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Abstract: Guzheng, a representative of Chinese traditional instrumental music, has long relied on
subjective timbre evaluation without systematic modeling. This study integrates spectrum analysis and
deep learning to construct an automatic sound quality evaluation framework. Audio samples across
multiple playing styles were collected and processed into frequency- and time-domain features, including
spectral centroid, entropy, and energy density. CNN and SVR models were compared in predicting expert
scores. Results show that CNN achieved an MSE of 0.017 (95% CI [0.014, 0.020]) and Rz of 0.942,
significantly outperforming SVR (p < 0.01). Prediction accuracy reached 91.5% in classical style, with
deviations from expert scores within 3.5%. Statistical validation and ANOVA confirmed robustness across
styles. These findings demonstrate that spectral structure plays a leading role in timbre perception and
that deep networks are effective in modeling complex instrumental signals. The framework provides a
quantitative basis for guzheng performance analysis and intelligent teaching feedback, with potential for

broader application.
Povzetek:

1 Introduction

Guzheng, one of the most representative traditional
Chinese string instruments, possesses abundant expressive
techniques and a unique timbral spectrum. Nevertheless,
the evaluation of guzheng tone quality has long relied on
performers’ auditory experience and subjective judgment,
lacking systematic, data-driven analytical methods. With
the rapid progress of digital music processing and artificial
intelligence (Al), the analysis and optimization of
traditional instrumental timbre are gradually transforming
from empirical aesthetics to quantitative modeling. Yet,
due to the large number of unsteady acoustic features—
such as glide, vibrato, and string rolling—the spectral
structure of guzheng sounds exhibits high nonlinearity and
temporal variability, making it difficult for conventional
audio analysis techniques to accurately capture detailed
tonal dynamics. As a result, a systematic framework for
feature extraction and perceptual modeling specific to
national instrumental music remains underdeveloped.

Artificial intelligence has emerged as a transformative
technology across multiple disciplines, offering new
methodologies for feature learning and perceptual
modeling. Zeba et al. (2021) identified Al as a key enabler
of complex pattern recognition and decision-making in
unstructured information systems [1]. Newman et al.
(2022) emphasized that digital technologies and Al are
reshaping evaluation criteria and decision processes,
enabling algorithmic classification and subjective
prediction [2]. Zhai and Liu (2023) demonstrated that Al

innovation significantly enhances knowledge
transformation efficiency in Chinese enterprises,
underscoring the ability of feature learning to redefine
cognitive boundaries [3]. From a systems perspective,
Vannuccini and Prytkova (2024) characterized Al as a
“systematic technical framework” capable of coupling
structure identification with nonlinear interaction
modeling [4], while Ma and Wu (2024) showed that Al-
driven feature reconstruction surpasses traditional
parametric logic and promotes stronger cross-domain
integration [5].

In domain-specific applications, Jin and Li (2025)
applied convolutional neural networks (CNNs) to identify
pottery painting styles, confirming the generalization
ability of convolutional models for highly complex visual
signals [6]. Xu et al. (2025) integrated multiple subjective
and physiological indicators to predict neural activity,
revealing the model’s capability to learn perceptual—
physiological coupling mechanisms [7]. Tilmatine et al.
(2024) employed text-based features to predict affective
response levels, highlighting the dynamic relationship
between multidimensional inputs and subjective
interpretation [8]. Blackwater et al. (2024) discussed
spectrum resource allocation under polycentric systems,
suggesting that localized adaptability is crucial when
modeling individual subjectivity [9]. Vawda et al. (2024)
compared artificial neural networks (ANN) and CNN
models in remote-sensing inversion and confirmed CNN’s
superior performance in spatial feature extraction and
background discrimination [10]. Nasab et al. (2024)
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developed the AFEX-Net adaptive feature extraction
network for medical imaging, emphasizing how structural
mapping accuracy improves model interpretability [11].
Lu et al. (2023) introduced frequency attention
mechanisms into CNN frameworks for medical prediction
tasks, extending the spatial integration concept of spectral
features [12].

At the cognitive level, Corlazzoli et al. (2023) found
that subjective experience plays a decisive role in
cognitive control, providing theoretical support for
perceptual dimension construction in sound modeling
[13]. Farahi and Leth-Steensen (2023) applied latent
feature analysis to classify behavioral characteristics in
autism, stressing the importance of individual variability
in prediction [14]. Zou et al. (2022) examined reward
evaluation using event-related potentials (ERP) and
confirmed that neural indicators can reflect psychological
dynamics in subjective rating mechanisms [15].
Collectively, these studies have advanced the theoretical
foundation for integrating perceptual evaluation with
feature learning; however, few have focused on Chinese
traditional instruments, and almost none have
systematically modeled guzheng timbre through spectral—
perceptual coupling.

To address these gaps, this study constructs a sound
quality modeling and prediction framework for guzheng
performance by integrating spectrum analysis and deep
learning. Multi-style performance samples were collected
and transformed into both frequency-domain and time-
domain representations, capturing timbral richness
through indices such as spectral centroid, spectral entropy,
and energy density. The study introduces a hybrid deep
learning structure that combines convolutional neural
networks and attention mechanisms for spectrogram
feature extraction, and employs a support vector
regression (SVR) model for comparative evaluation of
regression performance. The proposed system aims to
align subjective auditory perception with objective
acoustic attributes through quantitative modeling.The key
contributions of this work are as follows:

(1) Proposes a data-driven timbre modeling pathway
combining spectrum analysis and deep learning,
constructing an automatic evaluation method for guzheng
sound quality.

(2) Establishes a composite sound quality index
system that integrates frequency-, time-, and energy-
domain features to enable comprehensive quantitative
evaluation.

