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Cultural heritage represents humanity's invaluable treasure, yet existing image restoration methods suffer
from inadequate edge feature extraction capabilities and aesthetic evaluation approaches that cannot be
co-trained with emotional factors. Consequently, this research proposes an image restoration method
based on an enhanced You Only Look Once version 5 small (YOLOv5s) and multi-scale residual fusion
gated convolutions, integrating an aesthetic evaluation model that incorporates emotional elements. This
approach employs the enhanced YOLOV5s for image extraction, utilizing the Canny operator as the edge
detection algorithm. It incorporates multi-scale residual blocks and gated convolutional networks within
the generative adversarial network, employing pixel reconstruction, perceptual, and style loss as the joint
loss function. The research inserts emotion label extraction and emotion fusion modules into the residual
network. Experiments demonstrate that the enhanced YOLOv5s achieves a maximum image extraction
accuracy of 95.3%, surpassing both YOLOv5s and YOLOV8 by 12.5% and 0.3% respectively, whilst
converging significantly faster. The image restoration model exhibits higher structural similarity indices,
with restored images most closely approximating reality at a maximum value of 94.5%. Removing multi-
scale residuals substantially impacts model performance. The aesthetic evaluation model achieves a
maximum Spearman's correlation coefficient of 0.792 with the lowest computational complexity.
Consequently, the proposed methodology effectively enhances image restoration capabilities and
aesthetic evaluation quality, thereby facilitating the wider dissemination of cultural heritage.

Povzetek: Obnove slik kulturne dediscine so izvedene z izboljSanim YOLOVS in veémerilno residualno
vodenimi konvolucijami ter estetsko ocenjevanje z vkljucitvijo custvenih dejavnikov. Pristop izboljsa

zaznavanje robov, vizualno kakovost in skladnost estetske ocene s clovesko zaznavo.

1 Introduction

China stands as a venerable civilization boasting a
rich and extensive history, during which it has amassed an
incalculable wealth of cultural heritages over the ages. As
time marches on, however, these invaluable treasures face
inevitable degradation, with their external appearances
and internal structures suffering damage from water
stains, insect infestations, and the erosive forces of wind
and rain [1]. Hence, it becomes imperative to undertake
restoration efforts, for cultural heritage restoration
transcends the mere act of repairing aged artifacts; it is a
vital undertaking intricately linked to the perpetuation of
human civilization, the affirmation of cultural identity,
and the transmission of spiritual heritage [2]. Restoring
cultural heritage can preserve material witness and
evidence of history, prevent historical rifts, protect
cultural diversity, continue cultural memory and identity,
and maintain its artistic and aesthetic value. Within the
domain of cultural heritage restoration, image restoration
has always played a crucial role [3]. For paper cultural
relics such as books and letters, image restoration can
accurately predict missing parts through changes in the
texture and color characteristics of the paper, thereby

achieving the goal of restoration [4]. For mural cultural
relics, image restoration algorithms can utilize the intact
mural patterns and color information around damaged
areas to generate images that closely resemble the original
style and content. These algorithms offer valuable
references for craftsmen during restoration, thereby
helping to slow down the rate of mural deterioration. [5].
Meanwhile, aesthetic evaluation of cultural heritage
images can select parts with important aesthetic value for
key protection and inheritance, promoting people's
understanding of their unique aesthetic characteristics and
cultural connotations [6]. However, existing image
restoration methods still suffer from insufficient ability to
extract edge features, and aesthetic evaluation methods
cannot train aesthetics and emotions together.

