
https://doi.org/10.31449/inf.v50i5.10078 Informatica 50 (2026) 151–174 151 

Spatial-Temporal Graph Convolutional Network for Fault Diagnosis 

in Weak Electrical Systems 

 

Jing Shen1,* , Chi Wu 2  , Yizong Dai 1 
1School of Electrical Engineering and Automotive Engineering, Yangzhou Polytechnic College, Yangzhou, Jiangsu, 

225009, China 
2Jiangsu Jietong Inspection & Certification Co., Ltd, Yangzhou, Jiangsu, 225009, China 

E-mail: shenjing1994@hotmail.com 

*Corresponding author 

Keywords: graph neural network, failure diagnosis, weak electrical system, fault detection, smart grid 

Received: July 9, 2025 

Weak electrical systems, such as low-voltage distribution grids and embedded sensor networks, are highly 

susceptible to faults due to their complex topology and limited fault tolerance. Accurate failure analysis 

and diagnosis in such systems are essential for maintaining operational reliability and safety. However, 

traditional diagnostic methods—such as rule-based systems or shallow machine learning—struggle with 

non-linear relationships, dynamic system behavior, and distributed component interactions. These 

limitations result in delayed or inaccurate fault detection, particularly in noisy or rapidly changing 

environments. To overcome these challenges, this paper proposes a failure diagnosis framework based on 

the Spatial-Temporal Graph Convolutional Network (ST-GCN), comprising a multi-channel CNN feature 

extractor for spatial pattern learning and an attention-guided temporal module for capturing temporal 

dependencies across system nodes. The architecture allows the model to learn complex spatiotemporal 

interactions and adapt to multi-modal sensor inputs effectively. The proposed ST-GCN achieves 96.7% 

accuracy, 0.95 F1-score, and 93.6% fault localization accuracy, significantly outperforming traditional 

methods. It also demonstrates sub-10 ms detection latency, 95.4% actual positive rate in the confusion 

matrix, and a Precision–Recall AUC of 0.96, while converging within 25 epochs and showing only 1.4% 

accuracy drop when scaled from a 33-bus to a 123-bus system. These results highlight the robustness, 

real-time applicability, and methodological effectiveness of ST-GCN for fault diagnosis in weakly meshed 

and low-voltage distribution grids. 

Povzetek: Članek predlaga diagnostični okvir ST-GCN, ki z učenjem prostorsko-časovnih odnosov iz 

večmodalnih senzorskih podatkov omogoča hitro (pod 10 ms) in natančno (≈96,7%) zaznavanje ter 

lokalizacijo okvar v šibkih nizkonapetostnih omrežjih, pri čemer ostane robusten tudi pri večjem obsegu 

sistema. 

 

1  Introduction  
1.1  Overview to weak electrical systems 
Weak electrical systems refer to power distribution 

infrastructures with little fault tolerance, low-voltage-

operated systems, and are highly vulnerable to 

disturbances. Such systems are commonly found in 

distributed systems, such as microgrids, smart buildings, 

and industrial sensor arrays [1]. Weak distribution grids 

have complex topologies and dynamic behavior, making 

conventional fault detection unreliable. This paper uses a 

heterogeneous multi-task GNN to capture spatial 

dependencies and perform fault detection, location, 

classification, and parameter estimation. Results show 

robustness to measurement errors, topology changes, and 

variable fault conditions, highlighting the need for 

advanced graph-based fault analysis [2]. 

1.2 Importance of fault analysis in smart 

grids 
With smart grids, advancements in architecture, and fault 

analysis have come to the forefront of everything. Proper 

diagnosis of faults leads to uninterrupted equipment 

operation, reduced maintenance expenses, and energy 

security [3]. Distributed energy resources introduce subtle 

fault signatures and noise in weak grids, challenging 

traditional detection methods. A GNN-based model 

encodes both topology and electrical-physical information 

to enable robust fault diagnosis under weak or incomplete 

measurements. Experiments demonstrate superior 

accuracy over classical approaches, emphasizing the 

importance of GNNs for reliable smart grid fault analysis 

[4]. 
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1.3  Graph-centric perspective on electrical 

topologies 
Graphs are effective models of electrical systems, in which 

nodes typically represent physical components, and edges 

represent either electrical connections or logical 

connections [5]. This type of graph-based abstraction 

considers both spatial layout and signal variant 

dependencies, facilitating an intelligent analysis. Using 

Graph Neural Networks (GNNs), it can be expected that 

the network's topology can be influenced by the learning 

models, allowing localized faults to be detected and 

contextual predictions to be made in conjunction with real-

time monitoring of the related components [6]. 

1.4  Motivation 
With the global tendency to decentralise and digitalise 

power systems, weak electrical systems (microgrids, 

distribution feeders, sensor-fueled energy networks) 

become critical in fulfilling the requirements of localised 

control and in-time responsiveness [7]. They are implanted 

in essential infrastructure and smart environments and may 

be involved in quite complex interactions with hundreds or 

thousands of low-power components. Yet, their weak 

properties and low redundancy predispose them to 

disruptions, which is why smart diagnostic measures are 

required that would assure safety, stability, and self-

healing [8]. 

1.5  Challenges in weak electrical systems 

• Granted, most traditional methods of diagnosis in 

a weak electrical system have several limitations: 

• Non-static and dynamic nature: Random noise in 

the signal, dynamic loads, and external 

disturbances degrade the performance of any 

static, threshold-based approach. 

• Distributed fault propagation: The faults may be 

initiated in a single node and then propagated in 

a way that makes it hard to localise [9]. 

• Data sparsity and imbalance: Few fault samples 

are used, and class imbalance is detrimental to a 

typical machine learning approach. 

• Topology dependency: Many current algorithms 

overlook the electrical structure and thus treat 

sensor data as flat vectors, thereby eliminating all 

significant spatial associations [10]. 

1.6  Contributions of this paper 
In response to these shortcomings, the paper proposes a 

new failure analysis and diagnosis model for the weak 

electrical system, starting with the ST-GCN. The essential 

contributions are: 

• Graphical representation of electrical systems, 

using topological and signal relations. 

• ST-GCN architecture activated with the joint 

learning of spatial and temporal relations of fault 

signatures. 

• It was experimentally validated on both 

simulated and real-world datasets, achieving higher 

accuracy, localization precision, and real-time diagnostic 

power than the baseline ML methods. 

The following are the key contributions of this paper 

• Graphical modeling of weak electrical systems, 

capturing both topological connections and signal 

relationships. 

• Development of a Spatial-Temporal Graph 

Convolutional Network (ST-GCN) that jointly learns 

spatial and temporal fault patterns. 

• Comprehensive fault diagnosis including 

detection, localization, classification, and parameter 

estimation. 

• Experimental validation demonstrating high 

accuracy, precise localization, and real-time performance 

on simulated and real-world datasets. 

• Robustness to noisy, sparse, and dynamic data, 

ensuring scalability across varying grid topologies and 

sizes. 

2  Related work 
2.1  Conventional diagnostic techniques 
Traditional fault diagnosis methods in electrical systems 

are centered on machine learning models trained on 

statistical or frequency features. GBT, MLP, and SVM are 

among the models that have gained widespread use due to 

their high fault-detection and classification properties. 

Nonetheless, they tend to perform worse when they are in 

the form of real-time, high-dimensional, or topologically 

complicated grids. 

2.1.1  Gradient Boosting Tree (GBT) Model 
In this research, Sapountzoglou et al [11] examined the use 

of the GBT algorithm to detect and localize single-phase-

to-ground and three-phase faults in low-voltage (LV) 

Smart Grids. This model is trained on branch-free features, 

making it generalizable across various grid topologies. 

Tested on a simulated Portuguese LV network subject to 

different fault resistances, times, and locations, the 

procedure realized a peak error in the fault detection of 

only 0.72%, indicating a robust cross-topology flexibility 

and a high diagnostic precision. 

2.1.2  Multi-Layer Perceptron (MLP) model 
The paper presented by Yan et al [12] here is dedicated to 

an MLP-based diagnostic model for low-voltage circuit 

breakers, featuring type-specific entropy-based features. 

