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To address the issues of low resolution and detail loss in digital media visual image reconstruction, this 

paper proposes a super-resolution reconstruction algorithm based on a dual-channel mask-guided 

convolutional neural network (CNN). This algorithm innovatively designs a parallel guidance channel 

that utilizes edge masks generated from the input image as prior knowledge to enhance the main channel's 

ability to extract high-frequency structural features. Through multi-layer feature fusion and improved 

Adam optimizer, the model achieves a balance between reconstruction quality and efficiency. Tested on 

the CIFAR-10 and ILSVRC2020 datasets, and validated using image quality assessment metrics, it was 

found that under super-resolution tasks, the peak signal-to-noise ratio of the research method improved 

by an average of about 1.1 dB, with a maximum of 37.12 dB. The structural similarity index improved by 

an average of about 2.1%, with a maximum of 0.9682. At the same time, the algorithm demonstrated 

excellent efficiency advantages while maintaining high performance, with model parameters reduced to 

1.2M, which was only 1/35 of advanced models in the same category. The average inference time for a 

single image has been reduced to about 20 ms, which was about 45% faster than the baseline method and 

demonstrated superior overall performance. The improved algorithm offers improved reconstruction 

quality and achieves a balance between quality and efficiency when the number of parameters is limited. 

Improving CNN through dual channel collaborative design and feature reuse mechanisms can provide 

new technological solutions for digital media image processing. 

Povzetek: Predlagan je učinkovit dvo-kanalni CNN algoritem za super-ločljivost slik, ki z uporabo robnih 

mask izboljša kakovost rekonstrukcije ob hkratnem zmanjšanju števila parametrov in časa izvajanja. 

 

 

1 Introduction 
In recent years, digital media (DM) has emerged as a 

prominent focus of research due to its increasing 

applications in communication, visualization, and 

technology-driven solutions. The enhancement and 

reconstruction of visual images in the DM domain are key 

research areas, with a focus on improving image quality, 

resolution, and interpretability. The purpose is to develop 

methodologies for designing and reconstructing DM 

visuals to achieve higher realism and fidelity [1]. With 

advancements in relevant technology, image generation 

(IG) has found extensive applications in computer vision, 

including virtual reality (VR), augmented reality (AR), 

and automated image synthesis [2]. At present, there are 

many methods for designing and reconstructing DM 

images. However, high computational complexity may 

occur during the operation of these methods. This is 

mainly due to extensive parameter tuning and the need for 

large datasets. These issues lead to longer training times, 

and issues such as low image resolution often result in 

suboptimal reconstruction quality, limiting the practicality  

 

 

of these methods [3]. The development of current visual 

interactive images is hindered by factors such as low 

resolution, dynamic lighting changes, occlusion, and scale 

variations. Traditional super-resolution reconstruction 

algorithms primarily rely on either frequency domain or 

spatial domain features, with limited integration of both 

[4-5]. The current DM visual image reconstruction faces 

three major technological bottlenecks: 1. Insufficient 

feature utilization: Traditional super-resolution 

algorithms, such as interpolation and sparse coding, rely 

on artificially designed features and are difficult to 

adaptively extract multi-scale semantic information (such 

as edges and textures) from images. This results in 

problems such as edge blurring and loss of detail that often 

appear in the reconstruction results. 2. Conventional 

machine learning-based super-resolution reconstruction 

algorithms have disadvantages such as large data volume, 

complex computation, and inability to utilize some prior 

features of images, making it difficult to meet real-time 

requirements. 3. Lack of prior knowledge: The existing 

methods do not fully utilize the inherent features of the 

image, such as occluded edges, resulting in insufficient 

robustness to occlusion and dynamic lighting [6-7]. 



224   Informatica 50 (2026) 223–238                                                                                                                                         Q. Song 

 

In response to the above challenges, various deep 

learning architectures have emerged in recent years. U-

Net achieves multi-scale feature fusion through encoder-

decoder structure and skip connections, and performs 

excellently in image reconstruction tasks [8]. Generative 

adversarial networks (GANs) enhance visual realism 

through adversarial training and are widely used in 

perception-oriented super-resolution reconstruction [9]. 

However, the complex structure of U-Net may result in 

high computational overhead, while the training of GAN 

is unstable and prone to introducing artifacts. In addition, 

existing methods rely heavily on network self-learning 

features and lack explicit guidance on image structure 

priors, which limits the accuracy in detail restoration and 

noise balance. This study aims to solve the above technical 

bottlenecks and meet the urgent demand for high-fidelity 

image reconstruction technology in digital imaging 

applications such as VR/AR and intelligent film and 

television production. It attempts to improve the quality of 

image feature fusion and reconstruction, and release the 

potential of hybrid modeling technology that combines 

data-driven and existing knowledge. Therefore, on the 

basis of existing research, this paper takes advantage of 

the super-resolution convolutional neural network 

(SRCNN) and proposes an improved CNN image super-

resolution reconstruction algorithm under dual-channel-

guided convolution. Moreover, guidance channels and 

mask images are introduced to enhance feature extraction 

capabilities. The innovation of this study is reflected in 

two aspects: First, the mask-guided dual-channel 

architecture. That is, based on the classic SRCNN, a 

second channel is introduced to specifically input the 

mask image generated by the residual transformation. It 

explicitly enhances high-frequency detail reconstruction 

through an adaptive feature fusion mechanism and prior 

edges to achieve a balance between noise reduction and 

detail preservation. The second is a lightweight design 

architecture. That is, the local structure is enhanced 

through the guidance channel, avoiding complex encoding 

and decoding or adversarial training, and improving the 

reconstruction efficiency and stability while maintaining a 

low number of parameters. 

The research content is mainly divided into four 

sections. The subsequent section is organized as the 

literature section, which reviews the classic methods of 

image super-resolution reconstruction and related deep 

learning methods. The third section introduces the 

SRCNN reconstruction method and improvement ideas, 

including the addition of a guidance channel. The fourth 

section introduces the experimental design details and 

reconstruction performance of the improved CNN 

algorithm. The final section introduces the conclusions 

and future scope of the current research, as well as 

research prospects. 

