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Abstract: Guzheng, a representative of Chinese traditional instrumental music, has long relied on 

subjective timbre evaluation without systematic modeling. This study integrates spectrum analysis and 

deep learning to construct an automatic sound quality evaluation framework. Audio samples across 

multiple playing styles were collected and processed into frequency- and time-domain features, including 

spectral centroid, entropy, and energy density. CNN and SVR models were compared in predicting expert 

scores. Results show that CNN achieved an MSE of 0.017 (95% CI [0.014, 0.020]) and R² of 0.942, 

significantly outperforming SVR (p < 0.01). Prediction accuracy reached 91.5% in classical style, with 

deviations from expert scores within 3.5%. Statistical validation and ANOVA confirmed robustness across 

styles. These findings demonstrate that spectral structure plays a leading role in timbre perception and 

that deep networks are effective in modeling complex instrumental signals. The framework provides a 

quantitative basis for guzheng performance analysis and intelligent teaching feedback, with potential for 

broader application. 

Povzetek:  

 

1 Introduction 
Guzheng, one of the most representative traditional 

Chinese string instruments, possesses abundant expressive 

techniques and a unique timbral spectrum. Nevertheless, 

the evaluation of guzheng tone quality has long relied on 

performers’ auditory experience and subjective judgment, 

lacking systematic, data-driven analytical methods. With 

the rapid progress of digital music processing and artificial 

intelligence (AI), the analysis and optimization of 

traditional instrumental timbre are gradually transforming 

from empirical aesthetics to quantitative modeling. Yet, 

due to the large number of unsteady acoustic features—

such as glide, vibrato, and string rolling—the spectral 

structure of guzheng sounds exhibits high nonlinearity and 

temporal variability, making it difficult for conventional 

audio analysis techniques to accurately capture detailed 

tonal dynamics. As a result, a systematic framework for 

feature extraction and perceptual modeling specific to 

national instrumental music remains underdeveloped. 

Artificial intelligence has emerged as a transformative 

technology across multiple disciplines, offering new 

methodologies for feature learning and perceptual 

modeling. Zeba et al. (2021) identified AI as a key enabler 

of complex pattern recognition and decision-making in 

unstructured information systems [1]. Newman et al. 

(2022) emphasized that digital technologies and AI are 

reshaping evaluation criteria and decision processes, 

enabling algorithmic classification and subjective 

prediction [2]. Zhai and Liu (2023) demonstrated that AI  

 

innovation significantly enhances knowledge 

transformation efficiency in Chinese enterprises, 

underscoring the ability of feature learning to redefine 

cognitive boundaries [3]. From a systems perspective, 

Vannuccini and Prytkova (2024) characterized AI as a 

“systematic technical framework” capable of coupling 

structure identification with nonlinear interaction 

modeling [4], while Ma and Wu (2024) showed that AI-

driven feature reconstruction surpasses traditional 

parametric logic and promotes stronger cross-domain 

integration [5]. 

In domain-specific applications, Jin and Li (2025) 

applied convolutional neural networks (CNNs) to identify 

pottery painting styles, confirming the generalization 

ability of convolutional models for highly complex visual 

signals [6]. Xu et al. (2025) integrated multiple subjective 

and physiological indicators to predict neural activity, 

revealing the model’s capability to learn perceptual–

physiological coupling mechanisms [7]. Tilmatine et al. 

(2024) employed text-based features to predict affective 

response levels, highlighting the dynamic relationship 

between multidimensional inputs and subjective 

interpretation [8]. Blackwater et al. (2024) discussed 

spectrum resource allocation under polycentric systems, 

suggesting that localized adaptability is crucial when 

modeling individual subjectivity [9]. Vawda et al. (2024) 

compared artificial neural networks (ANN) and CNN 

models in remote-sensing inversion and confirmed CNN’s 

superior performance in spatial feature extraction and 

background discrimination [10]. Nasab et al. (2024) 
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developed the AFEX-Net adaptive feature extraction 

network for medical imaging, emphasizing how structural 

mapping accuracy improves model interpretability [11]. 

Lu et al. (2023) introduced frequency attention 

mechanisms into CNN frameworks for medical prediction 

tasks, extending the spatial integration concept of spectral 

features [12]. 

At the cognitive level, Corlazzoli et al. (2023) found 

that subjective experience plays a decisive role in 

cognitive control, providing theoretical support for 

perceptual dimension construction in sound modeling 

[13]. Farahi and Leth-Steensen (2023) applied latent 

feature analysis to classify behavioral characteristics in 

autism, stressing the importance of individual variability 

in prediction [14]. Zou et al. (2022) examined reward 

evaluation using event-related potentials (ERP) and 

confirmed that neural indicators can reflect psychological 

dynamics in subjective rating mechanisms [15]. 

Collectively, these studies have advanced the theoretical 

foundation for integrating perceptual evaluation with 

feature learning; however, few have focused on Chinese 

traditional instruments, and almost none have 

systematically modeled guzheng timbre through spectral–

perceptual coupling. 

To address these gaps, this study constructs a sound 

quality modeling and prediction framework for guzheng 

performance by integrating spectrum analysis and deep 

learning. Multi-style performance samples were collected 

and transformed into both frequency-domain and time-

domain representations, capturing timbral richness 

through indices such as spectral centroid, spectral entropy, 

and energy density. The study introduces a hybrid deep 

learning structure that combines convolutional neural 

networks and attention mechanisms for spectrogram 

feature extraction, and employs a support vector 

regression (SVR) model for comparative evaluation of 

regression performance. The proposed system aims to 

align subjective auditory perception with objective 

acoustic attributes through quantitative modeling.The key 

contributions of this work are as follows: 

(1) Proposes a data-driven timbre modeling pathway 

combining spectrum analysis and deep learning, 

constructing an automatic evaluation method for guzheng 

sound quality. 