Other entropies are combined using PCA to create a robust 

feature space. An optimized MLP model, along with well-

established hyperparameters and sensor input, is recorded 

to achieve a diagnostic accuracy of over 98%. The method 

can be effectively used to detect faults such as false closing 

and jamming, with a high potential for practical breaker 

health monitoring. 
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2.1.3  Support Vector Machine (SVM) 
Liu et al [13] state that to address issues with diagnosing 

internal faults in distribution transformers, the work aims 

to implement support vector machines (SVMs) using 

frequency response data collected during impulse tests. 

Using the oscillation patterns of the winding throughout 

the end of the winding, the method identifies the location 

of insulation collapse with an accuracy of more than 80%. 

It shuns intrusive examination and proves that the features 

of external electric waveforms may be utilized to diagnose 

internal errors in the transformer, and is one factor that 

advances safer and more effective service to transformers 

that do not require mechanical breakdown. 

2.1.4  Variational Mode Decomposition 

(VMD) + Ensemble Bagged Trees Model 

(EBTM) 
In this study, VMD is integrated with the EBTM, which is 

used to detect faults in photovoltaic-rich distribution 

networks by Nsaif et al [14]. Dynamic protection and high-

impedance faults are resolved using a method that 

decomposes voltage sequences and classifies the faults. It 

has a better result compared to SVM and other ML models, 

and under the radial and SNOP topologies, it gets a 

diagnostic accuracy of 100% within 1.25 ms. The model is 

locally dependent and communication-free; therefore, it is 

suitable for real-time and distributed smart grid protection. 

2.1.5  Random Forest (RF)  
This paper applies RF in grids of limited observability to 

estimate the voltages of buses using CATV sensor 

measurements, as described by Markovic et al. [15]. The 

process harnesses the spatio-temporal measurements of 

the popular CATV sensor to deduce the voltage values of 

unmonitored buses. The model demonstrated high 

accuracy on a 1572-bus SMART-DS, including both 

passive and PV-active networks. The method enhances the 

observability of systems without adding extra 

infrastructure to increase the hosting capacity of 

distributed renewable energy resources. 

2.2  Machine learning approaches 
The more advanced machine learning methods, including 

NCFS, XGBoost-SVM, GANs, and Neural Architecture 

Search, have been recently studied to enhance the 

automation, accuracy, and flexibility of fault diagnosis. 

Such models offer improvements in terms of data selection, 

feature learning, and robustness, yet struggle with issues 

of interpretability, scalability, and deployment at the edge. 

2.2.1  Neighborhood Component Feature 

Selection (NCFS) and SVM 
This paper is presented by Mirshekali et al [16] a fault 

localization model utilizing Neighborhood Component 

Feature Selection (NCFS) and Support Vector Machine 

(SVM) techniques. Voltage measurements taken by the 

micro-PMU at fault conditions are converted into 

frequency-domain characteristics and narrowed down with 

NCFS such that only the most significant elements are 

preserved. The SVM classifier is applied to find the faulty 

part on a DG-equipped IEEE 11-node feeder. The model 

remains effective even in cases where the behavior of the 

DG and the randomness of faults are unknown, with a high 

score in fault section classification. 

2.2.2  Combined Extreme Gradient Boosting 

and Support Vector Machine model 

(XGBoost+SVM) 
According to Liu et al. [17], a hybrid approach combining 

Extreme Gradient Boosting (XGBoost) and SVM is 

proposed in the current paper for fault location in 

distribution networks. The model has been tested using an 

IEEE 34-bus power system with single-phase-to-ground 

faults using node voltages to determine fault location. This 

technique is more accurate and precise, and, in terms of 

F1-score and time complexity, it outperforms KNN and 

MLP, which suggests its viability as a tool in real-time 

fault diagnosis applications for power systems. 

2.2.3  Decision Tree-based fault detection and 

classification (DT-FDC) 
The research paper proposes a Decision Tree (DT) based 

model for intelligent Fault Detection and Classification 

(FDC) in transmission networks, as stated by 

Venkatachalam et al. [18]. It utilizes the PMU data of the 

WSCC 9-bus test system to perform simulations on 

various types of faults by adjusting parameters such as 

resistance, location, and angle. The DT receives feeds of 

post-fault bus voltages, current, and angles to classify them. 

The methodology guarantees proper and effective FDC 

operation and optimal positioning of PMU in a wide-area 

monitoring system. 

2.2.4  Generative Adversarial Network 

(GAN)  
This paper aims to address the issue of class imbalance in 

fault diagnosis by proposing a Generative Adversarial 

Network (GAN) coupled with Feature Matching (FM) by  

Zareapoor et al [19]. The GAN uses a mixture of both 

normal and faulty data as a distribution to create synthetic 

samples of the faults, and the discriminator classifies both 

real and synthetic ones. The approach outperforms 

oversampling techniques in effectively increasing 

detection accuracy and robustness against outliers and 

overfitting in industrial fault diagnosis. 

2.2.5  Neural Architecture Search (NAS)  
According to Li et al [20], to streamline the deep model 

design due to faults, this study utilizes Neural Architecture 

Search (NAS) and Reinforcement Learning (RL). A 

recurrent network serves as the controller, with no 

restrictions on its output, and the validation accuracy of the 
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model architectures is used as feedback. When using the 

NAS-designed model on the PHM 2009 gearbox dataset, 

the results yield state-of-the-art performance, 

outperforming manually built networks. This is among the 

earliest applications of NAS in a fault diagnosis 

environment. 

2.2.6  GNN-Based Fault Diagnosis in PV 

Networks 
Liu et al. [21] proposed a DACDFE-GNN model to 

diagnose faults in distribution networks with integrated 

photovoltaic systems. The model encodes both network 

topology and electrical measurements, using a dynamic 

graph aggregation mechanism to handle weak and noisy 

fault features. The study addresses challenges arising from 

bidirectional power flows, low sample rates, and 

measurement noise, which make traditional methods 

unreliable. Limitations include reliance on simulation data 

and increased computational complexity for larger 

networks. Results demonstrated superior fault detection, 

localization, and classification accuracy under noisy 

conditions and variable PV output compared to baseline 

methods. 

 

2.2.7Multi-Task GNN for Grid Fault Detection 

Chanda and Soltani [22] introduced a heterogeneous multi-

task GNN (MTL-GNN) that performs simultaneous fault 

detection, localization, classification, resistance, and 

current estimation. The model also includes an 

explainability module to identify key nodes, supporting 

sparse measurement strategies. The work addresses 

limitations of previous approaches that required multiple 

separate models and struggled with noisy or sparse 

measurements. Limitations include evaluation on 

simulation-based test feeders rather than real-world data 

and the need for validation in highly dynamic grids. 

Results showed high accuracy across all tasks and 

effective identification of key nodes for efficient 

monitoring. 

 

Table 1: Comparison of fault diagnosis techniques in electrical systems 

 

Technique Key Features Limitations How ST-GCN Addresses Reference 

GBT Gradient boosting on 

statistical features 

Not real-time, limited 

adaptation to unseen faults 

Real-time, handles high-

dimensional data, 

adaptable 

[11] 

MLP Multi-layer perceptron 

on engineered features 

Sensitive to noise, needs 

manual feature engineering 

Learns spatio-temporal 

features automatically, 

robust to noise 

[12] 

SVM Kernel-based 

classification 

Poor scalability, limited to 

specific boundaries 

Scales to large, sparse data; 

captures complex 

dependencies 

[13] 

VMD+EBTM Signal decomposition 

+ ensemble bagged 

trees 

High computational load, 

topology-specific 

Lower computational 

overhead, topology-

agnostic 

[14] 

RF + CATV Random forest on 

sensor measurements 

Depends on sensor 

placement, limited in 

dynamic scenarios 

Works with sparse/noisy 

measurements, scalable 

[15] 

NCFS+SVM Feature selection + 

SVM 

Requires labeled data, 

degrades with changing 

conditions 

Handles sparse and 

unknown conditions, 

adaptive 

[16] 

XGBoost+SVM Hybrid gradient Needs full voltage Works with partial [17] 
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boosting + SVM coverage, limited 

generalization 

measurements, generalizes 

across topologies 

DT-FDC Decision tree for FDC Overfitting, limited 

interpretability 

Robust and interpretable, 

scalable for high-

dimensional grids 

[18] 

GAN + FM Synthetic data 

generation 

Computationally 

expensive, data quality 

issues 

Avoids synthetic data 

reliance, reduces training 

overhead 

[19] 

NAS Neural architecture 

search 

High training overhead, not 

edge-suitable 

Efficient architecture for 

edge deployment, real-

time ready 

[20] 

DACDFE GNN GNN for PV networks Relies on simulation, high 

computational cost 

Robust to sparse/noisy 

data, scalable to weak grids 

[21] 

Multi-task GNN Heterogeneous multi-

task GNN 

Simulation-based 

evaluation, complex 

Real-time, handles sparse 

measurements, 

interpretable 

[22] 

ST-GCN 

(proposed) 

Spatial-temporal graph 

convolution 

Needs topology info Real-time, scalable, 

interpretable, robust to 

sparse/noisy data 

This work 

Table 1 summarizes conventional, advanced, and 

GNN-based fault diagnosis methods, highlighting their 

key features and limitations. It also illustrates how the 

proposed ST-GCN approach overcomes these challenges 

through real-time detection, spatio-temporal feature 

learning, and scalability. The comparison emphasizes the 

research gap and the motivation for adopting ST-GCN in 

weak electrical systems. 

