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Existing 3D face animation generation methods focus on lip movement and audio synchronization,
ignoring the ability to synchronize expressions and poses. To address this problem, the study proposes a
Self-Supervised Speech-Driven 3D Face Animation via Lattice Convolution Networks. The study first
selected students from a certain school to read aloud the same corpus and record audio and video as the
dataset. Through self-supervised learning and encoder-decoder structure, the speech features were
extracted and mapped, and the obtained facial parameters were applied to the Face Latent Animated
Mesh Estimator model to achieve lip-sync. Then, by combining the optical flow information in the video
stream with the changes of facial key points, the grid convolutional network is used to model the
expression dynamics and head postures, achieving multimodal feature fusion. In the experiment of
analyzing the naturalness and accuracy of the generated animation, the lip shape vertex error,
naturalness score, lip reading character error rate, and pixel error rate of the proposed method were
only 2.54mm 2 9.45, 2.34%, and 2.53% respectively. In the performance analysis experiment of the

emotion and posture recognition model, the accuracy rate of expression recognition and the posture
offset error were 92.34% and 1.2 ° respectively. The lighting sensitivity, micro-expression fidelity and
rendering frame rate of the generated face animation were 5.01, 93.48% and 63.74FPS respectively.
The proposed 3D face animation generation method can effectively improve the realism and
synchronization of the animation and achieve more accurate face animation generation.

Povzetek: Raziskava predstavi metodo, ki iz govora ne animira le premikanja ustnic, ampak tudi

obrazno mimiko in polozaj glave, zato so 3D animacije bolj naravne in bolje usklajene z govorom.

1 Introduction

As animation technology continues to advance, 3D
animation has progressively emerged as a new medium
that can depict settings and characters that are more
colorful and lifelike. 3D face animation (3DFA) is a
significant subset of it that is becoming more and more
significant in the creation of video games, virtual reality,
and movies and television shows [1]. The face expression
and lip synchronization of 3D animation are the key
factors affecting the fineness of animation. To improve the
quality of animation production, more and more scholars
have begun to study the face generation of 3D animation
[2]. Sun Z et al. proposed a diffusion model-based
generation framework in order to realize face generation
for 3D animation. The framework extracted style encoders
embedded with styles from short reference videos and
built classifiers based on speech and style to further guide
face generation. The results indicated that the 3D

animation generated by this method had high accuracy [3].

To conduct an in-depth study on 3D animation task
generation, Sha T et al. summarized the survey on the
scope of research, recent advances, and technological
trends in animation generation. The findings indicated that

virtual fitting, digital human body etc. were the
application areas of the study [4]. Wang B et al. proposed
a 3D animation generation method for more convenient
and faster human-computer interaction. The method
employed support vector machine to extract the facial
features of the face and used C++ and OpenGL for
rendering simulation. The results indicated that the
method was able to achieve real-time detection of face
regions in video images [5]. Hou Z D et al. proposed a
new process in order to achieve personalized virtual face
generation. The process performed topology on a real
human face model using R3ds Wrap, after which the
model was deformed using a mesh deformation algorithm
to generate a virtual face. Experimental results indicated
that the virtual face generated by this method had a high
degree of realism and personalization [6].

Self-supervised learning is an emerging deep learning
paradigm. It achieves efficient learning by mining the
inherent structural information of the data itself, and has a
wide range of applications in various fields [7]. Yang Z et
al. proposed a lightweight self-supervised model in order
to achieve high-precision surgical navigation in
endoscopic scenarios. The model combined lightweight
convolutional neural network (CNN) and Transformer to
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extract texture features and shape features respectively.
The method realized attitude prediction through global
information sensing. According to the findings, the
method's prediction accuracy was 92.36% [8]. Wang T et
al. proposed a method based on self-supervised learning in
order to simulate human muscle movement and provide
the animation industry with simulable joint movement
sequences. This method introduces the loss function based
on physical principles to achieve skeletal nerve simulation
and combines the deformation effect to simulate muscle
movement. The results show that the simulation
authenticity of this method exceeds that of the traditional
methods [9]. There are several uses for CNNs, which are
shift-invariant or spatially invariant artificial neural
networks, in domains like signal and image processing
[10]. Ghazal T M et al. proposed a CNN based recognition
system in order to achieve effective recognition of
handwritten documents. The system achieved high
accuracy recognition of handwritten documents through
multi-level feature extraction and adaptive learning
mechanism. Experimental results indicated that the
system showed excellent recognition performance on a
variety of handwritten samples, with a recognition
accuracy rate of more than 90% [11]. Jain N et al.
proposed an emotion recognition method based on
convolutional neural networks in order to simulate the
emotions of real human faces into animations. This
method uses Mask R-CNN for character detection and
combines a deep learning model for sentiment
classification. The results show that the recognition
accuracy of this method has reached over 90% [12].

