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Existing 3D face animation generation methods focus on lip movement and audio synchronization, 

ignoring the ability to synchronize expressions and poses. To address this problem, the study proposes a 

Self-Supervised Speech-Driven 3D Face Animation via Lattice Convolution Networks. The study first 

selected students from a certain school to read aloud the same corpus and record audio and video as the 

dataset. Through self-supervised learning and encoder-decoder structure, the speech features were 

extracted and mapped, and the obtained facial parameters were applied to the Face Latent Animated 

Mesh Estimator model to achieve lip-sync. Then, by combining the optical flow information in the video 

stream with the changes of facial key points, the grid convolutional network is used to model the 

expression dynamics and head postures, achieving multimodal feature fusion. In the experiment of 

analyzing the naturalness and accuracy of the generated animation, the lip shape vertex error, 

naturalness score, lip reading character error rate, and pixel error rate of the proposed method were 

only 2.54mm ², 9.45, 2.34%, and 2.53% respectively. In the performance analysis experiment of the 

emotion and posture recognition model, the accuracy rate of expression recognition and the posture 

offset error were 92.34% and 1.2° respectively. The lighting sensitivity, micro-expression fidelity and 

rendering frame rate of the generated face animation were 5.01, 93.48% and 63.74FPS respectively. 

The proposed 3D face animation generation method can effectively improve the realism and 

synchronization of the animation and achieve more accurate face animation generation. 

Povzetek: Raziskava predstavi metodo, ki iz govora ne animira le premikanja ustnic, ampak tudi 

obrazno mimiko in položaj glave, zato so 3D animacije bolj naravne in bolje usklajene z govorom. 

 

1  Introduction 
As animation technology continues to advance, 3D 

animation has progressively emerged as a new medium 

that can depict settings and characters that are more 

colorful and lifelike. 3D face animation (3DFA) is a 

significant subset of it that is becoming more and more 

significant in the creation of video games, virtual reality, 

and movies and television shows [1]. The face expression 

and lip synchronization of 3D animation are the key 

factors affecting the fineness of animation. To improve the 

quality of animation production, more and more scholars 

have begun to study the face generation of 3D animation 

[2]. Sun Z et al. proposed a diffusion model-based 

generation framework in order to realize face generation 

for 3D animation. The framework extracted style encoders 

embedded with styles from short reference videos and 

built classifiers based on speech and style to further guide 

face generation. The results indicated that the 3D 

animation generated by this method had high accuracy [3]. 

To conduct an in-depth study on 3D animation task 

generation, Sha T et al. summarized the survey on the 

scope of research, recent advances, and technological 

trends in animation generation. The findings indicated that 

virtual fitting, digital human body etc. were the 

application areas of the study [4]. Wang B et al. proposed 

a 3D animation generation method for more convenient 

and faster human-computer interaction. The method 

employed support vector machine to extract the facial 

features of the face and used C++ and OpenGL for 

rendering simulation. The results indicated that the 

method was able to achieve real-time detection of face 

regions in video images [5]. Hou Z D et al. proposed a 

new process in order to achieve personalized virtual face 

generation. The process performed topology on a real 

human face model using R3ds Wrap, after which the 

model was deformed using a mesh deformation algorithm 

to generate a virtual face. Experimental results indicated 

that the virtual face generated by this method had a high 

degree of realism and personalization [6].  

Self-supervised learning is an emerging deep learning 

paradigm. It achieves efficient learning by mining the 

inherent structural information of the data itself, and has a 

wide range of applications in various fields [7]. Yang Z et 

al. proposed a lightweight self-supervised model in order 

to achieve high-precision surgical navigation in 

endoscopic scenarios. The model combined lightweight 

convolutional neural network (CNN) and Transformer to 
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extract texture features and shape features respectively. 

