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Developing an intelligent billing system for computing power networks, where dynamic pricing, accurate
demand forecasting, and low-carbon strategies are crucial, this paper introduces the Hierarchical Deep
Reinforcement Learning-Based Multi-Dimensional Intelligent Billing (HDRL-MDIB) Algorithm. The al-
gorithm integrates a Transformer-based task feature extraction network, a hybrid market modeling method
using Graph Neural Networks and Variational Autoencoders, and a Hierarchical Reinforcement Learn-
ing framework to optimize pricing decisions. Robustness enhancement mechanisms, such as adversarial
training and adaptive strategies, ensure stability in dynamic environments. Experiments show that HDRL-
MDIB outperforms existing methods in prediction accuracy, operational efficiency, and real-world busi-
ness scenario deployments. The intelligent billing system suffers from inaccurate demand forecasts and
fixed pricing, making it difficult to adapt to dynamic changes in user demand. This paper introduces the
Hierarchical Deep Reinforcement Learning-Based Multi-Dimensional Intelligent Billing (HDRL-MDIB)
algorithm. Specifically, we propose a Transformer-based task feature extraction network with multi-head
attention mechanisms for accurate temporal pattern recognition. Secondly, we introduce a hybrid market
modeling approach that combines Graph Attention Networks (GAT) for user relationship modeling with
Conditional Variational Autoencoders (CVAE) to accurately predict user needs. Additionally, we propose
a Hierarchical Reinforcement Learning framework with high-level pricing strategy selection and low-level
parameter optimization. The robustness of the system is further enhanced through adversarial training
and adaptive strategy mechanisms. Experiments conducted on two real-world datasets demonstrate that
HDRL-MDIB achieves 15.3% higher prediction accuracy compared to state-of-the-art methods, reduces
operational costs by 22.7%, improves revenue optimization by 18.4%, and decreases carbon emissions by
12.6% compared to traditional rule-based and single-agent reinforcement learning approaches.

Povzetek:

1 Introduction

In recent years, the rapid advancement of emerging tech-
nologies such as artificial intelligence and big data has led
to an surge in the demand for computing power. As a cor-
nerstone of modern infrastructure, computing power net-
works offer users flexible and efficient computing services
by integrating and orchestrating distributed computing re-
sources [1]. In this context, the development of a scientific
and rational billing system has become imperative. Such
a system must not only ensure the profitability of resource
providers but also cater to the diverse and dynamic com-
puting needs of users, addressing a critical challenge in the
efficient management of computing power networks [2].
Current research on billing systems for computing power

networks predominantly explores fourmain directions. The
first direction involves traditional fixed billing models. For
instance, Amazon Web Services (AWS) employs a time-
based billing model [3], while Alibaba Cloud utilizes a
resource package prepayment model [4]. Although these

methods are straightforward to implement, they struggle
to accommodate the dynamic fluctuations in computing
power demand, often resulting in either resource wastage
or inadequate supply to meet user requirements.

The second direction focuses on dynamic pricing mech-
anisms based on market supply and demand. Li et al. [5]
introduced a computing resource scheduling mechanism
grounded in bidding strategies, and Huang et al. [6] de-
veloped an adaptive multi-dimensional pricing framework.
These methods largely depend on empirical rules and sim-
plistic statistical models, which fall short in effectively cap-
turing the dynamic characteristics in real-worldmarket con-
ditions.

A third avenue of research investigates intelligent pric-
ing strategies utilizing reinforcement learning (RL). Ari-
vanandhan et al. [7] applied deep Q-networks to optimize
cloud resource pricing, while Xu et al. [8] proposed a
multi-agent reinforcement learning framework for enhanc-
ing computing resource allocation. However, these RL-
based methods often encounter challenges such as unstable
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training processes and limited generalization capabilities.
Moreover, they frequently overlook the nuanced character-
istics of computing tasks, resulting in pricing strategies that
lack depth and contextual relevance.
The fourth research direction employs game theory to

achieve equilibrium pricing. Zaw et al. [9] explored Nash
equilibrium models within the computing resource market,
and Datar et al. [10] analyzed Stackelberg game models in-
volving multiple stakeholders. Although these theoretical
approaches offer robust mathematical foundations, they are
typically based on idealized assumptions that do not trans-
late well to the complexities and unpredictabilities of actual
market scenarios.
A critical gap in existing research can be identified in

three key areas. First, most current methods focus pri-
marily on resource usage dimensions, neglecting the intrin-
sic properties, temporal dependencies, and heterogeneous
requirements of computing tasks. Second, existing ap-
proaches either rely on oversimplified statistical assump-
tions or unstable single-agent learning paradigms, which
fail to capture the interactions betweenmultiple market par-
ticipants. Third, current solutions design pricing strategy
formulation, demand forecasting, and execution control in
isolation, resulting in suboptimal system-level performance
due to insufficient synergy across components.
To systematically address these challenges, this paper

poses three core research questions: How can we effec-
tively extract and represent multi-dimensional features of
heterogeneous computing tasks to enable context-aware
pricing? How can we simultaneously model deterministic
user relationships and stochastic market demand distribu-
tions to improve forecasting robustness? How can we de-
sign a unified decision-making framework that coordinates
long-term strategic planning with short-term tactical exe-
cution while maintaining stability in volatile market condi-
tions ?
To answer these questions, this paper introduces the