In summary, existing 3DFA generation methods suffer
from the problems of insufficiently fine speech feature
extraction and poor expression synchronization. To
address this problem, the study proposes a 3DFA
generation model based on self-supervised speech coding
and Lattice Convolution Networks. The model uses voice
video to achieve the expression pose synchronization and
lip-sound synchronization of 3D face. The study aims to
achieve  accurate  voice-expression  synchronized
animation through the established 3DFA generation
method, which provides technical support for real-time
interactive applications. The innovation of the study is to
apply the waveform vector self-supervised learning
framework Wav2vec 2.0 to the speech feature extraction
task. Furthermore, a new self-supervised learning model
is designed to achieve more accurate audio-visual
synchronization of 3DFA by combining the
encoder-decoder structure. In addition, the study adopts a
convolutional structure to extract facial expression
features, geometric feature parameters, and combines
them with the self-supervised speech coding model. The
fineness of 3D animation feature capture is further
improved.

The novelty of the proposed method compared with the
existing models lies in the deep integration of
self-supervised speech representation learning and 3D
facial dynamic modeling. It uses Wav2vec 2.0 to extract
high-level semantic features from the original audio,
avoiding the reliance of traditional methods on manually
labeled phonemes. Meanwhile, the grid convolutional
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network is introduced to jointly model the local and global
features of the facial topological structure, significantly
enhancing the fineness and synchronization accuracy of
expression changes, and achieving an end-to-end audio
and video collaborative generation framework that can be
trained without pairing data.

Its key contributions are as follows:

(1) A self-supervised pre-training strategy without
lip-reading annotation is proposed for voice-driven 3D
facial animation generation, effectively reducing the
reliance on large-scale labeled data and enhancing the
model's generalization ability in real scenes.

(2) A facial dynamic decoder based on grid convolution
was designed, which can accurately capture
micro-expression changes and maintain long-term
temporal consistency.

(3) An end-to-end audio and video collaborative training
framework was constructed, achieving high-precision
synchronization of voice and facial movements without
paired data.

2 Methods and materials

To achieve accurate synchronization of face animation, a
3DFA generation method based on self-supervised speech
coding and Lattice Convolution Networks is proposed.
The method combines speech features and video features
to finely capture face expression and lip shape changes to
ensure synchronization with real-life audio and video.

2.1 Synchronized lip sync generation for face
animation based on self-supervised speech
coding

One hundred and twenty students from School A,
consisting of 60 males and 60 females, are selected as
subjects for the study. These subjects read the same
spoken English sentences while recording audiovisual
videos, totaling 425 utterances. The length of each
utterance sequence is about 3.0s~4.0s. These utterances
come from Corpus of Contemporary American English
(COCA), which covers a wide range of life scenarios and
topics in the corpus. The study uses data collected from 80
subjects as a training set and data from another 40 subjects
as a test set. The study's volunteers are evenly distributed
in terms of age, gender, and accent to guarantee the
samples' diversity and representativeness. The video
frames in the dataset are sampled at 30 frames per second,
and the audio signals are resampled to 16kHz. The audio
preprocessing adopts short-time Fourier transform to
extract MEL spectrum features and normalizes them to
eliminate individual differences. The MEL spectrogram is
used as the speech input mode and sent into the Wav2vec
2.0 model for feature encoding to extract
high-dimensional speech latent variables. In the video
modality, the FLAME network is adopted to locate the key
points of the face, and the corresponding expression
coefficients and lip movement parameters are generated
through the three-dimensional regresser. The grid
convolution module models the topological structure of
the human face and captures the fine-grained changes in
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local muscle movements. The self-supervised learning
framework optimizes the speech-to-expression mapping
relationship without paired annotations. To extract the
speech features in the audiovisual video, the study uses
the waveform vector self-supervised learning framework
Wav2vec 2.0 to process the speech signals. Wav2vec 2.0
extracts high-quality features from the original speech
waveforms by self-supervised learning, which can
effectively capture the subtle changes of speech [13-14].
Fig. 1 depicts the model's construction.
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Figure 1: Wav2vec 2.0 model structure