The method realized attitude prediction through global 

information sensing. According to the findings, the 

method's prediction accuracy was 92.36% [8]. Wang T et 

al. proposed a method based on self-supervised learning in 

order to simulate human muscle movement and provide 

the animation industry with simulable joint movement 

sequences. This method introduces the loss function based 

on physical principles to achieve skeletal nerve simulation 

and combines the deformation effect to simulate muscle 

movement. The results show that the simulation 

authenticity of this method exceeds that of the traditional 

methods [9]. There are several uses for CNNs, which are 

shift-invariant or spatially invariant artificial neural 

networks, in domains like signal and image processing 

[10]. Ghazal T M et al. proposed a CNN based recognition 

system in order to achieve effective recognition of 

handwritten documents. The system achieved high 

accuracy recognition of handwritten documents through 

multi-level feature extraction and adaptive learning 

mechanism. Experimental results indicated that the 

system showed excellent recognition performance on a 

variety of handwritten samples, with a recognition 

accuracy rate of more than 90% [11]. Jain N et al. 

proposed an emotion recognition method based on 

convolutional neural networks in order to simulate the 

emotions of real human faces into animations. This 

method uses Mask R-CNN for character detection and 

combines a deep learning model for sentiment 

classification. The results show that the recognition 

accuracy of this method has reached over 90% [12]. 

In summary, existing 3DFA generation methods suffer 

from the problems of insufficiently fine speech feature 

extraction and poor expression synchronization. To 

address this problem, the study proposes a 3DFA 

generation model based on self-supervised speech coding 

and Lattice Convolution Networks. The model uses voice 

video to achieve the expression pose synchronization and 

lip-sound synchronization of 3D face. The study aims to 

achieve accurate voice-expression synchronized 

animation through the established 3DFA generation 

method, which provides technical support for real-time 

interactive applications. The innovation of the study is to 

apply the waveform vector self-supervised learning 

framework Wav2vec 2.0 to the speech feature extraction 

task. Furthermore, a new self-supervised learning model 

is designed to achieve more accurate audio-visual 

synchronization of 3DFA by combining the 

encoder-decoder structure. In addition, the study adopts a 

convolutional structure to extract facial expression 

features, geometric feature parameters, and combines 

them with the self-supervised speech coding model. The 

fineness of 3D animation feature capture is further 

improved. 

The novelty of the proposed method compared with the 

existing models lies in the deep integration of 

self-supervised speech representation learning and 3D 

facial dynamic modeling. It uses Wav2vec 2.0 to extract 

high-level semantic features from the original audio, 

avoiding the reliance of traditional methods on manually 

labeled phonemes. Meanwhile, the grid convolutional 

network is introduced to jointly model the local and global 

features of the facial topological structure, significantly 

enhancing the fineness and synchronization accuracy of 

expression changes, and achieving an end-to-end audio 

and video collaborative generation framework that can be 

trained without pairing data. 

Its key contributions are as follows: 

(1) A self-supervised pre-training strategy without 

lip-reading annotation is proposed for voice-driven 3D 

facial animation generation, effectively reducing the 

reliance on large-scale labeled data and enhancing the 

model's generalization ability in real scenes. 

(2) A facial dynamic decoder based on grid convolution 

was designed, which can accurately capture 

micro-expression changes and maintain long-term 

temporal consistency. 

(3) An end-to-end audio and video collaborative training 

framework was constructed, achieving high-precision 

synchronization of voice and facial movements without 

paired data. 

2 Methods and materials 

To achieve accurate synchronization of face animation, a 

3DFA generation method based on self-supervised speech 

coding and Lattice Convolution Networks is proposed. 

The method combines speech features and video features 

to finely capture face expression and lip shape changes to 

ensure synchronization with real-life audio and video. 