2.3 Research gap 
The shortcomings of relevant research are shown in Table 

2. 

Table 2: Shortcomings in related research 

Technique Limitation 

GBT Lacks real-time processing; trained on static grid simulations; limited adaptation to unseen 

faults [11]. 

MLP Requires manual feature engineering; sensitive to noise; high dependency on sensor 

accuracy [12]. 

SVM Poor scalability to large datasets; limited to linear or kernel-specific boundaries [13]. 

VMD +EBTM High computational load in signal decomposition; topology-specific tuning needed [14]. 

CATV + Random 

Forest 

It depends on sensor placement and resolution; therefore, it is not suitable for rapid 

dynamic fault scenarios [15]. 

NCFS + SVM Relies on labeled fault data; performance degrades with changes in DG behavior or noise 

[16]. 

XGBoost + SVM Requires comprehensive voltage coverage; may not generalize well across topologies [17]. 

DT-FDC Prone to overfitting; limited interpretability in large, high-dimensional systems [18]. 



156   Informatica 50 (2026) 151–174                                                                                                                                  J. Shen et al. 
 

GAN  Synthetic data quality is challenging to control and computationally expensive for edge 

deployment [19]. 

NAS High training overhead; unsuitable for low-power or embedded system applications [20]. 

 

Explicitly highlight how the proposed ST-GCN model 

addresses the limitations of prior methods and positions it 

within the research gap. Specifically: 

• Critically analyze the shortcomings of 

conventional and advanced diagnostic techniques (e.g., 

GBT, MLP, SVM, VMD+EBTM, RF, NCFS+SVM, 

XGBoost+SVM, DT-FDC, GAN, NAS) in terms of real-

time deployment, scalability, adaptability, interpretability, 

and edge applicability. 

•  

• Clearly state how ST-GCN overcomes these 

issues, e.g., by providing real-time fault detection, 

handling high-dimensional and sparse data, capturing 

spatio-temporal dependencies, reducing computational 

overhead, and enabling scalable deployment. 

• Link the discussion directly to the research gap, 

showing the motivation for introducing ST-GCN for weak 

electrical systems. 

3 Graph-theoretic system 

representation 
3.1  Electrical system as a graph: node and 

edge semantics 
Electrical power systems can be easily modelled as graphs 

with each system component abstracted as a node in the 

graph and the electrical or logical connection between 

them abstracted as edges. In this context, the nodes can be 

buses, transformers, circuit breakers, or smart sensors, 

while the edges represent transmission lines, feeder 

sections, or logical signal paths. It is a graph abstraction 

that enables the system to maintain both topological 

integrity and structural dependencies; thus, it can be 

utilized in a graph-based learning framework. Putting 

spatial structures directly into the learning model, the 

global pattern can be used to infer localized behavior. 

3.2  Failure signatures and graph encodings 
Malfunctions on weak electrical systems, e.g., short 

circuits, load imbalances, or breaker faults, would indicate 

faults in observations of sensors, currents, or voltages. The 

dynamics of these disruptions propagate across the 

network and can be recorded as signatures of failure. With 

the graph encoding, the features representing the node (e.g., 

voltage, current, frequency) and edge are embedded into a 

matrix feature. In this form, this encoded graph is an input 

to a Graph Neural Network, which learns the spatial 

correlations and is able to identify normal and faulty states 

thanks to message passing and aggregation layers. 

3.3  Temporal dynamics in sensor-driven 

environments 
The environment in question is sensor-rich and constantly 

generates time-series data regarding the system's state. 

Fault events are not only localized in space but also 

transitive in time, evolving over milliseconds to minutes. 

It is essential to incorporate the time dimension sequences 

in the endeavor to learn about fault progression as well as 

early warning. Regarding this, every graph at a moment 

snapshot 𝑡 is connected to its previous and successor states 

to create a spatial-temporal graph sequence. It is this time 

relationship that enables the suggested model, e.g., ST-

GCN, to detect not only the instantaneous faults, but also 

their transitions, leading to better detection rates and 

predictive maintenance. 

4  The proposed intelligence 

framework 
4.1  ST-GCN for spatio-temporal pattern 

learning 
The essence of the model suggested consists of ST-GCN, 

which competently embraces the depictions of both spatial 

interactions (network topology) and the dynamics of the 

evolution. ST-GCN generalizes standard GCNs by adding 

temporal convolution layers that operate on graph state 

sequences. Such a combination of convolutional 

mechanisms enables the model to learn the variations of 

electrical signals in both nodes and timesteps, allowing for 

precise fault diagnosis in dynamic yet noisy operating 

conditions. ST-GCN learns the causal dynamics of failure 

from patterns in sensor data sequences; this is why it can 

perform this task more effectively compared to static 

classifiers. 
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Figure 1: ST-GCN temporal-spatial modeling flow 
 

Figure 1 illustrates the ST-GCN-based fault diagnosis 

framework for weak electrical systems. It begins with raw 

time-series input (voltage/current), constructs a graph 

using electrical topology (nodes and edges), and applies 

temporal windowing to form sequential snapshots. GCNs 

units extract spatial and temporal features, respectively. 

The model encodes neighbor node interactions and 

temporal dependencies through a spatio-temporal encoder-

decoder. The final output is a learned feature matrix 

capable of detecting and localizing evolving fault patterns 

with high accuracy in real time. The layout is now linear, 

showing the main stages from Raw Input, Graph 

Construction, Temporal Windowing, ST-GCN, Feature 

Output. Each module is clearly labeled with short 

descriptions, such as Graph Construction: Nodes = buses, 

Edges = electrical connections,  

 

 

 

 

 

Temporal Windowing: Sliding window captures temporal 

snapshots, ST-GCN: Learns spatial and temporal 

dependencies of faults, and Feature Output: Matrix 

representing fault patterns for downstream tasks. A 

glossary box beside the figure explains key terms, 

including Node, Edge, Temporal Window, and ST-GCN. 

Consistent colors and symbols are used for nodes, edges, 

voltage/current, and temporal modules to make the flow 

intuitive and visually clear. 

Evaluation Protocol 

The dataset is divided into training, validation, and 

testing subsets using a 70/15/15 split. Model performance 

is assessed using accuracy, F1-score, fault localization 

accuracy, latency analysis, PR curves, loss convergence 

behavior, and scalability tests. All hyperparameters, 

thresholds, and window sizes are explicitly documented to 

ensure full reproducibility. 
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4.2  Data processing pipeline  
 

 

 

Figure 2: Data processing pipeline for smart grid fault analysis 

The raw voltage and current time-series streams from 

the Smart Grid Monitoring Dataset are first denoised using 

a moving-average filter to remove high-frequency noise 

while preserving fault-related variations (Figure 2). The 

signals are then normalized to a standard range to ensure 

consistent input scaling across sensors. Next, the time-

series data are segmented into fixed-length windows (50–

200 ms) to capture local temporal patterns. For each 

window, graph structures are constructed based on the 

electrical connectivity matrix, encoding spatial 

dependencies between sensors as edges in the graph. 

Missing or corrupted readings are handled through linear 

interpolation or zero-filling as appropriate, ensuring robust 

input to the ST-GCN model. This structured pipeline 

ensures that both temporal dynamics and spatial 

relationships are preserved, facilitating effective learning 

of fault patterns across diverse scenarios. Raw voltage and 

current streams are denoised using a moving-average filter, 

normalized, and segmented into fixed-length windows 

(50–200 ms). For each window, graph structures are 

constructed based on the electrical connectivity matrix to 

capture spatial dependencies within the weak electrical 

system. 