To deal with the problem of image restoration
quality, Sun X et al. introduced a structure guided virtual
restoration approach to address the lack of structural
trends and poor performance of existing restoration
algorithms. This approach incorporated an adaptive curve-
fitting algorithm to rebuild missing structural lines. It
devised a novel priority function to refine the sequence in
which patches for repair were filled, and utilized an
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adaptive approach for choosing sample block sizes
according to structural sparsity [7]. The experiment
showed that the average SSIM value of the repaired image
using this approach was 0.977, and the average PSNR
value was 39.16. Xu W et al. introduced a new color
restoration technique grounded in the DenseNet algorithm
to accurately restore the appearance of ancient relics and
reduce the burden of manual restoration. This technology
took a dataset consisting of 60 typical murals as system
input and enhanced it through the DenseNet algorithm.
Experiments showed that this technology was 44.62%
faster than the SegNet algorithm in terms of time
efficiency, 1.289% lower in structural similarity values
than SegNet, 2.442% lower than Deeplab v3, and 1.288%
lower than ResNet [8]. Xu H et al. introduced a new virtual
reality fusion restoration approach for murals grounded in
visual attention mechanism to address issues such as poor
semantic correlation in mural restoration. This approach
adopted the fusion technology of computation and
perception to achieve the fusion association between
virtual restored murals and the real spatial environment. It
used a spatially layered and consistent detection approach
to determine the fusion area between virtual and real.
Experiments showed that this approach could effectively
improve the efficiency of mural restoration and enhance
the structural similarity of restored images [9]. Tang et al.
proposed a novel multi-modal enhanced U-Net model to
address the issue of substandard quality in real-world
image restoration. This model leveraged pre-trained multi-
modal large language models to extract semantic
information from low-quality images, while employing an
image encoder to enhance feature extraction capabilities.
At the visual level, it achieved high-precision restoration
through meticulous management of pixel-level spatial
structures, integrating control information via a multi-
layer attention mechanism. Experiments demonstrated
that this model enabled precise and controllable image
restoration [10]. Li L et al. introduced a new image
aesthetic evaluation model grounded in theme perception
visual attribute inference, which addressed the intrinsic
relationship between visual attributes and image aesthetic
quality in the evaluation of image aesthetic quality. This
model simulated the human perception process of image
aesthetics through two-layer inference, extracting
aesthetic attribute features and thematic features
separately, and introducing a flexible aesthetic network to
extract general aesthetic features. Experiments showed
that the introduced model outperformed existing state-of-
the-art approaches and had better interpretability in four
publicly available image aesthetic evaluation databases
[11]. Celona L et al. introduced a new image aesthetic
automatic prediction approach grounded in image analysis
to address the issue of subjective influence on image
aesthetic evaluation. This approach used a pre trained
network to extract semantic features, used a multi-layer
perceptron network to predict image attributes, and then
generated pre encoded attribute information. Experiments
showed that this approach could predict the style and
composition attributes of different images, and calculate
the distribution of aesthetic scores [12]. Yang Y et al.
introduced a new conditional image aesthetic evaluation
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model to address the highly subjective issue in
personalized image aesthetic evaluation. This model
constructed a new personalized image aesthetics database,
annotated by 438 subjects, and desensitized the image
information. The subject information was used as a
conditional prior to construct a conditional image
aesthetics evaluation model. Experiments showed that this
model could effectively address the evaluation limitations
caused by annotation diversity, while maintaining the
accuracy of image aesthetic evaluation [13]. In recent
years, deep learning has achieved significant progress in
the field of image restoration. Transformer architectures
have demonstrated formidable potential in image
restoration, such as the Swin Transformer effectively
capturing long-range dependencies through its sliding
window mechanism. Concurrently, diffusion models excel
in generating high-quality images, offering novel
approaches for cultural heritage restoration. Regarding
aesthetic  evaluation,  visual ~ Transformer-based
approaches better model global aesthetic features through
self-attention mechanisms. Nevertheless, these methods
still exhibit limitations in adaptability to specific cultural
heritage scenarios and the integration of emotional factors.

In summary, existing research has explored the issues
of image restoration and aesthetic evaluation from
multiple perspectives, and has achieved certain results.
However, existing image restoration approaches still have
problems such as repairing image variation and blur, and
aesthetic evaluation approaches have a single emotional
element. Therefore, this study proposes an image
restoration and aesthetic evaluation method based on
Multi-scale Residuals and Gated Convolution (MRGC)
and Aesthetic Evaluation of Emotional Integration
(AEEI). The research aims to enhance the detection
accuracy of cultural heritage images in complex
backgrounds and improve the precision of image
modifications. Additionally, it seeks to overcome the edge
blurring issues inherent in traditional methods and
integrate subjective factors, such as emotional evaluation,
into aesthetic assessment models. This approach brings
evaluation outcomes closer to human subjective
perception, elevates the quality of image aesthetic
evaluation, and strengthens public cultural identity. The
method innovatively proposes an improved YOLOv5s
architecture, optimized through the C3-DSC module and
attention mechanisms, significantly enhancing the
detection accuracy and efficiency of cultural heritage
targets. A multi-scale residual fusion gated convolutional
network is designed to effectively resolve edge blurring in
cultural heritage image restoration. For the first time, an
emotion label fusion mechanism is introduced into the
aesthetic evaluation of cultural heritage images, achieving
collaborative modelling of aesthetic attributes and
emotional characteristics. The superiority of the proposed
method is validated across multiple cultural heritage
datasets, providing a novel technical pathway for
intelligent cultural heritage preservation.