Hierarchical Deep Reinforcement Learning-Based Multi-
Dimensional Intelligent Billing (HDRL-MDIB) algorithm.
First, we develop a Transformer-Based Computing Task
Feature Extraction Network that captures temporal depen-
dencies and task heterogeneity. Second, we propose a hy-
brid market modeling method that combines Graph Atten-
tion Networks (GAT) for deterministic user relationship
modeling with Conditional Variational Autoencoders for
probabilistic demand distribution learning, simultaneously
capturing both structured user interactions and stochastic
demand uncertainty. Third, we employ a Hierarchical Re-
inforcement Learning Framework with an explicit sepa-
ration of high-level strategy planning and low-level exe-
cution control, enabling more efficient exploration of the
pricing strategy space. Fourth, we introduce robustness
enhancement mechanisms incorporating adversarial train-
ing against worst-case market scenarios and adaptive ad-
justment strategies with online learning capabilities, ensur-
ing stability and generalization in volatile real-world mar-
ket environments. Extensive experiments demonstrate that

HDRL-MDIB achieves 15.3% higher prediction accuracy,
22.7% reduction in operational costs, 18.4% improvement
in revenue, and 12.6% reduction in carbon emissions com-
pared to state-of-the-art baselines.

2 Related work

The research on computing power network billing mecha-
nisms can be broadly categorized into four main directions:
fixed billing models, dynamic pricing based on market sup-
ply and demand, intelligent pricing using reinforcement
learning, and equilibrium pricing grounded in game theory
(e.g. Table 1). Traditional billing models for computing
power resources, such as the time-based or resource usage-
based schemes, are simple to implement and easy to un-
derstand. Youssef [1] systematically examined the billing
models for cloud computing services, highlighting the im-
portance of time and resource usage-based billing during
the early stages of cloud computing development. Zhang
et al. [2] analyzed Alibaba Cloud’s prepaid resource pack-
age model, demonstrating its effectiveness in reducing user
costs, though they noted its lack of flexibility. Fixed billing
models are transparent, with clear rules that simplify user
budgeting and cost control, while also keeping operational
and management costs low. However, they fail to adapt to
dynamic changes in computing power demand, often result-
ing in resource waste or insufficient supply.
To address the limitations of fixed billing models, sev-

eral dynamic pricing mechanisms have been proposed. Li
et al. [3] introduced a price-incentive resource auction
mechanism that optimizes resource allocation through eco-
nomic theory, balancing the interests of users and service
providers. Huang et al. [4] developed an adaptive pricing
framework for mobile edge computing, integrating multi-
dimensional QoS evaluation to optimize service quality.
Wang et al. [10] designed a hierarchical dynamic pric-
ing scheme (EIHDP) based on cloud-edge-end collabora-
tion to enhance the real-time performance of pricing deci-
sions through edge intelligence. Zhou et al. [11] proposed
a true combination bilateral auction mechanism to improve
resource allocation efficiency. Yan et al. [12] explored
pricing strategies for service caching and task offloading,
achieving system benefit optimization. Dynamic pricing
methods adjust prices according to market supply and de-
mand, improving resource allocation efficiency. How-
ever, these approaches often over-rely on empirical rules
and simple statistical models, failing to optimize long-term
strategies or capture the complexity of market dynamics.
With advancements in artificial intelligence, intelligent

pricing methods based on RL have garnered significant at-
tention. Arivanandhan et al. [5] applied dual deep rein-
forcement learning to dynamic pricing for heterogeneous
instances, enhancing model performance via hyperparame-
ter optimization. Xu et al. [6] proposed a deep multi-task,
multi-agent reinforcement learning framework to jointly
optimize bidding and pricing strategies for load service
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Table 1: Comparative summary of computing power network billing methods

Category Methodology Advantages Limitations

Fixed Billing Apply predetermined fixed pricing
based on resource types with tiered
subscription plans

Simple to implement; Predictable costs
for users; Low computational overhead

Cannot adapt tomarket fluctuations; Ig-
nores real-time supply-demand dynam-
ics; Poor resource utilization efficiency

Dynamic Pricing Adjust prices based on real-time
supply-demand relationships

Responds to market changes; Improves
resource allocation efficiency

High market volatility; Lacks long-
term strategic planning; Limited con-
sideration of task dependencies

Intelligent Pricing Utilize deep RL to learn optimal pricing
policies through environmental interac-
tion

Adaptive learning capability; Handles
market dynamics; No need for explicit
market modeling

Requires extensive training data; Lacks
systematic task feature modeling; Poor
robustness to market disturbances

Game Theory Approaches Apply game theoretical frameworks to
model strategic interactions

Theoretical soundness; Captures strate-
gic interactions

Difficulty in solving large-scale game;
Limited adaptability to dynamic envi-
ronments

entities. Zhou et al. [9] analyzed the impact of pricing
schemes on cloud computing and distributed systems, em-
phasizing the critical role of intelligent pricing in system
optimization. RL-based methods can adaptively learn and
optimize pricing strategies, continuously improving perfor-
mance. However, these methods face challenges such as
training instability, susceptibility to local optima, limited
generalization ability, and difficulties in addressing new
and unforeseen scenarios.
Game theory offers a theoretical foundation for pricing

in computing power networks. Zaw et al. [7] employed
the generalized Nash equilibrium model to jointly allocate
wireless and computing resources in edge computing, opti-
mizing system performance. Datar et al. [8] explored the
Stackelberg game model for pricing in 5G network slicing,
analyzing the strategic interactions of multiple participants.
While game theory provides rigorous mathematical mod-
els to analyze strategic behavior, it is often based on ide-
alized assumptions that may not reflect the complexities of
real-world, highly dynamic market environments. Conse-
quently, these methods can struggle to cope with the uncer-
tainties and rapidly changing conditions of actual comput-
ing power markets.