2 Related works 
DM has gained traction in recent years due to its wide 

range of applications in communication, entertainment, 

and computational imaging. Wang et al. proposed a multi-

scale extended CNN framework for image compression 

sensing and reconstruction by jointly training a fully 

convolutional structure measurement network and a 

reconstruction network. The results show that it 

outperforms existing methods in terms of peak signal-to-

noise ratio (PSNR) and structural similarity index (SSIM) 

[10]. Chen et al. proposed a two-stage image restoration 

(IR) network based on a parallel network and contextual 

attention to solve problems such as blurring and texture 

distortion in infrared. The results showed that this method 

could achieve a more realistic reduction effect [11]. 

Nakamura T utilized wave-optical deconvolution filters 

and color channel image synthesis to refine image 

reconstruction. The results showed that the research 

method overcame the traditional limitations and 

effectively improved the image resolution [12]. Pan X et 

al. proposed a transformer-based fully connected neural 

network for mask-based frameless image reconstruction, 

which improves the reconstruction ability through global 

feature inference. The results showed that it was superior 

to model-based and fully convolutional network methods 

[13]. Low-resolution images often resulted in loss of fine-

grained details due to insufficient sampling rate and 

compression artifacts, and Chen et al. suggested that the 

low-frequency and high-frequency components of feature 

maps were treated equally in existing image super-

resolution reconstruction methods [14]. Low-resolution 

images were difficult to accurately depict complex surface 

structures, and the complexity of spatial variations and 

structural features made it difficult to restore image 

structures, especially in some photometric stereoscopic 

images [15]. Yang et al. believed that sparse structural 

similarity could be used to evaluate the quality of distorted 

images, thereby improving the evaluation of image quality 

by ignoring the shortcomings of image structure. The 

results showed that the Pearson correlation coefficient of 

this method was 0.929, which could effectively improve 

the objectivity and accuracy of image quality assessment 

[16]. Low-resolution images often fail to provide 

sufficient data for analysis when containing scene-related 

information such as lighting, shadows, and reflections, 

thereby limiting the ability to extract effective information 

from the image. The challenges faced by low image 

resolution are particularly evident in image processing and 

reconstruction. Improving image quality through 

intelligent technology and next-generation super-

resolution algorithms remains a key research focus, 

especially in addressing dynamic environments and 

hardware limitations. 

At the same time, CNN image research is relatively 

mature. Zhang et al. proposed an infrared and visible 

image fusion algorithm based on ResNet-152 to extract 

multi-layer features by decomposing the low-frequency 

and high-frequency parts of the image. Experiments 

showed that the proposed method was superior to the 

comparison algorithm in retaining important features and 

obtaining more details [17]. Shao G et al. proposed a 

subpixel CNN for image super-resolution reconstruction, 

converting RGB to YCbCr mode, and introducing residual 

networks and upsampled subpixel convolutional layers 

(CLs) for improvement. Experimental results showed that 

it outperformed many traditional methods in terms of 
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accuracy and time consumption [18]. Jin Z proposed a 

flexible deep CNN framework for processing in computer 

vision, which utilized the frequency characteristics of 

different types of workpieces. By adjusting the 

architecture, the same method could be utilized for various 

IR tasks. The results illustrated that the framework was 

more excellent than other methods [19]. Zhang Y designed 

a universal image fusion model for CNN. This study first 

utilized two CLs to extract image features from the II. 

Then, the features of the II were fused by selecting 

appropriate fusion rules. The results showed that 

compared with other fusion models, the research model 

had better pan-Chinese ability and achieved better fusion 

results [20]. Zhu F et al. proposed a CNN-based denoising 

method for better obtaining clean images from noise. 

Combining some different rate expansion convolutions 

with common convolutions enriched the features extracted 

from multi-layer convolutions. The results showed that the 

denoising effect of the research method was excellent 

[21]. To improve the edge detection performance of noisy 

images, Yuan S et al. proposed an edge detection method 

based on nonlinear structural tensors, which determined 

image edges by calculating the tensor product, 

eigenvalues, and eigenvectors of noisy images. The results 

indicated that this method could detect more monitoring 

points compared to other methods, with a shorter average 

detection time and overall better detection performance 

[22]. 

In summary, DM has brought convenience to people's 

lives. There is relatively abundant research on visual 

Image Design (ID) and image reconstruction, but there is 

relatively little research on CNNs. The development of 

CNN is relatively mature and has achieved good results in 

image denoising, feature extraction, and detection. In view 

of this, this study proposes a new CNN-based DM visual 

ID and image reconstruction method. 

3 ID and image reconstruction 

method for CNN algorithm 
To improve the reconstruction quality of DM visual 

images, a SRCNN dual-channel reconstruction algorithm 

is proposed, which adds guided channels and uses masked 

images for improvement. The improvement and 

innovation of this study is the utilization of explicit edge 

mask-guided parallel channels to provide powerful 

structural priors for super-resolution reconstruction. Its 

mechanism is essentially different from traditional 

implicit feature learning or simple multi-scale fusion, and 

can greatly improve the quality of image reconstruction. 

3.1 SRCNN reconstruction algorithm 

There are various methods for image super-resolution, 

including instance-based, interpolation-based, and 

reconstruction-based methods and deep learning 

algorithms [23]. In CNN algorithms, SRCNN is a 

representative algorithm applied to image super-

resolution, which can learn the unique connections 

between high-resolution and low-resolution images and 

use these connections as constraints to generate high-

resolution images. Research has shown that using multi-

layer network structures can enable models to learn more 

complex features and patterns, which is particularly 

important for generating high-quality images and 

reconstruction tasks [24]. Figure 1 shows the relevant 

framework. 

As shown in Figure 1, the three CLs are utilized for 

feature extraction, nonlinear mapping, and high-resolution 

image reconstruction. The entire process is to first extract 

small blocks from the interpolated low-resolution image 

and represent the extracted small blocks in the form of 

high-dimensional vectors. Then, it transforms all high-

dimensional vectors nonlinearly and maps them onto other 

high-dimensional vectors [25]. Finally, it aggregates all 

high-resolution small blocks to form the final high-

resolution image, which should be similar to the ideal 

high-resolution image corresponding to the low-resolution 

image. The SRCNN algorithm mainly uses convolution 

operations to train and process input images during 

forward and backward propagation. The CL can convert 

digital signals into low-dimensional vectors and store the 

extracted features in the feature vectors. The convergence 

rate of the algorithm is restricted by the selection of the 

Loss function. This study uses the fast convergence cross-

entropy as the loss function and adds a minimum value to 

it, as shown in equation (1). 

