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Cultural heritage represents humanity's invaluable treasure, yet existing image restoration methods suffer 

from inadequate edge feature extraction capabilities and aesthetic evaluation approaches that cannot be 

co-trained with emotional factors. Consequently, this research proposes an image restoration method 

based on an enhanced You Only Look Once version 5 small (YOLOv5s) and multi-scale residual fusion 

gated convolutions, integrating an aesthetic evaluation model that incorporates emotional elements. This 

approach employs the enhanced YOLOv5s for image extraction, utilizing the Canny operator as the edge 

detection algorithm. It incorporates multi-scale residual blocks and gated convolutional networks within 

the generative adversarial network, employing pixel reconstruction, perceptual, and style loss as the joint 

loss function. The research inserts emotion label extraction and emotion fusion modules into the residual 

network. Experiments demonstrate that the enhanced YOLOv5s achieves a maximum image extraction 

accuracy of 95.3%, surpassing both YOLOv5s and YOLOv8 by 12.5% and 0.3% respectively, whilst 

converging significantly faster. The image restoration model exhibits higher structural similarity indices, 

with restored images most closely approximating reality at a maximum value of 94.5%. Removing multi-

scale residuals substantially impacts model performance. The aesthetic evaluation model achieves a 

maximum Spearman's correlation coefficient of 0.792 with the lowest computational complexity. 

Consequently, the proposed methodology effectively enhances image restoration capabilities and 

aesthetic evaluation quality, thereby facilitating the wider dissemination of cultural heritage. 

Povzetek: Obnove slik kulturne dediščine so izvedene z izboljšanim YOLOv5 in večmerilno residualno 

vodenimi konvolucijami ter estetsko ocenjevanje z vključitvijo čustvenih dejavnikov. Pristop izboljša 

zaznavanje robov, vizualno kakovost in skladnost estetske ocene s človeško zaznavo. 

 

1 Introduction 
China stands as a venerable civilization boasting a 

rich and extensive history, during which it has amassed an 

incalculable wealth of cultural heritages over the ages. As 

time marches on, however, these invaluable treasures face 

inevitable degradation, with their external appearances 

and internal structures suffering damage from water 

stains, insect infestations, and the erosive forces of wind 

and rain [1]. Hence, it becomes imperative to undertake 

restoration efforts, for cultural heritage restoration 

transcends the mere act of repairing aged artifacts; it is a 

vital undertaking intricately linked to the perpetuation of 

human civilization, the affirmation of cultural identity, 

and the transmission of spiritual heritage [2]. Restoring 

cultural heritage can preserve material witness and 

evidence of history, prevent historical rifts, protect 

cultural diversity, continue cultural memory and identity, 

and maintain its artistic and aesthetic value. Within the 

domain of cultural heritage restoration, image restoration 

has always played a crucial role [3]. For paper cultural 

relics such as books and letters, image restoration can 

accurately predict missing parts through changes in the 

texture and color characteristics of the paper, thereby  

 

achieving the goal of restoration [4]. For mural cultural 

relics, image restoration algorithms can utilize the intact  

mural patterns and color information around damaged  

areas to generate images that closely resemble the original 

style and content. These algorithms offer valuable 

references for craftsmen during restoration, thereby 

helping to slow down the rate of mural deterioration. [5]. 

Meanwhile, aesthetic evaluation of cultural heritage 

images can select parts with important aesthetic value for 

key protection and inheritance, promoting people's 

understanding of their unique aesthetic characteristics and 

cultural connotations [6]. However, existing image 

restoration methods still suffer from insufficient ability to 

extract edge features, and aesthetic evaluation methods 

cannot train aesthetics and emotions together. 

To deal with the problem of image restoration 

quality, Sun X et al. introduced a structure guided virtual 

restoration approach to address the lack of structural 

trends and poor performance of existing restoration 

algorithms. This approach incorporated an adaptive curve-

fitting algorithm to rebuild missing structural lines. It 

devised a novel priority function to refine the sequence in 

which patches for repair were filled, and utilized an 
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adaptive approach for choosing sample block sizes 

according to structural sparsity [7]. The experiment 

showed that the average SSIM value of the repaired image 

using this approach was 0.977, and the average PSNR 

value was 39.16. Xu W et al. introduced a new color 

restoration technique grounded in the DenseNet algorithm 

to accurately restore the appearance of ancient relics and 

reduce the burden of manual restoration. This technology 

took a dataset consisting of 60 typical murals as system 

input and enhanced it through the DenseNet algorithm. 