(2) Establishes a composite sound quality index 

system that integrates frequency-, time-, and energy-

domain features to enable comprehensive quantitative 

evaluation. 

(3) Compares CNN and SVR frameworks to verify 

the superiority of deep neural networks in capturing 

nonlinear and unsteady acoustic characteristics. 

(4) Provides an interpretable and reproducible 

methodology for the digital assessment of traditional 

instrumental music, supporting intelligent teaching 

feedback and performance analysis. 

Overall, this research contributes to the digital 

transformation of traditional music evaluation by bridging 

the gap between perceptual experience and data-driven 

modeling. It demonstrates how deep learning and spectral 

analysis can jointly serve as an effective framework for 

objective and reproducible sound quality evaluation of 

guzheng performance. 

Guzheng evaluation in current practice is fragmented 

and predominantly experience-driven, which limits 

reproducibility and objective comparison across 

performers, schools, and recording environments. The 

community needs (i) standardized, instrument-aware 

descriptors of tone color, (ii) a transparent mapping 

between acoustic evidence and perceptual judgments, and 

(iii) deployable tools for formative feedback. Our study 

addresses these needs by: building a spectral–perceptual 

feature space tailored to guzheng techniques (glissando, 

tremolo, rolling), learning predictive models that align 

with expert ratings, and reporting statistical uncertainty. 

Anticipated applications span intelligent pedagogy (real-

time feedback on clarity/brightness/balance), maker 

support (quality control of strings, bridges, and 

soundboards), performance analytics (style-aware 

benchmarking), restoration and archiving (condition 

tracking over time), and digital heritage dissemination 

(consistent descriptors for large corpora). These 

applications justify the necessity of a reproducible, data-

driven framework for guzheng timbre evaluation. 

We present the first instrument-specific, reproducible 

framework that (a) integrates CNN with attention and 

residual blocks for guzheng spectrograms, (b) unifies 

expert-guided perceptual labels with multi-domain 

acoustic descriptors, and (c) provides full preprocessing 

and hyperparameter disclosure for replication. 

Key findings: (1) The CNN achieves MSE = 0.017 (95% 

CI [0.014, 0.020]) and R² = 0.942, significantly 

outperforming a tuned RBF-SVR (p < 0.01). (2) Accuracy 

reaches 91.5% on classical-style clips, with model–expert 

deviations ≤3.5%. (3) Energy density and spectral centroid 

dominate contribution (39.1% and 27.1%), confirming the 

leading role of spectral structure in perceived timbre. (4) 

ANOVA on residuals indicates style-dependent variance, 

highlighting where future data expansion should focus. 

2 Materials and methods 

2.1 Data acquisition and sample processing 

2.1.1 Guzheng performance sample 

construction and recording equipment 

The common 21-string standard guzheng is selected 

as the experimental carrier, and the actual audio samples 

covering adagio, medium speed and fast playing styles are 

collected. The sample sources include recordings of 

professional performers, records of instrumental music 

courses in colleges and universities, and some public 

playing audio, so as to cover a variety of playing States. 

The recording environment is a professional audio 

laboratory with low noise interference, and the room 

structure meets the requirements of reflected sound 

control [16]. The Neumann TLM 103 large diaphragm 

condenser microphone is used for mono recording, and the 

Universal Audio Apollo Twin audio interface is used to 

realize high-fidelity signal input. The recording 
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parameters are uniformly set to the sampling rate of 

44.1kHz and the quantization accuracy of 24bit to ensure 

the accuracy of spectrum analysis and signal reduction. 

All recordings are saved in lossless WAV format to avoid 

the influence of compression algorithm on sound quality 

characteristics. The sample duration is controlled in the 

range of 10 to 30 seconds, and each paragraph contains 

obvious ups and downs, which is in line with the typical 

timbre change characteristics. The types of playing 

techniques are recorded through the professional fingering 

comparison table, which provides the basis for subsequent 

feature labeling and hierarchical analysis [17]. 

While the current corpus ensures controlled recording 

quality, it remains narrow in provenance and style. To 

improve generalization, we plan a follow-up collection 

spanning additional performance schools (e.g., Henan, 

Shandong, Chaozhou/Hakka, Zhejiang traditions), varied 

performer seniority, multiple guzheng models and string 

sets, and heterogeneous acoustics (anechoic booth, 

teaching studio, classroom, recital hall). We will diversify 

hardware (large-diaphragm condenser and dynamic 

microphones) and placements (20–50 cm, different 

angles) and include moderate ambient conditions to test 

robustness to domain shift. The target expansion is ~500 

additional clips with balanced coverage by style and 

environment, enabling more reliable cross-style 

evaluation and model calibration. 

Input: x(t); sampling rate fs = 44.1 kHz 

Output: normalized log-Mel spectrogram S ∈ 

ℝ^{128×128} 

1: x₁(t) ← Trim_silence(x(t); θ = −40 dB, τmin = 0.2 

s) 

2: x₂(t) ← PreEmphasis(x₁(t); α = 0.97)           // y[n] 

= x[n] − α x[n−1] 

3: x₃(t) ← BPF(x₂(t); 20 Hz, 8 kHz)               // high/low-

pass filtering 

4: P₀ ← NoiseProfile(x₃(t); first 0.5 s) 

5: x₄(t) ← SpectralGate(x₃(t); P₀, r = 12 dB, τ_s = 7 

frames) 

6: X ← STFT(x₄(t); N = 2048, H = 512, w = 

Hamming) // X ∈ ℂ^{F×T} 

7: M ← MelBank(20 Hz, 8 kHz, B = 128)              // 

M ∈ ℝ^{B×F} 

8: E ← M · |X|²                                    // Mel power 

9: S_raw ← log( E + ε ),   ε = 1e−10               // log-

Mel 

10: S_z ← ZScore(S_raw; μ_TF, σ_TF)                // 

per-TF normalization 

11: S ← Resize(S_z; 128×128)                       // bilinear 

interpolation 

12: if training: 

13:     S ← Augment(S; Δt ∈ [−50, 50] ms, Δp ∈ 

[−25, +25] cents) 

return S 

We used a standard 21-string concert-grade guzheng 

(nylon-wound steel strings, tuned to a D-pentatonic 

system with customary movable bridges). To document its 

acoustic footprint, Figure 1 shows representative time–

frequency visualizations from the same instrument under 

controlled conditions: (a) waveform and magnitude 

spectrogram (linear frequency) for single-note plucks and 

tremolo; (b) log-Mel spectrogram (128 bands, 20 Hz–8 

kHz) for short phrases covering glissando and rolling 

techniques. These spectrograms illustrate the overtone 

series concentration in the mid–high bands and the 

transient onsets that drive our feature extraction.