(3) Compares CNN and SVR frameworks to verify
the superiority of deep neural networks in capturing
nonlinear and unsteady acoustic characteristics.

(4) Provides an interpretable and reproducible
methodology for the digital assessment of traditional
instrumental music, supporting intelligent teaching
feedback and performance analysis.

Overall, this research contributes to the digital
transformation of traditional music evaluation by bridging
the gap between perceptual experience and data-driven
modeling. It demonstrates how deep learning and spectral
analysis can jointly serve as an effective framework for
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objective and reproducible sound quality evaluation of
guzheng performance.

Guzheng evaluation in current practice is fragmented
and predominantly experience-driven, which limits
reproducibility and objective comparison across
performers, schools, and recording environments. The
community needs (i) standardized, instrument-aware
descriptors of tone color, (ii) a transparent mapping
between acoustic evidence and perceptual judgments, and
(iii) deployable tools for formative feedback. Our study
addresses these needs by: building a spectral—perceptual
feature space tailored to guzheng techniques (glissando,
tremolo, rolling), learning predictive models that align
with expert ratings, and reporting statistical uncertainty.
Anticipated applications span intelligent pedagogy (real-
time feedback on clarity/brightness/balance), maker
support (quality control of strings, bridges, and
soundboards), performance analytics (style-aware
benchmarking), restoration and archiving (condition
tracking over time), and digital heritage dissemination
(consistent descriptors for large corpora). These
applications justify the necessity of a reproducible, data-
driven framework for guzheng timbre evaluation.

We present the first instrument-specific, reproducible
framework that (a) integrates CNN with attention and
residual blocks for guzheng spectrograms, (b) unifies
expert-guided perceptual labels with multi-domain
acoustic descriptors, and (c) provides full preprocessing
and hyperparameter  disclosure  for  replication.
Key findings: (1) The CNN achieves MSE = 0.017 (95%
Cl [0.014, 0.020]) and R2 = 0.942, significantly
outperforming a tuned RBF-SVR (p < 0.01). (2) Accuracy
reaches 91.5% on classical-style clips, with model-expert
deviations <3.5%. (3) Energy density and spectral centroid
dominate contribution (39.1% and 27.1%), confirming the
leading role of spectral structure in perceived timbre. (4)
ANOVA on residuals indicates style-dependent variance,
highlighting where future data expansion should focus.

2 Materials and methods
2.1 Data acquisition and sample processing

2.1.1 Guzheng performance sample

construction and recording equipment

The common 21-string standard guzheng is selected
as the experimental carrier, and the actual audio samples
covering adagio, medium speed and fast playing styles are
collected. The sample sources include recordings of
professional performers, records of instrumental music
courses in colleges and universities, and some public
playing audio, so as to cover a variety of playing States.
The recording environment is a professional audio
laboratory with low noise interference, and the room
structure meets the requirements of reflected sound
control [16]. The Neumann TLM 103 large diaphragm
condenser microphone is used for mono recording, and the
Universal Audio Apollo Twin audio interface is used to
realize high-fidelity signal input. The recording
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parameters are uniformly set to the sampling rate of
44.1kHz and the quantization accuracy of 24bit to ensure
the accuracy of spectrum analysis and signal reduction.
All recordings are saved in lossless WAV format to avoid
the influence of compression algorithm on sound quality
characteristics. The sample duration is controlled in the
range of 10 to 30 seconds, and each paragraph contains
obvious ups and downs, which is in line with the typical
timbre change characteristics. The types of playing
techniques are recorded through the professional fingering
comparison table, which provides the basis for subsequent
feature labeling and hierarchical analysis [17].

While the current corpus ensures controlled recording
quality, it remains narrow in provenance and style. To
improve generalization, we plan a follow-up collection
spanning additional performance schools (e.g., Henan,
Shandong, Chaozhou/Hakka, Zhejiang traditions), varied
performer seniority, multiple guzheng models and string
sets, and heterogeneous acoustics (anechoic booth,
teaching studio, classroom, recital hall). We will diversify
hardware (large-diaphragm condenser and dynamic
microphones) and placements (20-50 cm, different
angles) and include moderate ambient conditions to test
robustness to domain shift. The target expansion is ~500
additional clips with balanced coverage by style and
environment, enabling more reliable cross-style
evaluation and model calibration.

Input: x(t); sampling rate fs = 44.1 kHz

Output: normalized log-Mel spectrogram S €
RA{128x128}

1: xi1(t) «— Trim_silence(x(t); 8 = —40 dB, tmin = 0.2
S)

2: Xa(t) <« PreEmphasis(xi(t); o = 0.97)
=x[n] —ax[n—1]

//'y[n]
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3: x3(t) « BPF(x2(t); 20 Hz, 8 kHz)
pass filtering

4: Po < NoiseProfile(xs(t); first 0.5 s)

5: xa(t) < SpectralGate(xs(t); Po, r=12dB, t s =7
frames)

6: X «— STFT(xa(t); N = 2048, H = 512, w =
Hamming) // X € C*MNFxT}

// high/low-

7: M « MelBank(20 Hz, 8 kHz, B = 128) /!
M € RMN{BxF}

8 E—M: [X] /I Mel power

9:S raw «— log(E+¢), e¢=1e-10 /' log-
Mel

10: S z « ZScore(S_raw; p TF, o _TF) /!

per-TF normalization

11: S « Resize(S_z; 128x128)
interpolation

12: if training:

13: S «— Augment(S; At € [-50, 50] ms, Ap €
[25, +25] cents)

return S

We used a standard 21-string concert-grade guzheng
(nylon-wound steel strings, tuned to a D-pentatonic
system with customary movable bridges). To document its
acoustic footprint, Figure 1 shows representative time—
frequency visualizations from the same instrument under
controlled conditions: (a) waveform and magnitude
spectrogram (linear frequency) for single-note plucks and
tremolo; (b) log-Mel spectrogram (128 bands, 20 Hz-8
kHz) for short phrases covering glissando and rolling
techniques. These spectrograms illustrate the overtone
series concentration in the mid-high bands and the
transient onsets that drive our feature extraction.