As shown in Figure 1, the Wav2vec 2.0 model consists of
multiple convolutional layers, quantization modules, and
Transformer encoders. The convolutional layer of the
Wav2vec 2.0 model is used to process the original speech
waveform and extract local features. The quantization
module discretizes continuous features into latent
representations. The Transformer encoder captures
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long-distance dependencies. The Transformer has 12
layers, 768 hidden dimensions, and 12 attention heads.
The learning rate is 5e-4, the batch size is set to 16, and the
number of training rounds is 100. The cosine annealing
strategy is adopted to dynamically adjust the learning rate
to enhance the model's convergence. During the training
process, the input speech waveform is divided into 20ms
frames with a sampling frequency of 16kHz. By
comparing the prediction tasks, the model is pre-trained
on unlabeled data to enhance the ability to express speech
features. The feature output dimension is 768, achieving
seamless integration with the subsequent 3D face mesh
convolutional network. The encoder extracts the context
embedding vector, the convolutional layer processes the
local features, and the quantization module converts the
continuous speech into a discrete representation. 3D face
modeling, as a popular and effective face representation,
has the ability to express expressive motion and
understand audio-visual synchronization better than 2D
images [15-16]. To realize realistic 3D animation effects,
deep learning techniques are investigated to generate
offset vertex sequences of 3D face templates by taking
raw speech features as input. Finally, the offset vertex
sequences are mapped onto the 3D face model, and the
3DFA is generated by fine-tuning. To this end, the
research designs a self-supervised speech coding network.
It learns the geometric structure of the 3D face model
through the encoder and decoder, and outputs the
animation. The structure of the self-supervised speech
coding network designed in the study is shown in Fig. 2.
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Figure 2: The self-supervised speech coding network structure designed by the research

In Fig. 2, the encoder includes a Wav2vec 2.0 module and
a 3D face feature extraction module. The module includes
two identity coded connectivity layers, four CLs, and one
fully connected layer (FCL). To ensure that the model can
recognize and understand individual differences, the study
uses one-hot unique hot coding vectors to encode various
training objects in the dataset in an attempt to learn the
speaking styles of various individuals. The study then
fuses the coding vectors with the extracted speech features
and the CL outputs in a FCL to control the network to
output 3D animated faces with different speaking styles.
The step size of all convolution layers is 2x1 and the

convolution kernel size is set to 3x1. The study uses
spectral convolution in the grid convolution layer to
capture finer geometric details and enhance the realism of
the animation. The spectral convolution is shown in
Equation (1).

y=3 0., &

In Equation (1), y is the convolution output. g,, is the

lattice kernel filter. w is the Chebyshev coefficient
vector. ¢ isthe Laplace real symmetric matrix. x, isthe

mesh vertices of the 3D model. C is the number of
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features. To ensure that the generated 3DFA sequence is
consistent with the real situation, the study introduces a
joint loss function (LF) consisting of reconstruction loss
and velocity loss. The reconstruction loss ensures the
accuracy of the geometric structure, while the velocity
loss smoothes the animation transition and avoids abrupt
changes. The LF is specifically shown in Equation (2).
Loss=L,+&-L, (2)
In Equation (2), & is the hyperparameter. The study sets
it to 0.1 to balance reconstruction and velocity loss. L,
and L, are the reconstruction loss and velocity loss

values, respectively. Loss is the loss value of the model
training process. The study uses mean square error to
calculate the reconstruction loss. The study uses face
latent animated mesh estimator (FLAME) to generate the
base 3D face model. Moreover, it is combined with the
established self-supervised speech coding network to
realize the lip sync of 3D animation. Before that, the study
performs 3D mesh refinement of the face model. Fast
spectral convolution is used to learn the nonlinear
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representation of the face, and the hierarchical mesh
representation is realized by mesh sampling operations.
The filter in fast spectral convolution is expressed in
Equation (3).