 
Figure 1: Guzheng score
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2.1.2 Audio preprocessing and time-

frequency decomposition strategy 

The original audio needs to go through a unified 

standardized processing flow before input modeling. 

Firstly, the mute section is cut and the background noise 

is suppressed, and the low-energy region is eliminated by 

Spectral Gate algorithm. In order to improve the clarity of 

spectrogram, pre-emphasis processing is introduced to 

emphasize high-frequency content, and then the signal is 

divided into frames by Hamming window function to 

ensure time domain continuity and frequency domain 

stability. Time-frequency decomposition adopts short-

time Fourier transform (STFT), the window size is set to 

2048 points, the frame is shifted to 512 points, and the 

two-dimensional complex matrix is output as the basis of 

the spectrogram. Further, the complex spectrum amplitude 

is converted into logarithmic power spectrum, and the 

Log-Mel spectrum is constructed for CNN input. The 

frequency band division covers 20Hz to 8kHz to conform 

to the range characteristics of guzheng. At the same time, 

the original waveform data is reserved for time domain 

feature comparison analysis. The processing process is 

completed in Python environment, and the core libraries 

include Librosa, NumPy and Matplotlib to ensure the 

stability and visibility of spectrum output. The generated 

spectrogram is normalized in the form of gray image, 

which is convenient for deep learning network training 

[18]. 

To enhance reproducibility, we specify the full 

preprocessing pipeline. Silence trimming uses an energy 

threshold of −40 dB with a minimum segment length of 

200 ms. A first-order pre-emphasis filter with α = 0.97 is 

applied, followed by a high-pass at 20 Hz and a low-pass 

at 8 kHz to match the instrument’s effective band. Spectral 

gating removes stationary noise using a noise profile 

estimated from the first 0.5 s, with a reduction target of 12 

dB and temporal smoothing over 7 frames. Signals are 

framed with a Hamming window (2048 samples) and a 

hop of 512 samples. We compute 128-band log-Mel 

spectrograms from 20 Hz to 8 kHz, z-score normalize each 

time–frequency map, and resize to 128×128. For stability 

across loudness, waveforms are peak-normalized to −1 

dBFS and standardized to zero mean and unit variance. 

During training, light augmentation (±50 ms time shift and 

±25 cents pitch shift) is used to reduce overfitting without 

altering timbral identity. 

2.1.3 Label design and subjective score 

collection method 

In order to construct an effective timbre perception 

model, subjective scoring mechanism should be 

introduced to label audio samples. Label system setting 

includes sound quality dimensions such as clarity, 

fullness, penetration and residual sound, and each 

dimension is scored on a scale of ten. Scoring samples are 

played in random mixed order to avoid the interference of 

scoring bias and order effect. Invite 10 experts with music 

education background or experience in performing folk 

instrumental music for double-blind scoring, and ensure 

that there is no cross-discussion in the judging process. 

The final score of each piece of audio is the average value 

after extreme value removal, and further fitting training is 

carried out with the model output. In order to improve the 

consistency of scoring, experts are trained and calibrated 

before scoring, and standardized scoring reference 

examples are provided. Each label dimension is equipped 

with detailed scoring criteria to ensure the logical stability 

and reproducibility of scoring. Tag data is stored in 

structured JSON format, including sample number, score 

dimension, rater ID and score information, which provides 

traceability basis for subsequent analysis [19]. 

Raters were selected using explicit eligibility criteria 

to increase the weight of subjective scores as ground truth. 

All ten experts held formal music degrees or equivalent 

performance diplomas and had ≥8 years of guzheng 

teaching or professional performance experience. Prior to 

scoring, each expert completed a brief audiometric 

screening (125–8000 Hz within 20 dB HL) and a 

calibration session using anchored exemplars aligned to 

our rubric for clarity, fullness, penetration, residual sound, 

and balance. The panel was balanced in gender and 

spanned ages 26–52. Inter-rater reliability was assessed on 

a 15-clip pilot set (two passes separated by one week), 

yielding Cronbach’s α = 0.87 and ICC (2, 1) = 0.89, after 

which the finalized rubric was used for the main 

annotation. Scores were collected under double-blind 

conditions with randomized clip order to minimize order 

and halo effects. 

2.1.4 Data cleaning and sample set division 

In order to ensure the integrity and reliability of model 

training data, the original sample data is systematically 

cleaned. Firstly, the samples with signal-to-noise ratio 

lower than 20 dB are eliminated to avoid the shift of 

spectrum characteristics caused by noise interference. 

Secondly, the abnormal recordings such as interrupted 

performance and fuzzy string playing are screened out, 

and the manual review is carried out according to the 

spectrum distribution and time domain waveform. After 

cleaning the samples, 253 pieces of valid data were 

retained, which were evenly distributed and covered three 

main playing styles and six common fingering techniques. 