// bilinear

Figure &la-1. Waveform (Pluck - Tremolo)

Figure 1la-1. Waveform (Pluck - Tremolo)
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Figure 1: Guzheng score
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2.1.2 Audio preprocessing and time-
frequency decomposition strategy

The original audio needs to go through a unified
standardized processing flow before input modeling.
Firstly, the mute section is cut and the background noise
is suppressed, and the low-energy region is eliminated by
Spectral Gate algorithm. In order to improve the clarity of
spectrogram, pre-emphasis processing is introduced to
emphasize high-frequency content, and then the signal is
divided into frames by Hamming window function to
ensure time domain continuity and frequency domain
stability. Time-frequency decomposition adopts short-
time Fourier transform (STFT), the window size is set to
2048 points, the frame is shifted to 512 points, and the
two-dimensional complex matrix is output as the basis of
the spectrogram. Further, the complex spectrum amplitude
is converted into logarithmic power spectrum, and the
Log-Mel spectrum is constructed for CNN input. The
frequency band division covers 20Hz to 8kHz to conform
to the range characteristics of guzheng. At the same time,
the original waveform data is reserved for time domain
feature comparison analysis. The processing process is
completed in Python environment, and the core libraries
include Librosa, NumPy and Matplotlib to ensure the
stability and visibility of spectrum output. The generated
spectrogram is normalized in the form of gray image,
which is convenient for deep learning network training
[18].

To enhance reproducibility, we specify the full
preprocessing pipeline. Silence trimming uses an energy
threshold of —40 dB with a minimum segment length of
200 ms. A first-order pre-emphasis filter with o = 0.97 is
applied, followed by a high-pass at 20 Hz and a low-pass
at 8 kHz to match the instrument’s effective band. Spectral
gating removes stationary noise using a noise profile
estimated from the first 0.5 s, with a reduction target of 12
dB and temporal smoothing over 7 frames. Signals are
framed with a Hamming window (2048 samples) and a
hop of 512 samples. We compute 128-band log-Mel
spectrograms from 20 Hz to 8 kHz, z-score normalize each
time—frequency map, and resize to 128x128. For stability
across loudness, waveforms are peak-normalized to —1
dBFS and standardized to zero mean and unit variance.
During training, light augmentation (+50 ms time shift and
+25 cents pitch shift) is used to reduce overfitting without
altering timbral identity.

2.1.3 Label design and subjective score
collection method

In order to construct an effective timbre perception
model, subjective scoring mechanism should be
introduced to label audio samples. Label system setting
includes sound quality dimensions such as clarity,
fullness, penetration and residual sound, and each
dimension is scored on a scale of ten. Scoring samples are
played in random mixed order to avoid the interference of
scoring bias and order effect. Invite 10 experts with music
education background or experience in performing folk
instrumental music for double-blind scoring, and ensure
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that there is no cross-discussion in the judging process.
The final score of each piece of audio is the average value
after extreme value removal, and further fitting training is
carried out with the model output. In order to improve the
consistency of scoring, experts are trained and calibrated
before scoring, and standardized scoring reference
examples are provided. Each label dimension is equipped
with detailed scoring criteria to ensure the logical stability
and reproducibility of scoring. Tag data is stored in
structured JSON format, including sample number, score
dimension, rater ID and score information, which provides
traceability basis for subsequent analysis [19].

Raters were selected using explicit eligibility criteria
to increase the weight of subjective scores as ground truth.
All ten experts held formal music degrees or equivalent
performance diplomas and had >8 years of guzheng
teaching or professional performance experience. Prior to
scoring, each expert completed a brief audiometric
screening (125-8000 Hz within 20 dB HL) and a
calibration session using anchored exemplars aligned to
our rubric for clarity, fullness, penetration, residual sound,
and balance. The panel was balanced in gender and
spanned ages 26-52. Inter-rater reliability was assessed on
a 15-clip pilot set (two passes separated by one week),
yielding Cronbach’s a = 0.87 and ICC (2, 1) = 0.89, after
which the finalized rubric was used for the main
annotation. Scores were collected under double-blind
conditions with randomized clip order to minimize order
and halo effects.

2.1.4 Data cleaning and sample set division

In order to ensure the integrity and reliability of model
training data, the original sample data is systematically
cleaned. Firstly, the samples with signal-to-noise ratio
lower than 20 dB are eliminated to avoid the shift of
spectrum characteristics caused by noise interference.
Secondly, the abnormal recordings such as interrupted
performance and fuzzy string playing are screened out,
and the manual review is carried out according to the
spectrum distribution and time domain waveform. After
cleaning the samples, 253 pieces of valid data were
retained, which were evenly distributed and covered three
main playing styles and six common fingering techniques.
Hierarchical random sampling is adopted for division, and
the proportion of training set, verification set and test set
is set to 70%, 15% and 15%. Ensure that the style
proportion in each subset is consistent with the
distribution of skill categories, and prevent performance
fluctuation caused by sample bias in the model training
stage. In the process of sample division, a unique
identification code is generated for each audio, and all data
paths and labels are recorded in a unified index file, which
is convenient for subsequent data loading and cross-
verification. After the division, the sample data is checked
again to ensure the consistency and accuracy of the data in
the training process [20]. After cleaning, 253 valid WAV
clips remained. We adopted a stratified split of
70%/15%/15%, yielding 177 training clips, 38 validation
clips, and 38 test clips. All counts refer to unique WAV
files.
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2.2 Model building

