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Weak electrical systems, such as low-voltage distribution grids and embedded sensor networks, are highly
susceptible to faults due to their complex topology and limited fault tolerance. Accurate failure analysis
and diagnosis in such systems are essential for maintaining operational reliability and safety. However,
traditional diagnostic methods—such as rule-based systems or shallow machine learning—struggle with
non-linear relationships, dynamic system behavior, and distributed component interactions. These
limitations result in delayed or inaccurate fault detection, particularly in noisy or rapidly changing
environments. To overcome these challenges, this paper proposes a failure diagnosis framework based on
the Spatial-Temporal Graph Convolutional Network (ST-GCN), comprising a multi-channel CNN feature
extractor for spatial pattern learning and an attention-guided temporal module for capturing temporal
dependencies across system nodes. The architecture allows the model to learn complex spatiotemporal
interactions and adapt to multi-modal sensor inputs effectively. The proposed ST-GCN achieves 96.7%
accuracy, 0.95 Fl-score, and 93.6% fault localization accuracy, significantly outperforming traditional
methods. It also demonstrates sub-10 ms detection latency, 95.4% actual positive rate in the confusion
matrix, and a Precision—Recall AUC of 0.96, while converging within 25 epochs and showing only 1.4%
accuracy drop when scaled from a 33-bus to a 123-bus system. These results highlight the robustness,
real-time applicability, and methodological effectiveness of ST-GCN for fault diagnosis in weakly meshed
and low-voltage distribution grids.

Povzetek: Clanek predlaga diagnosticni okvir ST-GCN, ki z ucenjem prostorsko-casovnih odnosov iz
vecmodalnih senzorskih podatkov omogoca hitro (pod 10 ms) in natancno (=96,7%) zaznavanje ter
lokalizacijo okvar v Sibkih nizkonapetostnih omreZjih, pri cemer ostane robusten tudi pri vecjem obsegu
sistema.

1 Introduction

1.1 Overview to weak electrical systems

Weak electrical systems refer to power distribution
infrastructures with little fault tolerance, low-voltage-
operated systems, and are highly vulnerable to
disturbances. Such systems are commonly found in
distributed systems, such as microgrids, smart buildings,
and industrial sensor arrays [1]. Weak distribution grids
have complex topologies and dynamic behavior, making
conventional fault detection unreliable. This paper uses a
heterogeneous multi-task GNN to capture spatial
dependencies and perform fault detection, location,
classification, and parameter estimation. Results show
robustness to measurement errors, topology changes, and
variable fault conditions, highlighting the need for
advanced graph-based fault analysis [2].

1.2 Importance of fault analysis in smart
grids

With smart grids, advancements in architecture, and fault
analysis have come to the forefront of everything. Proper
diagnosis of faults leads to uninterrupted equipment
operation, reduced maintenance expenses, and energy
security [3]. Distributed energy resources introduce subtle
fault signatures and noise in weak grids, challenging
traditional detection methods. A GNN-based model
encodes both topology and electrical-physical information
to enable robust fault diagnosis under weak or incomplete
measurements.  Experiments demonstrate  superior
accuracy over classical approaches, emphasizing the
importance of GNNs for reliable smart grid fault analysis

[4].
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1.3 Graph-centric perspective on electrical
topologies

Graphs are effective models of electrical systems, in which
nodes typically represent physical components, and edges

represent either electrical connections or logical
connections [5]. This type of graph-based abstraction
considers both spatial layout and signal variant

dependencies, facilitating an intelligent analysis. Using
Graph Neural Networks (GNNSs), it can be expected that
the network's topology can be influenced by the learning
models, allowing localized faults to be detected and
contextual predictions to be made in conjunction with real-
time monitoring of the related components [6].

1.4 Motivation

With the global tendency to decentralise and digitalise
power systems, weak electrical systems (microgrids,
distribution feeders, sensor-fueled energy networks)
become critical in fulfilling the requirements of localised
control and in-time responsiveness [7]. They are implanted
in essential infrastructure and smart environments and may
be involved in quite complex interactions with hundreds or
thousands of low-power components. Yet, their weak
properties and low redundancy predispose them to
disruptions, which is why smart diagnostic measures are
required that would assure safety, stability, and self-
healing [8].