2 Methods and materials
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2.1 Target image extraction based on

improved YOLOvV5

When extracting cultural heritage images, it is
necessary to identify the cultural heritage in the image
clearly due to the influence of lighting intensity and
occlusion, as well as the texture details of the target object
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[14]. The research adopts the YOLOV5s algorithm as the
basic structure, but the ordinary YOLOV5s algorithm has
problems such as difficulty in recognizing complex targets
and high model complexity. Therefore, research has been
conducted to improve it, and the distinctive configuration
of the improved YOLOV5s model is presented in Figure 1.

Convolution
Convolution — — T T
—>| Convolution C3 ~—~>| Convolution |—>| Detect3| :
| upsample —|—> Concat |
: Concat Convolution |: :
C3 C3 -‘—‘+| Convolution |—>| Detect2 |
Convolution —>{  Concat i
Upsample Convolution | :
Convolution i -
_ Concat [—> C3 -‘—~>| Convolution |—>| Detectl |

Figure 1: Improved distinctive configuration of the YOLOv5s model
(Image source: Authors own illustration)

In Figure 1, the improved YOLOv5s model mainly
consists of three parts: the backbone network (BN), the
neck network, and the detection end. The BN includes a
convolution module, a C3-Deepwise Separable
Convolution (C3-DSC) module formed by fusing C3 and
depthwise  separable convolutions, an attention
mechanism module, and spatial pyramid fast pooling. The
C3-DSC module can effectively reduce the number of
parameters in the model, improve computing speed, and
the attention module can model in the channel dimension,
highlighting important feature channels and suppressing
unimportant channels, thereby enhancing the model's
attention to key features. In addition to the above modules,
the neck network also adds an Upsample module to
upsample the feature maps (FMs), and a Concat module to
concatenate feature images from different levels. After
passing through the convolution module, the detection
data are input into the Detect module to predict bounding
boxes on FMs of different scales.

The C3 module has two parallel paths, with the main
path consisting of one-dimensional convolution, multiple
Bottleneck residual blocks, and one-dimensional
convolution. The shortcut path only has one-dimensional
convolution, and the outputs of the two paths are
concatenated in the channel dimension. The Bottleneck
residual block is composed of two successive 3D

convolutions. In this study, the optimization of the
Bottleneck block is achieved solely by substituting its 3D
convolution with a depthwise separable convolution. The
attention module enables the model to focus its attention
on the critical features of the target. Moreover, the study
incorporated just a single layer into the BN, which serves
to enhance the image's feature extraction capabilities. The
attention module can achieve cross channel transmission
of data with fewer parameters. To prevent dimensionality
reduction, one-dimensional convolution is introduced in
the attention module. The adaptive function calculation
used is presented in equation (1) [15].

C
log, b
A A odd
In equation (1), A represents the output result,

A=p(C)= 1)

(/)(C) represents the adaptive function, |-|odd represents

rounding the solution down to the nearest odd number, A
represents the constant for adjusting the scaling ratio, b
represents the constant for adjusting the calculation offset,
and C represents the channel dimension. The distinctive

configuration of the attention module is presented in
Figure 2.
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Figure 2: The distinctive configuration of the attention module
(Image source: Authors own illustration)

In Figure 2, the FM is first inputted and globally
average pooled to aggregate spatial information. Then, an
adaptive function is used to determine channel attention
weights. After the attention module, one-dimensional
convolution is employed to generate attention weights for
each channel. The Sigmoid activation function is used for
linear transformation, and finally the generated attention
weights are multiplied step by step with the original FM
to obtain a weighted FM. The dimensions of the output
FM stay consistent. To reduce the total degree of freedom
of the LF, the SloU LF is used to replace the traditional
CloU LF. The introduction of angle loss term in SloU can
guide the model to correct directional deviation and
introduce distance decoupling penalty, making it more
sensitive to small target offset. Adaptive shape penalty
performs position correction in the initial stage and shape

fine-tuning in the later stage. loU loss provides clear
gradient direction and reduces oscillation.