Experiments showed that this technology was 44.62% 

faster than the SegNet algorithm in terms of time 

efficiency, 1.289% lower in structural similarity values 

than SegNet, 2.442% lower than Deeplab v3, and 1.288% 

lower than ResNet [8]. Xu H et al. introduced a new virtual 

reality fusion restoration approach for murals grounded in 

visual attention mechanism to address issues such as poor 

semantic correlation in mural restoration. This approach 

adopted the fusion technology of computation and 

perception to achieve the fusion association between 

virtual restored murals and the real spatial environment. It 

used a spatially layered and consistent detection approach 

to determine the fusion area between virtual and real. 

Experiments showed that this approach could effectively 

improve the efficiency of mural restoration and enhance 

the structural similarity of restored images [9]. Tang et al. 

proposed a novel multi-modal enhanced U-Net model to 

address the issue of substandard quality in real-world 

image restoration. This model leveraged pre-trained multi-

modal large language models to extract semantic 

information from low-quality images, while employing an 

image encoder to enhance feature extraction capabilities. 

At the visual level, it achieved high-precision restoration 

through meticulous management of pixel-level spatial 

structures, integrating control information via a multi-

layer attention mechanism. Experiments demonstrated 

that this model enabled precise and controllable image 

restoration [10]. Li L et al. introduced a new image 

aesthetic evaluation model grounded in theme perception 

visual attribute inference, which addressed the intrinsic 

relationship between visual attributes and image aesthetic 

quality in the evaluation of image aesthetic quality. This 

model simulated the human perception process of image 

aesthetics through two-layer inference, extracting 

aesthetic attribute features and thematic features 

separately, and introducing a flexible aesthetic network to 

extract general aesthetic features. Experiments showed 

that the introduced model outperformed existing state-of-

the-art approaches and had better interpretability in four 

publicly available image aesthetic evaluation databases 

[11]. Celona L et al. introduced a new image aesthetic 

automatic prediction approach grounded in image analysis 

to address the issue of subjective influence on image 

aesthetic evaluation. This approach used a pre trained 

network to extract semantic features, used a multi-layer 

perceptron network to predict image attributes, and then 

generated pre encoded attribute information. Experiments 

showed that this approach could predict the style and 

composition attributes of different images, and calculate 

the distribution of aesthetic scores [12]. Yang Y et al. 

introduced a new conditional image aesthetic evaluation 

model to address the highly subjective issue in 

personalized image aesthetic evaluation. This model 

constructed a new personalized image aesthetics database, 

annotated by 438 subjects, and desensitized the image 

information. The subject information was used as a 

conditional prior to construct a conditional image 

aesthetics evaluation model. Experiments showed that this 

model could effectively address the evaluation limitations 

caused by annotation diversity, while maintaining the 

accuracy of image aesthetic evaluation [13]. In recent 

years, deep learning has achieved significant progress in 

the field of image restoration. Transformer architectures 

have demonstrated formidable potential in image 

restoration, such as the Swin Transformer effectively 

capturing long-range dependencies through its sliding 

window mechanism. Concurrently, diffusion models excel 

in generating high-quality images, offering novel 

approaches for cultural heritage restoration. Regarding 

aesthetic evaluation, visual Transformer-based 

approaches better model global aesthetic features through 

self-attention mechanisms. Nevertheless, these methods 

still exhibit limitations in adaptability to specific cultural 

heritage scenarios and the integration of emotional factors. 

In summary, existing research has explored the issues 

of image restoration and aesthetic evaluation from 

multiple perspectives, and has achieved certain results. 

However, existing image restoration approaches still have 

problems such as repairing image variation and blur, and 

aesthetic evaluation approaches have a single emotional 

element. Therefore, this study proposes an image 

restoration and aesthetic evaluation method based on 

Multi-scale Residuals and Gated Convolution (MRGC) 

and Aesthetic Evaluation of Emotional Integration 

(AEEI). The research aims to enhance the detection 

accuracy of cultural heritage images in complex 

backgrounds and improve the precision of image 

modifications. Additionally, it seeks to overcome the edge 

blurring issues inherent in traditional methods and 

integrate subjective factors, such as emotional evaluation, 

into aesthetic assessment models. This approach brings 

evaluation outcomes closer to human subjective 

perception, elevates the quality of image aesthetic 

evaluation, and strengthens public cultural identity. The 

method innovatively proposes an improved YOLOv5s 

architecture, optimized through the C3-DSC module and 

attention mechanisms, significantly enhancing the 

detection accuracy and efficiency of cultural heritage 

targets. A multi-scale residual fusion gated convolutional 

network is designed to effectively resolve edge blurring in 

cultural heritage image restoration. For the first time, an 

emotion label fusion mechanism is introduced into the 

aesthetic evaluation of cultural heritage images, achieving 

collaborative modelling of aesthetic attributes and 

emotional characteristics. The superiority of the proposed 

method is validated across multiple cultural heritage 

datasets, providing a novel technical pathway for 

intelligent cultural heritage preservation. 