3 Methodology
As shown in Figure 1. The computing power profile cap-
tures the essential features and resource demand patterns of
computing tasks. It is represented as a multi-dimensional
feature vector, comprising basic, resource demand, task de-
pendency, and context features. A Transformer-based fea-
ture extraction network is used to extract temporal features
from the input sequence. The network maps the input to a
high-dimensional space using an encoding matrix and po-
sitional encoding, followed by multi-head attention and a
feedforward network to transform the features. A dynamic
prediction model, based on an encoder-decoder architec-
ture, forecasts future power demands. To enhance predic-
tion accuracy, uncertainty modeling is incorporated, gener-
ating a Gaussian distribution for demand predictions. The
model is trained end-to-end using a loss function to mini-

mize prediction errors, improving the model’s ability to ac-
curately forecast computing power requirements.

3.1 Computing power profile building
module

As shown in Algorithm 1, the computing power profile is
designed to characterize the essential features and resource
demand patterns of computing tasks. For any computing
task , its computing power profile is formally defined as a
multi-dimensional feature vector:

Pt = {ft, rt, dt, ct}, (1)

where ft ∈ Rdf represents the basic feature vector of the
task, rt ∈ Rdr represents the resource demand feature vec-
tor, dt ∈ Rdd represents the task dependency feature vector,
and ct ∈ Rdc represents the context feature vector. To ef-
fectively extract the temporal features of computing tasks, a
Transformer-based feature extraction network is employed.
The Transformer is trained on historical task sequences us-
ing a masked language modeling objective to learn general
temporal patterns across 500 epochs with a learning rate of
1 × 10−4 and a batch size of 128. The model deployment
follows a sliding window approach, where at each time step
t, the most recent T = 24 hours of task sequences are fed
into the Transformer to extract contextual representations.
Given an input sequence X = {x1, x2, ..., xn}, the feature
extraction process is as follows: first, the input sequence is
mapped to a high-dimensional representation space:

E = {Wex1 + p1,Wex2 + p2, ...,Wexn + pn}, (2)

where We is a learnable encoding matrix and pi is the po-
sitional encoding for each input element xi. An improved
multi-head attention [15, 16] mechanism is introduced to
calculate the correlations between features. The attention
operation is given by:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (3)

whereQ,K, and V represent the query, key, and value ma-
trices, and dk is the dimension of the query and key vectors.
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Figure 1: Overall calculation process of HDRL-MDIB algorithm

To further transform the extracted features, a feedforward
network (FFN) [17] is applied:

FFN(x) = max(0, xW1 + b1)W2 + b2. (4)

This network is responsible for non-linearly transform-
ing the input features. Based on the extracted features, a
dynamic prediction model for computing power require-
ments is constructed. The temporal features extracted by
the Transformer capture short-term temporal dependencies
through self-attention mechanisms that weight recent ob-
servations more heavily. These temporal representations
are then fed into the encoder-decoder prediction module,
where the encoder processes the historical temporal fea-
tures {h1, h2, . . . , ht} to produce a context vector, and the
decoder uses this context to generate future demand predic-
tions {ŷt+1, ŷt+2, . . . , ŷt+k}. This architecture allows the
model to leverage both local temporal patterns and global
temporal context for improved forecasting accuracy. Given
a time window T , the model predicts the demand at the fu-
ture time t+ k as:

ŷt+k = fθ(Pt−T :t, Gt), (5)

where fθ is the prediction function that uses an encoder-
decoder architecture, with the encoder output being ht and
the decoder output being ŷt+k:

ht = Encoder(Pt−T :t, Gt)ŷt+k = Decoder(ht, ct) (6)

To improve the accuracy of the predictions, an uncertainty
modelingmechanism is introduced, which outputs a predic-
tion distribution rather than a point estimate. The prediction

distribution is modeled as a Gaussian distribution:

p(yt+k|Pt−T :t, Gt) = N (µt+k, σ
2
t+k), (7)

where µt+k and σ2
t+k are the mean and variance of the pre-

dicted distribution, respectively, and are jointly predicted
by the model. The model is trained using an end-to-end ap-
proach, with the loss function focusing on minimizing the
prediction error. The loss function is defined as:

Lpower =

T∑
t=1

∥yt − ŷt∥2 (8)

where yt represents the true value at time t, and ŷt is the
predicted value. This loss function is optimized during the
training process to improve the prediction accuracy of the
model.

3.2 Dynamic balance mechanism of
computing power supply and demand

In the computing power network market, the dynamic
balance between supply and demand is crucial for en-
suring efficient resource allocation. Consider the sup-
ply set S = {s1, s2, . . . , sm} and the demand set D =
{d1, d2, . . . , dn}. The state of the market at time t is ex-
pressed as:

Mt = {St,Dt, Pt, Qt} (9)

wherePt ∈ Rm represents the price vector of each supplier,
Qt ∈ Rm denotes the computing power supply of each sup-
plier, St and Dt represent the currently active suppliers and
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Algorithm 1 HDRL-MDIB Main Framework
Input: Task sequence X = {x1, x2, . . . , xn}, Market
stateM = {S,D, P,Q}, Time horizon T .
Output: Pricing strategy π∗, Predicted demand ŷ,
Market allocation decisions.

1: Initialize transformer encoder parameters We, high-
level policy µ(Sh, O), and low-level policy π(S,A).

2: for episode← 1 to max_episodes do
3: Computing Power Profile Building P .
4: Dynamic Demand Prediction ŷ, µt+k, σ

2
t+k.