Q1 ~
9(1)=>w T(T) ©)
i=0
In Equation (3), g(1) is the filter kernel function. 1 and

1 are the Laplace operators before and after scaling. T,
is the recursive computation result. Q is the order of the

polynomial. This defines the spectral convolution as
shown in Equation (4).

yk:ig(l)'xi (4)

In Equation (4), x; is the input feature. y, is the

spectral convolution output result. k is the output feature
number. M is the number of input features. The specific
flow of speech-driven 3DFA generation is shown in Fig. 3.
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Figure 3: The specific process of generating 3D face animations driven by voice

In Fig. 3, the study first generates an initial 3D face mesh
using the FLAME model. Then, speech features are
extracted by self-supervised speech coding network and
mapped to the control parameters of the FLAME model.
Then, the mapped parameters are refined using grid
convolution layer to ensure that the lip shape is highly
matched with the speech. Finally, the model output is
optimized by the joint LF to generate realistic 3D
animated face sequences to achieve accurate
synchronization between speech and lip shape.

2.2 3D face animation generation based on
Lattice Convolution Networks and voice

video

The study implements synchronized lip sync generation
for face animation based on self-supervised speech coding.
However, in 3DFA, only implementing lip sync cannot
achieve a more ideal animation generation -effect.
Therefore, the study considers combining expression and
pose parameters to further improve the face model, and
first preprocesses the captured video frames. The
processing flow is shown in Fig. 4.
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Figure 4: Video frame data processing flow

In Fig. 4, the study begins with the detection of feature
points in the face video. The detection process uses the
Dlib library for key point localization. Previous video
frame preprocessing methods mainly use the edges of the
face feature point detection in the image for individual
cropping. In this way, although the faces of all frame
images are accurately cropped, it is more troublesome and
easier to lose the background information [17-18].
Therefore, it is investigated to compute the maximum
cropped face borders based on the edge positions of the
face feature points of all frames, covering the faces of all
frame sequences and cropping them uniformly. After
processing the 2D video data, the study applies it to the
expression as well as the pose of the network to obtain the
expression parameters and pose parameters. The method
works by combining the expression parameters, the pose
parameters, and the results of the lip offset points of the
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3D face obtained from the speech drive. It is also input
into the FLAME model for comprehensive optimization
to generate a more natural and dynamic 3DFA. The
specific structure of the 3DFA generation method based
on Lattice Convolution Networks and voice video
designed in the study is shown in Fig. 5.
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Figure 5: The specific structure of the 3D face animation
generation method based on the Lattice Convolution
Networks and voice video

In Fig. 5, the study inputs the video data into the
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expression pose network (EPN) to extract the expression
and pose parameters. In addition, the study introduces a
3D face reconstruction network to predict the
transformation parameters, shape parameters, and texture
parameters to further optimize the 3D face model. The
study uses a temporal CNN in the EPN to capture the
temporal information and enhance the dynamic
expression. In the process of expression recognition, the
study uses MobileNet model to extract the visual features
of each frame in the video, which is combined with the
timing information for comprehensive analysis. The video
data is first fed into the MobileNet model to extract visual
features. After that, it is inputted into the temporal
convolution layer to further extract the temporal features.
The size of the temporal CL designed by the study is 5x2
with a step size of 1. When performing the fusion of the
two modal features of pose and expression, the study first
combines them by splicing, and then analyzes the visually
relevant expression parameters and pose parameters by
regressing them through two FCLs. Moreover, these
parameters are input into the FLAME model for face
decoding. Finally, it is combined with the speech-driven
module to generate the final face animation. MobileNet
model is a CNN architecture. It uses an inverted residual
block and a linear bottleneck structure, which effectively
reduces the amount of computation and improves the
model efficiency. Its structure is shown in Fig. 6.
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Figure 6: The specific structure of the MobileNet model

In Fig. 6, the inverted residual block contains a 1x1 CL for
feature dimensionality reduction, followed by a deep CL.
A separate convolutional filter is used to extract localized
features, and then the dimensionality is restored by a 1x1
CL. The linear bottleneck block reduces the information
loss and improves the accuracy of feature extraction by
reducing the use of activation functions. To train the EPN,
the study uses a LF to constrain it. The study combines
emotion and lip-reading loss, pose consistency loss and
geometric constraint loss to construct a multi-task
learning framework. All three consistency losses are
computed using mean square error. The geometric
constraint loss is calculated using the Euclidean distance
between the actual feature offsets and the projected
feature offsets. The calculation process is shown in

Equation (5).