2.2.1 Spectrogram identification

In this study, the convolution neural network structure
is used to process the Log-Mel spectrogram to extract the
key local features in guzheng audio. CNN has good spatial
perception ability in two-dimensional image recognition,
and can effectively capture timbre texture changes in
spectrogram analysis. The input of the model is a gray-
scale spectrogram with a uniform size of 128x128 pixels
[21]. The features are extracted by two layers of
convolution and pooling, and then the features are
integrated by a fully connected layer. ReLU is used in
activation function to enhance nonlinear expression
ability, and the output layer is continuous value regression
structure. The core operation of the convolution layer is
expressed by (1):

M-1N-1

m _ (1 (1-1) Q]

yi,j - f(zzwm,n'xi+m,j+n+b j (1)
m=0 n=

(-1 0

1+M J+N is the input pixel of the previous layer, ™"

. . (ON
is the current convolution kernel parameter, b is the

bias term, and () represents the activation function.
This structure can effectively learn the local spectral
variation characteristics of audio and improve the model's
ability to recognize complex sound structures.

The CNN operates on 128x128x1 log-Mel inputs.
The backbone consists of Conv (32, 3x3) — BatchNorm
— ReLU — MaxPool(2x2); Conv(64, 3%x3) —
BatchNorm — ReLU — MaxPool(2%2); and Conv(128,
3x3) — BatchNorm — ReLU. A residual block with two
3x3 convolutions and an identity skip preserves fine
spectral detail, after which a lightweight attention module
reweights channels with a reduction ratio of 1:16 to
emphasize salient bands and onsets. Global average
pooling feeds a Dense (64) with ReLU and Dropout
(0.30), followed by a linear output neuron for regression.
We train with Adam (initial Ir = 1e—3, Reduce-on-Plateau
factor 0.5, patience 5), weight decay le—5, He
initialization, and MSE loss; MAE and R2 are tracked as
metrics. Batch size is 32, maximum epochs 120 with early
stopping (patience 15). On our data the model typically
converges near epoch about 100, consistent with the loss
curves reported.

2.2.2 Spectrum feature extraction

On the basis of convolution module, attention
mechanism is introduced to enhance the model's
perception ability of key frequency bands and time points.
The attention module takes the middle feature map output
by convolution as input, generates a weighted response
matrix, and redistributes the channel or spatial position of
the feature map. This process enables the model to actively
pay attention to the areas with dramatic timbre changes in
training and suppress the interference of redundant
background information. In the concrete implementation,
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the weighted scoring mechanism is used to construct the
mathematical expression of attention distribution as (2):

_ w, e, =score(h,,q)

> exp(e;) )
i=1

Here,OCi represents the attention weight for the i the

feature, & is the output of the scoring function, h is the
feature vector, and q is the query vector. The scoring
function constructs weights using the dot product method,
resulting in a weighted sum that is then multiplied point
by point with the original features to form an enhanced
spectral graph. The introduction of the attention
mechanism significantly enhances the model's ability to
capture variations in playing techniques and differences in
timbre texture [22].

2.2.3 Residual structural design of acoustic
characteristics

In order to integrate multi-scale acoustic features, a
residual connection module is introduced into the model
structure. This module allows the original features to be
transmitted directly by bypassing the nonlinear transform
layer, avoiding the problem of gradient disappearance in
deep network and promoting the fusion of frequency
domain and time domain features. The residual structure
is composed of multiple convolution units and jumping
connections, which ensures that the feature flow is not
blocked by layers. We correct Eq. (3) by explicitly
defining the nonlinear transform. Let x denote the input
feature map and O the parameters of the residual unit. The
residual mapping is (3).

y=X+F (x,0) (3)

F (x,0) = o( BN(Conv, , (¢(BN(Conv, , (x)))))
0 is ReLU and BN is batch normalization. The earlier
placeholder ‘mathbff’ referred to F (+) ; we standardize

the notation accordingly. This structure keeps the
consistency of input and output by direct weighting, which
makes the network easier to train and retains fine-grained
local spectrogram information. Combined with the
attention module, the residual mechanism effectively
improves the model's fault tolerance and robustness to
unsteady signals, and adapts to the modeling requirements
of frequency transition and detail modification in guzheng
playing audio [23].

2.2.4 Comparative experiment of Support
Vector Regression (SVR) in sound
quality regression optimization

In order to verify the advantages of neural network in
sound quality prediction, the traditional regression model
is introduced as a control, and the support vector
regression (SVR) is used to build a benchmark regression

prediction framework. SVR is suitable for the high-
dimensional regression task of small and medium-sized
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samples, and can realize the prediction of sound quality
score under the condition of limited feature dimensions.
The input of the model is a statistically quantized acoustic
feature set, including spectral center of gravity, energy
distribution, time domain envelope and spectral entropy.
The output is the predicted value of subjective score of
sound quality. The optimization objective of SVR is as

(4):
- 1 n *
min ~[lwi* +C 3 (& + &) (4)
i=1
subject to (5):
yi—(W #(z) +b) < e+,

(W ¢(z;) +b) -y, Sg_'_é:i*! )
£20,£ 20,

where Z is the acoustic feature vector, @(-) the
kernel mapping, e\varepsilong the tube width, C the

penalty, and gﬁ,ff are different slack variables for

positive and negative deviations (previous text mistakenly
used the same symbol). We use the RBF kernel

K (u, V) =exp(—yIl u—vif) with 7 tuned via cross-

validation as reported.
Where w is the weight vector, C is the penalty factor,

and Xi.and Xi, are slack variables to control the fitting

error. The model uses radial basis kernel function to
improve the nonlinear mapping ability. The experimental
results show that SVR is stable when the data dimension
is low, but the accuracy in nonlinear spectrum mapping
task is obviously lower than that in CNN structure, which
proves the generalization ability and adaptability of deep
network in sound quality modeling task [24].