 

2  Methods and materials 
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2.1 Target image extraction based on 

improved YOLOv5 
When extracting cultural heritage images, it is 

necessary to identify the cultural heritage in the image 

clearly due to the influence of lighting intensity and 

occlusion, as well as the texture details of the target object 

[14]. The research adopts the YOLOv5s algorithm as the 

basic structure, but the ordinary YOLOv5s algorithm has 

problems such as difficulty in recognizing complex targets 

and high model complexity. Therefore, research has been 

conducted to improve it, and the distinctive configuration 

of the improved YOLOv5s model is presented in Figure 1. 

 

 

Figure 1: Improved distinctive configuration of the YOLOv5s model 

(Image source: Authors own illustration) 

 
In Figure 1, the improved YOLOv5s model mainly 

consists of three parts: the backbone network (BN), the 

neck network, and the detection end. The BN includes a 

convolution module, a C3-Deepwise Separable 

Convolution (C3-DSC) module formed by fusing C3 and 

depthwise separable convolutions, an attention 

mechanism module, and spatial pyramid fast pooling. The 

C3-DSC module can effectively reduce the number of 

parameters in the model, improve computing speed, and 

the attention module can model in the channel dimension, 

highlighting important feature channels and suppressing 

unimportant channels, thereby enhancing the model's 

attention to key features. In addition to the above modules, 

the neck network also adds an Upsample module to 

upsample the feature maps (FMs), and a Concat module to 

concatenate feature images from different levels. After 

passing through the convolution module, the detection 

data are input into the Detect module to predict bounding 

boxes on FMs of different scales. 

The C3 module has two parallel paths, with the main 

path consisting of one-dimensional convolution, multiple 

Bottleneck residual blocks, and one-dimensional 

convolution. The shortcut path only has one-dimensional 

convolution, and the outputs of the two paths are 

concatenated in the channel dimension. The Bottleneck 

residual block is composed of two successive 3D 

convolutions. In this study, the optimization of the 

Bottleneck block is achieved solely by substituting its 3D 

convolution with a depthwise separable convolution. The 

attention module enables the model to focus its attention 

on the critical features of the target. Moreover, the study 

incorporated just a single layer into the BN, which serves 

to enhance the image's feature extraction capabilities. The 

attention module can achieve cross channel transmission 

of data with fewer parameters. To prevent dimensionality 

reduction, one-dimensional convolution is introduced in 

the attention module. The adaptive function calculation 

used is presented in equation (1) [15]. 

( ) 2logC

odd

b
A C

 
= = +   (1) 

In equation (1), A  represents the output result, 

( )C  represents the adaptive function, 
odd
  represents 

rounding the solution down to the nearest odd number,   

represents the constant for adjusting the scaling ratio, b  

represents the constant for adjusting the calculation offset, 

and C  represents the channel dimension. The distinctive 

configuration of the attention module is presented in 

Figure 2. 
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Figure 2: The distinctive configuration of the attention module 

(Image source: Authors own illustration) 

 

In Figure 2, the FM is first inputted and globally 

average pooled to aggregate spatial information. Then, an 

adaptive function is used to determine channel attention 

weights. After the attention module, one-dimensional 

convolution is employed to generate attention weights for 

each channel. The Sigmoid activation function is used for 

linear transformation, and finally the generated attention 

weights are multiplied step by step with the original FM 

to obtain a weighted FM. The dimensions of the output 

FM stay consistent. To reduce the total degree of freedom 

of the LF, the SIoU LF is used to replace the traditional 

CIoU LF. The introduction of angle loss term in SIoU can 

guide the model to correct directional deviation and 

introduce distance decoupling penalty, making it more 

sensitive to small target offset. Adaptive shape penalty 

performs position correction in the initial stage and shape 

fine-tuning in the later stage. IoU loss provides clear 

gradient direction and reduces oscillation. 