Loss, :”(Ki'Kj-l)'(ﬂ(Mi)'ﬂ(Mi-l))” ®)
In Equation (5), Loss, is the geometric loss. K; is the
current frame face feature point coordinates. K, is the
previous frame face feature point coordinates. ,u() is

the value to which the face model feature point is
projected by the predictive camera model. M, and M,

are both 3D face feature points in the FLAME model. The
consistency loss is calculated as shown in Equation (6).

Loss, = v, ~vx|

2
Loss, =, = 7
In Equation (6), Loss, and Loss, are the loss values of

(6)
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emotion and lip-reading consistency, respectively.
and y, are the original emotion features and lip features,
respectively. y, and y, are the emotion features and

lip features obtained from rendering. In summary, the
study fine-tunes the 3D face model by combining face
expression, pose, and speech features. This ensures
synergistic consistency among the features, resulting in
more natural and realistic expression and pose
reproduction.

The research adopts a self-supervised speech encoder to
extract high-dimensional semantic features from the input
speech and reduces the reliance on labeled data through a
pre-trained model. The grid convolutional structure is
constructed based on the topological connection
relationship of the FLAME model. The graph
convolutional network is utilized to perform local
neighborhood aggregation on the vertices of the 3D face,
enhancing the spatial perception ability. The model takes
geometric loss and consistency loss as the joint
optimization goals. Through end-to-end training, it
gradually adjusts the mapping relationship between
expression  parameters, pose  parameters  and
speech-driven features to improve the accuracy and
fluency of dynamic expression generation. During the
training process, the Adam optimizer is used for
parameter updates. The initial learning rate is set to 0.001,
and a learning rate decay strategy is adopted based on the
loss changes on the validation set. The learning rate is
multiplied by 0.9 every 10 epochs. The training period

Y. Wang

was set to a total of 50 epochs, with a batch size of 32. All
experiments were conducted on NVIDIA A100 Gpus. To
prevent overfitting, random discard and data
augmentation strategies are introduced to perform
time-domain masking and noise addition processing on
the input speech features.

3 Results

To analyze the generation effect as well as the model
performance of the 3DFA generation method proposed in
the study, a series of experiments are carried out. The
performance is discussed based on the experimental
results.

3.1 Lip sync effect based on self-supervised

speech coding

To examine the performance of the lip sync face
generation method based on self-supervised speech
coding designed in the study, the study compares it with
existing lip sync techniques. The comparison methods
include Real3D-Portrait and GeneFace. The comparison
metrics include the mean error of lip vertex generation, the
mean square error of all vertices of a 3D face, and the
naturalness score of lip sync. The naturalness score is
evaluated by five experts in the specialized field of 3D
animation production and has a total score of 10. A higher
score indicates a better generation of lip sync. Table 1
displays the comparing results.

Table 1: Performance comparison of three 3D face animation lip sync methods

Face vertex error Lip shape vertex error Naturalness

Project Maximum | Minimum | Average | Maximum | Minimum | Average
score (0-10)

value value value value value value
Research 2.83 3.54 3.26 2.25 2.69 2.54 9.45
method
Real3D-Portrait | 2.85 3.47 3.24 2.67 3.11 3.02 8.23
GeneFace 2.76 3.44 3.36 2.78 3.15 2.97 8.54

In Table 1, there is basically no difference in the mean
square error values of the overall vertices of the face for
the three methods, and the error value of the proposed
method is slightly higher in the study. This is due to the
fact that the current method only combines speech
features. This further justifies the subsequent combination
of video expression and pose features. In addition, the lip
shape vertex error value of the study's proposed method is
significantly lower than the other methods, and the
naturalness score is higher than the other two methods.
The mean values of the two metrics are 2.54 mm? and 9.45

points, respectively. This indicates that the proposed
method performs better in terms of lip synchronization
accuracy and naturalness. The self-supervised speech
coding network is able to capture the association between
speech and lip shape effectively.