 

ˆ ˆ'

ˆ ˆln ' (1 ) ln(1 ')

y y

C y y y y

= +


= − + − −
 (1) 

1×1
f1×f1

f2×f2

FEature

 extraction

Nonlinear 

mapping

High resolution image 

reconstruction

Low

 resolution

 image Y

 (input)

High 

Resolution

 image 

F (Y) 

(output)

N1 dimensional low 

resolution feature map

N2 dimensional 

high-resolution feature map

 

Figure 1: The network framework of SRCNN. 
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As shown in equation (1), the predicted output is 

represented by ŷ . The actual output is represented by y . 

  represents the minimum value. The commonly used 

CNN algorithm is aimed at the gradient descent method. 

Although it has good performance, it also has 

disadvantages, such as difficulty in choosing an 

appropriate learning rate, and easy occurrence of saddle 

points and local extremum problems [26]. Therefore, an 

adaptive learning rate is selected to overcome the 

shortcomings. The Adam algorithm is selected in this 

study. The Adam algorithm can dynamically adjust the 

learning rate of each parameter, and it can retain historical 

gradient information, accelerate the convergence process, 

and reduce oscillation phenomena. The random gradient 

descent algorithm for the Adam algorithm is shown in 

equation (2). 
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In equation (2), the gradient is represented by 
tg . 

1  

and 
2  are the decay rates. m  is the first-order moment 

of the gradient. ˆ
tm  is the moment estimate after deviation 

correction of the first-order moment of the gradient. 
tn  is 

the second-order moment of the gradient. 
t̂n  is the 

moment estimate after deviation correction of the second-

order moment of the gradient. Learning rate is expressed 

in  .   represents the minimum constant. A large 

number of pooling operations may result in blurry feature 

information. Therefore, a maxsoft  function classifier is 

added after the fully connected layer to convert complex 

result values into relative probabilities that are easy to 

compare and understand. There are a large number of 

shared layers between different neurons, which can 

effectively reduce the amount of data. Research has been 

conducted to improve traditional neurons by using random 

deactivation, as shown in equation (3). 
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As shown in equation (3), the selected neuron is 

represented by 
( )la ; The sample subset of Bernoulli 

distribution satisfying probability p  is represented by 

( )lr . 
( 1)la +

 represents 1l +  layer output. 1l +  input 

weighting and vector are represented by 
( 1)lc +

. The weight 

of 1l + -layer is represented by 
( 1)lw +

. 
( 1)lb +

 is the 1l + -

layer bias. ()f  is the excitation function. 

3.2 Design of Improved SRCNN Dual-

Channel Mask-Guided Network 

Architecture Based on Image 

Reconstruction 

3.2.1 Overall Network Architecture 

Although SRCNN has good recognition and image 

reconstruction performance, its network structure relies 

heavily on its own neural network structure, resulting in 

limited learning ability. Therefore, to improve SRCNN, 

this study introduces a parallel guidance channel and 

utilizes edge masks explicitly extracted from the input 

image as structural priors to guide the feature learning 

process of the main channel. The purpose is to enhance the 

network's ability to recover high-frequency details and 

further improve the reconstruction performance of the 

neural network. The improved algorithm structure is 

shown in Figure 2. 
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Figure 2: Improved SRCNN algorithm structure. 
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Figure 3: The process of obtaining a training image set. 

As shown in Figure 2, the improved network has three 

CLs and two channels. The solid line represents forward 

conduction, while the red dashed line represents reverse 

conduction. The red part represents the improved part, 

which is the newly added second channel. After adding 

channels, five modules are added, namely the first guiding 

layer, the second guiding layer, the first CL, the second 

CL, and the mask image dataset. By introducing additional 

guidance channels and using masked images of input 

images, new dimensions can be added to feature learning, 

thereby improving network efficiency. Specifically, the 

guidance channel can provide additional information at 

different scales related to the main input image, thereby 

enhancing the network's perception ability of different 

features. Mask images are used to emphasize important 

features such as edges, textures, and structures in the 

image, and utilize these features to guide the original 

convolutional channels. 

3.2.2 Mask generation module 

To provide clear edge guidance information to the 

network, a corresponding mask image is first generated for 

each input image. The specific method is to use different 

interpolation algorithms to address the differences in edge 

processing characteristics. Firstly, the original low-

resolution image is interpolated using bicubic 

interpolation and nearest neighbor interpolation to obtain 

two images, which are then subtracted and subjected to a 

nonlinear transformation to enhance the edges. The image 

training method can be specifically shown in Figure 3. 

In Figure 3, firstly, the images obtained from the 

training set are transferred from the RGB color space to 

the YCbCr color space, and the image Y0 is obtained 

through the illumination channel. During image 

downsampling, after double triple interpolation, 

overlapping small blocks are extracted from the 

interpolated image, and then the extracted small blocks are 

aggregated to form a training image set Ya. Bicubic 

interpolation and nearest neighbor interpolation are used 

to upsample the original low-resolution image, and then 

the two resulting images are subtracted and the edges of 

the image are enhanced through nonlinear transformation. 

This process can be represented by equation (4). 

tanh( | ( ) ( ) |)mask b ds n dsY f Y f Y=  −  (4) 

As shown in equation (4), the mask image is 

represented by 
maskY . The sampled image is represented 

by 
dsY . Bicubic interpolation is represented by 

bf . The 

nearest neighbor interpolation is represented by 
nf . The 

transformation size coefficient of nonlinear 

transformation is represented by  , which is generally 

negative. tanh()  is the hyperbolic tangent activation 

function, which normalizes the mask values between (-1,1) 

to make the edge features more prominent. By performing 

differential operations on bicubic interpolation 

(preserving smooth regions) and nearest neighbor 

interpolation (highlighting edge step effects), high-

frequency edge information in the image can be enhanced, 

mask image M can be generated, and the network can be 

guided to focus on structural features. Traditional SRCNN 

relies solely on CL learning for low-resolution to high-

resolution mapping, lacking explicit utilization of inherent 

image features such as edges and textures. The addition of 

a guiding channel can optimize the input mask image 

through dual-channel collaboration, preserving its details 

and improving its image reconstruction effect. The 

acquisition of labels is shown in Figure 4. 
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Figure 4: Acquisition of labels. 

Figure 4 shows the specific extraction process of label 

X. This is a randomly selected image from the training set, 

displaying mask image blocks, training image blocks, and 

label blocks, respectively. The purpose of the first CL is 

feature extraction, extracting small blocks from images Ya 

and Yb to obtain II feature 1( )F Y , which is similar to the 

case through a set of filters, and its expression is shown in 

equation (5). 