 

2.2 Image restoration based on MRGC model 
The improved YOLOv5s algorithm used in the study 

can only extract target images, but most existing cultural 

heritage objects suffer from problems such as missing 

patterns, textures, or colors [16]. Therefore, research 

needs to repair the extracted images and reconstruct the 

missing areas of the images. However, existing end-to-end 

deep learning image restoration methods still suffer from 

the problem of restoring blurry image edges. Therefore, 

the MGRC model that combines multi-scale residuals 

(MSRs) with gated convolutional networks is studied. The 

distinctive configuration of the model is presented in 

Figure 3. 

 

 

Figure 3: Distinctive configuration of the MGRC model 

(Image source: Authors own illustration) 

 
In Figure 3, the model mainly consists of three parts: 

edge detection module, edge generation module, and 

texture restoration module. The main structure of the 

second and third parts is similar to that of a generative 

adversarial network, both containing a generator and a 

discriminator. The MGRC model inputs the extracted 

images into the edge generation module, which constructs 

the initial image through the generator. Then, it is jointly 

trained with the discriminator to generate images with 

higher realism and input them into the texture restoration 

module. The input of the texture restoration module also 

includes the Red Green Blue (RGB) image of the initial 

image, which is iteratively trained using a generator and 

discriminator. The generator of the edge generation 

module consists of multiple convolutions and MSR 

modules, while the generator of the texture restoration 

module consists of multiple gated convolutions and 

residual modules. The study adopts the Canny operator as 

the edge detection algorithm, which can reduce noise 

interference and improve edge localization accuracy. The 

input images of the edge generation module include 

grayscale images and edge images. The image expression 

after calculation at the input end is presented in equation 

(2) [17]. 

( )

( )

1

1
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In equation (2), GI  represents the damaged 

grayscale image, gI  represents the grayscale image,  

represents the Hadamard product, M  represents the 

mask, EI  represents the broken edge image, and eI  

represents the edge image. After the image calculation is 

completed, the study concatenates GI , EI , and the mask, 

and inputs them into the generator after concatenation. 

The generator extracts image features, performs broken 

area repair, and inputs the repaired edge image into the 

discriminator for iteration. The final generated repaired 

image is calculated as shown in equation (3). 

R R EI I M I = +  (3) 

In equation (3), RI   represents the final repaired 

image and RI  represents the initial repaired image output 

by the generator. The study suggests that an MSR module 

can improve the completeness of feature extraction in the 

model and enhance the edge continuity of the repaired 

image. Its distinctive configuration is presented in Figure 

4. 

 

Figure 4: Distinctive configuration of the MSR 

module 

(Image source: Authors own illustration) 

 

In Figure 4, the MSR is a parallel dual branch 

structure, with two branches having the same structure. 

After three-dimensional convolution, small-scale local 

features of the image are gathered, and a five dimensional 

convolution is used to capture contextual information with 

a larger receptive field. ReLU activation function is reused 

to introduce non-linear processing capability. Two branch 

FMs are concatenated along the channel dimension to 

aggregate local features. Finally, the concatenated FMs 

are input into one-dimensional convolution to explore the 

correlation and complementary information of features at 

different scales. The input image of the generator consists 

of a damaged RGB image and RI   stitching, calculated as 

shown in equation (4). 

 

( )

,

1

TG R RGB

RGB RGB

I I I

I I M

 =

 = −

  (4) 

In equation (4), 
TGI  represents the input image of 

the generator, RGBI   represents the broken RGB image, 

and RGBI  represents the initial RGB image. After 

multiple iterations in the generator and discriminator, the 

final output graph is calculated as shown in equation (5). 

TR TR RGBI I M I = +   (5) 

In equation (5), TRI   represents the final output 

image and TRI  represents the initial output image of the 

texture restoration module generator. To improve the 

authenticity of restored images, generative adversarial loss 

and feature matching loss were used as the LFs of the edge 

generation module. The calculation of generative 

adversarial loss is presented in equation (6) [18]. 

( ) ( ) ( )1 1,
log , log 1 ,

ge g
ga e g I R gI I

L D I I D I I   =  +  −
   

      (6) 

In equation (6), gaL  is the generative adversarial 

loss,   is the mathematical expectation, and 
1D  is the 

discriminator of the edge generation module. The 

calculation of feature matching loss is presented in 

equation (7). 