To further validate the effects of lip sync, the study tests a
multilingual sample. The comparison languages include
English, Chinese, Japanese, and Spanish. The changes of
average lip vertex error value of the three methods with
the increase of sample number under four languages are
shown in Fig. 7.
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Figure 7: The variation of the average lip vertex error values of the three methods with the increase of the sample size

In Fig. 7(a), in the English samples, Real3D-Portrait error
is the largest, GeneFace is the second largest, and the
average error of the research-proposed method is only
2.54 mm? In Fig. 7(b), in the Chinese samples, the
research-proposed method has the smallest lip-vertex
error value. Its average value is only 2.31 mm?, which is
significantly better than the other two methods. In Fig.
7(c), for the Japanese sample, the research method still
performs best with an error of 2.45 mm?. As shown in Fig.
7(d) for the Spanish sample, the error is 2.38 mm?, further
validating the superiority of the method. This indicates
that the research method exhibits high lip sync accuracy in
different languages.

3.2 Effect of expression pose generation
based on voice video and Lattice Convolution

Networks

To realize more accurate and natural 3DFA generation,
this study introduces expression and pose networks of
video data on the basis of speech-driven. To test the effect
of the proposed emotion, pose generation, the study
introduces emotion recognition accuracy rate, head pose,
offset error of actual pose, and face vertex error value as
evaluation indexes. It is also compared and experimented
with FaceAnime model and 3DMM-Blendshape proposed
by Tsinghua University. The performance of the three
models is compared through multiple datasets. The
comparison datasets include BU-3DFE and Tufts face
dataset. Table 2 displays the comparing results.

Table 2: Comparison of the expression and posture generation effects of three models under two datasets

BU-3DFE Tufts face dataset
Project Accuracy | Attitude offset | Vertex error | Accuracy | Attitude offset | Vertex error
rate (%) error (°) value (mm?) | rate (%) | error (°) value (mm?)
Research 94.10 0.92 2.49 90.58 1.38 2.67
method
FaceAnime 87.14 1.50 2.94 82.47 1.83 3.15
SDMM-Blend | g4 53 1.32 2.79 85.44 1.69 3.00
shape

In Table 2, in both datasets, the emotion recognition
accuracy rate, head pose offset error, and face vertex error
of the study's proposed method are significantly better

than the other two methods. The mean values of these
three metrics are 92.34%, 1.2°, and 2.58 mm?, respectively.
Especially on the BU-3DFE dataset, the emotion
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recognition accuracy rate is as high as 94.10%, the head
pose offset error is only 0.92°, and the face vertex error is
only 2.49 mm?. This indicates that the proposed method
can effectively capture the expression and pose details of
the subject.

To further test the effect of expression, pose generation,
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the study tests the dynamic video sequences, which are
selected as the video sequences recorded by the students
of School A. With the change of time, the recognition
accuracy rate, head pose offset error, and face vertex error
results of the three methods are shown in Fig. 8.
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Figure 8: The recognition accuracy rates, head pose offset errors, and face vertex error results of the three methods

In Fig. 8(a), the recognition accuracy rate of the research
design method remains stable with minimal fluctuations
over time. Its average recognition accuracy rate value
remains above 92%. The other two methods both
produced different levels of fluctuations over the time
series. In Fig. 8(b), the face vertex error has less variation
over time, with an average value of 2.53 mm? This
indicates that the research method has higher stability and
reliability in dynamic expression recognition. In Fig. 8(c),
the head pose offset error remains the smallest in the
dynamic sequence with a mean value of 1.1°.

3.3 Application effect of face animation
generation method based on speech coding
and convolutional architecture

To test the effectiveness of the proposed face animation
generation method (Method 1) based on self-supervised
speech coding and Lattice Convolution Networks, the
study conducts comparative experiments with the
generation method (Method 2) in the literature [18], the
generation method (Method 3) in the literature [19], the
generation method (Method 4) in the literature [20], and
the generation method (Method 5) in the literature [21].
The experiment is applied to the generation of 3DFA for
50 students in School A, and lip-reading loss is introduced
as an evaluation index. Among them, it includes the
character error rate and the optogenetic error rate
representing the error rate of the corresponding visual
mouth unit during pronunciation. The comparison results
are shown in Fig. 9.
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Figure 9: The lip-reading loss results of 3D face animations for 50 students

In Fig. 9(a), the fluctuation range of the character error
rate for Method 1 is from 2.1% to 3.5%, which is
significantly smaller than that of the other four methods in
the 3DFA generation for 50 students. In Fig. 9(b), the
fluctuation range of the optic error rate for Method 1 is
1.8% to 2.9%. The fluctuation range for Method 2 is 3.2%
to 4.7%. For Method 3, it is 4.1% to 5.6%. Methods 4 and
5 achieve an average error rate of 4% or more. In summary,
Method 1 proposed in the study exhibits higher stability
and accuracy in both character and reticle error rates,

verifying its superiority in face animation generation.