2.2 Image restoration based on MRGC model

The improved YOLOV5s algorithm used in the study
can only extract target images, but most existing cultural
heritage objects suffer from problems such as missing
patterns, textures, or colors [16]. Therefore, research
needs to repair the extracted images and reconstruct the
missing areas of the images. However, existing end-to-end
deep learning image restoration methods still suffer from
the problem of restoring blurry image edges. Therefore,
the MGRC model that combines multi-scale residuals
(MSRs) with gated convolutional networks is studied. The
distinctive configuration of the model is presented in
Figure 3.
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Figure 3: Distinctive configuration of the MGRC model
(Image source: Authors own illustration)

In Figure 3, the model mainly consists of three parts:
edge detection module, edge generation module, and
texture restoration module. The main structure of the
second and third parts is similar to that of a generative
adversarial network, both containing a generator and a
discriminator. The MGRC model inputs the extracted
images into the edge generation module, which constructs
the initial image through the generator. Then, it is jointly
trained with the discriminator to generate images with
higher realism and input them into the texture restoration
module. The input of the texture restoration module also
includes the Red Green Blue (RGB) image of the initial
image, which is iteratively trained using a generator and
discriminator. The generator of the edge generation
module consists of multiple convolutions and MSR

modules, while the generator of the texture restoration
module consists of multiple gated convolutions and
residual modules. The study adopts the Canny operator as
the edge detection algorithm, which can reduce noise
interference and improve edge localization accuracy. The
input images of the edge generation module include
grayscale images and edge images. The image expression
after calculation at the input end is presented in equation
) [17].
le =1,0 (1-M)

2
L= 1,0 (1-M) @
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In equation (2), lg represents the damaged

grayscale image, |g represents the grayscale image, [

represents the Hadamard product, M represents the

mask, | represents the broken edge image, and |,
represents the edge image. After the image calculation is
completed, the study concatenates |, |, and the mask,
and inputs them into the generator after concatenation.
The generator extracts image features, performs broken
area repair, and inputs the repaired edge image into the

discriminator for iteration. The final generated repaired
image is calculated as shown in equation (3).

lp=10M+I, ®3)
In equation (3), Ié represents the final repaired

image and |R represents the initial repaired image output

by the generator. The study suggests that an MSR module
can improve the completeness of feature extraction in the
model and enhance the edge continuity of the repaired
image. Its distinctive configuration is presented in Figure
4.
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| |
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| |
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e Convolution

1x1

P

Figure 4: Distinctive configuration of the MSR
module
(Image source: Authors own illustration)

In Figure 4, the MSR is a parallel dual branch
structure, with two branches having the same structure.
After three-dimensional convolution, small-scale local
features of the image are gathered, and a five dimensional
convolution is used to capture contextual information with
a larger receptive field. ReLU activation function is reused
to introduce non-linear processing capability. Two branch
FMs are concatenated along the channel dimension to
aggregate local features. Finally, the concatenated FMs
are input into one-dimensional convolution to explore the
correlation and complementary information of features at
different scales. The input image of the generator consists

of a damaged RGB image and |é stitching, calculated as
shown in equation (4).

(o
ITG _{IR7IRGB}

, 4
IRGB = IRGBD (1_M)
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In equation (4), |TG represents the input image of
the generator, |, represents the broken RGB image,

and lggs represents the initial RGB image. After

multiple iterations in the generator and discriminator, the
final output graph is calculated as shown in equation (5).

! !/
g =gt M+15g (5)
In equation (5), IT'R represents the final output

image and I, represents the initial output image of the

texture restoration module generator. To improve the
authenticity of restored images, generative adversarial loss
and feature matching loss were used as the LFs of the edge
generation module. The calculation of generative
adversarial loss is presented in equation (6) [18].

Ly =E(Ieylg)[log Dy(1,.1,) [+ B, -log[1-D; (14, 1,) ]
(6)

In equation (6), Lga1 is the generative adversarial

loss, E is the mathematical expectation, and Dl is the

discriminator of the edge generation module. The
calculation of feature matching loss is presented in
equation (7).
K1
!
L, =E Zn—”oli.|e—o|i-|R||l )

i=1 1

In equation (7), Ly, represents the feature matching
loss, k represents the number of convolutional layers in
the edge generation module discriminator, N; represents

the total number of elements in the discriminator
activation layer, and i represents the layer activation
map. The joint LF calculation of the edge generation
module is presented in equation (8).