1
1

1k

fm i e i R

i i

L d I d I
n=

 
=   −  

 
  (7) 

In equation (7), fmL  represents the feature matching 

loss, k  represents the number of convolutional layers in 

the edge generation module discriminator, in  represents 

the total number of elements in the discriminator 

activation layer, and i  represents the layer activation 

map. The joint LF calculation of the edge generation 

module is presented in equation (8). 

( )( )1
1 11 1

min max min maxG ga ga fm fm
G GD D

L L L = + (8) 

In equation (8), 
1GL  represents the joint LF of the 

edge generation module, 1G  represents the generator of 

the edge generation module, ga  represents the weight 

coefficients for generating adversarial loss, and fm  

represents the weight coefficients for feature matching 

loss. The LF of the texture restoration module includes 

four types: generative adversarial loss, pixel 

reconstruction loss, perceptual loss, and style loss. The 

calculation method of generative adversarial loss is the 

same as that of the edge generation module. The 

calculation of pixel reconstruction loss is presented in 

equation (9). 

1

1
pr TR RGBL I I

M
= −   (9) 
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In equation (9), prL  represents the pixel 

reconstruction loss. The calculation of perceptual loss is 

presented in equation (10). 

1
1

1
p i RGB i TR

i i

L Y I Y I
n=

 
=   −  

 
        (10) 

In equation (10), pL  represents perceptual loss and 

iY  represents the activation map of the pre trained 

network at the layer. The calculation of style loss is 

presented in equation (11). 

 ( ) ( )
1s Y TR Y RGBL G I G I =  −

                (11) 

In equation (11), sL  represents style loss and YG  

represents the Gram matrix composed of activation graph 

iY . The joint LF calculation of the texture repair module 

is presented in equation (12). 

 

( )( )2
2 22 2

min max min maxG ga ga pr pr p p s s
G GD D

L L L L L    = + + +

                  (12) 

In equation (12), 
2G  represents the generator of the 

texture repair module, 2D  represents the discriminator of 

the texture repair module, 
2GL  represents the joint LF of 

the texture repair module, gaL   represents the generative 

adversarial loss of the texture repair, ga  , pr , p , and 

s  represent the weight coefficients of generative 

adversarial, pixel reconstruction, perceptual, and style 

loss, respectively. 

 

2.3 Aesthetic evaluation of restored images 

based on emotional fusion 
Cultural heritage images often carry past aesthetic 

concepts and cultural information, and aesthetic 

evaluation of restored images can restore narrative vitality 

to vanished fragments of civilization [19]. Cultural 

heritage images often contain various emotional attributes, 

including positive and negative, but existing aesthetic 

evaluation methods for images cannot train aesthetics and 

emotions together. Therefore, the study developed an 

image aesthetic evaluation model grounded in emotional 

fusion, and the distinctive configuration of the model is 

presented in Figure 5. 

 

 

Figure 5: Image aesthetic evaluation model of 

emotional fusion 

(Image source: Authors own illustration) 

 

In Figure 5, the overall model is a linear structure 

with a ResNet50 network as the backbone structure, in 

which multiple modules are inserted. After image input, 

emotional labels are used for annotation, and feature 

extraction is performed after annotation is completed. The 

convolutional attention module composed of channel and 

spatial attention mechanisms is utilized to enhance feature 

expression ability. The study constructs an emotional 

attribute fusion module to integrate the extracted 

emotional and attribute labels into the model. After 

multiple rounds of feature extraction, the study uses the 

Fltten layer to convert multidimensional data into one-

dimensional output data, and predicts aesthetic scores in a 

multi-layer perceptron. In aesthetic evaluation, the 

emotions contained in an image can affect its final rating. 

To introduce image emotions into the evaluation model, 

research is being conducted on preprocessing the input 

image using emotional labels. The label processing of 

images requires first obtaining label vectors of different 

emotions, performing an expanding operation on the label 

vectors, that is, expanding the low dimensional semantic 

vectors into high-dimensional spatial features, as shown in 

equation (13) [20]. 

( )emoF W emo b=  +               (13) 

In equation (13), 
emoF  is the output FM,   is the 

non-linear activation function, W  is the weight matrix, 

emo  is the sentiment label vector, and b  is the bias 

term. After processing, the research will concatenate the 

output FM with the initial input image, and calculate as 

shown in equation (14). 

i emo imaF F F=             (14) 

In equation (14), iF  is the input image annotated 

with emotional labels,   is feature concatenation, and 

imaF  is the initial input image. In the convolutional 
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attention module, the FMs are sequentially subjected to 

channel and spatial attention calculations, as shown in 

equation (15) [21]. 