5: Construct Bilateral Graph G.
6: Train CVAE (G, c).
7: Estimate Elasticity (S,D, p).
8: Initialize high-level state sh.
9: while not terminal do
10: Select option o.
11: while option o is active do
12: Execute action a1 under option o.
13: Apply pricing action and observe outcome

s′1, r1.
14: Store (s1, a1, r1, s′1) in D1.
15: Update low level policy D1.
16: if β0(s1) > threshold then
18: Terminate option.
19: end if
20: end while
21: Calculate high-level reward rh.
22: Store (sh, ah, rh, s′h) in Dh.
23: Update high-level policy Dh.
24: Robustness enhancement π∗.
25: Joint Loss Optimization Ltotal.
26: end while
27: end for

demanders, respectively. To model the interactions within
the market, a bilateral graph G = (V,E) is constructed,
where the vertex set V = S ∪D, and the edge set E repre-
sents possible transaction relationships between suppliers
and demanders. For any supply-demand pair (si, dj), the
edge weight is defined as:

wij = ϕ(fsi , fdj
). (10)

Here, fsi and fdj
are the feature vectors of the supply side

and the demand side, respectively, and ϕ is the matching
metric function given by:

ϕ(fsi , fdj
) = σ(fT

siWmfdj
), (11)

where Wm is a learnable weight matrix and σ is the sig-
moid function to ensure the weight lies within a specific
range. To aggregate features effectively within this graph
structure, a Graph Attention Network (GAT) [18] is em-
ployed. The feature aggregation at layer l + 1 for node i is
computed as:

h
(l+1)
i = σ

∑
j∈Ni

αijW
(l)h

(l)
j

 , (12)

whereNi denotes the set of neighboring nodes,W (l) is the
weight matrix at layer l, and σ is a non-linear activation
function. The attention coefficients αij are calculated as:

αij =
exp

(
LeakyReLU

(
aT [W (l)h

(l)
i ||W (l)h

(l)
j ]
))

∑
k∈Ni

exp
(
LeakyReLU

(
aT [W (l)h

(l)
i ||W (l)h

(l)
k ]
)) ,

(13)
where a is a learnable weight vector and || denotes concate-
nation. This mechanism allows the model to assign differ-
ent levels of importance to different neighbors, enhancing
the feature representation based on the relevance of each
connection. To capture the inherent uncertainty in the sup-
ply and demand distributions, a Conditional Variational Au-
toencoder (CVAE) [19] is integrated into the model. Given
the market condition c, the CVAE models the distribution
of supply and demand as follows. The encoder network is
defined by:

qϕ(z|x, c) = N (µϕ(x, c), σ
2
ϕ(x, c)) (14)

and the decoder network is given by:

pθ(x|z, c) = N (µθ(z, c), σ
2
θ(z, c)) (15)

The optimization objective for the CVAE is the Evidence
Lower Bound (ELBO) [20]:

LELBO = Eqϕ(z|x,c) [log pθ(x|z, c)]
−DKL (qϕ(z|x, c) ∥ p(z|c)) ,

(16)

whereDKL denotes the Kullback-Leibler divergence [21],
ensuring that the learned latent distribution qϕ(z|x, c) ap-
proximates the true posterior distribution p(z|x, c). To es-
timate the elasticity of supply and demand with respect to
price changes, local linear regression is utilized:

ϵs =
∂ logS
∂ log p

≈ ∆ logS
∆ log p

ϵd =
∂ logD
∂ log p

≈ ∆ logD
∆ log p

. (17)

To improve the robustness of elasticity estimates, kernel-
weighted estimation [22] is introduced:

ϵ̂ =

N∑
i=1

Kh(x− xi)yi

N∑
i=1

Kh(x− xi)

, (18)

whereKh(·) is a kernel function with bandwidth h, provid-
ing a weighted average that emphasizes data points near x,
thereby enhancing the reliability of the elasticity estimates
in the presence of noise or outliers. Finally, a joint loss
function is designed to optimize both the CVAE and the
prediction model simultaneously:

Lmarket = λ1LELBO + λ2Lpred, (19)

where λ1 and λ2 are hyperparameters that balance the con-
tributions of the ELBO loss and the prediction loss Lpred,
respectively. This joint optimization ensures that the model
not only accurately reconstructs the supply and demand dis-
tributions but also makes precise predictions based on these
distributions.
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3.3 Hierarchical reinforcement learning
pricing strategy design

The pricing decision within the computing power network
is modeled as a hierarchical Markov Decision Process [23]
(Hierarchical MDP), which effectively captures the multi-
level decision-making required for dynamic pricing strate-
gies. The hierarchical design, which decomposes pricing
decisions into strategic and tactical components, allows the
model to learn reusable pricing strategies that can transfer
across different market conditions, reducing the need for re-
training when market dynamics shift. Moreover, hierarchi-
cal decomposition reduces the effective action space at each
level, accelerating learning convergence compared to flat
RL approaches, which must explore the full joint space of
strategic and tactical decisions simultaneously. The high-
level strategy space, denoted as Ω, is defined as

Ω = {Sh,Ah,Ph,Rh, γh}, (20)

where Sh is the high-level state space, comprising the ag-
gregate market demand level categorized into five states
very low, low, medium ,high, very high based on total com-
puting power requests, the supply-demand ratio, the mar-
ket price index representing the average price across all ac-
tive suppliers, the demand trend indicator, and the competi-
tor pricing distribution. Ah is the high-level action space,
which defines a set of strategic options or policies that can
be adopted. Ph is the high-level state transition function,
governing how themarket state evolves in response to high-
level actions. Rh is the high-level reward function, which
evaluates the effectiveness of high-level strategies based
on long-term objectives. γh is the high-level discount fac-
tor, determining the importance of future rewards in high-
level decision making. Conversely, the low-level execution
space, denoted as Λ, is defined as:

