 ms . The improvement research
scheme can coordinate the learning process of the guide
channel and the main input channel more effectively by

jointly optimizing the loss function of the guide, thereby
significantly improving the reconstruction effect. The
simple integration of the boot channel does not
significantly increase the computational complexity, and
its precise grasp of key information significantly enhances
performance while maintaining responsiveness. To further
analyze the computational efficiency of the research
method, the performance differences between the research
method and CNN, KK, and SC methods are compared in
terms of parameter size, inference time, FLOPs, and other
indicators. The results are shown in Table 2.
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Table 2: Comparison of the computational efficiency of different algorithms.

Index Parameter (M) FLOPs (G) GPU Memory (GB) Inference time (ms) PSNR (dB)
KK 0.27 0.8 0.5 35 28.50
SC 0.12 2.3 1.2 45 28.21
CNN 0.24 47 1.8 25 30.05
Improved CNN 0.38 35 1.6 20 32.52
Table 3: Comparison of image quality evaluation results of four methods.
Evaluation criterion Interpolation Scale Double triple interpolation KK SC CNN Improved CNN
2 0.9976 0.9932 - 0.9975 0.9981
MSSIM 3 0.9738 0.9769 0.9801 0.9814 0.9875
4 0.9517 0.9687 - 0.9712 0.9789
2 50.12 57.02 - 58.97 60.64
WPSNR 3 41.19 46.87 47.12 47.19 47.99
4 37.33 40.48 - 47.95 41.98
2 36.97 38.9 - 41.23 43.98
NQM 3 27.75 32.87 33.04 33.17 34.54
4 21.86 24.34 - 25.65 26.87
2 6.19 6.46 - 8.21 8.47
IFC 3 3.53 3.89 457 4.79 5.01
4 2.23 2.56 - 3.74 3.88
2 0.9268 0.9521 - 0.9578 0.9682
SSIM 3 0.8648 0.8711 0.8864 0.9068 0.9369
4 0.8148 0.8518 - 0.8647 0.8738
2 3321 36.89 - 36.98 37.12
PSNR 3 30.23 3151 32.87 33.86 34.97
4 28.75 30.48 - 30.89 31.97

In Table 2, the number of parameters (0.38M) of the
proposed improved CNN is increased by 58% compared
with the original CNN, which is mainly due to the CK of
the new guide channel. The improved CNN can control
the growth through the parameter sharing strategy (such as
the mask channel shares some weights with the main
channel). The FLOPs of the improved CNN are reduced
by 25% (3.5G vs 4.7G), which benefits from the sparsity
of mask guidance and skips the low-contribution region in
the second layer convolution. The inference speed (20 ms)
of the improved CNN is better than that of SC (45 ms) and
CNN (25 ms), and the memory occupation (1.6GB) is
between SRCNN (1.8GB) and SC (1.2GB). The improved
CNN has better reconstruction quality (PSNR: 32.52 dB),
which is 2.47 dB higher than that of the original SRCNN.
KK is parameter-dependent, but has a low PSNR (28.50
dB) because it cannot learn data-driven features. SC needs
iterative optimization, the inference speed is slow (45ms),
and it is sensitive to occlusion. The improved CNN can
achieve quality-efficiency balance under the condition
that the number of parameters is limited. To further
validate the applicability of the research method, image
quality evaluation indicators such as PSNR, SSIM,
information fidelity criterion (IFC), noise quality measure
(NQM), weighted PSNR (WPSNR) are introduced. The
multi-scale SSIM (MSSIM) evaluates image quality. The
IFC considers the original image as the source of
information and the distortion process as an information
channel. It evaluates the image quality and the fidelity of
information transmission by calculating how much
information can be extracted from the reconstructed
image. IFC has a strong correlation with human perception
of the naturalness and clarity of images. NQM works by
simulating the sensitivity of the human visual system to
different spatial frequencies, effectively quantifying

annoying distortions such as block effects and ringing
effects introduced by compression or reconstruction
algorithms. The lower the value of NQM, the less
perceived noise and higher quality of the image. WPSNR
assigns different weights to different regions when
calculating errors, and better reflects the reconstruction
quality of visually important regions than standard PSNR.
Under the optimal parameter settings, 20 photos are
randomly selected from the CIFAR-10 data for
application, and the outcomes are indicated in Table 3.
The 20 samples for image quality evaluation include 5
high texture, 5 low texture, 5 high dynamic range, and 5
occluded scenes.