Hierarchical random sampling is adopted for division, and 

the proportion of training set, verification set and test set 

is set to 70%, 15% and 15%. Ensure that the style 

proportion in each subset is consistent with the 

distribution of skill categories, and prevent performance 

fluctuation caused by sample bias in the model training 

stage. In the process of sample division, a unique 

identification code is generated for each audio, and all data 

paths and labels are recorded in a unified index file, which 

is convenient for subsequent data loading and cross-

verification. After the division, the sample data is checked 

again to ensure the consistency and accuracy of the data in 

the training process [20]. After cleaning, 253 valid WAV 

clips remained. We adopted a stratified split of 

70%/15%/15%, yielding 177 training clips, 38 validation 

clips, and 38 test clips. All counts refer to unique WAV 

files. 
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2.2 Model building 

2.2.1 Spectrogram identification 

In this study, the convolution neural network structure 

is used to process the Log-Mel spectrogram to extract the 

key local features in guzheng audio. CNN has good spatial 

perception ability in two-dimensional image recognition, 

and can effectively capture timbre texture changes in 

spectrogram analysis. The input of the model is a gray-

scale spectrogram with a uniform size of 128×128 pixels 

[21]. The features are extracted by two layers of 

convolution and pooling, and then the features are 

integrated by a fully connected layer. ReLU is used in 

activation function to enhance nonlinear expression 

ability, and the output layer is continuous value regression 

structure. The core operation of the convolution layer is 

expressed by (1): 
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is the current convolution kernel parameter, 
( )lb  is the 

bias term, and 
( )f 

 represents the activation function. 

This structure can effectively learn the local spectral 

variation characteristics of audio and improve the model's 

ability to recognize complex sound structures. 

The CNN operates on 128×128×1 log-Mel inputs. 

The backbone consists of Conv (32, 3×3) → BatchNorm 

→ ReLU → MaxPool(2×2); Conv(64, 3×3) → 

BatchNorm → ReLU → MaxPool(2×2); and Conv(128, 

3×3) → BatchNorm → ReLU. A residual block with two 

3×3 convolutions and an identity skip preserves fine 

spectral detail, after which a lightweight attention module 

reweights channels with a reduction ratio of 1:16 to 

emphasize salient bands and onsets. Global average 

pooling feeds a Dense (64) with ReLU and Dropout 

(0.30), followed by a linear output neuron for regression. 

We train with Adam (initial lr = 1e−3, Reduce-on-Plateau 

factor 0.5, patience 5), weight decay 1e−5, He 

initialization, and MSE loss; MAE and R² are tracked as 

metrics. Batch size is 32, maximum epochs 120 with early 

stopping (patience 15). On our data the model typically 

converges near epoch about 100, consistent with the loss 

curves reported. 

2.2.2 Spectrum feature extraction 

On the basis of convolution module, attention 

mechanism is introduced to enhance the model's 

perception ability of key frequency bands and time points. 

The attention module takes the middle feature map output 

by convolution as input, generates a weighted response 

matrix, and redistributes the channel or spatial position of 

the feature map. This process enables the model to actively 

pay attention to the areas with dramatic timbre changes in 

training and suppress the interference of redundant 

background information. In the concrete implementation, 

the weighted scoring mechanism is used to construct the 

mathematical expression of attention distribution as (2): 
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Here, i  represents the attention weight for the i the 

feature, ie
 is the output of the scoring function, ih

 is the 

feature vector, and q is the query vector. The scoring 

function constructs weights using the dot product method, 

resulting in a weighted sum that is then multiplied point 

by point with the original features to form an enhanced 

spectral graph. The introduction of the attention 

mechanism significantly enhances the model's ability to 

capture variations in playing techniques and differences in 

timbre texture [22]. 

2.2.3 Residual structural design of acoustic 

characteristics 

In order to integrate multi-scale acoustic features, a 

residual connection module is introduced into the model 

structure. This module allows the original features to be 

transmitted directly by bypassing the nonlinear transform 

layer, avoiding the problem of gradient disappearance in 

deep network and promoting the fusion of frequency 

domain and time domain features. The residual structure 

is composed of multiple convolution units and jumping 

connections, which ensures that the feature flow is not 

blocked by layers. We correct Eq. (3) by explicitly 

defining the nonlinear transform. Let x denote the input 

feature map and Θ the parameters of the residual unit. The 

residual mapping is (3). 

 ( ; )y x x= + F  (3) 

3 3 3 3( ; ) BN(Conv ( (BN(Conv ( )))))( )x x   =F ,

  is ReLU and BN is batch normalization. The earlier 

placeholder ‘mathbff’ referred to ( )F ; we standardize 

the notation accordingly. This structure keeps the 

consistency of input and output by direct weighting, which 

makes the network easier to train and retains fine-grained 

local spectrogram information. Combined with the 

attention module, the residual mechanism effectively 

improves the model's fault tolerance and robustness to 

unsteady signals, and adapts to the modeling requirements 

of frequency transition and detail modification in guzheng 

playing audio [23]. 

2.2.4 Comparative experiment of Support 

Vector Regression (SVR) in sound 

quality regression optimization 

In order to verify the advantages of neural network in 

sound quality prediction, the traditional regression model 

is introduced as a control, and the support vector 

regression (SVR) is used to build a benchmark regression 

prediction framework. SVR is suitable for the high-

dimensional regression task of small and medium-sized 



400 Informatica 49 (2025) 395–408                                                                                                                                           D. Lu 

 

samples, and can realize the prediction of sound quality 

score under the condition of limited feature dimensions. 

The input of the model is a statistically quantized acoustic 

feature set, including spectral center of gravity, energy 

distribution, time domain envelope and spectral entropy. 

The output is the predicted value of subjective score of 

sound quality. The optimization objective of SVR is as 

(4): 

 ( )2 *

1

1
min || ||

2

n

i i

i

w C  
=

+ +  (4) 

subject to (5): 

 
*

*

( ( ) ) ,

( ( ) ) ,

0, 0,

i i i

i i i

i i

y w z b

w z b y

  

  

 

 − +  +


+ −  +
  

•

•
  (5) 

where
iz is the acoustic feature vector, ( )   the 

kernel mapping, ε\varepsilonε the tube width, C the 

penalty, and 
*,i i   are different slack variables for 

positive and negative deviations (previous text mistakenly 

used the same symbol). We use the RBF kernel
2( , ) exp( )K u v u v= − −‖ ‖ with   tuned via cross-

validation as reported. 