4.3  Model training and setup  
The ST-GCN model is composed of stacked spatial-

temporal graph convolutional blocks with residual 

connections and batch normalization to improve gradient 

flow and stability. Each block captures local temporal 

dynamics while propagating spatial information across the 

graph nodes. After feature extraction, the high-level 

spatio-temporal embeddings are flattened and fed into a 

dense classification layer. Training is performed using the 

Adam optimizer with cross-entropy loss, and dropout 

regularization is applied to prevent overfitting. 

Hyperparameters such as learning rate, batch size, number 

of layers, and hidden units are selected through a 

combination of grid search and validation performance 

monitoring. Fine-tuning is conducted iteratively, adjusting 

layer sizes and regularization coefficients until 

convergence is achieved on the validation set. Each graph 

sequence is passed through stacked ST-GCN blocks with 

residual connections and batch normalization, after which 

the extracted spatio-temporal features are flattened and fed 

into a dense classification layer. Training is performed 

using the Adam optimizer with cross-entropy loss, dropout 

regularization, and mini-batch learning to enhance model 

stability and generalization. 

The dataset was divided into training, validation, and 

test sets in a 70:15:15 ratio, ensuring class balance via 

stratified sampling. Prior to training, all data underwent 

preprocessing including normalization and encoding, 

while missing values were imputed using a median-based 

strategy and noise was reduced through outlier filtering. To 

evaluate the model’s adaptability and robustness, 

additional simulated fault scenarios and an external 

benchmark dataset were employed, enabling assessment of 

performance under diverse and challenging conditions. 

Hyperparameters were selected through grid search on the 

validation set, and network fine-tuning was performed 

iteratively to optimize accuracy while preventing 

overfitting. 

4.4  Handling noise and missing data 
Raw input signals may contain missing or corrupted 

readings due to sensor faults or communication errors. 

These are handled using linear interpolation for short gaps 

or zero-filling for longer missing sequences. Additionally, 

denoising through moving-average filtering ensures that 

transient noise does not adversely affect feature extraction. 

This preprocessing ensures robust and reliable inputs, 

allowing the ST-GCN model to maintain high performance 

even under imperfect real-world conditions.Spatial graph 

convolution for electrical topology encoding 𝐼(𝑚+1)  is 

expressed using equation 1, 

𝐼(𝑚+1) = ∆(𝐸̃−1 2⁄ 𝐵̃𝐸̃−1 2⁄ 𝐼(𝑚)𝑋(𝑚))  (1) 

 

Equation 1 explains the spatial graph convolution for 

electrical topology encoding where an electrical structure 

is represented using normalized carries out a spatial graph 

convolution.In this 𝐼(𝑚)  is the feature matrix at layer, 

where 𝑂  is the number of electrical nodes and 𝐺𝑚 is the 

feature dimension, 𝐵̃  is the adjacency matrix with self-

loops, where 𝐵  encodes node connectivity, 𝐸̃  is the 

diagonal matrix with node degrees of 𝐵̃ , 𝑋(𝑚)  is the 
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trainable weight matrix at layer, and ∆(. ) is the nonlinear 

activation function. 

To represent how defects change over time through 

system dynamics, temporal dependencies must be 

described once spatial dependencies have been 

incorporated. 

Temporal modeling using LSTM over node features 

(𝑖𝑢 , 𝑑𝑢) is expressed using equation 2, 

(𝑖𝑢, 𝑑𝑢) = 𝑀𝑇𝑈𝑁(𝐼𝑢 , (𝑖𝑢−1, 𝑑𝑢−1)) (2) 

Equation 2 explains the temporal modeling using 

LSTM over node features represented by this equation. 

In this 𝐼𝑢  is the spatially convolved features at time 

from previous GCN layer, 𝑖𝑢  is the hidden state at time 

representing short-term memory, 𝑑𝑢 is the cell state at time 

representing long-term memory, 𝑀𝑇𝑈𝑁(. ) is the recurrent 

unit mapping inputs and previous states to new states, and 

𝑖𝑢−1, 𝑑𝑢−1  are the previous time step’s hidden and cell 

states. 

These spatiotemporal images are delivered to a fully 

linked decoder after temporal encoding for reliable and 

real-time fault detection in weak power lines. 

Neighborhood-aware node feature aggregation 

𝑦𝑗
(𝑚+1)

 is expressed using equation 3, 

 

𝑦𝑗
(𝑚+1)

= 𝜕 ( ∑
1

√𝑒𝑗𝑒𝑘𝑘∈𝑂(𝑗)

𝑋(𝑚)𝑦𝑘
(𝑚)

)  (3) 

 

Equation 3 explains node feature aggregation uses 

degree-normalized weighting to gather information from 

its neighbors to update the feature image of the node at 

layer. 

In this 𝑦𝑗
(𝑚)

 is the feature vector of node at layer, 𝑂(𝑗) 

is the set of neighboring nodes connected to node, 𝑒𝑗 , 𝑒𝑘 

are the degrees of nodes, 𝑋(𝑚) is the trainable  

 

weight matrix at layer, and 𝜕(. )  is the nonlinear 

activation function. 

The following equation results from the need to 

explain the sequential fluctuation of node states brought on 

by temporally fault propagation by neighbor feature 

aggregation. 

Temporal flow integration via gated recurrent units 

𝑖𝑗
(𝑢)

 is expressed using equation 4, 

𝑖𝑗
(𝑢)

= 𝐻𝑆𝑉(𝑦𝑗
(𝑢)

, 𝑖𝑗
(𝑢−1)

)  (4) 

 

Equation 4 explains the temporal flow integration via 

gated recurrent units is the temporal evolution of node 

characteristics over time is captured by this equation using 

a GRU cell. 

In this 𝑦𝑗
(𝑢)

 is the aggregated spatial feature of node at 

time, 𝑖𝑗
(𝑢)

 is the updated hidden state representing temporal 

memory for node, 𝑖𝑗
(𝑢−1)

 is the hidden state  

 

from the previous time step, and 𝐻𝑆𝑉(. ) is the gated 

recurrent unit function that encodes temporal relationships 

in sequential data. 

High-resolution spatio-temporal fault characterization 

is made possible by the fault signature encoder. 

Temporal convolution over spatial feature embedding 

𝐴𝑗,𝑢
(𝑙)

 is expressed using equation 5, 

𝐴𝑗,𝑢
(𝑙)

= ∑ ∑ 𝛾𝑔,𝜕
(𝑙)

∗ 𝐼𝑗,𝑢−𝜕
(𝑔)

+ 𝑐(𝑙)

𝐺

𝑔=1

𝐿−1

𝜕=0

  (5) 

Equation 5 explains that the temporal convolution 

over spatial feature embedding is the spatial properties to 

a 1D longitudinal convolution represented by this equation. 

In this 𝐼𝑗,𝑢−𝜕
(𝑔)

 is the input feature from node, 𝛾𝑔,𝜕
(𝑙)

 is the 

temporal kernel weight for feature, 𝐿  is the temporal 

kernel width, 𝐺 is the number of input features, 𝐴𝑗,𝑢
(𝑙)

 is the 

output of the temporal convolution for node, and 𝑐(𝑙) is the 

bias term for the output channel. 

 

 

4.5  Node embedding, neighborhood 

aggregation, and temporal flow 

At each period, these nodes (e.g., sensors, breakers, 

transformers) are modeled using feature vectors that 

include voltage, current, harmonic, and phase data. These 

are ranked in a high-dimensional space using a node 

embedding algorithm that preserves both feature similarity 

and spatial locality.  
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In neighborhood aggregation, localized fault effects are 

considered in that features of neighboring nodes are 

combined with those of the original node to update its 

representation. It processes the temporal flow through a 

1D convolution along the time dimension, allowing the 

model to learn how dependencies operate between 

multiple timesteps. Such a structure enables the ST-GCN 

to learn both sudden and slow shifts in system behavior. 

 
 

Figure 3: Node-Level ST-GCN operation flow 

 

 

Figure 3 illustrates the spatio-temporal feature 

extraction pipeline in a graph neural network for fault 

diagnosis. It begins with voltage, current, and signal data 

used to initialize node features. Through neighbor 

aggregation, the  

local structural context is captured. The node update 

function refines feature states, which are then passed 

through temporal flow integration to model sequential 

dependencies. Finally, a fault signature encoding step 

captures dynamic fault patterns, enabling robust anomaly 

detection and localization in weak electrical grid 

topologies [23]. 