In Table 3, the MSSIM value of the improved CNN is
greater than 0.97 under different interpolation ratios, while
the MSSIM value of the KK and CNN is slightly worse.
The improved CNN achieved WPSNR values of 60.64,
60.64, and 41.98 at interpolation ratios of 2, 3, and 4,
respectively, which was still higher than other comparison
algorithms under the same conditions. The NQM values
(43.98, 34.54, 26.87) of the improved CNN outperforms
the other methods in all cases, and the IFC value is stable.
The above results indicate that the proposed algorithm
achieves higher similarity in image content reconstruction
results at different scales, and performs better than other
algorithms in feature extraction and image reconstruction.
Among them, the SC performs the worst, as it is difficult
to grasp image details and structural content solely
through sparse encoding methods. The KK performs
better than the SC, but its prior thinking based on natural
images is difficult to ensure structural similarity and
reconstruction results. To further evaluate the
performance of the improved CNN based on dual-channel
guidance, it is compared with the residual channel
attention network (RCAN), enhanced deep super
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resolution  (EDSR),  super-resolution  generative
adversarial network (SRGAN), dense residual network
(DRN), and Swin Transformer for Image restoration
(SwinIR) on the CIFAR-10 dataset. The interpolation ratio
is 3, and 50 test images are randomly selected for
quantitative evaluation. The comparison results are shown
in Table 4.

In Table 4, SwinlR performs the best on most
objective metrics (PSNR, SSIM, IFC, NQM, and
WPSNR), thanks to the powerful global modeling
capability of the Transformer architecture. The PSNR and
SSIM of the improved CNN are only 0.15 dB and 0.0016
lower than SwinIR, proving its good reconstruction
quality. Improved CNN outperforms all comparison
methods in MSSIM metrics (0.9875), indicating its
advantage in maintaining multi-scale structural similarity.
Its parameter size is only 1.2M, far lower than complex
networks such as EDSR (43.1M) and DRN (22.3M),
demonstrating good parameter efficiency. Improved
CNN's 21.3 ms inference time is about 45% faster than
EDSR and about 66% faster than SwinlR, resulting in a
significant reduction in computational cost. RCAN
improves performance by channel attention, but has a
large number of parameters (156 m). To further validate
the improved CNN, it is compared with the Channel
Spatial Hybrid Attention Network for Image Super
Resolution (CSHA), Multi-level Information
Compensated U-Net for Image Super Resolution
(MICHNet), SRGAN, and Soft Edge-guided Progressive
Super Resolution Network (SEPNet) in terms of
computational efficiency, reconstruction quality, resource
consumption, and reconstruction accuracy. The
comparison results are shown in Table 5.

In the results of Table 5, the research method
maximizes the preservation of the structural information
of the original image due to the dual-channel design (main
channel+mask guidance), resulting in the best information
fidelity (8.47) compared to CSHA (7.82), MICHNet
(7.35), SRGAN (6.21), and SEPNet (8.12). Although
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SEPNet adopts edge compensation strategy (IFC=8.12), it
does not explicitly model the inter channel dependencies,
which is slightly inferior to the research method. The
NQM value of the research method (43.98) performs well,
increasing by 9.6% compared to CSHA (40.12), while
SRGAN has the lowest NQM value (35.44) due to the
introduction of high-frequency artifacts in adversarial
training. The WPSNR value of the research method (60.64
dB) verifies the effectiveness of mask guidance, while
MICHNet (56.91 dB) performs poorly in areas with
complex textures due to feature loss issues. The MAPE of
the research method is the lowest (1.00%), a decrease of
10.7% compared to SEPNet (1.12%), while the MAPE of
SRGAN reaches 2.32%, mainly due to systematic biases
in the generated images (such as color shift). The
reconstruction quality of the research method performs
well, with an SSIM value (32.52 dB), 0.72 dB higher than
CSHA and significantly better than SRGAN (+2.32 dB).
The reason for this is that the improved CNN explicitly
enhances edge features through mask-guided channels,
while CSHA only indirectly allocates resources through
attention weights. SRGAN is prone to artifacts due to
GAN. The above structure indicates that the improved
CNN is comprehensively leading in perception indicators
such as IFC, NQM, and WPSNR. This indicates that the
improved CNN can improve pixel accuracy while also
better maintaining visual naturalness and balancing
computational efficiency to a certain extent. Afterwards,
the image reconstruction effects of the above comparison
methods are presented, and the results are shown in Figure
11.