1 1 1

1 1 1

( ) max(0, )

( ) max(0, )

a a a a

b b b b

F Y W Y B

F Y W Y B

=  +


=  +
 (5) 

As shown in equation (5), the two channels are 

denoted by a  and b . 
1 ( )aF Y  is the content feature map 

output by the main channel in the first layer, and 
1 ( )bF Y  

is the structural feature map output by the guiding channel 

in the first layer. The convolution kernels (CKs) of the two 

channels are represented by 
1aW  and 

1bW , respectively. 

aY  and 
bY  represent training images and mask images, 

respectively.   represents convolution operation. The 

bias vectors of the two channels are represented by 
1aB  

and 
1bB  

3.2.3  Dual-channel feature extraction and fusion 

After the mask is generated, the upsampled image and the 

mask image are fed into the main and guide channels, 

respectively. The main channel is responsible for learning 

the overall content and texture information of the image, 

and the guide channel is responsible for learning the 

structure and edge information of the image. The dual-

channel separation design can avoid feature confusion and 

provide prior structural constraints. The purpose of the 

second layer of CL is nonlinear mapping, that is, to 

transform the feature vector of low-resolution space into 

high-resolution space. At this time, the output feature is 

2( )F Y , and its expression is shown in equation (6). 

2 2 1 2

2 2 1 2

( ) max(0, ( ) )

( ) max(0, ( ) )

a a a

b b b b

F Y W G Y B

F Y W F Y B

=  +


=  +
 (6) 

As shown in equation (6), the CK of two channels are 

represented by 
2aW  and 

2bW , respectively. The output of 

the first guidance layer is represented by 
1( )G Y . The 

output of the first CL is represented by 
1 ( )bF Y . The bias 

vectors of the two channels are represented by 
2aB  and 

2bB . The nonlinear mapping of the second layer 

convolution can map low-dimensional features to high-

dimensional space and fuse dual-channel information. 

Guide channel features can enhance edge consistency and 

prevent reconstruction blurring. The purpose of the third 

layer convolution is to reconstruct high-resolution image. 

The final generated high-resolution image is ( )F Y , and 

its expression is shown in equation (7). 

3 2 3( ) ( )F Y W G Y B=  +  (7) 

As shown in equation (7), the CK is represented by 

3W . The output of the second guidance layer is 

represented by 
2 ( )G Y . The bias vector is represented by 

3B . The third layer does not need to undergo nonlinear 

transformation, as the 
3W  of the third layer can be 

regarded as a filter, and the reconstruction process can be 

considered as a linear transformation process. The mask 

image in Figure 4 shows that it can represent edge 

features, and these features are used to guide the 

convolutional channel. The formula for the guidance layer 

is shown in equation (8). 

( ) ( ) ( ) 1,2i ia ibG Y F Y F Y i=  =  (8) 

As shown in equation (8), ( )iF Y  represents the 

output image of the i -th CL. The research method 

requires training parameters 

 1 1 2 2 3 1 2 3, , , , , , ,a b a b b bW W W W W B B B , and the training 

process is actually a part of parameter optimization and 

estimation. By reducing the loss between high-resolution 

image and reconstructed images, the optimal solution of 

the parameters is found. The visualization of guide layer 

features validates the effective utilization of edge 

information. To train the network parameters, the study 

aims to optimize the model by minimizing the mean 

square error (MSE) between the reconstructed image and 

the real high-resolution image, and its expression is shown 

in equation (9). 
2

1

1
( ) ( ; )

n

i ii
L F Y X

n =
 =   (9) 

As shown in equation (10), the reconstructed image is 

represented by ( ; )i iF Y X . The number of training 

samples is represented by n . The high-resolution image 

set is represented by  iX . The set of processed images 

with the same size as the original image is represented by 

 iY
. 
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4 Result analysis of ID and image 

reconstruction methods for CNN 

algorithm 

4.1 Experimental design platform and 

related parameter settings 

To evaluate the proposed CNN-based DM visual ID and 

image reconstruction method, multiple IG tasks are 

selected in this experiment. It includes facial recognition, 

facial IR, IG, and IR, with multiple publicly available 

datasets. This study first selects the parameters of the CNN 

and then tests and verifies the performance of the 

algorithm. To avoid experimental errors caused by 

different equipment, the study uses the same computer for 

the experiment, using Intel Core i7-9700 3.00GHz CPU 

and 20GB memory. Operating System: Ubuntu 20.04 

LTS, with the deep learning framework of PyTorch 1.10. 

The core library is CUDA 11.3, Python 3.8, and OpenCV 

4.5. The experiment uniformly adjusts the input image to 

256 × 256 pixels (based on common preprocessing 

standards such as CIFAR-10 and ILSVRC2020) to meet 

the requirements of multi-scale feature extraction. The 

size of the first CK is 9×9 (large kernel captures global 

structure), the size of the second CK is 6×6 (moderate 

kernel balances details and computational complexity), 

and the size of the third CK is 5×5 (small kernel refines 

local features). Stride defaults to 1 to ensure high-

resolution feature preservation (applicable to all CLs). In 

addition, in the second layer of the guidance channel, 

Stride=2 is used to downsample the mask image to reduce 

computational complexity. The AF of the first- and 

second-layer channels is LeakyReLU (α=0.2), which 

alleviates the problem of gradient vanishing. The third 

layer channel is linearly activated (without AF), as the 

reconstruction task requires retaining all intensity values. 

ReLU is used throughout the guidance channel to enhance 

the sparsity of edge features. The initial learning rate is 

0.0001, and the optimizer is Adam (β1=0.9, β2=0.999, and 

ε=1e-8). Image blocks of 96*96 pixels are randomly 

cropped from the high-resolution image. The 

corresponding low-resolution image block is obtained by 

performing bicubic downsampling (magnification factor 

x3) on the high-resolution image block. To increase data 

diversity and improve model generalization ability, online 

data augmentation is applied to the training data, including 

random horizontal flipping and 90-degree rotation. The 

optimizer uses improved Adam, and the initial learning 

rate is set to 1e-4. After every 20 rounds, the learning rate 

decays to 0.5 times the original value. Table 1 shows the 

experimental parameter settings. 