minmax L, = mG|ln(a)ga mgllx(Lga)+a)mefm) ®)

In equation (8), L represents the joint LF of the
edge generation module, G1 represents the generator of
the edge generation module, @, represents the weight

coefficients for generating adversarial loss, and @y,

represents the weight coefficients for feature matching
loss. The LF of the texture restoration module includes
four types: generative adversarial loss, pixel
reconstruction loss, perceptual loss, and style loss. The
calculation method of generative adversarial loss is the
same as that of the edge generation module. The
calculation of pixel reconstruction loss is presented in
equation (9).
1

L = M”IT'R - IRGB”l ©)



352 Informatica 49 (2025) 347-358

In equation (9), L, pixel

reconstruction loss. The calculation of perceptual loss is
presented in equation (10).

1
L,=E Z;IIY. legs —Yi- ITR”l

i=1 [,

represents the

(10)

In equation (10), Lp represents perceptual loss and

Yi represents the activation map of the pre trained

network at the layer. The calculation of style loss is
presented in equation (11).

L =[G, (1) -G, (1uca)]

In equation (11), Ls represents style loss and G,
represents the Gram matrix composed of activation graph
Yi . The joint LF calculation of the texture repair module
is presented in equation (12).

(11)

minmax L, =min (a)ga, mDax(Lga,)+coprLpr +ao,L, +605|-s)
2 2

G, D,
(12)
In equation (12), G2 represents the generator of the

texture repair module, D, represents the discriminator of
the texture repair module, LGZ represents the joint LF of

the texture repair module, L., represents the generative

ga’
adversarial loss of the texture repair, Wy, Dy, O, and

o, represent the weight coefficients of generative

adversarial, pixel reconstruction, perceptual, and style
loss, respectively.

2.3 Aesthetic evaluation of restored images

based on emotional fusion

Cultural heritage images often carry past aesthetic
concepts and cultural information, and aesthetic
evaluation of restored images can restore narrative vitality
to vanished fragments of civilization [19]. Cultural
heritage images often contain various emotional attributes,
including positive and negative, but existing aesthetic
evaluation methods for images cannot train aesthetics and
emotions together. Therefore, the study developed an
image aesthetic evaluation model grounded in emotional
fusion, and the distinctive configuration of the model is
presented in Figure 5.
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Residual block 2

Convolutional
attention
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attribute fusion
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attention
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Figure 5: Image aesthetic evaluation model of

emotional fusion
(Image source: Authors own illustration)

In Figure 5, the overall model is a linear structure
with a ResNet50 network as the backbone structure, in
which multiple modules are inserted. After image input,
emotional labels are used for annotation, and feature
extraction is performed after annotation is completed. The
convolutional attention module composed of channel and
spatial attention mechanisms is utilized to enhance feature
expression ability. The study constructs an emotional
attribute fusion module to integrate the extracted
emotional and attribute labels into the model. After
multiple rounds of feature extraction, the study uses the
Fltten layer to convert multidimensional data into one-
dimensional output data, and predicts aesthetic scores in a
multi-layer perceptron. In aesthetic evaluation, the
emotions contained in an image can affect its final rating.
To introduce image emotions into the evaluation model,
research is being conducted on preprocessing the input
image using emotional labels. The label processing of
images requires first obtaining label vectors of different
emotions, performing an expanding operation on the label
vectors, that is, expanding the low dimensional semantic
vectors into high-dimensional spatial features, as shown in
equation (13) [20].

F., =T'(W-emo+b)
In equation (13), F,,

(13)
is the output FM, T" is the

non-linear activation function, W is the weight matrix,
€MO is the sentiment label vector, and b is the bias

term. After processing, the research will concatenate the
output FM with the initial input image, and calculate as
shown in equation (14).