7 7

( ) ( ( ( )) ( ( )))

( ) ( ([ ( ) ( ); ]))

c

s

M F MLP AvgPool F MLP MaxPool F

M F f AvgPool F MaxPool F



 

= +


=

                  (15) 

In equation (15), ( )cM F  is the output of channel 

attention,   is the Sigmoid activation function, MLP  is 

the multi-layer perceptron, AvgPool  is global average 

pooling, F  is input features, and MaxPool  is global 

max pooling. ( )sM F  is the output of the spatial 

attention, and 
7 7f 

 is a 7×7 convolution. The distinctive 

configuration of the emotional attribute fusion module is 

presented in Figure 6. 

 

 

Figure 6: Distinctive configuration of the emotional attribute fusion module 

(Image source: Authors own illustration) 

 

 

In Figure 6, after being input into the fusion module, 

the image undergoes the addition of emotional and 

attribute labels, followed by the expansion operation. The 

attribute labels are the degree of color vividness, color 

harmony, and element balance, respectively. After 

processing, the image fusion features are obtained and 

subjected to two 3D convolutions to extract emotional 

features, which are then fused with basic aesthetic 

features. Finally, one-dimensional convolution was used 

for feature regression processing and output to the residual 

module of ResNet50 network. 

 

3  Results 
3.1 Analysis of image restoration experiment 

In the hardware environment of the experiment, the 

CPU was AMD Ryzen 7, the GPU was NVIDIA RTX 

3090, the video memory was 24GB, the memory was 

64GB DDR4, and the storage was 1TB SSD. The 

operating system in the software environment was Ubuntu 

22.04 LTS, and the deep learning framework was PyTorch 

1.12.0. Among the model's parameter settings, the batch 

size was set to 32, the initial learning rate to 0.001, the 

cosine annealing scheduler employed, and the minimum 

learning rate to 1e-6. The optimizer utilized AdamW with 

a weight decay of 0.01. Training spanned 100 epochs, with 

early stopping triggered when the validation set loss failed 

to decrease for 10 consecutive epochs. The experimental 

datasets comprised PSI-Art and Dunhuang Grottos. The 

PSI-Art dataset contained 12,500 images of European 

murals and sculptures, encompassing varying degrees of 

damage. The Dunhuang Grottos dataset comprised 8,760 

images of murals from the Mogao Caves in Dunhuang, 

featuring rich colour and texture characteristics. To ensure 

fair evaluation, the datasets were randomly partitioned 

into training, validation, and test sets at an 8:1:1 ratio. Data 

augmentation applied random horizontal flipping 

(probability 0.5), random rotation (±20°), and colour 

dithering with brightness, contrast, and saturation adjusted 

by 0.2 each. The comparison of different LF curves for 

improving YOLOv5s is presented in Figure 7. 

 

 

 

Figure 7: Comparison of different LF curves of the improved YOLOv5s 

(Image source: Authors own illustration) 
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In Figure 7 (a), the three different algorithms had a 

small difference in iteration speed in the early stage, but 

the improved YOLOv5s algorithm converged faster after 

10 iterations. The minimum position loss value of the 

improved YOLOv5s algorithm was 0.019, which was 

0.009 and 0.004 lower than YOLOv5s and YOLOv8, 

respectively. In Figure 7(b), owing to the integration of the 

attention module into the model, the enhanced YOLOv5s 

exhibited a quicker convergence rate for confidence loss, 

achieving a minimum confidence loss value of 0.014. This 

value was 0.005 and 0.003 lower than those of YOLOv5s 

and YOLOv8, respectively. The comparison of the 

accuracy of target image extraction using the improved 

YOLOv5s algorithm in different datasets is presented in 

Figure 8. 

 

 

 

Figure 8: Accuracy rate of target image extraction of the improved YOLOv5s algorithm in different datasets 

(Image source: Authors own illustration) 

 

In Figure 8 (a), the image extraction accuracy of 

improved YOLOv5s was the highest, with a maximum 

value of 95.3%, which was 12.5% and 0.3% higher than 

YOLOv5s and YOLOv8, respectively, and the 

convergence speed was significantly better than the other 

two algorithms. In Figure 8 (b), the images in the Mogao 

Grottoes mural dataset were more complex and 

fragmented. The extraction accuracy of all three 

algorithms decreased, with the improved YOLOv5s 

algorithm decreasing by 2.8%, YOLOv5s and YOLOv8 

decreasing by 3.5% and 3.2%. The comparison of image 

restoration performance among various models is 

presented in Table 1. 