 

Following the extraction of spatiotemporal mappings 

of features, the model uses a distinguished loss function 

and a Bayesian output distribution to maximize its 

prediction ability. 

Multi-class cross-entropy loss for fault classification 

𝑀 is expressed using equation 6, 

𝑀 = −
1

𝑂
∑ ∑ 𝑧𝑗

(𝑑)
log(𝑧̂𝑗

(𝑑)
)

𝐷

𝑑=1

𝑂

𝑗=1

  (6) 

 

 

Equation 6 explains the multi-class cross-entropy loss 

for fault classification calculates the categorized cross-

entropy loss. 

In this 𝑂 is the total number of labeled fault samples, 

𝐷 is the number of distinct fault classes, 𝑧𝑗
(𝑑)

 is the ground 

truth label indicator for sample, log (. )  is the natural 

logarithm function, 𝑧̂𝑗
(𝑑)

 is the predicted probability for the 

sample, and 𝑀  is the total loss used for training 

optimization. 

By changing network weights to enhance the 

alignment between anticipated and genuine fault classes, 

to reliably categorize fault occurrences in weak power 

systems. 

Softmax-based fault class prediction from ST-GCN 

embedding 𝑧̂𝑗
(𝑑)

 is expressed using equation 7, 

𝑧̂𝑗
(𝑑)

=
𝑓

𝑣𝑗
(𝑑)

∑ 𝑓
𝑣𝑗

(𝑘)
𝐷
𝑘=1

  (7) 

 

 

Equation 7 explains that the soft max-based fault class 

prediction from the ST-GCN embedding function is 

applied to the resulting logits of the dense classifying layer 

for a node in this equation. 
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In this 𝑧̂𝑗
(𝑑)

 is the predicted probability that the node 

belongs to the fault class, 𝑣𝑗
(𝑑)

 is the logit value for node, 

𝐷 is the total number of distinct fault categories, and 𝑓 is 

the Euler’s number, used in exponentiation. 

The system must choose whether to initiate a real-time 

reaction after obtaining the soft max probability by 

determining if the fault prediction's confidence level is 

above a predetermined threshold. 

Real-time fault decision and alert dispatch rule 𝐴𝑖 is 

expressed using equation 8, 

𝐴𝑖 = {
1    𝑖𝑓 max𝑑 𝑧̂𝑗

(𝑑)
> 𝜕

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
  (8) 

 

Equation 8 explains the real-time fault decision and 

the alert dispatch rule determines if a predetermined 

confidence level is exceeded by the highest anticipated 

fault likelihood for a node. 

In this 𝑧̂𝑗
(𝑑)

  is the predicted softmax probability for 

node, 𝜕 is the decision threshold for triggering fault alerts, 

max𝑑 𝑧̂𝑗
(𝑑)

 is the maximum predicted probability over all 

fault classes for node, and 𝐴𝑖  is the real-time fault alert 

status for the node. 

4.3  Architecture pipeline and training 

paradigm   
The proposed ST-GCN framework can help learn intricate 

node-level spatial and temporal relationships to achieve 

successful fault localization in weak electrical systems. 

The first layer will be an input that receives a time series 

of graph-structured information, where each graph instant 

contains node-level features, such as voltage, current, or 

frequency, and an adjacency matrix, which determines the 

network's connectivity. These input graphs are fed to a 

chain of spatial-temporal blocks, with each block adding 

some form of spatial-temporal convolution block, a 

temporal convolution block here to model temporal 

change, with a graph convolution block to model spatial 

co-occurrence. 

Residual connections and batch normalization layers 

are incorporated within each block to enhance training 

stability and accelerate convergence. Their fully connected 

layers are then supplied with the flattened high-level 

features obtained from these spatio-temporal blocks. They 

are used to perform the ultimate classification or regression, 

i.e., identifying the fault type or estimating the fault 

location. Multi-class classification is performed using a 

softmax activation at the output layer, containing a cross-

entropy loss-based training network. The Adam optimizer 

is applied in the training process, based on mini-batch 

gradient descent, and methods to avoid overfitting are 

employed, including dropout regularization. The power 

networks can be part of a dynamic, sensor-based system 

that accurately diagnoses faults in real-time via this 

architecture. 

Figure 4 depicts the ST-GCN-based fault classification 

pipeline using historical sensor datasets. The workflow 

begins by normalizing and segmenting the temporal data, 

including labeled faults and timestamps. A combination of 

spatial GCN and 1D temporal convolution extracts spatio-

temporal features. These features feed into a dense 

classification head with a softmax activation to predict 

fault types. Training utilizes cross-entropy loss and the 

Adam optimizer, enabling robust learning of dynamic fault 

patterns in electrical grid sensor data. 

In order to respond quickly to an alarm, the system's 

mitigation module logs a date and time, node ID, projected 

fault, the lesson, and confidence score. 

Node-level anomaly score via temporal embedding 

deviation 𝑇𝑗(𝑢) is expressed using equation 9, 

𝑇𝑗(𝑢) = ‖𝑖𝑗(𝑢) − 𝜕𝑗‖
2

  (9) 
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Figure 4: Full model training pipeline 

 

Equation 9 explains the node-level anomaly score via 

temporal embedding deviation by calculating the standard 

deviation (L2) of the variance between the present-day. 

In this 𝑖𝑗(𝑢) is the Node embedding vector at time, 𝜕𝑗 

is the temporal mean embedding of a node over a reference 

window of length, ‖. ‖2 is the L2 (Euclidean) norm, and 

𝑇𝑗(𝑢) is the anomaly score indicating deviation magnitude 

for node. 

5  Fault intelligence layer 
5.1  Real-time fault detection mechanism 

The real-time identification model runs on the incoming 

data. The module utilizes the ST-GCN model, which has 

been previously trained. The system flags the presence of 

a fault once deviations from expected patterns are detected. 

The system, equipped with a low-latency temporal 

convolution, can operate with minimal delay, detecting 

faults as soon as they appear within a few milliseconds. It 

is beneficial in situations where a quick response time is 

crucial for safety and asset protection. 
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Figure 5: Real-Time Fault Detection Flow (ST-GCN Inference Pipeline) 

 

Figure 5 illustrates the real-time ST-GCN-based fault 

detection pipeline for smart electrical grids. Live voltage, 

current, and status bit streams are converted into graph 

snapshots. A pre-trained ST-GCN performs forward 

propagation to generate node embeddings. The output is 

passed to a softmax-based fault classifier, which 

determines the most probable fault class. If fault 

probability exceeds a threshold, a real-time alert dispatcher 

logs the timestamp, fault label, and confidence, enabling 

rapid fault mitigation and network resilience. 

A confidence score that takes into consideration both 

signal variability and topological agreement among nearby 

nodes is estimated using anomaly scores. 

Confidence score from signal stability and 

neighborhood consistency 𝐶𝑗 is expressed using equation 

10, 

𝐶𝑗 =
exp(𝛽 ∗ 𝑈𝑗 + 𝛾 ∗ 𝐵𝑗)

∑ exp(𝛽 ∗ 𝑈𝑗 + 𝛾 ∗ 𝐵𝑗)𝑘∈𝐿

  (10) 

 

Equation 10 explains that the confidence score from 

signal stability and neighborhood consistency is calculated. 

In this 𝑈𝑗  is the signal deviation sharpness for node 

normalized, 𝐵𝑗  is the structural consistency score based on 

anomalous neighbor alignment, 𝛽, 𝛾  are the weighting 

factors for signal and structural terms, 𝐿 is the set of top 

candidate nodes based on anomaly scores, and 𝐶𝑗  is the 

final normalized confidence score for node fault prediction. 

The node designated as the probable fault origin is the 

one with the greatest confidence score. 

Accuracy evaluation 𝐴𝑐  is expressed using equation 

11, 
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𝐴𝑐 =
𝑈𝑄 + 𝑈𝑂

𝑈𝑄 + 𝑈𝑂 + 𝐺𝑄 + 𝐺𝑂
  (11) 

 

 

Equation 11 explains the accuracy evaluation is the 

ratio of accurate fault forecasts, both positive and negative, 

to all predictions is known as accuracy. 