For SVR we adopt the radial basis function (RBF)
kernel to capture nonlinear relationships between compact
acoustic descriptors and subjective scores. Feature vectors
include spectral centroid, spectral entropy, bandwidth,
high-frequency energy ratio, short-term energy, and
amplitude envelope statistics; all features are standardized
with a training-set-only scaler. Hyperparameters are tuned
via nested 5-fold cross-validation: C € {1, 10, 100,
1000}, € € {0.01,0.05,0.1,0.2},and y € {le—4, le-3,
le—2, ‘scale’}. The best configuration on the validation
folds is C = 100, € = 0.05, y = le—3. We prefer RBF over
linear (which underfits due to clear nonlinearities in
spectral-perceptual mapping) and polynomial (which
showed higher variance and sensitivity to scaling). Results
reported for SVR reflect this tuned setting on the held-out
test split.

2.3 Index construction

2.3.1 Timbre characteristic parameters

As the key dimension of performance expression,
timbre modeling is based on the extraction of high-
dimensional acoustic parameters, and features are defined
by combining frequency domain and time domain to
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ensure accurate characterization of different levels of
sound quality perception. In the frequency domain, the
spectral center of gravity, spectral entropy, bandwidth and
dominant frequency intensity are used to describe the
frequency distribution structure. The spectral center of
gravity reflects the frequency band where the sound center
of gravity is located, and the spectral entropy measures the
uniformity of energy distribution. In the time domain,
short-term energy, waveform change rate and amplitude
envelope are selected, focusing on the recognition of note
starting and ending clarity and pronunciation dynamic
contour. These indicators together construct a quantifiable
feature space, which not only reflects the clarity and
penetration of timbre, but also covers its fullness and
extension. All indicators are normalized to eliminate the
influence of sample length and loudness difference. The
comprehensive use of multi-dimensional features can
effectively improve the model's ability to distinguish
timbre differences and establish a stable quantitative basis
for subjective and objective scoring.

2.3.2 Objective sound quality scoring index
system

The objective sound quality evaluation aims at
reflecting the performance quality through the physical
signal attributes and constructing a computable evaluation
system. This study comprehensively refers to ITU-T P.800
and the common standards in the field of music acoustics,
and establishes five scoring dimensions: clarity, fullness,
brightness, transient response and frequency domain
balance. Each index corresponds to multiple acoustic sub-
features, and each score is obtained by weighting, and then
integrated into the total score. Clarity mainly reflects the
clarity of the beginning and end of notes, which is
quantified by signal-to-noise ratio and energy
concentration. Plumpness is related to spectrum energy
density, and brightness is calculated according to the
proportion of high frequency components. Transient
response captures the sudden onset of sound, and
frequency domain balance evaluates the balance of low,
medium and high frequency energy distribution. The
above scores are guantified from 0 to 10. The objective
scoring system can be used to compare the subjective
score with the predicted output of the model, and can also
be used as a training label to give the model a clear
regression goal and improve the learning effect.

2.3.3 Consistency evaluation of subjective
scoring and expert scoring

Although the subjective scoring process is influenced
by auditory experience, its consistency determines the
quality of model supervision. In order to ensure the
stability of scoring, the expert group scoring method is
adopted, and all raters are trained in a unified way and
scored with reference to scoring examples and evaluation
criteria. In this study, the consistency test strategy is
introduced, and Cronbach's o coefficient and Pearson
correlation coefficient are used to evaluate the consistency
level among raters. The value of a coefficient exceeds
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0.85, indicating that the internal consistency of the score
is good. At the same time, the deviation rate between
expert scoring and group average is calculated, and the
samples with large deviation are eliminated to ensure the
accuracy of the label. The reasons for the differences in
some samples are usually related to the complexity of
playing skills, the duration of lingering sound or the
handling of the head. Therefore, a label weighting strategy
is designed to give higher weight to samples with high
consistency, improve the stability and fitting efficiency of
model training, and take into account the subjective and
objective modeling requirements of sound quality
evaluation.

2.3.4 Model prediction ability evaluation
index

The prediction ability of the model adopts the error
index system commonly used in regression tasks,
including mean square error (MSE), mean absolute error
(MAE) and determining coefficient (R?). In which MSE is
the main optimization objective function, and the square
of deviation between the predicted value and the real label
is expressed as (6):

13 N
MSE:HZ(M _yi)2 (6)
i=1
Where y is the true score of the i th sample, and |
i i

is the model output. MSE is sensitive to outliers and is
suitable for highlighting extreme error punishment. In
order to enhance the generalization evaluation, R2 is also
introduced to measure the fitting degree between the
prediction results and the total variation. In addition, the
stability and consistency of the model on different data
subsets are evaluated by 50% cross-validation. Comparing
the performance of different models under multi-
dimensional indicators can effectively reflect their
generalization ability, learning efficiency and practical
potential, and provide a clear direction for subsequent
optimization.

3 Results and discussion
3.1 Results

3.1.1 Comparison of feature extraction effects
of spectrograms in different frequency
bands

This paper analyzes the energy distribution and
characteristic changes of guzheng performance signals in
different frequency bands. In this study, the samples are
divided into frequency, and core parameters such as main
peak frequency, energy density, spectral center of gravity
and standard deviation are extracted. As shown in Table
1, the samples are divided into four main frequency bands
in the range of 60-60-6000Hz, which correspond to low
frequency, medium frequency, medium frequency and
high frequency regions respectively. The spectrum
characteristics contained in each frequency band show
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obvious differences, reflecting the multidimensional
complexity of guzheng timbre.