4.2 Dataset source and related information 

The CIFAR-10 dataset and ILSVRC2020 dataset have a 

wide range of applications and can be used to evaluate 

image processing and reconstruction algorithms. The 

CIFAR-10 dataset contains a variety of color image 

categories and has rich visual effects, which can 

effectively test the algorithm's processing effect on visual 

images. The ILSVRC2020 dataset has a large amount of 

data, rich sample size, and high image resolution, making 

it more suitable for complex scenes and high detail testing 

content. The use of CIFAR-10 and ILSVRC2020 datasets 

to evaluate the performance of ID and image 

reconstruction algorithms is due to their widespread 

application and recognized benchmark position in the field 

of computer vision. Moreover, their diversity, rich 

content, differences in data volume and structure, as well 

as balanced data distribution, facilitate the comprehensive 

evaluation of algorithm performance and robustness from 

multiple aspects. This study selects 100 images from the 

CIFAR-10 and ILSVRC2020 datasets for testing 

experiments. 100 images are randomly selected from 

CIFAR-10 and ILSVRC2020 as the test set, and the 

remaining data are used for training. The extraction of the 

test set adopts stratified sampling, where CIFAR-10 is 

uniformly selected into 10 categories, with 10 images per 

category. ILSVRC2020 is grouped according to the 

semantic hierarchy of ImageNet (such as animals and 

artificial objects), with 20 images extracted from each 

group. All experiments are repeated 5 times, with random 

seeds fixed at {42, 123, 2023, 55, 17}, and the results are 

taken as mean ± standard deviation. 

4.3 Parameter experiment of CNN 

network structure 

For selecting an appropriate size of CK, the interpolation 

ratio is 3, the learning rate is 0.0001, and the quantity of 

CK in the first layer is 64. The quantity of CK in the 

second layer is 32, and an unimproved CNN algorithm is 

introduced as a reference to compare the loss values (LVs) 

of reconstructed images with CK sizes of 9-2-5, 9-4-5, and 

9-6-5, respectively. The results are shown in Figure 5. 

Table 1: Experimental parameter settings. 

Parameter Numerical value 

Batch Size 16 

Epochs 100 

Loss function MSE + 0.5×MSSIM 

Weight initialization He follows a normal distribution 

Decline in learning rate 2 

CK size 9-6-5 

Guide channel downsampling Stride 2 (second layer only) 
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Figure 5: Reconstruction image LV for different CK sizes. 
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Figure 6: Loss of reconstructed images with different CK numbers. 

Figure 5 shows the loss result graph plotted before 

13,500 iterations. Compared with the unmodified CNN, 

the improved CNN has a significantly faster rate of 

convergence. At the iteration number of 4,000, the CNN 

of each size has a significant convergence, and the LVs 

are 0.10, 0.16, and 0.20 respectively, while the unmodified 

CNN of each size has an LV of 0.15, 0.18, and 0.24, and 

does not converge to the minimum value. Figure 5 also 

indicates that as the size of the second CK increases, the 

LV of the reconstructed image gradually decreases. This 

indicates that an increase in the size of the second CK will 

enable the neural network structure to learn more 

information, reduce LV, and achieve better ID and image 

reconstruction results. The number of CK also affects the 

experimental results. Choosing the same parameters as 

above, the fixed CK size is 9-6-5, the quantity of CK is 

128 in the first layer, 64 in the second layer, 64 in the first 

layer, 32 in the second layer, 32 in the first layer, and 16 

in the second layer. The LV of reconstructed images with 

different CK numbers is shown in Figure 6. 

As shown in Figure 6, as the number of CK increases, 

the neural network structure learns more information, the 

LV of the reconstructed image is lower, and the image 

effect is better. Compared to the unmodified CNN, the 

improved CNN converges earlier. When the quantity of 

convolutions in the first layer is 128, the quantity of 

convolutions in the second layer is 64, and the quantity of 

iterations is 7,000, the improved CNN convergence LV is 

0.15. At this point, the LV of the unimproved CNN is 0.23 

and has not yet converged to the minimum value. 

4.4 Comparative analysis experiment of ID 

and image reconstruction methods for 

CNN 

To verify the superiority of DM visual ID and image 

reconstruction methods over CNN, an unimproved CNN 

algorithm is further introduced for comparison. At this 

point, the CK size is set to 9-6-5 and the quantity of CK in 

the first layer is 128, while the quantity of CK in the 

second layer is 64. The comparison results are shown in 

Figure 7. 
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Figure 7: Comparative experiments of two datasets. 

100%

90%

80%

70%

60%

2

1

A
cc

u
ra

cy

3 SC
KK

Data set

(a) CIFAR-10 (b) ILSVRC2020

Improved 

CNN
CNN

100%

90%

80%

70%

60%

2

1

A
cc

u
ra

cy

3 SC
KK

Data set
Improved 

CNN
CNN

50% 50%

 

Figure 8: Comparison of accuracy of four methods. 

Figure 7 (a) shows that in the dataset CIFAR-10, CNN 

converges at 4,500, leading to an LV of 0.25. The 

improved CNN converges at 7,500, leading to an LV of 

0.16. Figure 7 (b) shows that in the dataset ILSVRC2020, 

CNN converges at 6,000, leading to an LV of 0.29. The 

improved CNN converges at 7,000, leading to an LV of 

0.10. This indicates that the improved research method 

results in lower LV and better results in obtaining the final 

design and reconstruction images. To further validate the 

superiority of the research algorithm, image 

reconstruction methods are introduced: sparse regression 

and natural image prior (KK) and sparse coding-based 

method (SC) are used to compare the accuracy, error, 

response time, and image evaluation results of the four 

methods. In the CIFAR-10 dataset, images are divided 

into high, medium, and low layers based on their edge 

complexity (gradient amplitude calculated using the Sobel 

operator). 30 images are randomly selected from each 

layer to a ensure balanced distribution of structural 

complexity among the three groups. The accuracy of the 

four methods is shown in Figure 8. 

Figure 8 shows that the improved CNN is superior to 

the other three algorithms in accuracy on both datasets. 

The accuracy of the algorithm is ranked from high to low 

as Improved CNN, CNN, SC, and KK. In Figure 8 (a), the 

improved CNN method achieves the highest accuracy of 

97.23% and an average of 95.23% for the four sets of data. 