 

2.1 Synchronized lip sync generation for face 

animation based on self-supervised speech 

coding 
One hundred and twenty students from School A, 

consisting of 60 males and 60 females, are selected as 

subjects for the study. These subjects read the same 

spoken English sentences while recording audiovisual 

videos, totaling 425 utterances. The length of each 

utterance sequence is about 3.0s~4.0s. These utterances 

come from Corpus of Contemporary American English 

(COCA), which covers a wide range of life scenarios and 

topics in the corpus. The study uses data collected from 80 

subjects as a training set and data from another 40 subjects 

as a test set. The study's volunteers are evenly distributed 

in terms of age, gender, and accent to guarantee the 

samples' diversity and representativeness. The video 

frames in the dataset are sampled at 30 frames per second, 

and the audio signals are resampled to 16kHz. The audio 

preprocessing adopts short-time Fourier transform to 

extract MEL spectrum features and normalizes them to 

eliminate individual differences. The MEL spectrogram is 

used as the speech input mode and sent into the Wav2vec 

2.0 model for feature encoding to extract 

high-dimensional speech latent variables. In the video 

modality, the FLAME network is adopted to locate the key 

points of the face, and the corresponding expression 

coefficients and lip movement parameters are generated 

through the three-dimensional regresser. The grid 

convolution module models the topological structure of 

the human face and captures the fine-grained changes in 
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local muscle movements. The self-supervised learning 

framework optimizes the speech-to-expression mapping 

relationship without paired annotations. To extract the 

speech features in the audiovisual video, the study uses 

the waveform vector self-supervised learning framework 

Wav2vec 2.0 to process the speech signals. Wav2vec 2.0 

extracts high-quality features from the original speech 

waveforms by self-supervised learning, which can 

effectively capture the subtle changes of speech [13-14]. 

Fig. 1 depicts the model's construction. 
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Figure 1: Wav2vec 2.0 model structure 

 

As shown in Figure 1, the Wav2vec 2.0 model consists of 

multiple convolutional layers, quantization modules, and 

Transformer encoders. The convolutional layer of the 

Wav2vec 2.0 model is used to process the original speech 

waveform and extract local features. The quantization 

module discretizes continuous features into latent 

representations. The Transformer encoder captures 

long-distance dependencies. The Transformer has 12 

layers, 768 hidden dimensions, and 12 attention heads. 

The learning rate is 5e-4, the batch size is set to 16, and the 

number of training rounds is 100. The cosine annealing 

strategy is adopted to dynamically adjust the learning rate 

to enhance the model's convergence. During the training 

process, the input speech waveform is divided into 20ms 

frames with a sampling frequency of 16kHz. By 

comparing the prediction tasks, the model is pre-trained 

on unlabeled data to enhance the ability to express speech 

features. The feature output dimension is 768, achieving 

seamless integration with the subsequent 3D face mesh 

convolutional network. The encoder extracts the context 

embedding vector, the convolutional layer processes the 

local features, and the quantization module converts the 

continuous speech into a discrete representation. 3D face 

modeling, as a popular and effective face representation, 

has the ability to express expressive motion and 

understand audio-visual synchronization better than 2D 

images [15-16]. To realize realistic 3D animation effects, 

deep learning techniques are investigated to generate 

offset vertex sequences of 3D face templates by taking 

raw speech features as input. Finally, the offset vertex 

sequences are mapped onto the 3D face model, and the 

3DFA is generated by fine-tuning. To this end, the 

research designs a self-supervised speech coding network. 

It learns the geometric structure of the 3D face model 

through the encoder and decoder, and outputs the 

animation. The structure of the self-supervised speech 

coding network designed in the study is shown in Fig. 2. 
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Figure 2: The self-supervised speech coding network structure designed by the research 

 

In Fig. 2, the encoder includes a Wav2vec 2.0 module and 

a 3D face feature extraction module. The module includes 

two identity coded connectivity layers, four CLs, and one 

fully connected layer (FCL). To ensure that the model can 

recognize and understand individual differences, the study 

uses one-hot unique hot coding vectors to encode various 

training objects in the dataset in an attempt to learn the 

speaking styles of various individuals. The study then 

fuses the coding vectors with the extracted speech features 

and the CL outputs in a FCL to control the network to 

output 3D animated faces with different speaking styles. 