Λ = {Sl,Al,Pl,Rl, γl}, (21)

where Sl is the low-level state space, including specific
pricing features such as current prices, competitor prices,
and real-time demand. Al is the low-level action space, rep-
resenting specific price adjustments or discounts. Pl is the
low-level state transition function, dictating how the state
changes in response to low-level actions. Rl is the low-
level reward function, which assesses immediate rewards
from pricing actions. γl is the low-level discount factor,
balancing the trade-off between immediate and future re-
wards in low-level decisions. To facilitate the connection
between these two layers, the Option Framework is em-
ployed. An option o ∈ O is defined as a triple:

o = {Io, πo, βo}, (22)

where Io ⊆ S is the initial set of states where the option
can be initiated. πo : S × A → [0, 1] is the internal policy
of the option, specifying the probability of taking action a
in state s. βo : S → [0, 1] is the termination function of

the option, indicating the probability of terminating the op-
tion in state s. The high-level strategy µ is responsible for
selecting options based on the high-level state:

µ : Sh ×O → [0, 1]. (23)

Once an option is selected, the low-level strategy π exe-
cutes specific actions under the chosen option:

π : Sl ×Al → [0, 1]. (24)

A two-stream network architecture is designed to estimate
the value and advantage functions, which are critical for
stable and efficient learning in reinforcement learning. The
state value flow is defined as:

V (slt) = fv(s
l
t; θv) (25)

and the advantage function flow is defined as:

A(slt, a
l
t) = fa(s

l
t, a

l
t; θa). (26)

The Q-value for a state-action pair is then calculated using
the following equation:

Q(slt, a
l
t) = V (slt) +

(
A(slt, a

l
t)−

1

|Al|
∑
a′

A(slt, a
′)

)
(27)

This formulation helps in reducing the variance of the pol-
icy gradient estimates and stabilizes the training process.
The reward functions are carefully designed to balancemul-
tiple objectives. The high-level rewards are a weighted
combination of market efficiency, strategy stability, and
strategy exploration:

rh = λ1rmarket + λ2rstability + λ3rexplorer, (28)

where rmarket quantifies the efficiency of the market oper-
ations. rstability ensures the stability of the pricing strate-
gies over time. rexplorer encourages the exploration of new
strategies to discover potentially better policies. Similarly,
the low-level rewards incorporate immediate benefits, op-
tion completion, and constraint satisfaction:

rl = α1rimmediate + α2roption + α3rconstraint, (29)

where rimmediate reflects the immediate benefits gained
from specific pricing actions. roption rewards the success-
ful completion of an option. rconstraint ensures that the
pricing actions adhere to predefined constraints. Consider-
ing the dynamics and uncertainty inherent in the computing
power market, a robustness enhancement mechanism is in-
tegrated into the hierarchical reinforcement learning frame-
work. The robust optimization objective is defined as:

Rrobust(πθ) = Es∼D
[
min∥δ∥≤ϵEa∼πθ

[Q(s+ δ, a)]
]
,
(30)

where πθ is the pricing strategy output by the hierarchical
reinforcement learning module. D is the state distribution
generated by the supply and demand balance module. ϵ is
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the perturbation constraint range, ensuring that the pertur-
bations do not deviate excessively from the original state.
Based on the predicted distribution from the supply and
demand balance module, adversarial market scenarios are
constructed to test and enhance the robustness of the pric-
ing strategy:

sadv = s+ argmax∥δ∥≤ϵℓ(πθ(s+ δ), a∗) (31)

where a∗ is the current optimal pricing action, and ℓ is a
loss function measuring the discrepancy between the pre-
dicted action and the optimal action. Adversarial training
is then integrated into the hierarchical reinforcement learn-
ing framework to ensure the pricing strategy can withstand
unexpected market conditions:

Lrobust = αLRL + (1− α)Esadv
[ℓ(πθ(sadv), a

∗)] (32)

where LRL is the reinforcement learning loss, and α is a
hyperparameter balancing the two components of the loss
function. To ensure policy stability, the following state
value measure is introduced using the feature representa-
tion from the computing power profile module:

S(πθ) = Es,s′∼D [∥πθ(s)− πθ(s
′)∥ · exp(−γd(fs, fs′))]

(33)
where fs and fs′ are the computing power profile features
corresponding to states s and s′, respectively. d(·, ·) is a
distance metric in the feature space. γ is a smoothing fac-
tor that controls the influence of the feature distance on the
policy stability measure. A constrained optimization prob-
lem is then formulated to minimize the robust loss while
ensuring policy stability:

minθLrobusts.t. S(πθ) ≤ η, (34)

where η is the policy stability threshold, ensuring that the
pricing strategy does not vary excessively in similar market
conditions. Finally, the total loss function for the entire sys-
tem is defined as a weighted sum of the power prediction
loss, market balance loss, and robustness loss:

Ljoint = α1Lpower + α2Lmarket + α3Lrobust, (35)

where α1, α2, and α3 are hyperparameters that balance the
contributions of each component to the overall loss.