The results in Figure 11 indicate that the image clarity
trained by the improved CNN is significantly higher than
other comparison models, with higher image clarity and
better restoration of image details. Secondly, the SEPNet
and CSHA perform well. Afterwards, the comparison
results of different algorithms are analyzed using the
statistical tests in Table 6.

Table 4: Image quality evaluation results of different comparison methods.

. . , EDSR SRGAN DRN SwinIR Improved
Evaluation metric RCAN (ECCV'18) | (cypr17) (CVPR'17) (CVPR'18) (Iccv2l) CAN
PSNR (dB) 34.21 33.98 32.45 34.35 35.12 34.97
SsSIM 0.9321 0.9287 0.9123 0.9338 0.9385 0.9369
IFC 4.89 476 4.21 4.95 5.12 5.01
NQM 33.87 33.45 31.89 34.02 34.78 34.54
WPSNR (dB) 47.45 47.12 45.89 47.56 48.21 47.99
MSSSIM 0.9845 0.9832 0.9789 0.9851 0.9867 0.9875
Parameter guantity (M) 15.6 43.1 15 22.3 11.9 1.2
Inference time (ms) 45.2 38.7 52.3 415 62.8 21.3
Training time (m) 48 36 72 54 96 24
Table 5: Comparison of reconstruction performance of different algorithms.
PSNR WPSNR MAPE FLOPs Inference time | GPU Memor
Model (dB) SSIM IFC | NOM | i ) © ) (B) y
Improved CNN | 32.52 0.9682 | 847 | 43.98 | 60.64 1.00 35 20 1.6
CSHA 31.80 09621 | 7.82 | 4012 | 58.23 1.45 8.7 35 238
MICUNet 31.45 09583 | 7.35 | 38.76 | 56.91 1.78 12.4 50 35
SRGAN 30.20 09456 | 6.21 | 3544 | 53.89 2.32 22.9 80 5.2
SEPNet 32.10 09650 | 812 | 42.05 | 59.87 1.12 9.2 45 25
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Figure 11: Image reconstruction effects of different algorithms.

Table 6: Statistical test results.

Index Improved CNN vs CSHA Improved CNN vs MICUNet Isr;;éroAvNed CNN vs Improved CNN vs SEPNet
t=4.32** t=5.67*** t=8.91*** t=2.15*

PSNR (dB) d=1.25 d=1.87 d=3.02 d=0.63
t=3.87** t=5.02*** t=9.24*** t=1.89

SSIM d=1.08 d=1.52 d=3.41 d=0.51

IFC t=3.15** t=4.78*** {=7.53*** t=2.01*
d=0.92 d=1.63 d=2.78 d=0.58

. t=6.45%** t=8.12*** t=12.6*** t=5.33***
Inference time (MS) | 4-p.31 d=3.15 d=4.72 d=1.94

Note: * p<0.05, ** p<0.01, *** p<0.001; Cohen's d>0.8 indicates a "large effect”, and d>0.5 indicates a "medium effect". Statistical analysis is
conducted using a two tailed independent samples t-test, a=0.05. Cohen's d is used to measure the size of the effect.

Table 7: Ablation results.