1.5 Challenges in weak electrical systems

e  Granted, most traditional methods of diagnosis in
a weak electrical system have several limitations:

e Non-static and dynamic nature: Random noise in
the signal, dynamic loads, and external
disturbances degrade the performance of any
static, threshold-based approach.

e Distributed fault propagation: The faults may be
initiated in a single node and then propagated in
a way that makes it hard to localise [9].

e Data sparsity and imbalance: Few fault samples
are used, and class imbalance is detrimental to a
typical machine learning approach.

e Topology dependency: Many current algorithms
overlook the electrical structure and thus treat
sensor data as flat vectors, thereby eliminating all
significant spatial associations [10].

1.6 Contributions of this paper
In response to these shortcomings, the paper proposes a
new failure analysis and diagnosis model for the weak
electrical system, starting with the ST-GCN. The essential
contributions are:

Graphical representation of electrical systems,
using topological and signal relations.

ST-GCN architecture activated with the joint
learning of spatial and temporal relations of fault
signatures.
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It was experimentally validated on both
simulated and real-world datasets, achieving higher
accuracy, localization precision, and real-time diagnostic
power than the baseline ML methods.

The following are the key contributions of this paper

e  Graphical modeling of weak electrical systems,
capturing both topological connections and signal
relationships.

e Development of a Spatial-Temporal Graph
Convolutional Network (ST-GCN) that jointly learns
spatial and temporal fault patterns.

e Comprehensive fault diagnosis including
detection, localization, classification, and parameter
estimation.

e Experimental validation demonstrating high
accuracy, precise localization, and real-time performance
on simulated and real-world datasets.

e Robustness to noisy, sparse, and dynamic data,
ensuring scalability across varying grid topologies and
sizes.

2 Related work

2.1 Conventional diagnostic techniques
Traditional fault diagnosis methods in electrical systems
are centered on machine learning models trained on
statistical or frequency features. GBT, MLP, and SVM are
among the models that have gained widespread use due to
their high fault-detection and classification properties.
Nonetheless, they tend to perform worse when they are in
the form of real-time, high-dimensional, or topologically
complicated grids.

2.1.1 Gradient Boosting Tree (GBT) Model

In this research, Sapountzoglou et al [11] examined the use
of the GBT algorithm to detect and localize single-phase-
to-ground and three-phase faults in low-voltage (LV)
Smart Grids. This model is trained on branch-free features,
making it generalizable across various grid topologies.
Tested on a simulated Portuguese LV network subject to
different fault resistances, times, and locations, the
procedure realized a peak error in the fault detection of
only 0.72%, indicating a robust cross-topology flexibility
and a high diagnostic precision.

2.1.2 Multi-Layer Perceptron (MLP) model

The paper presented by Yan et al [12] here is dedicated to
an MLP-based diagnostic model for low-voltage circuit
breakers, featuring type-specific entropy-based features.
Other entropies are combined using PCA to create a robust
feature space. An optimized MLP model, along with well-
established hyperparameters and sensor input, is recorded
to achieve a diagnostic accuracy of over 98%. The method
can be effectively used to detect faults such as false closing
and jamming, with a high potential for practical breaker
health monitoring.
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2.1.3 Support Vector Machine (SVM)

Liu et al [13] state that to address issues with diagnosing
internal faults in distribution transformers, the work aims
to implement support vector machines (SVMs) using
frequency response data collected during impulse tests.
Using the oscillation patterns of the winding throughout
the end of the winding, the method identifies the location
of insulation collapse with an accuracy of more than 80%.
It shuns intrusive examination and proves that the features
of external electric waveforms may be utilized to diagnose
internal errors in the transformer, and is one factor that
advances safer and more effective service to transformers
that do not require mechanical breakdown.

2.1.4 Variational Mode Decomposition
(VMD) + Ensemble Bagged Trees Model

(EBTM)

In this study, VMD is integrated with the EBTM, which is
used to detect faults in photovoltaic-rich distribution
networks by Nsaif et al [14]. Dynamic protection and high-
impedance faults are resolved using a method that
decomposes voltage sequences and classifies the faults. It
has a better result compared to SVM and other ML models,
and under the radial and SNOP topologies, it gets a
diagnostic accuracy of 100% within 1.25 ms. The model is
locally dependent and communication-free; therefore, it is
suitable for real-time and distributed smart grid protection.