Where w is the weight vector, C is the penalty factor, 

and 
i ixi and xi  are slack variables to control the fitting 

error. The model uses radial basis kernel function to 

improve the nonlinear mapping ability. The experimental 

results show that SVR is stable when the data dimension 

is low, but the accuracy in nonlinear spectrum mapping 

task is obviously lower than that in CNN structure, which 

proves the generalization ability and adaptability of deep 

network in sound quality modeling task [24]. 

For SVR we adopt the radial basis function (RBF) 

kernel to capture nonlinear relationships between compact 

acoustic descriptors and subjective scores. Feature vectors 

include spectral centroid, spectral entropy, bandwidth, 

high-frequency energy ratio, short-term energy, and 

amplitude envelope statistics; all features are standardized 

with a training-set-only scaler. Hyperparameters are tuned 

via nested 5-fold cross-validation: C ∈  {1, 10, 100, 

1000}, ε ∈ {0.01, 0.05, 0.1, 0.2}, and γ ∈ {1e−4, 1e−3, 

1e−2, ‘scale’}. The best configuration on the validation 

folds is C = 100, ε = 0.05, γ = 1e−3. We prefer RBF over 

linear (which underfits due to clear nonlinearities in 

spectral–perceptual mapping) and polynomial (which 

showed higher variance and sensitivity to scaling). Results 

reported for SVR reflect this tuned setting on the held-out 

test split. 

2.3 Index construction 

2.3.1 Timbre characteristic parameters 

As the key dimension of performance expression, 

timbre modeling is based on the extraction of high-

dimensional acoustic parameters, and features are defined 

by combining frequency domain and time domain to 

ensure accurate characterization of different levels of 

sound quality perception. In the frequency domain, the 

spectral center of gravity, spectral entropy, bandwidth and 

dominant frequency intensity are used to describe the 

frequency distribution structure. The spectral center of 

gravity reflects the frequency band where the sound center 

of gravity is located, and the spectral entropy measures the 

uniformity of energy distribution. In the time domain, 

short-term energy, waveform change rate and amplitude 

envelope are selected, focusing on the recognition of note 

starting and ending clarity and pronunciation dynamic 

contour. These indicators together construct a quantifiable 

feature space, which not only reflects the clarity and 

penetration of timbre, but also covers its fullness and 

extension. All indicators are normalized to eliminate the 

influence of sample length and loudness difference. The 

comprehensive use of multi-dimensional features can 

effectively improve the model's ability to distinguish 

timbre differences and establish a stable quantitative basis 

for subjective and objective scoring. 

2.3.2 Objective sound quality scoring index 

system 

The objective sound quality evaluation aims at 

reflecting the performance quality through the physical 

signal attributes and constructing a computable evaluation 

system. This study comprehensively refers to ITU-T P.800 

and the common standards in the field of music acoustics, 

and establishes five scoring dimensions: clarity, fullness, 

brightness, transient response and frequency domain 

balance. Each index corresponds to multiple acoustic sub-

features, and each score is obtained by weighting, and then 

integrated into the total score. Clarity mainly reflects the 

clarity of the beginning and end of notes, which is 

quantified by signal-to-noise ratio and energy 

concentration. Plumpness is related to spectrum energy 

density, and brightness is calculated according to the 

proportion of high frequency components. Transient 

response captures the sudden onset of sound, and 

frequency domain balance evaluates the balance of low, 

medium and high frequency energy distribution. The 

above scores are quantified from 0 to 10. The objective 

scoring system can be used to compare the subjective 

score with the predicted output of the model, and can also 

be used as a training label to give the model a clear 

regression goal and improve the learning effect. 

2.3.3 Consistency evaluation of subjective 

scoring and expert scoring 

Although the subjective scoring process is influenced 

by auditory experience, its consistency determines the 

quality of model supervision. In order to ensure the 

stability of scoring, the expert group scoring method is 

adopted, and all raters are trained in a unified way and 

scored with reference to scoring examples and evaluation 

criteria. In this study, the consistency test strategy is 

introduced, and Cronbach's α coefficient and Pearson 

correlation coefficient are used to evaluate the consistency 

level among raters. The value of α coefficient exceeds 
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0.85, indicating that the internal consistency of the score 

is good. At the same time, the deviation rate between 

expert scoring and group average is calculated, and the 

samples with large deviation are eliminated to ensure the 

accuracy of the label. The reasons for the differences in 

some samples are usually related to the complexity of 

playing skills, the duration of lingering sound or the 

handling of the head. Therefore, a label weighting strategy 

is designed to give higher weight to samples with high 

consistency, improve the stability and fitting efficiency of 

model training, and take into account the subjective and 

objective modeling requirements of sound quality 

evaluation. 

2.3.4 Model prediction ability evaluation 

index 

The prediction ability of the model adopts the error 

index system commonly used in regression tasks, 

including mean square error (MSE), mean absolute error 

(MAE) and determining coefficient (R²). In which MSE is 

the main optimization objective function, and the square 

of deviation between the predicted value and the real label 

is expressed as (6): 

 
2

1

1
ˆMSE ( )

n

i i

i

y y
n =

= −  (6) 

Where 
iy
 is the true score of the i th sample, and ˆ

iy
 

is the model output. MSE is sensitive to outliers and is 

suitable for highlighting extreme error punishment. In 

order to enhance the generalization evaluation, R² is also 

introduced to measure the fitting degree between the 

prediction results and the total variation. In addition, the 

stability and consistency of the model on different data 

subsets are evaluated by 50% cross-validation. Comparing 

the performance of different models under multi-

dimensional indicators can effectively reflect their 

generalization ability, learning efficiency and practical 

potential, and provide a clear direction for subsequent 

optimization. 