All entries in Table 1 are computed from the time-
averaged linear-frequency magnitude spectrum derived

via STFT (window 2048, hop 512, Hamming).
Specifically:
2 IX(H)P
Energy density (dB): 10 log,,| ————— |1, where

2IX(H)F

~BkB _kBK denotes time averaging and B, is the k-th

frequency band (60-300, 300-1000, 1000-2500, 2500
6000 Hz).

Main peak frequency (Hz): argmax g | X(f)].

Spectral centroid (Hz):

Standard deviation: standard deviation of | X(f)]|
within B, .
Note that Table 1 does not use Mel compression; it is

based on the linear-frequency magnitude spectrum to
retain physical interpretability of frequencies.

Table 1: Frequency band division and extraction of main

features
Frequenc Main Ener Spectral  standa
y band peak d WY center of rd
ensity - .
range frequenc (dB) gravity deviat
(H2) y (H2) (Hz) ion
60-300 130.5 -23.7 140.3 18.2
300-
1000 550.2 -16.9 578.6 52.1
1000-
2500 1622.1 -14.4 1703.5 67.9
2500-
6000 3420.8 -18.2 3495.6 89.3

The energy distribution in the low frequency band is
relatively weak, and the spectral center of gravity and the
main peak position are concentrated around 130 Hz, which
mainly reflects the continuous vibration of the bass strings
in the performance. The energy in the middle frequency
band is obviously increased, and the spectral center of
gravity is close to 600 Hz, which shows the trend of
spectral concentration in the basic sound zone of guzheng.
In the middle and high frequency band, the spectral center
of gravity and the main peak continue to move up, and the
energy density is further enhanced, indicating that this
frequency band contains rich overtones and decorative
technique signals. The standard deviation of the high
frequency band has increased significantly, reflecting the
strong fluctuation of the frequency spectrum in this area,
which is mostly related to fast playing and complex
fingering. On the whole, frequency band division provides
data support for subsequent modeling, and also reveals the
hierarchical characteristics of guzheng timbre in spectrum
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distribution, which is helpful for the model to identify
effective frequency bands and assign weights.

3.1.2 Performance comparison experiment
between CNN and SVR model

To test the performance advantages of depth model in
sound quality regression, this study compares the
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performance of CNN and SVR in prediction accuracy and
operational efficiency. As shown in Figure 2, the two
models show significant differences in mean square error
(MSE), determination coefficient ($ r 2 $), model
parameters and reasoning time.

Comparison of prediction accuracy and calculation
efficiency between the two models

= CNN

10

N

029 0,942,864
. 0,010, -

SVR

Parameter quantity (m) Inference duration (ms)

Figure 2: Comparison of prediction accuracy and calculation efficiency between the two models

Both CNN and SVR predict the expert-averaged
subjective timbre score (0-10 scale) for each audio clip.
Figure 2 compares their generalization on the held-out test
set. The CNN achieves MSE = 0.017 (95% CI [0.014,
0.020]) and R2 = 0.942, significantly outperforming a
tuned RBF-SVR (p < 0.01 on paired residuals). Accuracy
for classical-style clips reaches 91.5%, and the model—
expert deviation is <3.5% across test examples. Figure 1.
Comparison of CNN and RBF-SVR on predicting expert-
averaged timbre scores (test set). Bars show mean MSE
and R2; error bars denote 95% Cls from 1,000 bootstrap
resamples. The right panel reports model size and mean
inference time per clip.

3.1.3 Influence of Multi-dimensional features
on subjective score prediction

In order to explore the weight of different acoustic
features in subjective score prediction, this study takes
frequency domain, time domain and energy class features
as input variables to calculate their relative contribution
rates to the prediction output of the model. As shown in
Figure 3, the characteristics of each dimension show
significant differences in the regression output, among
which the spectral center of gravity and energy density
have the most prominent influence on the scoring results.

Contribution rate of each characteristic dimension to
the score

= Contribution rate (%)

F r

Spectral center of
gravity

Waveform change rate Time domain envelope

e I

energy density

Figure 3: Contribution rate of each characteristic dimension to the score
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The contribution rate of energy density is as high as
39.1%, which shows that the model is highly dependent
on the concentration of spectrum energy in scoring
prediction, reflecting that the fullness of timbre has a great
influence on subjective perception. As an important index
to measure the center of gravity of audio frequency
distribution, the spectral center of gravity plays an
important role in clarity and brightness perception,
accounting for 27.1%. The waveform change rate and time
domain envelope reflect the starting and ending
characteristics and transient changes of notes more.
Although the contribution rate is slightly lower, it is still
of supplementary value to the simulation of dynamics and
penetration. On the whole, multi-dimensional acoustic
features are not equal contributions in subjective scoring
prediction, and frequency domain features are dominant,
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while time domain features and dynamic envelope, as
auxiliary components, play a key role in improving the
fine-grained resolution of the model.

3.1.4 Changes of loss function during model
training

Observe the convergence process of the model and the
stability of the training effect. In this study, the loss
changes of CNN and SVR in different training rounds are
recorded, and MSE is used as a unified measure. As shown
in Figure 3, with the progress of training, both models
show a downward trend in loss value, but there are
significant differences in convergence speed and final
accuracy.