2.1.5 Random Forest (RF)

This paper applies RF in grids of limited observability to
estimate the voltages of buses using CATV sensor
measurements, as described by Markovic et al. [15]. The
process harnesses the spatio-temporal measurements of
the popular CATV sensor to deduce the voltage values of
unmonitored buses. The model demonstrated high
accuracy on a 1572-bus SMART-DS, including both
passive and PV-active networks. The method enhances the
observability of systems without adding extra
infrastructure to increase the hosting capacity of
distributed renewable energy resources.

2.2 Machine learning approaches

The more advanced machine learning methods, including
NCFS, XGBoost-SVM, GANSs, and Neural Architecture
Search, have been recently studied to enhance the
automation, accuracy, and flexibility of fault diagnosis.
Such models offer improvements in terms of data selection,
feature learning, and robustness, yet struggle with issues
of interpretability, scalability, and deployment at the edge.

2.2.1 Neighborhood Component Feature

Selection (NCFS) and SVM

This paper is presented by Mirshekali et al [16] a fault
localization model utilizing Neighborhood Component
Feature Selection (NCFS) and Support Vector Machine
(SVM) techniques. Voltage measurements taken by the
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micro-PMU at fault conditions are converted into
frequency-domain characteristics and narrowed down with
NCFS such that only the most significant elements are
preserved. The SVM classifier is applied to find the faulty
part on a DG-equipped IEEE 11-node feeder. The model
remains effective even in cases where the behavior of the
DG and the randomness of faults are unknown, with a high
score in fault section classification.

2.2.2 Combined Extreme Gradient Boosting
and Support Vector Machine model

(XGBoost+SVM)
According to Liu et al. [17], a hybrid approach combining
Extreme Gradient Boosting (XGBoost) and SVM is
proposed in the current paper for fault location in
distribution networks. The model has been tested using an
IEEE 34-bus power system with single-phase-to-ground
faults using node voltages to determine fault location. This
technique is more accurate and precise, and, in terms of
Fl-score and time complexity, it outperforms KNN and
MLP, which suggests its viability as a tool in real-time
fault diagnosis applications for power systems.

2.2.3 Decision Tree-based fault detection and
classification (DT-FDC)

The research paper proposes a Decision Tree (DT) based
model for intelligent Fault Detection and Classification
(FDC) in transmission networks, as stated by
Venkatachalam et al. [18]. It utilizes the PMU data of the
WSCC 9-bus test system to perform simulations on
various types of faults by adjusting parameters such as
resistance, location, and angle. The DT receives feeds of
post-fault bus voltages, current, and angles to classify them.
The methodology guarantees proper and effective FDC
operation and optimal positioning of PMU in a wide-area
monitoring system.

2.2.4 Generative Adversarial Network
(GAN)

This paper aims to address the issue of class imbalance in
fault diagnosis by proposing a Generative Adversarial
Network (GAN) coupled with Feature Matching (FM) by
Zareapoor et al [19]. The GAN uses a mixture of both
normal and faulty data as a distribution to create synthetic
samples of the faults, and the discriminator classifies both
real and synthetic ones. The approach outperforms
oversampling techniques in effectively increasing
detection accuracy and robustness against outliers and
overfitting in industrial fault diagnosis.

2.2.5 Neural Architecture Search (NAS)

According to Li et al [20], to streamline the deep model
design due to faults, this study utilizes Neural Architecture
Search (NAS) and Reinforcement Learning (RL). A
recurrent network serves as the controller, with no
restrictions on its output, and the validation accuracy of the
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model architectures is used as feedback. When using the
NAS-designed model on the PHM 2009 gearbox dataset,
the results yield state-of-the-art  performance,
outperforming manually built networks. This is among the
earliest applications of NAS in a fault diagnosis
environment.

2.2.6 GNN-Based Fault Diagnosis in PV

Networks

Liu et al. [21] proposed a DACDFE-GNN model to
diagnose faults in distribution networks with integrated
photovoltaic systems. The model encodes both network
topology and electrical measurements, using a dynamic
graph aggregation mechanism to handle weak and noisy
fault features. The study addresses challenges arising from
bidirectional power flows, low sample rates, and
measurement noise, which make traditional methods
unreliable. Limitations include reliance on simulation data
and increased computational complexity for larger
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networks. Results demonstrated superior fault detection,
localization, and classification accuracy under noisy
conditions and variable PV output compared to baseline
methods.