3 Results and discussion 

3.1 Results 

3.1.1 Comparison of feature extraction effects 

of spectrograms in different frequency 

bands 

This paper analyzes the energy distribution and 

characteristic changes of guzheng performance signals in 

different frequency bands. In this study, the samples are 

divided into frequency, and core parameters such as main 

peak frequency, energy density, spectral center of gravity 

and standard deviation are extracted. As shown in Table 

1, the samples are divided into four main frequency bands 

in the range of 60–60-6000Hz, which correspond to low 

frequency, medium frequency, medium frequency and 

high frequency regions respectively. The spectrum 

characteristics contained in each frequency band show 

obvious differences, reflecting the multidimensional 

complexity of guzheng timbre. 
All entries in Table 1 are computed from the time-

averaged linear-frequency magnitude spectrum derived 

via STFT (window 2048, hop 512, Hamming). 

Specifically: 
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_BkB kBk  denotes time averaging and 
kB is the k-th 

frequency band (60–300, 300–1000, 1000–2500, 2500–

6000 Hz). 
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Standard deviation: standard deviation of | ( ) |X f  

within 
kB . 

Note that Table 1 does not use Mel compression; it is 

based on the linear-frequency magnitude spectrum to 

retain physical interpretability of frequencies. 

Table 1: Frequency band division and extraction of main 

features 

Frequenc

y band 

range 

(Hz) 

Main 

peak 

frequenc

y (Hz) 

Energy 

density 

(dB) 

Spectral 

center of 

gravity 

(Hz) 

standa

rd 

deviat

ion 

60–300 130.5 -23.7 140.3 18.2 

300–

1000 
550.2 -16.9 578.6 52.1 

1000–

2500 
1622.1 -14.4 1703.5 67.9 

2500–

6000 
3420.8 -18.2 3495.6 89.3 

 

The energy distribution in the low frequency band is 

relatively weak, and the spectral center of gravity and the 

main peak position are concentrated around 130 Hz, which 

mainly reflects the continuous vibration of the bass strings 

in the performance. The energy in the middle frequency 

band is obviously increased, and the spectral center of 

gravity is close to 600 Hz, which shows the trend of 

spectral concentration in the basic sound zone of guzheng. 

In the middle and high frequency band, the spectral center 

of gravity and the main peak continue to move up, and the 

energy density is further enhanced, indicating that this 

frequency band contains rich overtones and decorative 

technique signals. The standard deviation of the high 

frequency band has increased significantly, reflecting the 

strong fluctuation of the frequency spectrum in this area, 

which is mostly related to fast playing and complex 

fingering. On the whole, frequency band division provides 

data support for subsequent modeling, and also reveals the 

hierarchical characteristics of guzheng timbre in spectrum 
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distribution, which is helpful for the model to identify 

effective frequency bands and assign weights. 

3.1.2 Performance comparison experiment 

between CNN and SVR model 

To test the performance advantages of depth model in 

sound quality regression, this study compares the 

performance of CNN and SVR in prediction accuracy and 

operational efficiency. As shown in Figure 2, the two 

models show significant differences in mean square error 

(MSE), determination coefficient ($ r 2 $), model 

parameters and reasoning time.

 
Figure 2: Comparison of prediction accuracy and calculation efficiency between the two models

Both CNN and SVR predict the expert-averaged 

subjective timbre score (0–10 scale) for each audio clip. 

Figure 2 compares their generalization on the held-out test 

set. The CNN achieves MSE = 0.017 (95% CI [0.014, 

0.020]) and R² = 0.942, significantly outperforming a 

tuned RBF-SVR (p < 0.01 on paired residuals). Accuracy 

for classical-style clips reaches 91.5%, and the model–

expert deviation is ≤3.5% across test examples. Figure 1. 

Comparison of CNN and RBF-SVR on predicting expert-

averaged timbre scores (test set). Bars show mean MSE 

and R²; error bars denote 95% CIs from 1,000 bootstrap 

resamples. The right panel reports model size and mean 

inference time per clip. 

3.1.3 Influence of Multi-dimensional features 

on subjective score prediction 

In order to explore the weight of different acoustic 

features in subjective score prediction, this study takes 

frequency domain, time domain and energy class features 

as input variables to calculate their relative contribution 

rates to the prediction output of the model. As shown in 

Figure 3, the characteristics of each dimension show 

significant differences in the regression output, among 

which the spectral center of gravity and energy density 

have the most prominent influence on the scoring results.

 

Figure 3: Contribution rate of each characteristic dimension to the score
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The contribution rate of energy density is as high as 

39.1%, which shows that the model is highly dependent 

on the concentration of spectrum energy in scoring 

prediction, reflecting that the fullness of timbre has a great 

influence on subjective perception. As an important index 

to measure the center of gravity of audio frequency 

distribution, the spectral center of gravity plays an 

important role in clarity and brightness perception, 

accounting for 27.1%. The waveform change rate and time 

domain envelope reflect the starting and ending 

characteristics and transient changes of notes more. 

Although the contribution rate is slightly lower, it is still 

of supplementary value to the simulation of dynamics and 

penetration. On the whole, multi-dimensional acoustic 

features are not equal contributions in subjective scoring 

prediction, and frequency domain features are dominant, 

while time domain features and dynamic envelope, as 

auxiliary components, play a key role in improving the 

fine-grained resolution of the model. 

3.1.4 Changes of loss function during model 

training 

Observe the convergence process of the model and the 

stability of the training effect. In this study, the loss 

changes of CNN and SVR in different training rounds are 

recorded, and MSE is used as a unified measure. As shown 

in Figure 3, with the progress of training, both models 

show a downward trend in loss value, but there are 

significant differences in convergence speed and final 

accuracy. 