0

F=F

emo

@ Fima

In equation (14), F, is the input image annotated

(14)

with emotional labels, @ is feature concatenation, and

Fna is the initial input image. In the convolutional
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attention module, the FMs are sequentially SUbjECtEd o the mu|ti_|ayer perceptron, AVgPOOI is g|oba| average

ggﬁgﬁi‘nﬁg)s[gaf]'él attention calculations, as shown in pooling, F is input features, and MaxPool is global
M,(F) = o(MLP(AvgPool (F)) + MLP(MaxPool (F))) ~ max pooling. M (F) is the output of the spatial
{MS(F) =o(f ™ ([AvgPool (F); MaxPool (F)])) attention, and f ™7 is a 7x7 convolution. The distinctive
(15)  configuration of the emotional attribute fusion module is

In equation (15), M_(F) is the output of channel presented in Figure 6.

attention, O is the Sigmoid activation function, MLP is

Emotional label

0 . Emotional feature . Characteristic Fusion feature
o Expanding . Feature fusion .
- extraction channel regression output
Convolution | Convolution |—>| Concat |—>| Convolution |—>
B T
Attribute label Basic aesthetic

characteristics

Figure 6: Distinctive configuration of the emotional attribute fusion module
(Image source: Authors own illustration)

22.04 LTS, and the deep learning framework was PyTorch

In Figure 6, after being input into the fusion module,  1.12.0. Among the model's parameter settings, the batch

the image undergoes the addition of emotional and  sjze was set to 32, the initial learning rate to 0.001, the
attribute labels, followed by the eXpanSion Operation. The cosine annea”ng scheduler emp|oyed, and the minimum
attribute labels are the degree of color vividness, color |earning rate to 1e-6. The optimizer utilized AdamW with
harmony, and element balance, respectively. After  aweight decay of 0.01. Training spanned 100 epochs, with
processing, the image fusion features are obtained and  early stopping triggered when the validation set loss failed
subjected to two 3D convolutions to extract emotional  to decrease for 10 consecutive epochs. The experimental
features, which are then fused with basic aesthetic datasets Comprised PSI-Art and Dunhuang Grottos. The
features. Finally, one-dimensional convolution was used  pS|-Art dataset contained 12,500 images of European
for feature regression processing and output to the residual  myrals and sculptures, encompassing varying degrees of

module of ResNet50 network. damage. The Dunhuang Grottos dataset comprised 8,760
images of murals from the Mogao Caves in Dunhuang,
3 Results featuring rich colour and texture characteristics. To ensure

3.1 Analysis of image restoration experiment ~ fair evaluation, the datasets were randomly partitioned

In the hardware environment of the experiment, the into tralnlqg,valldatlpn, and test sets at an 8:1:1 ratlo_. D_ata
CPU was AMD Ryzen 7, the GPU was NVIDIA RTX ~ augmentation - applied random horizontal flipping
3090, the video memory was 24GB, the memory was (proba}blllty 0'5).’ random rotation (:20°), .and golour
64GB DDR4, and the storage was 1TB SSD. The dithering with brightness, contrast, and saturation adjusted

; ; : by 0.2 each. The comparison of different LF curves for
operating system in the software environment was Ubuntu . . L
P 95y improving YOLOV5s is presented in Figure 7.
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Figure 7: Comparison of different LF curves of the improved YOLOV5s
(Image source: Authors own illustration)



354 Informatica 49 (2025) 347-358

In Figure 7 (a), the three different algorithms had a
small difference in iteration speed in the early stage, but
the improved YOLOV5s algorithm converged faster after
10 iterations. The minimum position loss value of the
improved YOLOV5s algorithm was 0.019, which was
0.009 and 0.004 lower than YOLOv5s and YOLOVS,
respectively. In Figure 7(b), owing to the integration of the
attention module into the model, the enhanced YOLOV5s

C.Jing

exhibited a quicker convergence rate for confidence loss,
achieving a minimum confidence loss value of 0.014. This
value was 0.005 and 0.003 lower than those of YOLOv5s
and YOLOVS, respectively. The comparison of the
accuracy of target image extraction using the improved
YOLOV5s algorithm in different datasets is presented in
Figure 8.
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Figure 8: Accuracy rate of target image extraction of the improved YOLOV5s algorithm in different datasets
(Image source: Authors own illustration)

In Figure 8 (a), the image extraction accuracy of
improved YOLOV5s was the highest, with a maximum
value of 95.3%, which was 12.5% and 0.3% higher than
YOLOv5s and YOLOvVS, respectively, and the
convergence speed was significantly better than the other
two algorithms. In Figure 8 (b), the images in the Mogao
Grottoes mural dataset were more complex and

fragmented. The extraction accuracy of all three
algorithms decreased, with the improved YOLOv5s
algorithm decreasing by 2.8%, YOLOv5s and YOLOVS
decreasing by 3.5% and 3.2%. The comparison of image
restoration performance among various models is
presented in Table 1.