2.2.7Multi-Task GNN for Grid Fault Detection

Chanda and Soltani [22] introduced a heterogeneous multi-
task GNN (MTL-GNN) that performs simultaneous fault
detection, localization, classification, resistance, and
current estimation. The model also includes an
explainability module to identify key nodes, supporting
sparse measurement strategies. The work addresses
limitations of previous approaches that required multiple
separate models and struggled with noisy or sparse
measurements. Limitations include evaluation on
simulation-based test feeders rather than real-world data
and the need for validation in highly dynamic grids.
Results showed high accuracy across all tasks and
effective identification of key nodes for efficient
monitoring.

Table 1: Comparison of fault diagnosis techniques in electrical systems

Technique Key Features Limitations How ST-GCN Addresses | Reference
GBT Gradient boosting on | Not real-time, limited | Real-time, handles high- | [11]
statistical features adaptation to unseen faults | dimensional data,
adaptable
MLP Multi-layer perceptron | Sensitive to noise, needs | Learns spatio-temporal | [12]
on engineered features | manual feature engineering | features automatically,
robust to noise
SVM Kernel-based Poor scalability, limited to | Scales to large, sparse data; | [13]
classification specific boundaries captures complex
dependencies
VMD+EBTM Signal decomposition | High computational load, | Lower computational | [14]
+ ensemble bagged | topology-specific overhead, topology-
trees agnostic
RF + CATV Random forest on | Depends on sensor | Works with sparse/noisy | [15]
sensor measurements placement, limited in | measurements, scalable
dynamic scenarios
NCFS+SVM Feature selection + | Requires labeled data, | Handles sparse and | [16]
SVM degrades with changing | unknown conditions,
conditions adaptive
XGBoost+tSVM | Hybrid gradient | Needs full voltage | Works with partial | [17]
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sparse/noisy data

boosting + SVM coverage, limited | measurements, generalizes
generalization across topologies
DT-FDC Decision tree for FDC | Overfitting, limited | Robust and interpretable, | [18]
interpretability scalable for high-
dimensional grids
GAN + FM Synthetic data | Computationally Avoids  synthetic data | [19]
generation expensive, data quality | reliance, reduces training
issues overhead
NAS Neural  architecture | High training overhead, not | Efficient architecture for | [20]
search edge-suitable edge deployment, real-
time ready
DACDFE GNN | GNN for PV networks | Relies on simulation, high | Robust to sparse/noisy | [21]
computational cost data, scalable to weak grids
Multi-task GNN | Heterogeneous multi- | Simulation-based Real-time, handles sparse | [22]
task GNN evaluation, complex measurements,
interpretable
ST-GCN Spatial-temporal graph | Needs topology info Real-time, scalable, | This work
(proposed) convolution interpretable, robust to

Table 1 summarizes conventional, advanced, and
GNN-based fault diagnosis methods, highlighting their

key features and limitations. It also illustrates how the

proposed ST-GCN approach overcomes these challenges
through real-time detection,

spatio-temporal

feature

learning, and scalability. The comparison emphasizes the 2

Technique
GBT

MLP

SVM

VMD +EBTM
CATV + Random
Forest

NCFS + SVM

XGBoost + SVM
DT-FDC

2.3 Research gap

The shortcomings of relevant research are shown in Table

Table 2: Shortcomings in related research

Limitation

research gap and the motivation for adopting ST-GCN in
weak electrical systems.

faults [11].

Lacks real-time processing; trained on static grid simulations; limited adaptation to unseen

accuracy [12].

Requires manual feature engineering; sensitive to noise; high dependency on sensor

Poor scalability to large datasets; limited to linear or kernel-specific boundaries [13].

High computational load in signal decomposition; topology-specific tuning needed [14].

It depends on sensor placement and resolution; therefore, it is not suitable for rapid
dynamic fault scenarios [15].

[16].

Relies on labeled fault data; performance degrades with changes in DG behavior or noise

Requires comprehensive voltage coverage; may not generalize well across topologies [17].