Changes of Training Round and Loss

Value
100=1O 50 100
50
10
0,095 0,042 0,061 0,041
_— 0,017 0,029

Training rounds

CNN model MSE

SVR model MSE

Figure 4: Changes of training round and loss value

Figure 4 now displays per-epoch MSE for training
(solid) and validation (dashed); the test MSE (dotted) is
evaluated every 5 epochs and connected for readability.
The x-axis is epoch index (1-120); the y-axis is MSE.
Shaded bands show +1 standard error from 5-fold internal
splits. Figure 3. Training (solid), validation (dashed), and
periodic test (dotted, every 5 epochs) MSE versus epochs
for CNN (top) and RBF-SVR (bottom, shown as epoch-
wise cross-validation proxy). Shaded areas represent £1
SE.

3.1.5 Comparison of model prediction
accuracy under different performance
styles

The timbre of guzheng shows obvious differences
under different playing styles, and whether the model has
good style adaptability has become an important
dimension to evaluate its practicality. In this study, three
common style samples, classical, modern and fusion, are
compared to calculate the prediction accuracy of CNN and
SVR on each subset. As shown in Figure 5, the
performance of the model is different under different
styles.

Pearson correlation analysis

results
O Accuracy (CNN) @ Accuracy (SVR)
0,915 0,843 0,887 0,812 0,862 0,789
| ' l L || 1 || ]l i
classical modern times Genre fusion

Figure 5: Statistics of influence of style types on model performance
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The accuracy of CNN in all styles is above 85%, and
the classical style sample is the best, reaching 91.5%. This
may be related to the clearer characteristic structure and
regular changes of spectrogram in classical performance,
which is helpful to extract stable patterns from
convolution structure. Modern style samples contain more
decorative sounds and non-standard techniques, which
leads to a slight decline in the accuracy of the model, but
still maintains a high level. Because of the frequent
changes between styles, the model recognition is the most
difficult, but CNN is still better than SVR. Compared with
SVR, it shows obvious disadvantages in the three styles,
which shows that the traditional regression model has

weak adaptability to the performance style. The
experimental results show that CNN has good
generalization ability in multi-style performance

modeling, which is suitable for practical teaching and
performance analysis scenarios with diverse styles.

3.1.6 Correlation between spectrum index
and perception score

In order to verify the explanatory power of the
extracted spectral parameters in sound quality perception,
the linear relationship between each spectral feature and
subjective score is calculated by Pearson correlation
analysis. Taking spectral entropy, the ratio of spectral
center of gravity to high frequency energy as
representative indexes, the correlation matrix is
constructed and the significance level is evaluated. As
shown in Table 2, there is a significant positive correlation
between these characteristics and the score, which shows
that they have good reference value in the modeling
process.

Table 2: Pearson correlation analysis results

. Correlation P
Indicator name -
coefficient r value
Spectral entropy 0.724 <0.01
Spectral center of 0.693 <005
gravity ' '
High frequency 0.487 <0.05

energy ratio

The correlation coefficient between spectral entropy
and subjective score is the highest, reaching 0.724, and at
the significance level p < 0.01, which shows that the more
uniform the sound energy distribution, the richer and more
harmonious the sound quality is perceived. As the second
highest correlation term, the spectral center of gravity has
a r value of 0.693, which shows that the sound with higher
frequency center of gravity often has stronger penetration
and brightness, and the score is improved accordingly.
Although the correlation of high-frequency energy ratio is
slightly low, it is still statistically significant, indicating
that there is a positive relationship between high-
frequency enhancement and subjective "brightness"
evaluation. The results support the core role of spectral
features in sound quality modeling, confirm the analysis
conclusion of feature contribution rate, and provide data
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basis for the selection of model input features, which is
helpful to improve the explanatory power and physical
rationality of the model.

3.1.7 Consistency test of expert score and
model score

In order to evaluate the consistency between the
predicted values of the model and the subjective scores of
human beings, this study compares the average scores of
experts with the output results of CNN model, calculates
the deviation ratio and analyzes the consistency
distribution trend. As shown in Table 3, representative
sample numbers are selected for comparative analysis to
show the deviation between the two groups.

Table 3: Comparison of consistency of subjective and
objective sound quality scores

Sample  Expert rating qugl Deviation
prediction
number (average score) value (%)
score
#001 8.7 8.4 -0.034
#005 9.3 9.1 -0.022
#009 7.6 7.5 -0.013

Consistency statistics are computed on the entire test
set (n = 38 clips). Table 3 lists three representative
examples; aggregate results (mean absolute deviation and
distribution) are computed over all n = 38 test clips. The
prediction value of CNN model for each sample is highly
close to the average score of experts, and all deviations are
controlled within 3.5%. Among them, sample #001 has the
largest deviation, only -3.4%, while sample #009 has the
closest prediction, with an error of -1.3%. The overall
deviation distribution is balanced, and there is no obvious
trend of overestimation or underestimation, which shows
that the learning results of the model in the subjective
dimension are reliable. In addition, by Shapiro-Wilk
normality test and mean T test, it is found that the model
score has no systematic deviation, which meets the
requirements of statistical stability. This result shows that
CNN model not only has regression ability, but also can
effectively learn and approach human subjective
evaluation logic, and has practical usability. In the follow-
up system, the scoring module can be used as an auxiliary
feedback mechanism to improve the automation level of
guzheng teaching and performance analysis.