The step size of all convolution layers is 2×1 and the 

convolution kernel size is set to 3×1. The study uses 

spectral convolution in the grid convolution layer to 

capture finer geometric details and enhance the realism of 

the animation. The spectral convolution is shown in 

Equation (1). 
C

w

i 1

y g
ij ix

=

=                  (1) 

In Equation (1), y  is the convolution output. 
ijwg  is the 

lattice kernel filter. w  is the Chebyshev coefficient 

vector.   is the Laplace real symmetric matrix. 
ix  is the 

mesh vertices of the 3D model. C  is the number of 
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features. To ensure that the generated 3DFA sequence is 

consistent with the real situation, the study introduces a 

joint loss function (LF) consisting of reconstruction loss 

and velocity loss. The reconstruction loss ensures the 

accuracy of the geometric structure, while the velocity 

loss smoothes the animation transition and avoids abrupt 

changes. The LF is specifically shown in Equation (2). 

1 2Loss L L= +   (2) 

In Equation (2),   is the hyperparameter. The study sets 

it to 0.1 to balance reconstruction and velocity loss. 
1L  

and 
2L  are the reconstruction loss and velocity loss 

values, respectively. Loss  is the loss value of the model 

training process. The study uses mean square error to 

calculate the reconstruction loss. The study uses face 

latent animated mesh estimator (FLAME) to generate the 

base 3D face model. Moreover, it is combined with the 

established self-supervised speech coding network to 

realize the lip sync of 3D animation. Before that, the study 

performs 3D mesh refinement of the face model. Fast 

spectral convolution is used to learn the nonlinear 

representation of the face, and the hierarchical mesh 

representation is realized by mesh sampling operations. 

The filter in fast spectral convolution is expressed in 

Equation (3). 

( ) ( )
Q-1

i

i 0

g l w T l
=

=              (3) 

In Equation (3), ( )g l  is the filter kernel function. l  and 

l  are the Laplace operators before and after scaling. 
iT  

is the recursive computation result. Q  is the order of the 

polynomial. This defines the spectral convolution as 

shown in Equation (4). 

( )
M

k i

i 1

y g l x
=

=               (4) 

In Equation (4), 
ix  is the input feature. 

ky  is the 

spectral convolution output result. k  is the output feature 

number. M  is the number of input features. The specific 

flow of speech-driven 3DFA generation is shown in Fig. 3. 

The initial three-

dimensional face mesh is 

generated by using the 

FLAME model

Extract speech 

features through the 

self-supervised speech 

coding network

Map the speech 

features to the control 

parameters of the 

FLAME model

Optimize the 

model output 

through the joint 

loss function

 
Figure 3: The specific process of generating 3D face animations driven by voice 

 

In Fig. 3, the study first generates an initial 3D face mesh 

using the FLAME model. Then, speech features are 

extracted by self-supervised speech coding network and 

mapped to the control parameters of the FLAME model. 

Then, the mapped parameters are refined using grid 

convolution layer to ensure that the lip shape is highly 

matched with the speech. Finally, the model output is 

optimized by the joint LF to generate realistic 3D 

animated face sequences to achieve accurate 

synchronization between speech and lip shape. 

 

2.2 3D face animation generation based on 

Lattice Convolution Networks and voice 

video 
The study implements synchronized lip sync generation 

for face animation based on self-supervised speech coding. 

However, in 3DFA, only implementing lip sync cannot 

achieve a more ideal animation generation effect. 

Therefore, the study considers combining expression and 

pose parameters to further improve the face model, and 

first preprocesses the captured video frames. The 

processing flow is shown in Fig. 4. 
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Figure 4: Video frame data processing flow 

 

In Fig. 4, the study begins with the detection of feature 

points in the face video. The detection process uses the 

Dlib library for key point localization. Previous video 

frame preprocessing methods mainly use the edges of the 

face feature point detection in the image for individual 

cropping. In this way, although the faces of all frame 

images are accurately cropped, it is more troublesome and 

easier to lose the background information [17-18]. 