Prone to overfitting; limited interpretability in large, high-dimensional systems [18].
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GAN Synthetic data quality is challenging to control and computationally expensive for edge
deployment [19].
NAS High training overhead; unsuitable for low-power or embedded system applications [20].

Explicitly highlight how the proposed ST-GCN model
addresses the limitations of prior methods and positions it
within the research gap. Specifically:

e (Critically analyze the shortcomings of
conventional and advanced diagnostic techniques (e.g.,
GBT, MLP, SVM, VMD+EBTM, RF, NCFS+SVM,
XGBoost+SVM, DT-FDC, GAN, NAS) in terms of real-
time deployment, scalability, adaptability, interpretability,
and edge applicability.

3 Graph-theoretic system

representation
3.1 Electrical system as a graph: node and

edge semantics

Electrical power systems can be easily modelled as graphs
with each system component abstracted as a node in the
graph and the electrical or logical connection between
them abstracted as edges. In this context, the nodes can be
buses, transformers, circuit breakers, or smart sensors,
while the edges represent transmission lines, feeder
sections, or logical signal paths. It is a graph abstraction
that enables the system to maintain both topological
integrity and structural dependencies; thus, it can be
utilized in a graph-based learning framework. Putting
spatial structures directly into the learning model, the
global pattern can be used to infer localized behavior.

3.2 Failure signatures and graph encodings
Malfunctions on weak electrical systems, e.g., short
circuits, load imbalances, or breaker faults, would indicate
faults in observations of sensors, currents, or voltages. The
dynamics of these disruptions propagate across the
network and can be recorded as signatures of failure. With
the graph encoding, the features representing the node (e.g.,
voltage, current, frequency) and edge are embedded into a
matrix feature. In this form, this encoded graph is an input
to a Graph Neural Network, which learns the spatial
correlations and is able to identify normal and faulty states
thanks to message passing and aggregation layers.

e C(Clearly state how ST-GCN overcomes these
issues, e.g., by providing real-time fault detection,
handling high-dimensional and sparse data, capturing
spatio-temporal dependencies, reducing computational
overhead, and enabling scalable deployment.

e Link the discussion directly to the research gap,
showing the motivation for introducing ST-GCN for weak
electrical systems.

3.3 Temporal dynamics in sensor-driven

environments

The environment in question is sensor-rich and constantly
generates time-series data regarding the system's state.
Fault events are not only localized in space but also
transitive in time, evolving over milliseconds to minutes.
It is essential to incorporate the time dimension sequences
in the endeavor to learn about fault progression as well as
early warning. Regarding this, every graph at a moment
snapshot t is connected to its previous and successor states
to create a spatial-temporal graph sequence. It is this time
relationship that enables the suggested model, e.g., ST-
GCN, to detect not only the instantaneous faults, but also
their transitions, leading to better detection rates and
predictive maintenance.

4 The proposed intelligence

framework
4.1 ST-GCN for spatio-temporal pattern

learning

The essence of the model suggested consists of ST-GCN,
which competently embraces the depictions of both spatial
interactions (network topology) and the dynamics of the
evolution. ST-GCN generalizes standard GCNs by adding
temporal convolution layers that operate on graph state
sequences. Such a combination of convolutional
mechanisms enables the model to learn the variations of
electrical signals in both nodes and timesteps, allowing for
precise fault diagnosis in dynamic yet noisy operating
conditions. ST-GCN learns the causal dynamics of failure
from patterns in sensor data sequences; this is why it can
perform this task more effectively compared to static
classifiers.
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Figure 1: ST-GCN temporal-spatial modeling flow

Figure 1 illustrates the ST-GCN-based fault diagnosis
framework for weak electrical systems. It begins with raw
time-series input (voltage/current), constructs a graph
using electrical topology (nodes and edges), and applies
temporal windowing to form sequential snapshots. GCNs
units extract spatial and temporal features, respectively.
The model encodes neighbor node interactions and
temporal dependencies through a spatio-temporal encoder-
decoder. The final output is a learned feature matrix
capable of detecting and localizing evolving fault patterns
with high accuracy in real time. The layout is now linear,
showing the main stages from Raw Input, Graph
Construction, Temporal Windowing, ST-GCN, Feature
Output. Each module is clearly labeled with short
descriptions, such as Graph Construction: Nodes = buses,
Edges = electrical connections,

Temporal Windowing: Sliding window captures temporal
snapshots, ST-GCN: Learns spatial and temporal
dependencies of faults, and Feature Output: Matrix
representing fault patterns for downstream tasks. A
glossary box beside the figure explains key terms,
including Node, Edge, Temporal Window, and ST-GCN.
Consistent colors and symbols are used for nodes, edges,
voltage/current, and temporal modules to make the flow
intuitive and visually clear.