In this 𝑈𝑄 is the true positives correctly identified as 

fault cases, 𝑈𝑂 is the true negatives correctly identified as 

non-fault cases, 𝐺𝑄  is the false positives incorrect fault 

predictions, and 𝐺𝑂 is the false negatives are missed fault 

cases. 

5.2  Localization engine for fault origin 

tracing 
Once a fault has been observed, the model applies the 

learned spatial embeddings to backtrack the fault to its root 

cause. The method that can enable the system to identify 

the most likely source of failure is to analyze which nodes 

contributed the most significant amount of anomaly 

through an attention mechanism or gradient-based 

attribution. The model identifies the node(s), sector, or 

component that operators can isolate and fix within a very 

short time, eliminating the need for time-consuming 

inspections. 

  

Figure 6: Fault origin tracing + confidence score pipeline 

 

This figure 6 illustrates the fault localization pipeline 

using ST-GCN node embeddings. At each timestep, node 

representations ℎ𝑖(𝑡), ℎ_𝑖(𝑡), ℎ𝑖(𝑡)  are evaluated for 

deviation, generating a fault heatmap. The Top-K 

suspicious nodes with the highest anomaly scores are 

selected. Neighborhood consistency analysis validates 

these anomalies using structural correlations. A confidence 

estimation module computes a softmax-based score by 

combining signal stability and structural agreement. The 

final output includes predicted fault location (node ID), 

confidence score (0–1), and visual annotation on the smart 

grid map. 
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Algorithm: Fault Origin Tracing and Confidence Scoring using ST-GCN 

𝐼𝑛𝑝𝑢𝑡𝑠: 

• 𝑁𝑜𝑑𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒: 𝐻 =  {ℎ_𝑖(𝑡)} 

• 𝐺𝑟𝑎𝑝ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒: 𝐺(𝑉, 𝐸) 

• 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝜏_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝐾, 𝛼_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛽_𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 

𝑂𝑢𝑡𝑝𝑢𝑡𝑠: 

• 𝐹𝑎𝑢𝑙𝑡_𝑁𝑜𝑑𝑒_𝐼𝐷: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑦 𝑛𝑜𝑑𝑒 

• 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑆𝑐𝑜𝑟𝑒 ∈  [0, 1] 

• 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑_𝐺𝑟𝑖𝑑_𝑀𝑎𝑝 

𝑆𝑡𝑒𝑝 1: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑠 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑛 𝐺: 

    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑡: 

        𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒[𝑖][𝑡]  =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(ℎ_𝑖(𝑡)) 

𝑆𝑡𝑒𝑝 2: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ℎ𝑒𝑎𝑡𝑚𝑎𝑝 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖: 

    𝑖𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒[𝑖][𝑡]  >  𝜏_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛: 

        ℎ𝑒𝑎𝑡𝑚𝑎𝑝[𝑖]  =  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒[𝑖][𝑡] 

    𝑒𝑙𝑠𝑒: 

        ℎ𝑒𝑎𝑡𝑚𝑎𝑝[𝑖]  =  0 

𝑆𝑡𝑒𝑝 3: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑇𝑜𝑝 − 𝐾 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑛𝑜𝑑𝑒𝑠 

𝑡𝑜𝑝_𝑘_𝑛𝑜𝑑𝑒𝑠 =  𝑠𝑒𝑙𝑒𝑐𝑡_𝑡𝑜𝑝_𝑘(ℎ𝑒𝑎𝑡𝑚𝑎𝑝, 𝐾) 

𝑆𝑡𝑒𝑝 4: 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑐ℎ𝑒𝑐𝑘 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑛 𝑡𝑜𝑝_𝑘_𝑛𝑜𝑑𝑒𝑠: 

    𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 =  𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖, 𝐺) 

    𝑣𝑎𝑙𝑖𝑑_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 =  0 

    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑗 𝑖𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠: 

        𝑖𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒[𝑗][𝑡]  >  𝜏_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛: 

            𝑣𝑎𝑙𝑖𝑑_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 +=  1 

    𝑖𝑓 𝑣𝑎𝑙𝑖𝑑_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 <  𝑙𝑒𝑛(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)  ∗  0.5:  # 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑟𝑎𝑡𝑖𝑜 =  0.5 

        𝑟𝑒𝑚𝑜𝑣𝑒 𝑖 𝑓𝑟𝑜𝑚 𝑡𝑜𝑝_𝑘_𝑛𝑜𝑑𝑒𝑠 

𝑆𝑡𝑒𝑝 5: 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑛 𝑡𝑜𝑝_𝑘_𝑛𝑜𝑑𝑒𝑠: 

    𝑠𝑖𝑔𝑛𝑎𝑙_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑖𝑔𝑛𝑎𝑙_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(ℎ_𝑖(𝑡)) 

    𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒_𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒_𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝑖, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) 

    𝑠𝑐𝑜𝑟𝑒[𝑖]  =  𝛼_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗  𝑠𝑖𝑔𝑛𝑎𝑙_𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +  𝛽_𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∗  𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒_𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 
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    𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒[𝑖]  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒[𝑖]) 

𝑆𝑡𝑒𝑝 6: 𝐹𝑖𝑛𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝐹𝑎𝑢𝑙𝑡_𝑁𝑜𝑑𝑒_𝐼𝐷 =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒[𝑖]) 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑆𝑐𝑜𝑟𝑒 =  𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒[𝐹𝑎𝑢𝑙𝑡_𝑁𝑜𝑑𝑒_𝐼𝐷] 

𝑆𝑡𝑒𝑝 7: 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 

𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒_𝑔𝑟𝑖𝑑_𝑚𝑎𝑝(𝐹𝑎𝑢𝑙𝑡_𝑁𝑜𝑑𝑒_𝐼𝐷, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑆𝑐𝑜𝑟𝑒) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑎𝑢𝑙𝑡_𝑁𝑜𝑑𝑒_𝐼𝐷, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑆𝑐𝑜𝑟𝑒, 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑_𝐺𝑟𝑖𝑑_𝑀𝑎𝑝 

This algorithm 1 identifies faults in a smart grid by 

analyzing ST-GCN node embeddings over time. It 

computes deviation scores, selects the Top-K anomalous 

nodes, verifies them using neighborhood consistency, and 

calculates a confidence score combining signal and 

structural cues. The output is a fault location with visual 

and numerical confidence. 

5.3  Anomaly scoring and confidence 

estimation 
The model also has an anomaly scoring function that 

measures the degree of deviation of the current signal from 

normal operational behavior. Each of the detections is 

accompanied by a confidence score, in turn constituted of 

the softmax output probabilities or as a Bayesian model of 

uncertainty. The scores help prioritize tasks and minimize 

false alarms. To illustrate, a fault with an oddity score of 

0.91 and a confidence of 98 per cent is handled as high-

priority over low-confidence ones. 

5.4  Metrics for evaluation 
Evaluating fault detection systems in smart grids demands 

robust and diverse metrics beyond simple accuracy. This 

section introduces key performance indicators, including 

F1-score, fault localization accuracy, latency, confusion 

matrix analysis, precision-recall curves, loss convergence, 

and scalability. Together, they offer a comprehensive 

evaluation of model reliability, responsiveness, and 

adaptability to network growth. 

The F1-score is calculated next for a balanced 

evaluation since, although accuracy indicates overall 

correctness, it may mask class imbalance. 

F1 score analysis G1 is expressed using equation 12, 

𝐺1 =
2 ∗ 𝑃𝑛 ∗ 𝑅𝑙

𝑃𝑛 + 𝑅𝑙
 (12) 

Equation 12 explains the F1 score analysis emphasizes 

the balance across errors in judgment and false negatives 

by combining accuracy and recall using a harmonic mean. 

In this 𝑃𝑛 is the proportion of predicted faults that are 

true, 𝑅𝑙 is the proportion of actual faults detected correctly, 

and G1  is the composite performance indicator for 

classification under imbalance. 

Real-time systems require spatial assessment in 

addition to classification metrics, which brings us to the 

following metric fault localization accuracy. 

Fault localization accuracy 𝐿𝐴  is expressed using 

equation 13, 

𝐿𝑐𝐴𝑐 =
∑ 1[𝑜𝑗 = 𝑜̂𝑗]𝐿

𝑗=1

𝐿
  (13) 

Equation 13 explains that the fault localization 

accuracy is the correctness of fault nodes prediction among 

the top predicted nodes in comparison to actual fault sites 

is calculated. 