 

Figure 4: Changes of training round and loss value

Figure 4 now displays per-epoch MSE for training 

(solid) and validation (dashed); the test MSE (dotted) is 

evaluated every 5 epochs and connected for readability. 

The x-axis is epoch index (1–120); the y-axis is MSE. 

Shaded bands show ±1 standard error from 5-fold internal 

splits. Figure 3. Training (solid), validation (dashed), and 

periodic test (dotted, every 5 epochs) MSE versus epochs 

for CNN (top) and RBF-SVR (bottom, shown as epoch-

wise cross-validation proxy). Shaded areas represent ±1 

SE. 

3.1.5 Comparison of model prediction 

accuracy under different performance 

styles 

The timbre of guzheng shows obvious differences 

under different playing styles, and whether the model has 

good style adaptability has become an important 

dimension to evaluate its practicality. In this study, three 

common style samples, classical, modern and fusion, are 

compared to calculate the prediction accuracy of CNN and 

SVR on each subset. As shown in Figure 5, the 

performance of the model is different under different 

styles.

 

Figure 5: Statistics of influence of style types on model performance
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The accuracy of CNN in all styles is above 85%, and 

the classical style sample is the best, reaching 91.5%. This 

may be related to the clearer characteristic structure and 

regular changes of spectrogram in classical performance, 

which is helpful to extract stable patterns from 

convolution structure. Modern style samples contain more 

decorative sounds and non-standard techniques, which 

leads to a slight decline in the accuracy of the model, but 

still maintains a high level. Because of the frequent 

changes between styles, the model recognition is the most 

difficult, but CNN is still better than SVR. Compared with 

SVR, it shows obvious disadvantages in the three styles, 

which shows that the traditional regression model has 

weak adaptability to the performance style. The 

experimental results show that CNN has good 

generalization ability in multi-style performance 

modeling, which is suitable for practical teaching and 

performance analysis scenarios with diverse styles. 

3.1.6 Correlation between spectrum index 

and perception score 

In order to verify the explanatory power of the 

extracted spectral parameters in sound quality perception, 

the linear relationship between each spectral feature and 

subjective score is calculated by Pearson correlation 

analysis. Taking spectral entropy, the ratio of spectral 

center of gravity to high frequency energy as 

representative indexes, the correlation matrix is 

constructed and the significance level is evaluated. As 

shown in Table 2, there is a significant positive correlation 

between these characteristics and the score, which shows 

that they have good reference value in the modeling 

process. 

Table 2: Pearson correlation analysis results 

Indicator name 
Correlation 

coefficient r 

P 

value 

Spectral entropy 0.724 <0.01 

Spectral center of 

gravity 
0.693 <0.05 

High frequency 

energy ratio 
0.487 <0.05 

 

The correlation coefficient between spectral entropy 

and subjective score is the highest, reaching 0.724, and at 

the significance level p < 0.01, which shows that the more 

uniform the sound energy distribution, the richer and more 

harmonious the sound quality is perceived. As the second 

highest correlation term, the spectral center of gravity has 

a r value of 0.693, which shows that the sound with higher 

frequency center of gravity often has stronger penetration 

and brightness, and the score is improved accordingly. 

Although the correlation of high-frequency energy ratio is 

slightly low, it is still statistically significant, indicating 

that there is a positive relationship between high-

frequency enhancement and subjective "brightness" 

evaluation. The results support the core role of spectral 

features in sound quality modeling, confirm the analysis 

conclusion of feature contribution rate, and provide data 

basis for the selection of model input features, which is 

helpful to improve the explanatory power and physical 

rationality of the model. 

3.1.7 Consistency test of expert score and 

model score 

In order to evaluate the consistency between the 

predicted values of the model and the subjective scores of 

human beings, this study compares the average scores of 

experts with the output results of CNN model, calculates 

the deviation ratio and analyzes the consistency 

distribution trend. As shown in Table 3, representative 

sample numbers are selected for comparative analysis to 

show the deviation between the two groups. 

Table 3: Comparison of consistency of subjective and 

objective sound quality scores 

Sample 

number 

Expert rating 

(average score) 

Model 

prediction 

score 

Deviation 

value (%) 

#001 8.7 8.4 -0.034 

#005 9.3 9.1 -0.022 

#009 7.6 7.5 -0.013 

 

Consistency statistics are computed on the entire test 

set (n = 38 clips). Table 3 lists three representative 

examples; aggregate results (mean absolute deviation and 

distribution) are computed over all n = 38 test clips. The 

prediction value of CNN model for each sample is highly 

close to the average score of experts, and all deviations are 

controlled within 3.5%. Among them, sample #001 has the 

largest deviation, only -3.4%, while sample #009 has the 

closest prediction, with an error of -1.3%. The overall 

deviation distribution is balanced, and there is no obvious 

trend of overestimation or underestimation, which shows 

that the learning results of the model in the subjective 

dimension are reliable. In addition, by Shapiro-Wilk 

normality test and mean T test, it is found that the model 

score has no systematic deviation, which meets the 

requirements of statistical stability. This result shows that 

CNN model not only has regression ability, but also can 

effectively learn and approach human subjective 

evaluation logic, and has practical usability. In the follow-

up system, the scoring module can be used as an auxiliary 

feedback mechanism to improve the automation level of 

guzheng teaching and performance analysis. 

3.1.8 Statistical validation and robustness 

analysis 

To ensure reliability beyond point estimates of MSE 

and R², we computed 95% confidence intervals using 

bootstrapped resampling (1000 iterations) on the test set. 

For CNN, the MSE 95% CI was [0.014, 0.020], and the R² 

CI was [0.91, 0.95], confirming the stability of the results. 

Paired t-tests comparing CNN and SVR residuals 

indicated significant differences in predictive accuracy (p 

< 0.01), providing statistical evidence for CNN’s 

advantage. To evaluate robustness across stylistic 
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variation, an ANOVA was conducted on prediction errors 

grouped by style (classical, modern, fusion). Results 

showed significant variance (F = 4.73, p < 0.05), with 

fusion style producing larger residuals. This reflects the 

greater complexity of non-standardized techniques. 