In Figure 8 (b), the improved CNN method achieves the 

highest accuracy of 98.23% and an average of 96.25% for 

the four datasets. Overall, the accuracy of the improved 

CNN performs well on both datasets. The mean absolute 

percentage error (MAPE) of the four methods is shown in 

Figure 9. 

In Figure 9(a), the MAPE of the 20 images of the SC 

and KK algorithms is 3.92% and 4.12%. The improved 

CNN curve fluctuated the most, with a MAPE of 1.02% 

for 20 images. In Figures 9(a) and (b), the improved CNN 

has minimal MAPE. The proposed method includes guide 

channel and mask images, which can effectively extract 

image edge features and enhance feature extraction 

capabilities. However, traditional sparse coding or 

regression methods are often based on fixed prior 

information and lack flexibility. Sparse regression and 

natural image priors often rely on linear combinations, 

which makes it difficult to capture complex features. The 

improved CNN has good accuracy, error rate and response 

time. Ten photos are selected from the two datasets for 

testing. The response times of the four methods are shown 

in Figure 10. 
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Figure 9: Comparison of MAPE of four models. 
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Figure 10: Comparison of response times of four methods. 

Figure 10 shows that the response time of the 

improved CNN is lower than that of the other three 

algorithms. The response times of these algorithms from 

low to high are improved CNN, CNN, KK, and SC. Figure 

10 (a) shows that the minimum response time of the 

improved CNN method is 18 ms  and the average value is 

21 ms . Figure 10 (b) shows that the minimum response 

time of the improved CNN method is 16 ms , and the 

average value is 20 ms . The improvement research 

scheme can coordinate the learning process of the guide 

channel and the main input channel more effectively by 

jointly optimizing the loss function of the guide, thereby 

significantly improving the reconstruction effect. The 

simple integration of the boot channel does not 

significantly increase the computational complexity, and 

its precise grasp of key information significantly enhances 

performance while maintaining responsiveness. To further 

analyze the computational efficiency of the research 

method, the performance differences between the research 

method and CNN, KK, and SC methods are compared in 

terms of parameter size, inference time, FLOPs, and other 

indicators. The results are shown in Table 2. 
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Table 2: Comparison of the computational efficiency of different algorithms. 

Index Parameter (M) FLOPs (G) GPU Memory (GB) Inference time (ms) PSNR (dB) 

KK 0.27 0.8 0.5 35 28.50 

SC 0.12 2.3 1.2 45 28.21 

CNN 0.24 4.7 1.8 25 30.05 

Improved CNN 0.38 3.5 1.6 20 32.52 

Table 3: Comparison of image quality evaluation results of four methods. 

Evaluation criterion Interpolation Scale Double triple interpolation KK SC CNN Improved CNN 

MSSIM 

2 0.9976 0.9932 - 0.9975 0.9981 

3 0.9738 0.9769 0.9801 0.9814 0.9875 

4 0.9517 0.9687 - 0.9712 0.9789 

WPSNR 

2 50.12 57.02 - 58.97 60.64 

3 41.19 46.87 47.12 47.19 47.99 

4 37.33 40.48 - 47.95 41.98 

NQM 

2 36.97 38.9 - 41.23 43.98 

3 27.75 32.87 33.04 33.17 34.54 

4 21.86 24.34 - 25.65 26.87 

IFC 

2 6.19 6.46 - 8.21 8.47 

3 3.53 3.89 4.57 4.79 5.01 

4 2.23 2.56 - 3.74 3.88 

SSIM 

2 0.9268 0.9521 - 0.9578 0.9682 

3 0.8648 0.8711 0.8864 0.9068 0.9369 

4 0.8148 0.8518 - 0.8647 0.8738 

PSNR 

2 33.21 36.89 - 36.98 37.12 

3 30.23 31.51 32.87 33.86 34.97 

4 28.75 30.48 - 30.89 31.97 

 

In Table 2, the number of parameters (0.38M) of the 

proposed improved CNN is increased by 58% compared 

with the original CNN, which is mainly due to the CK of 

the new guide channel. The improved CNN can control 

the growth through the parameter sharing strategy (such as 

the mask channel shares some weights with the main 

channel). The FLOPs of the improved CNN are reduced 

by 25% (3.5G vs 4.7G), which benefits from the sparsity 

of mask guidance and skips the low-contribution region in 

the second layer convolution. The inference speed (20 ms) 

of the improved CNN is better than that of SC (45 ms) and 

CNN (25 ms), and the memory occupation (1.6GB) is 

between SRCNN (1.8GB) and SC (1.2GB). The improved 

CNN has better reconstruction quality (PSNR: 32.52 dB), 

which is 2.47 dB higher than that of the original SRCNN. 

KK is parameter-dependent, but has a low PSNR (28.50 

dB) because it cannot learn data-driven features. SC needs 

iterative optimization, the inference speed is slow (45ms), 

and it is sensitive to occlusion. The improved CNN can 

achieve quality-efficiency balance under the condition 

that the number of parameters is limited. To further 

validate the applicability of the research method, image 

quality evaluation indicators such as PSNR, SSIM, 

information fidelity criterion (IFC), noise quality measure 

(NQM), weighted PSNR (WPSNR) are introduced. The 

multi-scale SSIM (MSSIM) evaluates image quality. The 

IFC considers the original image as the source of 

information and the distortion process as an information 

channel. It evaluates the image quality and the fidelity of 

information transmission by calculating how much 

information can be extracted from the reconstructed 

image. IFC has a strong correlation with human perception 

of the naturalness and clarity of images. NQM works by 

simulating the sensitivity of the human visual system to 

different spatial frequencies, effectively quantifying 

annoying distortions such as block effects and ringing 

effects introduced by compression or reconstruction 

algorithms. The lower the value of NQM, the less 

perceived noise and higher quality of the image. WPSNR 

assigns different weights to different regions when 

calculating errors, and better reflects the reconstruction 

quality of visually important regions than standard PSNR. 

Under the optimal parameter settings, 20 photos are 

randomly selected from the CIFAR-10 data for 

application, and the outcomes are indicated in Table 3. 

The 20 samples for image quality evaluation include 5 

high texture, 5 low texture, 5 high dynamic range, and 5 

occluded scenes. 

In Table 3, the MSSIM value of the improved CNN is 

greater than 0.97 under different interpolation ratios, while 

the MSSIM value of the KK and CNN is slightly worse. 