4 Experiment and results

4.1 Experiment setup
Dataset: This study utilizes three distinct datasets for ex-
perimental validation. The real business dataset (Indus-
trial Dataset) comes from a large cloud service provider’s
computing power network operation, spanning from Jan-
uary 2023 to December 2023, and includes 1,235,678 task
records from 12,450 users. The dataset contains various
task characteristics (e.g., CPU-intensive, GPU-intensive
tasks), user behavior features (e.g., historical task volume,

payment levels), resource monitoring data (e.g., CPU uti-
lization, network throughput), and transaction records (e.g.,
price, execution time, QoS indicators). The public Google
Cluster Trace dataset, a widely used benchmark dataset,
contains 250,000 tasks from 12,583 machines over 29 days
but lacks pricing data, which we supplement through sim-
ulation using a multi-factor pricing model. Specifically,
we employ a log-normal distribution to model base prices,
calibrated using the mean µ = 2.3 and standard devia-
tion (σ = 0.8) derived from the Industrial Dataset’s price
distribution. The simulated price for each task is calcu-
lated as Psimulated = Pbase × (1 + β1 · CPUnorm + β2 ·
Memorynorm + β3 · Durationnorm + β4 · Priority), where
Pbase ∼ LogNormal(µ, σ), and the resource-normalized
features CPUnorm,Memorynorm,Durationnorm are scaled to
[0, 1]. The coefficients (β1 = 0.35, β2 = 0.25, β3 = 0.20,
β4 = 0.15) are estimated through linear regression on the
Industrial Dataset to reflect the contribution of each re-
source dimension to pricing. Additionally, we introduce
temporal price fluctuations following a sinusoidal pattern
with amplitude 0.15 to simulate peak and off-peak pricing
variations observed in real cloud markets. The simulated
test dataset (Synthetic Dataset) is generated based on the
statistical properties of the real data and includes 1 million
records representing 12 typical market scenarios, such as
demand spikes, resource shortages, and price fluctuations,
used for extreme scenario testing.
Experimental Environment: The hardware configuration

for the experiments includes an Intel Xeon Platinum 8369B
CPU, an NVIDIA RTX 4080 GPU, 512GBDDR4memory,
and 2TB NVMe SSD storage. The software environment
is based on Ubuntu 20.04 LTS operating system, with Py-
Torch 2.0 as the deep learning framework, Python version
3.8, and CUDA version 11.7 for GPU acceleration.
Model Parameter Configuration: The model is config-

ured with specific parameters for each module. Hyperpa-
rameter selection was performed through a systematic grid
search combined with Bayesian optimization across the fol-
lowing ranges: λ1, λ2, λ3 ∈ [0.2, 0.5] with a step size of
0.1;α1, α2, α3 ∈ [0.2, 0.5] with a step size of 0.1; learn-
ing rates ∈ [1 × 10−5, 1 × 10−3] on a logarithmic scale;
and dropout rates ∈ [0.1, 0.5] with a step size of 0.1. The
optimal configuration was determined based on validation
set performance across 50 hyperparameter combinations,
with final values reported as the best-performing set. For
the Computing Power Portrait Module, the Transformer en-
coder consists of 6 layers, with 8 attention heads, a hidden
layer dimension of 512, a dropout rate of 0.1, and a posi-
tion encoding dimension of 256. The architecture design
rationale was selected through ablation studies. The Sup-
ply and Demand Balance Module employs 3 GNN layers, 4
graph attention heads, and a VAE latent variable dimension
of 128, with a 24-hour time window. The Hierarchical Re-
inforcement Learning Module features high-level and low-
level action space dimensions of 16 and 64, respectively,
with discount factors γh = 0.95 and γl = 0.99. The experi-
ence replay buffer size is set to 100,000, and the batch size is
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256. The Robustness Enhancement Module uses an adver-
sarial perturbation range of ϵ = 0.05 and a mixed training
ratio α = 0.7, with a stability constraint threshold η = 0.1.
The model undergoes 200 epochs of pre-training, followed
by 1000 epochs of joint training, with 30 independent ex-
periments to calculate the average and standard deviation
of the results.
Comparison Methods: We compare our proposed

HDRL-MDIB algorithm with several representative meth-
ods: Fixed pricing applies a simple fixed price strategy,
serving as a baseline to assess the necessity of dynamic
pricing; Dynamic pricing adjusts prices based on demand,
representing traditional heuristic methods; Auction imple-
ments a real-time bidding mechanism for market-driven
pricing; DQN uses value function estimation in discrete
action spaces; DDPG is a policy gradient method suited
for continuous action spaces; PPO is an advanced policy
optimization method known for its stability; Nash evalu-
ates multi-participant equilibrium pricing, reflecting strate-
gic interactions between agents; and Stackelberg investi-
gates hierarchical decision-making in pricing, focusing on
leader-follower dynamics.

4.2 Result

Table 2 presents the performance comparison of various
methods across the main evaluation indicators: Average
Return (AR), Market Clearing Rate (MCR), Service Sat-
isfaction (SS), and Computational Overhead (CC/ms). In
the primary Industrial Dataset, HDRL-MDIB achieves an
AR of 0.91, which is 4.6% higher than the optimal bench-
mark method, PPO. Additionally, HDRL-MDIB reduces
computational overhead by 17.2%, lowering the CC/ms
from 58ms to 48ms. To assess statistical significance, we
conducted paired t-tests comparing HDRL-MDIB against
PPO across 30 independent runs. The improvements in
AR (p < 0.001, Cohen’s d = 1.82), MCR (p < 0.001,
d = 1.95), and SS (p < 0.001,d = 2.14) are all statistically
significant at the α = 0.05 level with large effect sizes,
indicating robust and meaningful performance gains. Sim-
ilarly, comparisons against Nash equilibrium pricing show
improvements in AR (p < 0.001, d = 2.08) and MCR
(p < 0.001, d = 1.73). Similar improvements are ob-
served in the Google Cluster Trace dataset. In the synthetic
test dataset, HDRL-MDIB records an AR of 0.89, com-
pared to PPO’s 0.85, and decreases CC/ms from 56ms to
46ms. These improvements can be attributed to the effi-
cient decision-making mechanism of the hierarchical rein-
forcement learning framework and the precise feature ex-
traction capabilities of the computing power portrait mod-
ule. Compared to other RLmethods, HDRL-MDIB demon-
strates superior computational efficiency while maintaining
higher accuracy, suggesting that the hierarchical decompo-
sition reduces redundant computation during inference.
Figure 2 illustrates the price adjustment performance of

different methods under varying market fluctuations. The
traditional fixed price strategy fails to respond to mar-