Therefore, it is investigated to compute the maximum 

cropped face borders based on the edge positions of the 

face feature points of all frames, covering the faces of all 

frame sequences and cropping them uniformly. After 

processing the 2D video data, the study applies it to the 

expression as well as the pose of the network to obtain the 

expression parameters and pose parameters. The method 

works by combining the expression parameters, the pose 

parameters, and the results of the lip offset points of the 
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3D face obtained from the speech drive. It is also input 

into the FLAME model for comprehensive optimization 

to generate a more natural and dynamic 3DFA. The 

specific structure of the 3DFA generation method based 

on Lattice Convolution Networks and voice video 

designed in the study is shown in Fig. 5. 
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Figure 5: The specific structure of the 3D face animation 

generation method based on the Lattice Convolution 

Networks and voice video 

 

In Fig. 5, the study inputs the video data into the 

expression pose network (EPN) to extract the expression 

and pose parameters. In addition, the study introduces a 

3D face reconstruction network to predict the 

transformation parameters, shape parameters, and texture 

parameters to further optimize the 3D face model. The 

study uses a temporal CNN in the EPN to capture the 

temporal information and enhance the dynamic 

expression. In the process of expression recognition, the 

study uses MobileNet model to extract the visual features 

of each frame in the video, which is combined with the 

timing information for comprehensive analysis. The video 

data is first fed into the MobileNet model to extract visual 

features. After that, it is inputted into the temporal 

convolution layer to further extract the temporal features. 

The size of the temporal CL designed by the study is 5×2 

with a step size of 1. When performing the fusion of the 

two modal features of pose and expression, the study first 

combines them by splicing, and then analyzes the visually 

relevant expression parameters and pose parameters by 

regressing them through two FCLs. Moreover, these 

parameters are input into the FLAME model for face 

decoding. Finally, it is combined with the speech-driven 

module to generate the final face animation. MobileNet 

model is a CNN architecture. It uses an inverted residual 

block and a linear bottleneck structure, which effectively 

reduces the amount of computation and improves the 

model efficiency. Its structure is shown in Fig. 6. 
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Figure 6: The specific structure of the MobileNet model 

 

 

In Fig. 6, the inverted residual block contains a 1×1 CL for 

feature dimensionality reduction, followed by a deep CL. 

A separate convolutional filter is used to extract localized 

features, and then the dimensionality is restored by a 1×1 

CL. The linear bottleneck block reduces the information 

loss and improves the accuracy of feature extraction by 

reducing the use of activation functions. To train the EPN, 

the study uses a LF to constrain it. The study combines 

emotion and lip-reading loss, pose consistency loss and 

geometric constraint loss to construct a multi-task 

learning framework. All three consistency losses are 

computed using mean square error. The geometric 

constraint loss is calculated using the Euclidean distance 

between the actual feature offsets and the projected 

feature offsets. The calculation process is shown in 

Equation (5). 

( ) ( ) ( )( )v j j-1 i i-1Loss K -K - M - M =     (5) 

In Equation (5), 
vLoss  is the geometric loss. 

jK  is the 

current frame face feature point coordinates. 
j-1K  is the 

previous frame face feature point coordinates. ( )   is 

the value to which the face model feature point is 

projected by the predictive camera model. 
iM  and 

i-1M  

are both 3D face feature points in the FLAME model. The 

consistency loss is calculated as shown in Equation (6). 
2

e

2

c

Loss

Loss

v R

v R

 

 

 = −


= −

             (6) 

In Equation (6), 
eLoss  and 

cLoss  are the loss values of 
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emotion and lip-reading consistency, respectively. 
v  

and 
v  are the original emotion features and lip features, 

respectively. 
R  and 

R  are the emotion features and 

lip features obtained from rendering. In summary, the 

study fine-tunes the 3D face model by combining face 

expression, pose, and speech features. This ensures 

synergistic consistency among the features, resulting in 

more natural and realistic expression and pose 

reproduction. 