Table 1: Comparison of image restoration performance of various models

Indicator SSIM/% L1/%
Mask ratio [0-0.2) [0.2-0.4) [0.4-0.6) [0-0.2) [0.2-0.4) [0.4-0.6)

MRGC 94.5 85.1 70.3 1.92 3.84 7.52
CA 87.3 72.5 59.6 3.85 6.92 11.08
CTSDG 90.8 79.3 65.7 1.99 5.02 8.15
GANs 85.4 70.2 55.4 4.19 7.25 12.44
BM3D 89.2 75.5 63.8 2.28 5.562 9.17
MAT 91.7 82.4 68.2 1.97 4.28 8.10
IPT 92.5 82.9 68.5 1.95 4.13 8.04

In Table 1, the comparison algorithms are Contextual
Attention (CA), Condition Texture and Structure Dual
Generation (CTSDG), Generative Adversarial Networks
(GANS), Block Matching and 3D Filtering (BM3D),
Mask-Aware Transformer (MAT), and Image Processing
Transformer (IPT). The MRGC model achieved the
highest structural similarity index, producing restored

images closer to reality. When the mask ratio fell within
the range [0-0.2), the model attained an SSIM value of
94.5%, surpassing the second-best model, IPT, by 2.0%.
Its L1 value stood at 1.92%, which was 0.03% and 0.05%
lower than those of the IPT and MAT models respectively.
The comparison of MRGC model ablation experimental
results is presented in Figure 9.
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Figure 9: Comparison of ablation experimental results of the MRGC model
(Image source: Authors own illustration)

In Figure 9 (a), to validate the statistical significance
of the results, five independent experiments were
conducted for each module of the model ablation. The
experimental outcomes represented average performance
metrics, with t-tests indicating statistically significant
differences between experimental results (p < 0.05). Base
represents the removal of MSRs and gated convolutions,
MRGC-1 represents the removal of MSRs, and MRGC-2
represents the removal of gated convolutions. The
performance of MRGC-2 was significantly better than
MRGC-1 and Base, with a maximum SSIM value of
88.2%, which was 4.8% and 6.9% higher than MRGC-1
and Base, respectively. In Figure 9 (b), the minimum L1
norms of Base, MRGC-1, and MRGC-2 were 6.25%,
5.87%, and 4.92%, respectively.

3.2 Experimental analysis of aesthetic

evaluation of restored images

The basic settings of the aesthetic evaluation model
were the same as in section 2.1, with an initial learning
rate of 0.0001 and a max iteration count of 20. The
comparative models used in the experiment included
Hierarchical Layout Aware Graph Convolutional Network
(HLA-GCN), Self-Supervised  Vision  Transformer
(SSVIT), Adaptive Fractional Dilation Convolution
(AFDC), and Aesthetic Attribute Prediction Network
(AttributeNet). The performance comparison of various
models is presented in Figure 10.
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Figure 10: Performance comparison of different models
(Image source: Authors own illustration)

In Figure 10 (a), SRCC is the Spearman rank
correlation coefficient, and PLCC is the Pearson linear
correlation coefficient. The larger the coefficient, the
closer the model's predicted value is to the true value. The
maximum SRCC coefficient of the AEEI model proposed
by the research was 0.792, which was 0.021 and 0.108
higher than HLA-GCN and SSViT, respectively. In Figure
10 (b), the PLCC coefficient of the AEEI model tended to
converge after 8 iterations, with a maximum coefficient
value of 0.760, slightly lower than HLA-GCN. The
comparison of computational complexity among various
models is presented in Table 2.

Table 2: Computational complexity of different

models
Run

Paramet GFLO Memo tim Time

Model er P ry e complexity(
. S usage >
quantity (KB) (ms 0%)
)

AEEI 14268 1275 263 67 Lower
HLA-
GCN 354862 56.8 720 94 Normal
SSVIT 59894 169.4 1806 285 Higher
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AFDC | 105249 | 257 | 5307 | '%° | Higher
A“,L'ft”te 82183 | 112 | 2125 | 128 | Normal

In Table 2, the AEElI model had the lowest
computational complexity with 14268 parameters, 127.5
floating-point calculations, and 263KB of memory usage,
which was 457KB lower than the second best HLA-GCN
model. The running time of the AEEI model was 67ms,
which was better than other models and had lower time
complexity.