Table 2: Performance comparison of each method (mean ±
standard deviation)

Industrial Dataset

Method AR MCR SS CC/ms

Fixed 0.72±0.08 0.65±0.07 0.69±0.06 12.5±3.6
Dynamic 0.78±0.06 0.73±0.05 0.76±0.07 18.1±5.7
DQN 0.83±0.05 0.79±0.08 0.81±0.04 45.9±6.2
DDPG 0.85±0.07 0.81±0.06 0.84±0.05 52.6±3.4
PPO 0.87±0.05 0.83±0.04 0.82±0.04 58.2±4.8
Nash 0.85±0.06 0.83±0.05 0.81±0.05 63.8±5.9

HDRL-MDIB 0.91±0.04 0.88±0.03 0.89±0.03 48.7±4.5

Google Cluster Trace dataset

Method AR MCR SS CC/ms

Fixed 0.68±0.09 0.62±0.08 0.65±0.05 10.7±2.9
Dynamic 0.75±0.07 0.73±0.06 0.72±0.06 16.1±4.6
DQN 0.80±0.06 0.76±0.05 0.77±0.07 42.3±4.7
DDPG 0.82±0.05 0.78±0.09 0.79±0.12 48.1±5.8
PPO 0.84±0.06 0.80±0.05 0.81±0.08 55.2±3.9
Nash 0.81±0.08 0.78±0.07 0.78±0.09 59.4±5.0

HDRL-MDIB 0.88±0.05 0.85±0.06 0.86±0.05 46.2±4.3

Synthetic Dataset

Method AR MCR SS CC/ms

Fixed 0.71±0.07 0.64±0.08 0.67±0.07 11.6±3.7
Dynamic 0.76±0.06 0.72±0.10 0.73±0.08 17.2±4.2
DQN 0.81±0.05 0.78±0.07 0.79±0.04 43.5±3.6
DDPG 0.83±0.04 0.83±0.06 0.81±0.05 49.8±4.8
PPO 0.85±0.08 0.79±0.09 0.83±0.07 56.3±5.4
Nash 0.82±0.05 0.84±0.07 0.90±0.06 61.6±3.9

HDRL-MDIB 0.89±0.07 0.86±0.06 0.87±0.05 46.7±5.1

ket changes, demonstrating inflexibility in dynamic en-
vironments. In contrast, dynamic pricing methods ex-
hibit noticeable lag and over-adjustment, while reinforce-
ment learning-based methods adapt to changes but suffer
from significant fluctuations. TheHDRL-MDIB algorithm,
however, displays a smoother price adjustment curve, high-
lighting its enhanced market sensitivity and stability.
Furthermore, Figure 3 showcases the performance of

various methods under different degrees of market distur-
bances. The bar chart depicts disturbance intensity ranging
from 0.1 to 0.5 on the horizontal axis and the relative per-
formance reduction on the vertical axis, thereby illustrat-
ing each method’s robustness. At a disturbance intensity of
0.3, baseline methods experience an average performance
decrease of 35.6%, whereas HDRL-MDIB only sees a re-
duction of 12.3%. This resilience is primarily due to the
adversarial training mechanisms integrated within the ro-
bustness enhancement module.
Scalability is addressed in Table 3, which compares

the performance and computational cost of the proposed
method under varying data scales. The results indicate that
HDRL-MDIB maintains a stable performance advantage
even as the data scale increases, with resource consump-
tion growth rates remaining low. The ”Income Improve-
ment” metric is defined as the relative percentage gain in
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Figure 2: Price adjustment performance under market fluc-
tuations

Figure 3: Performance under different market disturbances

AR achieved by HDRL-MDIB compared to the fixed pric-
ing baseline at each data scale. This metric quantifies the
economic benefit of adopting intelligent pricing over tradi-
tional fixed pricing strategies. Specifically, as the data scale
grows from 10,000 to 500,000 records, the benefits relative
to the baseline decrease by 14.1%, while training time and
memory usage increase moderately, demonstrating the al-
gorithm’s scalability and efficiency in handling large-scale
datasets.