The research adopts a self-supervised speech encoder to 

extract high-dimensional semantic features from the input 

speech and reduces the reliance on labeled data through a 

pre-trained model. The grid convolutional structure is 

constructed based on the topological connection 

relationship of the FLAME model. The graph 

convolutional network is utilized to perform local 

neighborhood aggregation on the vertices of the 3D face, 

enhancing the spatial perception ability. The model takes 

geometric loss and consistency loss as the joint 

optimization goals. Through end-to-end training, it 

gradually adjusts the mapping relationship between 

expression parameters, pose parameters and 

speech-driven features to improve the accuracy and 

fluency of dynamic expression generation. During the 

training process, the Adam optimizer is used for 

parameter updates. The initial learning rate is set to 0.001, 

and a learning rate decay strategy is adopted based on the 

loss changes on the validation set. The learning rate is 

multiplied by 0.9 every 10 epochs. The training period 

was set to a total of 50 epochs, with a batch size of 32. All 

experiments were conducted on NVIDIA A100 Gpus. To 

prevent overfitting, random discard and data 

augmentation strategies are introduced to perform 

time-domain masking and noise addition processing on 

the input speech features. 

3 Results 
To analyze the generation effect as well as the model 

performance of the 3DFA generation method proposed in 

the study, a series of experiments are carried out. The 

performance is discussed based on the experimental 

results. 

 

3.1 Lip sync effect based on self-supervised 

speech coding 
To examine the performance of the lip sync face 

generation method based on self-supervised speech 

coding designed in the study, the study compares it with 

existing lip sync techniques. The comparison methods 

include Real3D-Portrait and GeneFace. The comparison 

metrics include the mean error of lip vertex generation, the 

mean square error of all vertices of a 3D face, and the 

naturalness score of lip sync. The naturalness score is 

evaluated by five experts in the specialized field of 3D 

animation production and has a total score of 10. A higher 

score indicates a better generation of lip sync. Table 1 

displays the comparing results. 

 

Table 1: Performance comparison of three 3D face animation lip sync methods 

 

Project 

Face vertex error Lip shape vertex error 
Naturalness 

score (0-10) 
Maximum 

value 

Minimum 

value 

Average 

value 

Maximum 

value 

Minimum 

value 

Average 

value 

Research 

method 
2.83 3.54 3.26 2.25 2.69 2.54 9.45 

Real3D-Portrait 2.85 3.47 3.24 2.67 3.11 3.02 8.23 

GeneFace 2.76 3.44 3.36 2.78 3.15 2.97 8.54 

 

In Table 1, there is basically no difference in the mean 

square error values of the overall vertices of the face for 

the three methods, and the error value of the proposed 

method is slightly higher in the study. This is due to the 

fact that the current method only combines speech 

features. This further justifies the subsequent combination 

of video expression and pose features. In addition, the lip 

shape vertex error value of the study's proposed method is 

significantly lower than the other methods, and the 

naturalness score is higher than the other two methods. 

The mean values of the two metrics are 2.54 mm2 and 9.45 

  

points, respectively. This indicates that the proposed 

method performs better in terms of lip synchronization 

accuracy and naturalness.  The self-supervised speech 

coding network is able to capture the association between 

speech and lip shape effectively. 

To further validate the effects of lip sync, the study tests a 

multilingual sample. The comparison languages include 

English, Chinese, Japanese, and Spanish. The changes of 

average lip vertex error value of the three methods with 

the increase of sample number under four languages are 

shown in Fig. 7. 
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Figure 7: The variation of the average lip vertex error values of the three methods with the increase of the sample size 

 

In Fig. 7(a), in the English samples, Real3D-Portrait error 

is the largest, GeneFace is the second largest, and the 

average error of the research-proposed method is only 

2.54 mm2. In Fig. 7(b), in the Chinese samples, the 

research-proposed method has the smallest lip-vertex 

error value. Its average value is only 2.31 mm2, which is 

significantly better than the other two methods. In Fig. 

7(c), for the Japanese sample, the research method still 

performs best with an error of 2.45 mm2. As shown in Fig. 

7(d) for the Spanish sample, the error is 2.38 mm2, further 

validating the superiority of the method. This indicates 

that the research method exhibits high lip sync accuracy in 

different languages. 