To further validate the effectiveness of the face animation
generated by the proposed method, the study introduces
vertex position error (VPE), root-mean-square error
(RMSE) of expression movement, illumination sensitivity
(1S), micro-expression fidelity (MEF), and rendering
frame rate (RFR) metrics to further analyze its
performance. Among them, the MEF metrics are obtained
by utilizing facial action coding system (FACS)
assessment. Table 3 displays the comparing results.

Table 3: Comparison of the generation effects of several 3D face animation generation methods

Project VPE (mm) RMSE IS MEF (%) RFR (FPS)
Method 1 1.22 0.15 5.01 93.48 63.74
Method 2 1.75 0.25 5.71 89.97 58.46
Method 3 1.36 0.19 5.48 90.22 60.00
Method 4 1.92 0.28 6.00 85.36 54.23
Method 5 2.03 0.30 6.03 85.12 51.04

In Table 3, Method 1 performs optimally in all
performance metrics, with VPE and RMSE significantly
lower than the other methods. It has a moderate IS with a
high MEF of 93.48% and the highest RFR, which further
confirms its comprehensive advantage in generating face
animation. In addition, Method 1 shows greater
adaptability in complex lighting environments and
dynamic expression capture. The VPE value and the MSE
value of expression movement of Method 1 are 1.22 mm
and 0.15, respectively. Its RFP reaches 63.74 FPS and its
IS value is only 5.01, which enables it to effectively cope
with a variety of lighting changes. In conclusion, the
proposed 3DFA generation method is leading in terms of
accuracy, smoothness and environment adaptability. It is
capable of generating realistic and detailed dynamic
expressions, and accurately capturing the changes in the
character's mouth shape when he/she is speaking.

4 Discussion and conclusion

To ensure that the face generation animation has natural
facial expressions and movements, and can realize
high-precision lip sync, the study proposed a 3DFA
generation method based on self-supervised speech

coding and Lattice Convolution Networks. The method
realized lip sync by self-supervised speech coding
network and FLAME model. At the same time, the
research combined the video data, extracted the
expression and pose parameters, and fused them with
speech features to generate the final face animation. The
experimental results indicated that the mean values of lip
shape vertex error value and naturalness score of the
research proposed method were 2.54 mm? and 9.45,
respectively. The mean error value was less than 2.6 mm?
in different language samples. The mean values of
emotional recognition accuracy rate, head pose offset
error, and face vertex error of the research proposed
method in different datasets were 92.34%, 1.2°, and 2.58
mm?, respectively. Moreover, the expression pose feature
capture of the proposed method was significantly better
and more stable in both dynamic testing situations. After
the application of Method 1, the average values of
lip-reading character error rate and optic pixel error rate of
the generated animation were only 2.34% and 2.53%,
respectively. Its VPE, RMSE, MEF, RFP, and IS metrics
were 1.22 mm, 0.15, 93.48%, 63.74 FPS, and 5.01,
respectively. Compared with other methods, it was
superior in detail performance. The method designed in
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the current study focuses on three modal data: expression,
movement, and speech. In the future, details such as teeth
and hairs of the face can be refined to further improve the
realism of the animation.

At present, the research still has certain limitations, which
are specifically manifested in the limited adaptability to
low-resolution input videos and the decline in the
estimation accuracy of expression parameters in extreme
occlusion scenarios. In addition, model training relies on a
large amount of labeled data, and there is still room for
improvement in generalization ability across racial and
age groups. Future work will introduce lightweight
network structures to optimize reasoning efficiency and
combine physical driving mechanisms to enhance
dynamic simulation of facial details, in order to further
improve the realism and robustness of generated
animations. Meanwhile, explore unsupervised domain
adaptive strategies to alleviate the reliance on data
annotation and enhance the applicability of the model
among people of different cultures and age groups.
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