The improved CNN achieved WPSNR values of 60.64, 

60.64, and 41.98 at interpolation ratios of 2, 3, and 4, 

respectively, which was still higher than other comparison 

algorithms under the same conditions. The NQM values 

(43.98, 34.54, 26.87) of the improved CNN outperforms 

the other methods in all cases, and the IFC value is stable. 

The above results indicate that the proposed algorithm 

achieves higher similarity in image content reconstruction 

results at different scales, and performs better than other 

algorithms in feature extraction and image reconstruction. 

Among them, the SC performs the worst, as it is difficult 

to grasp image details and structural content solely 

through sparse encoding methods. The KK performs 

better than the SC, but its prior thinking based on natural 

images is difficult to ensure structural similarity and 

reconstruction results. To further evaluate the 

performance of the improved CNN based on dual-channel 

guidance, it is compared with the residual channel 

attention network (RCAN), enhanced deep super 
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resolution (EDSR), super-resolution generative 

adversarial network (SRGAN), dense residual network 

(DRN), and Swin Transformer for Image restoration 

(SwinIR) on the CIFAR-10 dataset. The interpolation ratio 

is 3, and 50 test images are randomly selected for 

quantitative evaluation. The comparison results are shown 

in Table 4. 

In Table 4, SwinIR performs the best on most 

objective metrics (PSNR, SSIM, IFC, NQM, and 

WPSNR), thanks to the powerful global modeling 

capability of the Transformer architecture. The PSNR and 

SSIM of the improved CNN are only 0.15 dB and 0.0016 

lower than SwinIR, proving its good reconstruction 

quality. Improved CNN outperforms all comparison 

methods in MSSIM metrics (0.9875), indicating its 

advantage in maintaining multi-scale structural similarity. 

Its parameter size is only 1.2M, far lower than complex 

networks such as EDSR (43.1M) and DRN (22.3M), 

demonstrating good parameter efficiency. Improved 

CNN's 21.3 ms inference time is about 45% faster than 

EDSR and about 66% faster than SwinIR, resulting in a 

significant reduction in computational cost. RCAN 

improves performance by channel attention, but has a 

large number of parameters (156 m). To further validate 

the improved CNN, it is compared with the Channel 

Spatial Hybrid Attention Network for Image Super 

Resolution (CSHA), Multi-level Information 

Compensated U-Net for Image Super Resolution 

(MICHNet), SRGAN, and Soft Edge-guided Progressive 

Super Resolution Network (SEPNet) in terms of 

computational efficiency, reconstruction quality, resource 

consumption, and reconstruction accuracy. The 

comparison results are shown in Table 5. 

In the results of Table 5, the research method 

maximizes the preservation of the structural information 

of the original image due to the dual-channel design (main 

channel+mask guidance), resulting in the best information 

fidelity (8.47) compared to CSHA (7.82), MICHNet 

(7.35), SRGAN (6.21), and SEPNet (8.12). Although 

SEPNet adopts edge compensation strategy (IFC=8.12), it 

does not explicitly model the inter channel dependencies, 

which is slightly inferior to the research method. The 

NQM value of the research method (43.98) performs well, 

increasing by 9.6% compared to CSHA (40.12), while 

SRGAN has the lowest NQM value (35.44) due to the 

introduction of high-frequency artifacts in adversarial 

training. The WPSNR value of the research method (60.64 

dB) verifies the effectiveness of mask guidance, while 

MICHNet (56.91 dB) performs poorly in areas with 

complex textures due to feature loss issues. The MAPE of 

the research method is the lowest (1.00%), a decrease of 

10.7% compared to SEPNet (1.12%), while the MAPE of 

SRGAN reaches 2.32%, mainly due to systematic biases 

in the generated images (such as color shift). The 

reconstruction quality of the research method performs 

well, with an SSIM value (32.52 dB), 0.72 dB higher than 

CSHA and significantly better than SRGAN (+2.32 dB). 

The reason for this is that the improved CNN explicitly 

enhances edge features through mask-guided channels, 

while CSHA only indirectly allocates resources through 

attention weights. SRGAN is prone to artifacts due to 

GAN. The above structure indicates that the improved 

CNN is comprehensively leading in perception indicators 

such as IFC, NQM, and WPSNR. This indicates that the 

improved CNN can improve pixel accuracy while also 

better maintaining visual naturalness and balancing 

computational efficiency to a certain extent. Afterwards, 

the image reconstruction effects of the above comparison 

methods are presented, and the results are shown in Figure 

11. 

The results in Figure 11 indicate that the image clarity 

trained by the improved CNN is significantly higher than 

other comparison models, with higher image clarity and 

better restoration of image details. Secondly, the SEPNet 

and CSHA perform well. Afterwards, the comparison 

results of different algorithms are analyzed using the 

statistical tests in Table 6. 

Table 4: Image quality evaluation results of different comparison methods. 

Evaluation metric RCAN (ECCV'18) 
EDSR 
(CVPR'17) 

SRGAN 
(CVPR'17) 

DRN 
(CVPR'18) 

SwinIR 
(ICCV'21) 

Improved 
CNN 

PSNR (dB) 34.21 33.98 32.45 34.35 35.12 34.97 

SSIM 0.9321 0.9287 0.9123 0.9338 0.9385 0.9369 

IFC 4.89 4.76 4.21 4.95 5.12 5.01 

NQM 33.87 33.45 31.89 34.02 34.78 34.54 

WPSNR (dB) 47.45 47.12 45.89 47.56 48.21 47.99 

MSSSIM 0.9845 0.9832 0.9789 0.9851 0.9867 0.9875 

Parameter quantity (M) 15.6 43.1 1.5 22.3 11.9 1.2 

Inference time (ms) 45.2 38.7 52.3 41.5 62.8 21.3 

Training time (m) 48 36 72 54 96 24 

Table 5: Comparison of reconstruction performance of different algorithms. 

Model 
PSNR 

(dB) 
SSIM IFC NQM 

WPSNR 

(dB) 

MAPE 

(%) 

FLOPs 

(G) 

Inference time 

(ms) 

GPU Memory 

(GB) 

Improved CNN 32.52 0.9682 8.47 43.98 60.64 1.00 3.5 20 1.6 

CSHA 31.80 0.9621 7.82 40.12 58.23 1.45 8.7 35 2.8 

MICUNet 31.45 0.9583 7.35 38.76 56.91 1.78 12.4 50 3.5 

SRGAN 30.20 0.9456 6.21 35.44 53.89 2.32 22.9 80 5.2 

SEPNet 32.10 0.9650 8.12 42.05 59.87 1.12 9.2 45 2.5 
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Figure 11: Image reconstruction effects of different algorithms. 