 

 

 

3.2 Effect of expression pose generation 

based on voice video and Lattice Convolution 

Networks 
To realize more accurate and natural 3DFA generation, 

this study introduces expression and pose networks of 

video data on the basis of speech-driven. To test the effect 

of the proposed emotion, pose generation, the study 

introduces emotion recognition accuracy rate, head pose, 

offset error of actual pose, and face vertex error value as 

evaluation indexes. It is also compared and experimented 

with FaceAnime model and 3DMM-Blendshape proposed 

by Tsinghua University. The performance of the three 

models is compared through multiple datasets. The 

comparison datasets include BU-3DFE and Tufts face 

dataset. Table 2 displays the comparing results. 

 

Table 2: Comparison of the expression and posture generation effects of three models under two datasets 

 

Project 

BU-3DFE Tufts face dataset 

Accuracy 

rate (%) 

Attitude offset 

error (°) 

Vertex error 

value (mm2) 

Accuracy 

rate (%) 

Attitude offset 

error (°) 

Vertex error 

value (mm2) 

Research 

method 
94.10 0.92 2.49 90.58 1.38 2.67 

FaceAnime 87.14 1.50 2.94 82.47 1.83 3.15 

3DMM-Blend

shape 
90.33 1.32 2.79 85.44 1.69 3.00 

 

In Table 2, in both datasets, the emotion recognition 

accuracy rate, head pose offset error, and face vertex error 

of the study's proposed method are significantly better  

 

than the other two methods. The mean values of these 

three metrics are 92.34%, 1.2°, and 2.58 mm2, respectively. 

Especially on the BU-3DFE dataset, the emotion 
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recognition accuracy rate is as high as 94.10%, the head 

pose offset error is only 0.92°, and the face vertex error is 

only 2.49 mm2. This indicates that the proposed method 

can effectively capture the expression and pose details of 

the subject. 

To further test the effect of expression, pose generation, 

the study tests the dynamic video sequences, which are 

selected as the video sequences recorded by the students 

of School A. With the change of time, the recognition 

accuracy rate, head pose offset error, and face vertex error 

results of the three methods are shown in Fig. 8. 
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Figure 8: The recognition accuracy rates, head pose offset errors, and face vertex error results of the three methods 

 

In Fig. 8(a), the recognition accuracy rate of the research 

design method remains stable with minimal fluctuations 

over time. Its average recognition accuracy rate value 

remains above 92%. The other two methods both 

produced different levels of fluctuations over the time 

series. In Fig. 8(b), the face vertex error has less variation 

over time, with an average value of 2.53 mm2. This 

indicates that the research method has higher stability and 

reliability in dynamic expression recognition. In Fig. 8(c), 

the head pose offset error remains the smallest in the 

dynamic sequence with a mean value of 1.1°. 

 

 

 

 

 

3.3 Application effect of face animation 

generation method based on speech coding 

and convolutional architecture 
To test the effectiveness of the proposed face animation 

generation method (Method 1) based on self-supervised 

speech coding and Lattice Convolution Networks, the 

study conducts comparative experiments with the 

generation method (Method 2) in the literature [18], the 

generation method (Method 3) in the literature [19], the 

generation method (Method 4) in the literature [20], and 

the generation method (Method 5) in the literature [21]. 

The experiment is applied to the generation of 3DFA for 

50 students in School A, and lip-reading loss is introduced 

as an evaluation index. Among them, it includes the 

character error rate and the optogenetic error rate 

representing the error rate of the corresponding visual 

mouth unit during pronunciation. The comparison results 

are shown in Fig. 9.
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Figure 9: The lip-reading loss results of 3D face animations for 50 students 

 

In Fig. 9(a), the fluctuation range of the character error 

rate for Method 1 is from 2.1% to 3.5%, which is 

significantly smaller than that of the other four methods in 

the 3DFA generation for 50 students. In Fig. 9(b), the 

fluctuation range of the optic error rate for Method 1 is 

1.8% to 2.9%. The fluctuation range for Method 2 is 3.2% 

to 4.7%. For Method 3, it is 4.1% to 5.6%. Methods 4 and 

5 achieve an average error rate of 4% or more. In summary, 

Method 1 proposed in the study exhibits higher stability 

and accuracy in both character and reticle error rates, 

verifying its superiority in face animation generation.  