 
Table 1: Comparison of image restoration performance of various models 

 
Indicator SSIM/% L1/% 

Mask ratio [0-0.2) [0.2-0.4) [0.4-0.6) [0-0.2) [0.2-0.4) [0.4-0.6) 

MRGC 94.5 85.1 70.3 1.92 3.84 7.52 

CA 87.3 72.5 59.6 3.85 6.92 11.08 

CTSDG 90.8 79.3 65.7 1.99 5.02 8.15 

GANs 85.4 70.2 55.4 4.19 7.25 12.44 

BM3D 89.2 75.5 63.8 2.28 5.52 9.17 

MAT 91.7 82.4 68.2 1.97 4.28 8.10 

IPT 92.5 82.9 68.5 1.95 4.13 8.04 

In Table 1, the comparison algorithms are Contextual 

Attention (CA), Condition Texture and Structure Dual 

Generation (CTSDG), Generative Adversarial Networks 

(GANs), Block Matching and 3D Filtering (BM3D), 

Mask-Aware Transformer (MAT), and Image Processing 

Transformer (IPT). The MRGC model achieved the 

highest structural similarity index, producing restored 

images closer to reality. When the mask ratio fell within 

the range [0–0.2), the model attained an SSIM value of 

94.5%, surpassing the second-best model, IPT, by 2.0%. 

Its L1 value stood at 1.92%, which was 0.03% and 0.05% 

lower than those of the IPT and MAT models respectively. 

The comparison of MRGC model ablation experimental 

results is presented in Figure 9. 
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Figure 9: Comparison of ablation experimental results of the MRGC model 

(Image source: Authors own illustration) 

 

In Figure 9 (a), to validate the statistical significance 

of the results, five independent experiments were 

conducted for each module of the model ablation. The 

experimental outcomes represented average performance 

metrics, with t-tests indicating statistically significant 

differences between experimental results (p < 0.05). Base 

represents the removal of MSRs and gated convolutions, 

MRGC-1 represents the removal of MSRs, and MRGC-2 

represents the removal of gated convolutions. The 

performance of MRGC-2 was significantly better than 

MRGC-1 and Base, with a maximum SSIM value of 

88.2%, which was 4.8% and 6.9% higher than MRGC-1 

and Base, respectively. In Figure 9 (b), the minimum L1 

norms of Base, MRGC-1, and MRGC-2 were 6.25%, 

5.87%, and 4.92%, respectively. 

3.2 Experimental analysis of aesthetic 

evaluation of restored images 
The basic settings of the aesthetic evaluation model 

were the same as in section 2.1, with an initial learning 

rate of 0.0001 and a max iteration count of 20. The 

comparative models used in the experiment included 

Hierarchical Layout Aware Graph Convolutional Network 

(HLA-GCN), Self-Supervised Vision Transformer 

(SSViT), Adaptive Fractional Dilation Convolution 

(AFDC), and Aesthetic Attribute Prediction Network 

(AttributeNet). The performance comparison of various 

models is presented in Figure 10. 

 

 

 

Figure 10: Performance comparison of different models 

(Image source: Authors own illustration) 

 

In Figure 10 (a), SRCC is the Spearman rank 

correlation coefficient, and PLCC is the Pearson linear 

correlation coefficient. The larger the coefficient, the 

closer the model's predicted value is to the true value. The 

maximum SRCC coefficient of the AEEI model proposed 

by the research was 0.792, which was 0.021 and 0.108 

higher than HLA-GCN and SSViT, respectively. In Figure 

10 (b), the PLCC coefficient of the AEEI model tended to 

converge after 8 iterations, with a maximum coefficient 

value of 0.760, slightly lower than HLA-GCN. The 

comparison of computational complexity among various 

models is presented in Table 2. 

 
Table 2: Computational complexity of different 

models 
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AFDC 105249 25.7 5307 
105

2 
Higher 

Attribute

Net 
82183 11.2 2125 128 Normal 

 

In Table 2, the AEEI model had the lowest 

computational complexity with 14268 parameters, 127.5 

floating-point calculations, and 263KB of memory usage, 

which was 457KB lower than the second best HLA-GCN 

model. The running time of the AEEI model was 67ms, 

which was better than other models and had lower time 

complexity. 