In this 𝐿 is the number of test fault cases or evaluated 

fault events, 𝑜𝑗 is the ground truth fault node for case, 𝑜̂𝑗 is 

the predicted fault node for case, 1[. ]  is the indicator 

function, and 𝐿𝑐𝐴𝑐 is the proportion of correctly localized 

faults. 

Temporal responsiveness is crucial, even though 

localization gauges accuracy. Latency is the next indicator 

that measures system responsiveness. 

Detection time 𝐿𝑐𝑦 is expressed using equation 14, 

𝐿𝑐𝑦 =
1

𝐿
∑(𝑢𝑗

𝑑 − 𝑢𝑗
𝑓

)

𝐿

𝑗=1

  (14) 

Equation 14 explains that the detection time is the 

mean time interval between a fault's actual occurrence and 

the model's detection, is known as latency. 

In this 𝑢𝑗
𝑓
 is the time stamp when the fault occurred, 

𝑢𝑗
𝑑 is the time stamp when the fault was detected, 𝐿 is the 

number of evaluated fault instances, and 𝐿𝑐𝑦  is the 

average response delay in milliseconds. 

The confusion matrix offers a statistical and visual 

representation of prediction results to evaluate the 

misclassification distribution. 

Confusion matrix entry computation 𝐷𝑗𝑘  is expressed 

using equation 15, 
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𝐷𝑗𝑘 = ∑ 1[𝑧𝑙 = 𝑗 ∩ 𝑧̂𝑙 = 𝑗]

𝑂

𝑙=1

  (15) 

Equation 15 explains that the confusion matrix 

entry computation is the frequency with which a class 

was anticipated to be a class across all samples, is 

shown by the confusion matrix column. 

In this 𝐷𝑗𝑘   is the count of instances with the true 

class, 𝑧𝑙  is the actual class label of sample, 𝑧̂𝑙  is the 

predicted class label of sample, 𝑂 is the total number of 

test samples, and 1[. ] is the logical indicator function. 

A precision-recall curve is used to display the 

performance trade-off when precision and recall 

measurements are retrieved from the confusion matrix. 

Precision vs. recall curve construction 𝑄𝑆𝑢  is 

expressed using equation 16, 

𝑄𝑆𝑢 = (𝑃𝑠𝑢 , 𝑅𝑙𝑢),   ∀𝑢∈ [0,1]  (16) 

Equation 16 explains to shows classification 

resilience at different confidence levels. 

In this 𝑢  is the soft max threshold for binary 

classification, 𝑃𝑠𝑢  is the precision computed at 

threshold, 𝑄𝑆𝑢  is the tuple for plotting the precision-

recall trade-off, and 𝑅𝑙𝑢  is the recall computed at 

threshold. 

As a result, the following equation uses loss 

convergence to monitor training progress. 

Loss convergence curve 𝑀𝑓  is expressed using 

equation 17, 

𝑀𝑓 =
1

𝑂𝑓

∑ 𝑀𝑗

𝑂𝑓

𝑗=1

  (17) 

Equation 17 explains the loss convergence curve 

representing the sample-wise loss, often cross-entropy. 

In this 𝑀𝑓 is the mean training loss at epoch, 𝑀𝑗 is the 

loss for sample, 𝑂𝑓 is the number of samples processed in 

epoch, and 𝑓 is the current epoch index. 

Scalability becomes essential in deployment. As a 

result, performance is evaluated as network size grows in 

the final calculation. 

Scalability vs network size ∇𝑃(𝑂) is expressed using 

equation 18, 

∇𝑃(𝑂) =
𝑃𝑂0

− 𝑃𝑂

𝑃𝑂0

∗ 100  (18) 

Equation 18 explains topological growth by 

calculating the percentage decrease in performance of the 

model as the network grows from a base size. 

In this 𝑃𝑂 is the model performance metric at network 

size, 𝑂0  is the baseline network size, and ∇𝑃(𝑂)  is the 

percent performance degradation due to scaling. 

This evaluation framework ensures balanced 

performance analysis using classification metrics, spatial 

accuracy, response latency, and visual diagnostics. It 

further monitors training progress and assesses scalability 

under topological expansion. These metrics collectively 

validate the model’s practical effectiveness in real-time 

fault localization and its resilience across varying 

operational conditions in smart grid environments. 

6  Experimental validation 
6.1  Dataset overview 
Smart Grid Monitoring Dataset, a Kaggle dataset [24], 

simulates real-life parameters of smart grid functions with 

sensor data that consists of fine-grained sensor data in a 

time-series format. It contains voltages, currents, 

frequencies, active and reactive power, and FFT converted 

features, along with labeled fault events. The dataset is 

most suitable for spatial-temporal modeling, which is 

intended for applications such as load forecasting, fault 

detection, and anomaly analysis. It is a highly multimodal 

dataset whose characteristics make it an optimal source for 

training and testing ST-GCN models in weak electrical 

systems. The parameters about the dataset is shown in 

Table 3. 

Table 3: Parameterized table 

Parameter Description 

Dataset Source Kaggle (ziya07) 

Data Type Time-series sensor data 

Key Measurements Voltage (V), Current (I), Frequency (Hz), Active/Reactive Power (kW/kVAR) 

Derived Features FFT coefficients, Total Harmonic Distortion (THD), RMS 

Sampling Interval 1-second intervals 

Fault Labels Includes labeled fault and regular operation events 

Number of Sensors Multiple smart meters and grid points (node-level data) 

Applicable Tasks Fault detection, anomaly classification, load forecasting, and pattern mining 
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The experiments use the Smart Grid Monitoring 

Dataset from Kaggle, which simulates real-life smart grid 

operations with fine-grained time-series sensor data. This 

dataset contains measurements of voltage (V), current (I), 

frequency (Hz), active/reactive power (kW/kVAR), and 

derived features such as FFT coefficients, RMS, and Total 

Harmonic Distortion (THD), along with labeled fault 

events. The dataset is highly multimodal and suitable for 

spatial-temporal modeling tasks such as fault detection, 

anomaly analysis, and load forecasting. To ensure 

reproducibility, the dataset is partitioned into training 

(70%), validation (15%), and testing (15%) subsets, and 

preprocessing includes denoising via moving-average 

filtering, normalization, and segmentation into fixed-

length time windows.  

Evaluation Metricst to comprehensively assess model 

performance, several metrics are considered. Accuracy 

measures the proportion of correctly predicted fault or 

normal instances, while the F1-score evaluates the 

harmonic mean of precision and recall for each fault type, 

which is particularly useful in imbalanced datasets. Fault 

localization accuracy quantifies the ratio of correctly 

identified faulty nodes to actual fault locations, and 

detection latency captures the time between fault 

occurrence and model prediction. Precision-Recall (PR) 

curves are analyzed to evaluate trade-offs at different 

decision thresholds, which is critical for mission-critical 

systems. Loss convergence behavior is monitored during 

training to assess learning stability and detect overfitting, 

and scalability tests examine performance across varying 

network sizes and sensor counts to validate the model’s 

applicability in real-time and large-scale scenarios. 

 

7  Results and discussion 
The results and discussion section evaluates the ST-GCN 

model's effectiveness across diverse performance metrics, 

including classification accuracy, F1-score, fault 

localization precision, detection latency, and scalability. 

Visual tools like confusion matrices and PR curves support 

these findings, providing comprehensive insights into the 

model’s robustness, responsiveness, and adaptability 

across real-time fault scenarios. 

 

7.1  Accuracy evaluation 

 

 

Figure 7: The analysis of accuracy evaluation 

Figure 7 explains the suggested ST-GCN model was 

tested on a variety of simulated weak electrical system 

cases to assess its classification performance against a 

broad scope of fault types and conditions. Accuracy was 

taken to mean the number of correctly predicted fault or 

normal test levels divided by the total tests. The model 

demonstrated high performance that remains constant 

when tested on varying datasets, which in turn include 

differences in fault resistance, fault location, and the time 

at which they occur. The topology and temporal nature of 

the space enabled a successful network generalization, 

which outperformed other classical machine learning 
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models, including Decision Trees and SVMs. It was also 

most helpful in capturing the patterns of faults that were 

more subtle, which are those patterns that occur in low-

connectivity nodes or sparse sensor input, typical of weak 

electrical systems made denoted using equation 11. 