3.1.8 Statistical validation and robustness

analysis

To ensure reliability beyond point estimates of MSE
and R2, we computed 95% confidence intervals using
bootstrapped resampling (1000 iterations) on the test set.
For CNN, the MSE 95% CI was [0.014, 0.020], and the R?
Cl was [0.91, 0.95], confirming the stability of the results.
Paired t-tests comparing CNN and SVR residuals
indicated significant differences in predictive accuracy (p
< 0.01), providing statistical evidence for CNN’s
advantage. To evaluate robustness across stylistic
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variation, an ANOVA was conducted on prediction errors
grouped by style (classical, modern, fusion). Results
showed significant variance (F = 4.73, p < 0.05), with
fusion style producing larger residuals. This reflects the
greater complexity of non-standardized techniques.
Overfitting risk was assessed by comparing training and
validation loss curves, showing convergence without
divergence, though minor early-stage oscillations were
observed. We conclude that the CNN framework
demonstrates stable generalization under varied input
conditions, but future work should extend validation to
larger and more diverse corpora.

3.2 Discussion

This paper studies the modeling of guzheng sound
quality from several dimensions, such as spectrum
characteristics, model performance, feature explanatory
power and subjective and objective consistency. The
results show that there are obvious differences in
spectrogram characteristics in different frequency bands.
The middle and high frequency bands are energy-
intensive, and the spectral center of gravity and standard
deviation are significantly increased, indicating that the
performance dynamics are mainly concentrated in this
frequency domain. The high-frequency part is highly
volatile, which is related to fast performance and complex
techniques. Therefore, the revealing model should pay
attention to the information density of specific frequency
bands.

In model comparison, CNN structure shows strong
predictive ability. The mean square error is 0.017, which
is better than 0.029 of SVR, and the value of $r 2 $ is also
nearly 0.08 higher, which shows that the deep network has
more advantages in modeling the complex mapping
relationship between nonlinear features and sound quality
scores. Although the reasoning time is slightly longer than
SVR, it is still within the tolerance range of practical
application, which proves that it achieves a good balance
between performance and efficiency.

In the feature contribution analysis, energy density
and spectral center of gravity together constitute the
dominant input of the model, with the contribution rates
of 39.1% and 27.1% respectively. The dominance of
spectral characteristics shows that the model's judgment of
timbre is highly dependent on the frequency domain
structure, and the waveform change rate and time domain
envelope are used as complementary dimensions to
improve the model's ability to capture the dynamics of
notes. The Pearson correlation coefficient between
spectral entropy and score is 0.724, which further
confirms the high consistency between frequency
distribution uniformity and sound quality perception.

The deviation between the model score and the expert
score is all controlled within 3.5%, which reflects the high
subjective consistency of the algorithm output. Especially
in classical style, the prediction accuracy of CNN reaches
91.5%, which is significantly better than that of modern
and fusion styles, indicating that the model is more stable
in signals with clear structure and regular spectrogram.
The influence of style differences on model accuracy also
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suggests that structural balance and style coverage should
be further optimized in the composition of training
samples. The model has achieved positive results in
spectrum identification, score prediction and perceptual
consistency. The importance of frequency domain features
runs through all experimental results, which proves its
core position in guzheng sound quality modeling.
Compared with traditional methods, deep network has
higher expressive ability when dealing with unsteady
signals and complex styles, and has good expansion
potential.

Although the present work represents a novel
application of CNN to guzheng timbre analysis, it should
be positioned within the broader context of Al in music
technology. The contribution lies in adapting spectrum-
based deep learning models to a traditional instrument,
thereby advancing the digitalization of subjective
evaluation. However, this effort is incremental rather than
groundbreaking in the field of computational musicology.
To strengthen impact, future research should provide
deeper methodological transparency, enlarge dataset
diversity across instruments and environments, and
employ rigorous statistical analysis. Maintaining
academic reporting standards will enhance the credibility
and extend the relevance of this cross-disciplinary
exploration.

4 Conclusion

This paper studies the timbre of guzheng performance
as the core object, and constructs a timbre modeling
method combining spectrum analysis and artificial
intelligence. In the method design, CNN and SVR are
compared to realize the continuous value prediction of
subjective score. Multi-dimensional frequency domain
and time domain features are introduced to construct a
guantitative index system covering energy, dynamics and
structure. The experimental results show that CNN is
obviously superior to SVR in prediction accuracy and
generalization ability, and shows stronger modeling
ability of complex spectrogram. In the aspect of spectral
feature extraction, the energy and spectral center of
gravity in the middle and high frequency bands have been
significantly improved, which has become an important
basis for influencing subjective scoring. The characteristic
contribution analysis also verifies the dominant position
of energy density and spectral center of gravity. The
deviation between the model score and the expert score is
controlled within 3.5%, which shows that the prediction
system has good subjective consistency and is suitable for
practical scenes such as performance evaluation and
intelligent feedback.

Although the research has achieved initial results,
there are still some limitations. First, the sample
composition is relatively concentrated, and it has not
covered a wider range of regional schools, performance
styles and guzheng varieties. Secondly, although the
subjective score has been standardized, there is still a
perceptual bias between reviewers, which affects the
absolute stability of the model training label. In addition,
although the model structure integrates attention and
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residual mechanism, it is still difficult to identify extreme
unsteady signals such as staccato and sliding sound. The
above shortcomings suggest that the system needs to
further optimize the sample diversity and feature
robustness in actual deployment.

Future research can be carried out from three aspects.
The first is to expand the sample source, covering different
guzheng  models, recording environments and
performance scenes, and improve the generalization
ability of the model. The second is to introduce
multimodal information, such as video, gesture trajectory
and trigger speed, to build a more comprehensive sound
quality perception mechanism. The third is to try the
structures such as Transformer and Mixed Frequency
Convolution Network at the model level, and introduce the
transfer learning strategy to meet the needs of small
sample and high complexity modeling. Through multi-
source fusion and model evolution, it is expected to
promote the sound quality modeling of guzheng from
basic research to engineering practice, and enhance the
technical depth and cultural value of intelligent analysis of
national instrumental music.
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