Table 3: Scalability analysis

Data size (10,000 records) Income improvement Training time (h) Memory usage (GB)

10 +15.3% 2.4 18.5
50 +14.8% 6.7 42.6
100 +14.5% 8.6 75.8
500 +14.1% 16.5 125.4

Figure 4 analyzes the contribution of each module to
the overall system performance. The hierarchical rein-
forcement learning module contributes the most, with a
21.3% performance reduction upon removal. The comput-
ing power profile module follows with an 18.5% reduction.
The supply and demand balance module and robustness en-
hancement module contribute 15.7% and 12.4%, respec-
tively. These ablation results validate that decomposing
pricing decisions into strategic and tactical layers improves
decision quality, likely by reducing policy variance. With-
out the computing power profile module, the system lacks
sufficient context to make informed decisions. The compa-

Figure 4: Impact Analysis of Module Removal

Figure 5: Comprehensive pricing performance analysis un-
der various market conditions

rable contributions of the supply-demand balance and ro-
bustness enhancement modules suggest that both market
modeling and adversarial training are necessary, but nei-
ther alone is sufficient. Their combination adapts to both
expected market dynamics and unexpected perturbations.
Additionally, Figure 5 presents the pricing performance

of different methods under various market conditions, in-
cluding oversupply, supply and demand balance, mild ten-
sion, moderate tension, and severe tension. The heat map
reveals that traditional fixed pricing performs adequately
only in balanced market conditions but deteriorates sig-
nificantly in others. Reinforcement learning methods like
DQN and DDPG perform well under moderate tension
but falter in extreme scenarios. In contrast, HDRL-MDIB
maintains stable and superior performance across all con-
ditions, especially under severe supply and demand imbal-
ances, validating the global decision-making capabilities
achieved through hierarchical reinforcement learning and
robustness enhancement.
Figure 6 utilizes a radar chart to depict the importance

weights of each feature dimension in the computing power
portrait module. Feature importance is quantified using the
integrated gradients attribution method, which computes
the contribution of each input feature to the model’s out-
put by integrating gradients along the path from a baseline
input (zero vector) to the actual input. Weights are normal-
ized to sum to 1.0 across all features. This gradient-based
method directly measures how changes in each feature af-
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Figure 6: Feature importance weights in computing power
profile

fect predictions, providing an interpretable and faithful rep-
resentation of the model’s decision-making process. The
computing resource demand feature (weight 0.85) and task
priority (weight 0.82) emerge as the most critical decision
factors, followed by historical execution time (weight 0.78)
and user credit score (weight 0.75). Features such as net-
work bandwidth demand (weight 0.65) and storage demand
(weight 0.62) exhibit relatively lower importance. This dis-
tribution aligns closely with actual business insights, in-
dicating that the feature extraction mechanism effectively
identifies and leverages key business features.
Lastly, Figure 7 illustrates the evolution of high-level

and low-level strategies during the training process. The
high-level strategy (red line) rapidly converges within the
first 170 training rounds and subsequently stabilizes, re-
flecting the swift learning capability of macro decision-
making. The low-level strategy (blue line) shows gradual
improvement, with each significant step corresponding to
major adjustments in the high-level strategy. The interac-
tion points (green circles) between the two curves signify
moments of collaborative optimization between the hier-
archical levels. Compared to single-layer reinforcement
learning (dashed line), the hierarchical structure acceler-
ates convergence speed by approximately 40%, highlight-
ing the advantages of the hierarchical architecture in com-
plex decision-making scenarios, particularly in managing
multi-scale time dependencies.

5 Discussion
HDRL-MDIB employs a hybrid modeling approach com-
bining GAT and CVAE to simultaneously capture the de-
terministic structure of user relationships and the stochas-
tic nature of demand distribution. GAT performs well in
markets with pronounced social network effects. For ex-
ample, in enterprise billing for a video conferencing plat-

Figure 7: Evolution of hierarchical strategies during train-
ing

form, a demonstration effect was observed: when an in-
dustry leader adopts a package, other companies are 3.7
times more likely to follow. GAT captures this diffusion by
learning graph relationships between companies. Attention
analysis shows outbound weights of leader nodes average
0.43, while standard companies average 0.08, automatically
highlighting influential nodes. However, the learned user
graph is highly fragmented, with almost every user as an in-
dependent community. Attention weights are nearly evenly
distributed, reducing the ability to distinguish important
relationships. Additionally, the CVAE latent space col-
lapses with small sample sizes, producing low-diversity de-
mand forecasts. Table shows HDRL-MDIB’s dependence
on data, with performance surpassing PPO only when train-
ing samples exceed 500,000. This indicates HDRL-MDIB
is less suitable for startups or emerging markets, where tra-
ditional methods are more practical, and model complexity
should match data size.

Table 4: Comparison of model performance under different
data scales

Training Sample Size HDRL-MDIB PPO DDPG DQN

10,000 61.3% 78.2% 75.6% 72.4%
50,000 73.8% 82.1% 80.3% 76.9%
200,000 84.5% 85.7% 83.2% 79.6%
500,000 91.2% 87.3% 84.8% 80.1%
1,000,000 96.8% 88.5% 85.4% 81.2%
5,000,000 98.4% 89.2% 86.1% 81.7%
10,000,000 98.9% 89.4% 86.3% 81.8%

6 Conclusion
In this paper, we propose the HDRL-MDIB algorithm,
which integrates Transformer-based task feature extrac-
tion, hybrid market modeling, hierarchical reinforcement
learning, and robustness enhancement mechanisms to op-
timize pricing decisions in computing power networks.
Our extensive experimental results demonstrate that the
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HDRL-MDIB algorithm outperforms existing methods in
terms of prediction accuracy and operational efficiency,
with promising scalability in real-world business scenar-
ios. However, there are some limitations in the current
approach. The model’s reliance on model-based hierar-
chical reinforcement learning, though effective, introduces
computational overhead and requires accurate environment
models. Additionally, the adversarial training mechanism,
while improving robustness, is limited to bounded pertur-
bations within ε = 0.15 and may not generalize to cas-
cading failures in the computing infrastructure. Future
research exploring model-free RL variants, such as Soft
Actor-Critic (SAC) or Maximum a Posteriori Policy Op-
timization (MPO), could reduce reliance on environment
models while maintaining sample efficiency through off-
policy learning.
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ing the current study available from the corresponding au-
thor on reasonable request.
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