To further validate the effectiveness of the face animation 

generated by the proposed method, the study introduces 

vertex position error (VPE), root-mean-square error 

(RMSE) of expression movement, illumination sensitivity 

(IS), micro-expression fidelity (MEF), and rendering 

frame rate (RFR) metrics to further analyze its 

performance. Among them, the MEF metrics are obtained 

by utilizing facial action coding system (FACS) 

assessment. Table 3 displays the comparing results. 

 

Table 3: Comparison of the generation effects of several 3D face animation generation methods 

 

Project VPE (mm) RMSE IS MEF (%) RFR (FPS) 

Method 1 1.22 0.15 5.01 93.48 63.74 

Method 2 1.75 0.25 5.71 89.97 58.46 

Method 3 1.36 0.19 5.48 90.22 60.00 

Method 4 1.92 0.28 6.00 85.36 54.23 

Method 5 2.03 0.30 6.03 85.12 51.04 

 

In Table 3, Method 1 performs optimally in all 

performance metrics, with VPE and RMSE significantly 

lower than the other methods. It has a moderate IS with a 

high MEF of 93.48% and the highest RFR, which further 

confirms its comprehensive advantage in generating face 

animation. In addition, Method 1 shows greater 

adaptability in complex lighting environments and 

dynamic expression capture. The VPE value and the MSE 

value of expression movement of Method 1 are 1.22 mm 

and 0.15, respectively. Its RFP reaches 63.74 FPS and its 

IS value is only 5.01, which enables it to effectively cope 

with a variety of lighting changes. In conclusion, the 

proposed 3DFA generation method is leading in terms of 

accuracy, smoothness and environment adaptability. It is 

capable of generating realistic and detailed dynamic 

expressions, and accurately capturing the changes in the 

character's mouth shape when he/she is speaking. 

4  Discussion and conclusion 
To ensure that the face generation animation has natural 

facial expressions and movements, and can realize 

high-precision lip sync, the study proposed a 3DFA 

generation method based on self-supervised speech  

 

coding and Lattice Convolution Networks. The method 

realized lip sync by self-supervised speech coding 

network and FLAME model. At the same time, the 

research combined the video data, extracted the 

expression and pose parameters, and fused them with 

speech features to generate the final face animation. The 

experimental results indicated that the mean values of lip 

shape vertex error value and naturalness score of the 

research proposed method were 2.54 mm2 and 9.45, 

respectively. The mean error value was less than 2.6 mm2 

in different language samples. The mean values of 

emotional recognition accuracy rate, head pose offset 

error, and face vertex error of the research proposed 

method in different datasets were 92.34%, 1.2°, and 2.58 

mm2, respectively. Moreover, the expression pose feature 

capture of the proposed method was significantly better 

and more stable in both dynamic testing situations. After 

the application of Method 1, the average values of 

lip-reading character error rate and optic pixel error rate of 

the generated animation were only 2.34% and 2.53%, 

respectively. Its VPE, RMSE, MEF, RFP, and IS metrics 

were 1.22 mm, 0.15, 93.48%, 63.74 FPS, and 5.01, 

respectively. Compared with other methods, it was 

superior in detail performance. The method designed in 
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the current study focuses on three modal data: expression, 

movement, and speech. In the future, details such as teeth 

and hairs of the face can be refined to further improve the 

realism of the animation. 

At present, the research still has certain limitations, which 

are specifically manifested in the limited adaptability to 

low-resolution input videos and the decline in the 

estimation accuracy of expression parameters in extreme 

occlusion scenarios. In addition, model training relies on a 

large amount of labeled data, and there is still room for 

improvement in generalization ability across racial and 

age groups. Future work will introduce lightweight 

network structures to optimize reasoning efficiency and 

combine physical driving mechanisms to enhance 

dynamic simulation of facial details, in order to further 

improve the realism and robustness of generated 

animations. Meanwhile, explore unsupervised domain 

adaptive strategies to alleviate the reliance on data 

annotation and enhance the applicability of the model 

among people of different cultures and age groups. 
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