4 Conclusion

Given the limitations in edge feature extraction
capabilities and the inability of existing image restoration
methods to jointly train aesthetics and emotions in their
aesthetic evaluation approaches, this study introduces an
image restoration and aesthetic evaluation method that
leverages MRGC (Multi-Resolution Graph Convolution)
and emotion fusion. The experiment showed that the
minimum position loss value and confidence loss value of
the improved YOLOv5s algorithm were 0.019 and 0.014,
respectively, which were lower than other algorithms. The
improved YOLOv5s had the highest image extraction
accuracy, with a maximum value of 95.3%, which was
12.5% and 0.3% higher than YOLOv5s and YOLOVS,
respectively, and the convergence speed was significantly
better than the other two algorithms. The MRGC model
had a higher structural similarity index in the repaired
image, and the repaired image was closest to the real
situation. When the mask ratio was between [0-0.2), the
SSIM value of the MRGC model was 94.5%, which was
3.7% higher than the second best CTSDG. Removing
MSRs had a greater impact on the performance of the
MRGC model, with the maximum SSIM value of MRGC-
2 being 88.2%, which was 4.8% and 6.9% higher than
MRGC-1 and Base, respectively. The maximum SRCC
coefficient of the AEEI model was 0.792, which was 0.021
and 0.108 higher than HLA-GCN and SSViT. The PLCC
coefficient tended to converge after 8 iterations, with a
maximum coefficient value of 0.760, slightly lower than
HLA-GCN. The AEEI model had the lowest
computational complexity, with a parameter count of
14268, floating-point calculations of 127.5, and memory
usage of 263KB, which was 457KB lower than the second
best HLA-GCN model. The MRGC model's outstanding
performance in structural similarity demonstrated its
ability to effectively preserve the original structural and
textural characteristics of cultural heritage images, which
was crucial for safeguarding the historical authenticity of
artefacts. Compared to current state-of-the-art
Transformer-based restoration methods, this approach
achieved a superior balance between computational
complexity and restoration quality, making it particularly
well-suited for resource-constrained cultural heritage
conservation scenarios. This study also presents certain
limitations, such as the restoration quality of the MRGC
model being partially dependent on the accuracy of the
front-end edge generation module, and the annotation of
sentiment labels inherently possessing a degree of

C.Jing

subjectivity. Future research could explore more robust
edge detection and generation algorithms, investigate the
application of multi-modal information (such as textual
descriptions) in aesthetic evaluation, and extend the
proposed methodology to the restoration and assessment
of three-dimensional cultural heritage models.
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List of variables:
A : Output result

¢(C): Adaptive function

|~|Odd : Rounding the solution down to the nearest odd

number
A : Constant for adjusting the scaling ratio
b : Constant for adjusting the calculation offset

C : Channel dimension
| ; : Damaged grayscale image
Grayscale image

Iy
[J : Hadamard product
M : Mask

I - : Broken edge image

I, : Edge image

I £ : Final repaired image

I; : Initial repaired image output by the generator

|TG : Input image of the generator

| 75 : Broken RGB image

I g © Initial RGB image

1% : Final output image

I : Initial output image of the texture restoration
module generator

Lga : Generative adversarial loss

E : Mathematical expectation

D1 : Discriminator of the edge generation module

L. : Feature matching loss

K : Number of convolutional layers in the edge
generation module discriminator
N; : Total number of elements in the discriminator

activation layer
i : Layer activation map

LGl : Joint LF of the edge generation module



Enhanced Image Restoration and Aesthetic Evaluation Using...

G, : Generator of the edge generation module

@y, : Weight coefficients for generating adversarial
loss
0., - Weight coefficients for feature matching loss

Lpr - Pixel reconstruction loss
Lp : Perceptual loss

Yi : Activation map of the pre trained network at the
layer
L, : Style loss

GY : Gram matrix composed of activation graph YI
G2: Generator of the texture repair module

D, : Discriminator of the texture repair module
LGz : Joint LF of the texture repair module

F...: Output FM

I : Non-linear activation function
W : Weight matrix

€MoO : Sentiment label vector

b : Bias term

F. : Input image annotated with emotional labels
@ : Feature concatenation

.o © Initial input image

M_(F) : Output of channel attention

O : Sigmoid activation function
MVLP : Multi-layer perceptron

AngOO| : Global average pooling
F : Input features
MaxPool : Global max pooling

M, (F) : Output of the spatial attention

f ™7 . 7x7 convolution
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