Component PSNR (dB) SSIM IFC
(A) Baseline Model (SRCNN) 33.86 0.9068 4.79
(B) Main channel only (without guidance) 34.12 0.9135 4.88
(C) Main channel+guide channel (without mask) 34.35 0.9182 4.95
(D) Complete model (main+guide+mask) 34.97 0.9369 5.01
(E) Complete model (using standard optimizer) 34.68 0.9297 4.98

In Table 6, the improved CNN shows significantly
better PSNR than all compared methods (p<0.01),
especially for SRGAN (t=8.91, p<0.001). The difference
in SSIM with SEPNet is not significant (p=0.062), but the
PSNR is still significantly higher. The inference time
effect of the above methods is generally large (d>1.9), and
the difference in IFC between the improved CNN and
CSHA is moderate (d=0.92), which verifies the role of
mask guidance in information retention. Although the
PSNR of SEPNet is slightly different from the improved
CNN, its inference time is significantly longer, which does
not meet real-time requirements. SRGAN is significantly
inferior to the improved CNN method in all metrics,
confirming that adversarial training is not suitable for
scenarios that require high accuracy. To further evaluate
the performance of each component in the research
method, the ablation results are analyzed on the Setl4
dataset, and the comparison results are shown in Table 7.

In Table 7, the improvement from (A) to (B) indicates
that the improved model is superior to the original
SRCNN, with a PSNR improvement of 0.26 dB (33.86—

34.12). From (B) to (D), PSNR significantly increases by
0.85 dB (34.12—34.97), and SSIM increases by 0.0234

(0.9135—0.9369), demonstrating the core contribution of
dual-channel mask-guided design. After introducing the
mask, the PSNR increases by 0.62 dB again (34.35—
34.97), indicating that providing explicit structural priors
for guide channels is crucial. The improved optimizer can
help the model converge to a better solution, with a PSNR
value of 34.97 dB. This result effectively demonstrates the
effectiveness of each component in the research method.

5 Discussion

Aiming at the problem of detail loss and efficiency
bottleneck in super-resolution reconstruction of DM
visual images, an improved CNN based on dual-channel
guidance is proposed. The results showed that the dual-
channel network effectively reduced the iteration loss
value and significantly accelerated its convergence rate.
The improved CNN had an accuracy value of over 95%
on the dataset, with an MAPE value of less than 1.5%. The
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MAPE values of 20 images using SC and KK were 3.92%
and 4.12%, respectively, with lower response times
compared to other comparative algorithms. The improved
CNN had a 25% reduction in FLOPs, a better inference
speed (20 ms) than SC (45 ms) and CNN (25 ms), and a
PSNR value of 32.52 dB. In the image evaluation results,
the PSNR and SSIM of the improved CNN on the CIFAR-
10 dataset were only 0.15 dB and 0.0016 lower than
SwinIR, and the MSSIM value was better than other
methods. The research method maximally preserved the
structural information of the original image, achieving the
best information fidelity (8.47). The NQM value of the
research method (43.98) performed well, increasing by
9.6% compared to CSHA (40.12), while SRGAN had the
lowest NQM value (35.44) due to high-frequency artifacts
introduced during adversarial training. Compared with
SEPNet, the research method achieved reconstruction
through one-time forward propagation, avoiding the time
consumption of progressive methods. Compared with
SRGAN, the research method outperformed in fidelity and
was more suitable for DM applications that require high
accuracy. The improved CNN exhibited better
information fidelity (8.47) compared to other image
reconstruction algorithms, and its WPSNR value (60.64
dB) verified the effectiveness of mask guidance. The
significant improvement in IFC and NQM indicators
indicated that the mask-guided channel effectively helped
the model focus on restoring the structure and edges of the
image, reducing blurring and artifacts, and meeting the
needs of human visual perception. Although the improved
model had slightly more parameters than the original
SRCNN, its FLOPs (3.5G) were actually lower than some
more complex models through a lightweight design and
parallel computing of guide channels. This result achieved
a good balance between performance and efficiency and
had the potential for deployment on edge devices.

6 Conclusion

The generated DM visual images are basically consistent
with real images, and have good image quality
reconstruction effects and quality. The proposed
lightweight architecture provides feasible technical
solutions for DM application scenarios that are sensitive
to computing resources, such as mobile image
enhancement, real-time video super-resolution, and
VR/AR content generation. Future research will focus on
exploring more intelligent mask generation methods and
trying to use neural structure search and meta-learning to
automatically optimize the network structure. Dynamic
pruning technology can be combined to reduce redundant
parameters and computational burden and improve model
adaptability. Moreover, this framework can be combined
with attention mechanisms and multi-modal inputs to
further enhance the robustness of reconstruction in
complex scenes and improve the reconstruction ability of
high-frequency details.

Q. Song
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