Overfitting risk was assessed by comparing training and 

validation loss curves, showing convergence without 

divergence, though minor early-stage oscillations were 

observed. We conclude that the CNN framework 

demonstrates stable generalization under varied input 

conditions, but future work should extend validation to 

larger and more diverse corpora. 

3.2 Discussion 

This paper studies the modeling of guzheng sound 

quality from several dimensions, such as spectrum 

characteristics, model performance, feature explanatory 

power and subjective and objective consistency. The 

results show that there are obvious differences in 

spectrogram characteristics in different frequency bands. 

The middle and high frequency bands are energy-

intensive, and the spectral center of gravity and standard 

deviation are significantly increased, indicating that the 

performance dynamics are mainly concentrated in this 

frequency domain. The high-frequency part is highly 

volatile, which is related to fast performance and complex 

techniques. Therefore, the revealing model should pay 

attention to the information density of specific frequency 

bands. 

In model comparison, CNN structure shows strong 

predictive ability. The mean square error is 0.017, which 

is better than 0.029 of SVR, and the value of $ r 2 $ is also 

nearly 0.08 higher, which shows that the deep network has 

more advantages in modeling the complex mapping 

relationship between nonlinear features and sound quality 

scores. Although the reasoning time is slightly longer than 

SVR, it is still within the tolerance range of practical 

application, which proves that it achieves a good balance 

between performance and efficiency. 

In the feature contribution analysis, energy density 

and spectral center of gravity together constitute the 

dominant input of the model, with the contribution rates 

of 39.1% and 27.1% respectively. The dominance of 

spectral characteristics shows that the model's judgment of 

timbre is highly dependent on the frequency domain 

structure, and the waveform change rate and time domain 

envelope are used as complementary dimensions to 

improve the model's ability to capture the dynamics of 

notes. The Pearson correlation coefficient between 

spectral entropy and score is 0.724, which further 

confirms the high consistency between frequency 

distribution uniformity and sound quality perception. 

The deviation between the model score and the expert 

score is all controlled within 3.5%, which reflects the high 

subjective consistency of the algorithm output. Especially 

in classical style, the prediction accuracy of CNN reaches 

91.5%, which is significantly better than that of modern 

and fusion styles, indicating that the model is more stable 

in signals with clear structure and regular spectrogram. 

The influence of style differences on model accuracy also 

suggests that structural balance and style coverage should 

be further optimized in the composition of training 

samples. The model has achieved positive results in 

spectrum identification, score prediction and perceptual 

consistency. The importance of frequency domain features 

runs through all experimental results, which proves its 

core position in guzheng sound quality modeling. 

Compared with traditional methods, deep network has 

higher expressive ability when dealing with unsteady 

signals and complex styles, and has good expansion 

potential. 

Although the present work represents a novel 

application of CNN to guzheng timbre analysis, it should 

be positioned within the broader context of AI in music 

technology. The contribution lies in adapting spectrum-

based deep learning models to a traditional instrument, 

thereby advancing the digitalization of subjective 

evaluation. However, this effort is incremental rather than 

groundbreaking in the field of computational musicology. 

To strengthen impact, future research should provide 

deeper methodological transparency, enlarge dataset 

diversity across instruments and environments, and 

employ rigorous statistical analysis. Maintaining 

academic reporting standards will enhance the credibility 

and extend the relevance of this cross-disciplinary 

exploration. 

4 Conclusion 
This paper studies the timbre of guzheng performance 

as the core object, and constructs a timbre modeling 

method combining spectrum analysis and artificial 

intelligence. In the method design, CNN and SVR are 

compared to realize the continuous value prediction of 

subjective score. Multi-dimensional frequency domain 

and time domain features are introduced to construct a 

quantitative index system covering energy, dynamics and 

structure. The experimental results show that CNN is 

obviously superior to SVR in prediction accuracy and 

generalization ability, and shows stronger modeling 

ability of complex spectrogram. In the aspect of spectral 

feature extraction, the energy and spectral center of 

gravity in the middle and high frequency bands have been 

significantly improved, which has become an important 

basis for influencing subjective scoring. The characteristic 

contribution analysis also verifies the dominant position 

of energy density and spectral center of gravity. The 

deviation between the model score and the expert score is 

controlled within 3.5%, which shows that the prediction 

system has good subjective consistency and is suitable for 

practical scenes such as performance evaluation and 

intelligent feedback. 

Although the research has achieved initial results, 

there are still some limitations. First, the sample 

composition is relatively concentrated, and it has not 

covered a wider range of regional schools, performance 

styles and guzheng varieties. Secondly, although the 

subjective score has been standardized, there is still a 

perceptual bias between reviewers, which affects the 

absolute stability of the model training label. In addition, 

although the model structure integrates attention and 
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residual mechanism, it is still difficult to identify extreme 

unsteady signals such as staccato and sliding sound. The 

above shortcomings suggest that the system needs to 

further optimize the sample diversity and feature 

robustness in actual deployment. 

Future research can be carried out from three aspects. 

The first is to expand the sample source, covering different 

guzheng models, recording environments and 

performance scenes, and improve the generalization 

ability of the model. The second is to introduce 

multimodal information, such as video, gesture trajectory 

and trigger speed, to build a more comprehensive sound 

quality perception mechanism. The third is to try the 

structures such as Transformer and Mixed Frequency 

Convolution Network at the model level, and introduce the 

transfer learning strategy to meet the needs of small 

sample and high complexity modeling. Through multi-

source fusion and model evolution, it is expected to 

promote the sound quality modeling of guzheng from 

basic research to engineering practice, and enhance the 

technical depth and cultural value of intelligent analysis of 

national instrumental music. 
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