 

7.2  F1-score analysis 

 

Figure 8: The Analysis of F1 Score 

 

To evaluate the degree of precision versus recall on the 

model, F1-scores of each fault type were taken and explain 

in figure 8. This measure is essential in imbalanced data, 

where some faults are more common than others. ST-GCN 

demonstrate a high accuracy but mis-detection in the less 

studied types of faults. The ST-GCN achieved a substantial 

F1-score across all classes, indicating that it effectively 

reduced both false positives and false negatives.  

Message-passing in spatial graph and temporal sequence 

learning allowed the model to acquire more insights of 

complex, non-linear fault behaviors and hence provided an 

effective performance of classification regardless of edge-

case scenarios were evaluated using equation 12 

7.3  Fault localization accuracy 

 

Figure 9: The Analysis of Fault Localization Accuracy 
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The system's primary feature is its ability to locate the 

source of a fault in the network accurately is shown in 

figure 9. The model incorporated node embeddings and the 

graphical topology of the electric graph to trace the 

disturbance signal to its root. The ratio of forecasted fault 

nodes to the real fault location determined the performance 

of the localization. The model demonstrated high fault 

localization accuracy across various topological 

arrangements, including radial layouts and meshed layouts. 

It was particularly effective at identifying faults deep in the 

network, where more basic models could be negatively 

impacted by signal distortion or latency. That success was 

dependent on the attention-like behavior of the ST-GCN 

architecture, which is driven by its neighborhood 

aggregation was calculated using equation 13. 

 

7.4  Detection time (latency) 

 

 

Figure 10: The analysis of detection time 

In practice, the accuracy of fault detection in the smart 

grid is not the only parameter to consider; timeliness is also 

essential is shown in figure 10. There was ST-GCN model 

latency, which was recorded as the time taken between the 

introduction of a fault signal to the system and the time 

when prediction occurred. Since the 1D temporal 

convolution operations are lightweight and the model can 

be processed using efficient Graph processing techniques, 

the model can achieve a low inference time and hence be 

applied to real-time operations. The architecture does not 

require extensive historical information or data, and the 

network operates efficiently, ensuring that it does not 

compromise the reliability of the diagnosis. This renders it 

feasible to be combined with supervisory control and data 

acquisition (SCADA) systems and edge computing 

environments made evaluated by equation 14. 
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7.5Confusion Matrix Visualization 

 

Figure 11: The confusion matrix 

The effectiveness of the classification model could be 

visualized across all output classes, as shown in the 

confusion matrix is shown in figure 11. It will provide an 

idea of the types of faults that are most frequently 

misclassified and the accurate favorable rates of the classes. 

The higher the diagonal dominance in the matrix (of the 

ST-GCN model), the more precise the predictions were. A 

small number of off-diagonal entries indicated minor 

confusion among some fault types with similar electrical 

structure, e.g., between single-line-to-ground and double-

line-to-ground faults. The visualization demonstrates that 

the model generates distinct and robust representations of 

each fault category made valuated by equation 15. 

7.6  Precision vs. recall curve 

 

Figure 12: The analysis of precision vs recall curve 

Precision-recall curves were also drawn to compare the 

model response against varied decision thresholds is 

shown in figure 12 and is calculated using equation 16. 

Such curves play a critical role in applications where the 

cost of false alarms or missed detections is high. There was 

a high area under the precision-recall curve (PR AUC) 
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over all fault conditions, indicating that under any given 

condition of creating the model, high precision or rejection 

may be attained. This is especially relevant in the field of 

mission-critical infrastructures, where false negative 

occurrences (i.e., no detection of a fault) should be avoided. 

 

7.7  Loss convergence behavior 

 

 

Figure 13: The analysis of loss convergence behavior 

 

To analyze training convergence, the loss function was 

monitored as a function of epoch processs using the 

equation 17. The cross-entropy loss reflected good 

learning and stopped decreasing, indicating that it had 

stabilized and was not overfitting. Such methods of 

regularization, such as dropout and batch normalization, 

were used to achieve this stability, and early stopping 

mechanisms ensured that training was stopped at favorable 

convergence points. When the model was tested against 

unbalanced and noisy datasets, it exhibited untroubled and 

monotonic training behavior, indicating that the model is 

very robust and can generalize effectively is explained in 

figure 13. 

 

7.8  Scalability vs network size 

 

 

Figure 14: The analysis of scalability vs network size 
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Scalability tests were conducted by applying the ST-

GCN model to networks of varying sizes, small networks 

similar to microgrids and larger networks is shown in 

figure 14. The model did not fail to perform as accurately 

and as quickly as before, though it had added a couple of 

nodes and edges were calculated using the equation 18. 

This massively parallel architecture is modular in form 

because it uses neighborhood aggregation and temporal 

segmentation of computation and distributed processes. 

This ensures that the model is scalable horizontally in 

terms of increased sensor deployments and data volumes, 

without significantly increasing the computational cost or 

deteriorating diagnostic performance. 

The ST-GCN model demonstrated superior accuracy, 

balanced F1-scores, rapid detection, and reliable fault 

localization, outperforming traditional models even in 

sparse or large-scale networks. Its low latency, robust 

learning behavior, and scalable architecture validate its 

deployment in real-world smart grids, ensuring dependable 

fault detection and diagnosis in dynamic electrical 

environments. 

7.9  Potential limitations and considerations 
While the ST-GCN model demonstrates high accuracy, 

low latency, and robust fault localization, certain practical 

considerations remain. Computational overhead may 

increase as network size scales or when processing high-

frequency sensor data, requiring efficient graph processing 

and optimized hardware for real-time deployment. 

Additionally, careful parameter tuning including the 

number of ST-GCN layers, temporal window size, learning 

rate, and batch size is necessary to maintain optimal 

performance and avoid overfitting. These factors should be 

considered when deploying the model in large-scale or 

resource-constrained smart grid environments. 

Scalability considerations of ST-GCN 
While ST-GCN demonstrates strong performance in 

capturing spatiotemporal patterns, its application to large-

scale or high-frequency datasets poses computational and 

memory challenges due to the graph convolution 

operations and temporal modeling. To mitigate these 

issues, strategies such as model pruning, mini-batching, 

and efficient graph sampling can reduce computation, 

while distributed training across multiple GPUs or 

parallelized processing can handle larger datasets. Future 

work may also explore incremental or streaming-based ST-

GCN variants to improve real-time processing capability 

without compromising accuracy. 

8  Conclusion and strategic outlook 
8.1Summary of findings 
The presented paper introduces a new model for failure 

analysis and diagnosis of a weak electrical system, 

utilizing Spatial-Temporal Graph Convolutional Networks. 

The model succinctly represents the topology of the sensor 

data as well as its temporal texture, thereby functioning 

effectively in fault detection, classification, and 

localization. Extensive evaluation yielded excellent results 

in terms of accuracy, low latency, and generalizability 

across various network connectivities and fault scenarios. 

8.2  Engineering and research implications 
As an engineer, the model under consideration provided a 

scalable and deployable engineered solution for smart grid 

automation, particularly in low-voltage and loosely 

coupled networks. The way it was designed to work with 

the current infrastructure and leverage edge computing 

generates new avenues for decentralized diagnostics. In 

research, this publication fills the gap between 

sophisticated machine learning methods and their practical 

application in electrical engineering, demonstrating the 

effectiveness of applying graph neural networks in 

mission-critical systems. 

8.3  Future scope: multimodal graphs, self-

supervised GNNs 
In the future, several directions will enhance the resiliency 

and agility of this framework. Multimodal graph input, e.g., 

integrating electrical, environmental, and cyber-physical 

signals through contextual awareness, could be provided. 

Additionally, the implementation of self-supervised 

learning methods on GNNs can reduce the need for large 

labeled datasets, making applications possible in 

unsupervised or semi-supervised grid setups. The better 

use of dynamic graph modeling and online learning 

capabilities will also improve the system's resilience to 

changing grid topologies and load profiles. While the 

proposed ST-GCN model demonstrates effective fault 

detection in electrical systems, its generalization to non-

electrical networks (e.g., water distribution or traffic 

systems) may be limited. Future work will explore 

modality-agnostic approaches, adaptive temporal 

windows, and robustness to noisy or incomplete data to 

extend applicability and improve system resilience 
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