Table 6: Statistical test results. 

Index Improved CNN vs CSHA Improved CNN vs MICUNet 
Improved CNN vs 
SRGAN 

Improved CNN vs SEPNet 

PSNR (dB) 
t=4.32** 
d=1.25 

t=5.67*** 
d=1.87 

t=8.91*** 
d=3.02 

t=2.15* 
d=0.63 

SSIM 
t=3.87** 

d=1.08 

t=5.02*** 

d=1.52 

t=9.24*** 

d=3.41 

t=1.89 

d=0.51 

IFC 
t=3.15** 
d=0.92 

t=4.78*** 
d=1.63 

t=7.53*** 
d=2.78 

t=2.01* 
d=0.58 

Inference time (ms) 
t=6.45*** 

d=2.31 

t=8.12*** 

d=3.15 

t=12.6*** 

d=4.72 

t=5.33*** 

d=1.94 

Note: * p<0.05, ** p<0.01, *** p<0.001; Cohen's d>0.8 indicates a ''large effect'', and d>0.5 indicates a ''medium effect''. Statistical analysis is 

conducted using a two tailed independent samples t-test, α=0.05. Cohen's d is used to measure the size of the effect. 

Table 7: Ablation results. 

Component PSNR (dB) SSIM IFC 

(A) Baseline Model (SRCNN) 33.86 0.9068 4.79 

(B) Main channel only (without guidance) 34.12 0.9135 4.88 

(C) Main channel+guide channel (without mask) 34.35 0.9182 4.95 

(D) Complete model (main+guide+mask) 34.97 0.9369 5.01 

(E) Complete model (using standard optimizer) 34.68 0.9297 4.98 

 

In Table 6, the improved CNN shows significantly 

better PSNR than all compared methods (p<0.01), 

especially for SRGAN (t=8.91, p<0.001). The difference 

in SSIM with SEPNet is not significant (p=0.062), but the 

PSNR is still significantly higher. The inference time 

effect of the above methods is generally large (d>1.9), and 

the difference in IFC between the improved CNN and 

CSHA is moderate (d=0.92), which verifies the role of 

mask guidance in information retention. Although the 

PSNR of SEPNet is slightly different from the improved 

CNN, its inference time is significantly longer, which does 

not meet real-time requirements. SRGAN is significantly 

inferior to the improved CNN method in all metrics, 

confirming that adversarial training is not suitable for 

scenarios that require high accuracy. To further evaluate 

the performance of each component in the research 

method, the ablation results are analyzed on the Set14 

dataset, and the comparison results are shown in Table 7. 

In Table 7, the improvement from (A) to (B) indicates 

that the improved model is superior to the original 

SRCNN, with a PSNR improvement of 0.26 dB (33.86→

34.12). From (B) to (D), PSNR significantly increases by 

0.85 dB (34.12→34.97), and SSIM increases by 0.0234 

(0.9135→0.9369), demonstrating the core contribution of 

dual-channel mask-guided design. After introducing the 

mask, the PSNR increases by 0.62 dB again (34.35→

34.97), indicating that providing explicit structural priors 

for guide channels is crucial. The improved optimizer can 

help the model converge to a better solution, with a PSNR 

value of 34.97 dB. This result effectively demonstrates the 

effectiveness of each component in the research method. 

5 Discussion 
Aiming at the problem of detail loss and efficiency 

bottleneck in super-resolution reconstruction of DM 

visual images, an improved CNN based on dual-channel 

guidance is proposed. The results showed that the dual-

channel network effectively reduced the iteration loss 

value and significantly accelerated its convergence rate. 

The improved CNN had an accuracy value of over 95% 

on the dataset, with an MAPE value of less than 1.5%. The 
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MAPE values of 20 images using SC and KK were 3.92% 

and 4.12%, respectively, with lower response times 

compared to other comparative algorithms. The improved 

CNN had a 25% reduction in FLOPs, a better inference 

speed (20 ms) than SC (45 ms) and CNN (25 ms), and a 

PSNR value of 32.52 dB. In the image evaluation results, 

the PSNR and SSIM of the improved CNN on the CIFAR-

10 dataset were only 0.15 dB and 0.0016 lower than 

SwinIR, and the MSSIM value was better than other 

methods. The research method maximally preserved the 

structural information of the original image, achieving the 

best information fidelity (8.47). The NQM value of the 

research method (43.98) performed well, increasing by 

9.6% compared to CSHA (40.12), while SRGAN had the 

lowest NQM value (35.44) due to high-frequency artifacts 

introduced during adversarial training. Compared with 

SEPNet, the research method achieved reconstruction 

through one-time forward propagation, avoiding the time 

consumption of progressive methods. Compared with 

SRGAN, the research method outperformed in fidelity and 

was more suitable for DM applications that require high 

accuracy. The improved CNN exhibited better 

information fidelity (8.47) compared to other image 

reconstruction algorithms, and its WPSNR value (60.64 

dB) verified the effectiveness of mask guidance. The 

significant improvement in IFC and NQM indicators 

indicated that the mask-guided channel effectively helped 

the model focus on restoring the structure and edges of the 

image, reducing blurring and artifacts, and meeting the 

needs of human visual perception. Although the improved 

model had slightly more parameters than the original 

SRCNN, its FLOPs (3.5G) were actually lower than some 

more complex models through a lightweight design and 

parallel computing of guide channels. This result achieved 

a good balance between performance and efficiency and 

had the potential for deployment on edge devices. 

6 Conclusion 
The generated DM visual images are basically consistent 

with real images, and have good image quality 

reconstruction effects and quality. The proposed 

lightweight architecture provides feasible technical 

solutions for DM application scenarios that are sensitive 

to computing resources, such as mobile image 

enhancement, real-time video super-resolution, and 

VR/AR content generation. Future research will focus on 

exploring more intelligent mask generation methods and 

trying to use neural structure search and meta-learning to 

automatically optimize the network structure. Dynamic 

pruning technology can be combined to reduce redundant 

parameters and computational burden and improve model 

adaptability. Moreover, this framework can be combined 

with attention mechanisms and multi-modal inputs to 

further enhance the robustness of reconstruction in 

complex scenes and improve the reconstruction ability of 

high-frequency details. 
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