 

4  Conclusion 
Given the limitations in edge feature extraction 

capabilities and the inability of existing image restoration 

methods to jointly train aesthetics and emotions in their 

aesthetic evaluation approaches, this study introduces an 

image restoration and aesthetic evaluation method that 

leverages MRGC (Multi-Resolution Graph Convolution) 

and emotion fusion. The experiment showed that the 

minimum position loss value and confidence loss value of 

the improved YOLOv5s algorithm were 0.019 and 0.014, 

respectively, which were lower than other algorithms. The 

improved YOLOv5s had the highest image extraction 

accuracy, with a maximum value of 95.3%, which was 

12.5% and 0.3% higher than YOLOv5s and YOLOv8, 

respectively, and the convergence speed was significantly 

better than the other two algorithms. The MRGC model 

had a higher structural similarity index in the repaired 

image, and the repaired image was closest to the real 

situation. When the mask ratio was between [0-0.2), the 

SSIM value of the MRGC model was 94.5%, which was 

3.7% higher than the second best CTSDG. Removing 

MSRs had a greater impact on the performance of the 

MRGC model, with the maximum SSIM value of MRGC-

2 being 88.2%, which was 4.8% and 6.9% higher than 

MRGC-1 and Base, respectively. The maximum SRCC 

coefficient of the AEEI model was 0.792, which was 0.021 

and 0.108 higher than HLA-GCN and SSViT. The PLCC 

coefficient tended to converge after 8 iterations, with a 

maximum coefficient value of 0.760, slightly lower than 

HLA-GCN. The AEEI model had the lowest 

computational complexity, with a parameter count of 

14268, floating-point calculations of 127.5, and memory 

usage of 263KB, which was 457KB lower than the second 

best HLA-GCN model. The MRGC model's outstanding 

performance in structural similarity demonstrated its 

ability to effectively preserve the original structural and 

textural characteristics of cultural heritage images, which 

was crucial for safeguarding the historical authenticity of 

artefacts. Compared to current state-of-the-art 

Transformer-based restoration methods, this approach 

achieved a superior balance between computational 

complexity and restoration quality, making it particularly 

well-suited for resource-constrained cultural heritage 

conservation scenarios. This study also presents certain 

limitations, such as the restoration quality of the MRGC 

model being partially dependent on the accuracy of the 

front-end edge generation module, and the annotation of 

sentiment labels inherently possessing a degree of 

subjectivity. Future research could explore more robust 

edge detection and generation algorithms, investigate the 

application of multi-modal information (such as textual 

descriptions) in aesthetic evaluation, and extend the 

proposed methodology to the restoration and assessment 

of three-dimensional cultural heritage models. 
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List of variables: 
A : Output result 

( )C : Adaptive function 

odd
 : Rounding the solution down to the nearest odd 

number 

 : Constant for adjusting the scaling ratio 

b : Constant for adjusting the calculation offset 

C : Channel dimension 

GI : Damaged grayscale image 

gI : Grayscale image 

: Hadamard product 

M : Mask 

EI : Broken edge image 

eI : Edge image 

RI  : Final repaired image 

RI : Initial repaired image output by the generator 

TGI : Input image of the generator 

RGBI  : Broken RGB image 

RGBI : Initial RGB image 

TRI  : Final output image 

TRI : Initial output image of the texture restoration 

module generator 

gaL : Generative adversarial loss 

 : Mathematical expectation 

1D : Discriminator of the edge generation module 

fmL : Feature matching loss 

k : Number of convolutional layers in the edge 

generation module discriminator 

in : Total number of elements in the discriminator 

activation layer 

i : Layer activation map 

1GL : Joint LF of the edge generation module 
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1G : Generator of the edge generation module 

ga : Weight coefficients for generating adversarial 

loss 

fm : Weight coefficients for feature matching loss 

prL : Pixel reconstruction loss 

pL : Perceptual loss 

iY : Activation map of the pre trained network at the 

layer 

sL : Style loss 

YG : Gram matrix composed of activation graph 
iY  

2G : Generator of the texture repair module 

2D : Discriminator of the texture repair module 

2GL : Joint LF of the texture repair module 

emoF : Output FM 

 : Non-linear activation function 

W : Weight matrix 

emo : Sentiment label vector 

b : Bias term 

iF : Input image annotated with emotional labels 

 : Feature concatenation 

imaF : Initial input image 

( )cM F : Output of channel attention 

 : Sigmoid activation function 

MLP : Multi-layer perceptron 

AvgPool : Global average pooling 

F : Input features 

MaxPool : Global max pooling 

( )sM F : Output of the spatial attention 

7 7f 
: 7×7 convolution 
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