Evaluation Protocol

The dataset is divided into training, validation, and
testing subsets using a 70/15/15 split. Model performance
is assessed using accuracy, Fl-score, fault localization
accuracy, latency analysis, PR curves, loss convergence
behavior, and scalability tests. All hyperparameters,
thresholds, and window sizes are explicitly documented to
ensure full reproducibility.
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4.2 Data processing pipeline
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Figure 2: Data processing pipeline for smart grid fault analysis

The raw voltage and current time-series streams from
the Smart Grid Monitoring Dataset are first denoised using
a moving-average filter to remove high-frequency noise
while preserving fault-related variations (Figure 2). The
signals are then normalized to a standard range to ensure
consistent input scaling across sensors. Next, the time-
series data are segmented into fixed-length windows (50—
200 ms) to capture local temporal patterns. For each
window, graph structures are constructed based on the
electrical ~ connectivity —matrix, encoding spatial
dependencies between sensors as edges in the graph.
Missing or corrupted readings are handled through linear
interpolation or zero-filling as appropriate, ensuring robust
input to the ST-GCN model. This structured pipeline
ensures that both temporal dynamics and spatial
relationships are preserved, facilitating effective learning
of fault patterns across diverse scenarios. Raw voltage and
current streams are denoised using a moving-average filter,
normalized, and segmented into fixed-length windows
(50-200 ms). For each window, graph structures are
constructed based on the electrical connectivity matrix to
capture spatial dependencies within the weak electrical
system.

4.3 Model training and setup

The ST-GCN model is composed of stacked spatial-
temporal graph convolutional blocks with residual
connections and batch normalization to improve gradient
flow and stability. Each block captures local temporal
dynamics while propagating spatial information across the
graph nodes. After feature extraction, the high-level
spatio-temporal embeddings are flattened and fed into a
dense classification layer. Training is performed using the
Adam optimizer with cross-entropy loss, and dropout
regularization is applied to prevent overfitting.
Hyperparameters such as learning rate, batch size, number
of layers, and hidden units are selected through a
combination of grid search and validation performance
monitoring. Fine-tuning is conducted iteratively, adjusting
layer sizes and regularization coefficients until
convergence is achieved on the validation set. Each graph
sequence is passed through stacked ST-GCN blocks with
residual connections and batch normalization, after which

the extracted spatio-temporal features are flattened and fed
into a dense classification layer. Training is performed
using the Adam optimizer with cross-entropy loss, dropout
regularization, and mini-batch learning to enhance model
stability and generalization.

The dataset was divided into training, validation, and
test sets in a 70:15:15 ratio, ensuring class balance via
stratified sampling. Prior to training, all data underwent
preprocessing including normalization and encoding,
while missing values were imputed using a median-based
strategy and noise was reduced through outlier filtering. To
evaluate the model’s adaptability and robustness,
additional simulated fault scenarios and an external
benchmark dataset were employed, enabling assessment of
performance under diverse and challenging conditions.
Hyperparameters were selected through grid search on the
validation set, and network fine-tuning was performed
iteratively to optimize accuracy while preventing
overfitting.

4.4 Handling noise and missing data

Raw input signals may contain missing or corrupted
readings due to sensor faults or communication errors.
These are handled using linear interpolation for short gaps
or zero-filling for longer missing sequences. Additionally,
denoising through moving-average filtering ensures that
transient noise does not adversely affect feature extraction.
This preprocessing ensures robust and reliable inputs,
allowing the ST-GCN model to maintain high performance
even under imperfect real-world conditions.Spatial graph
convolution for electrical topology encoding I(™+1) is
expressed using equation 1,

Jm+1) — A(E—l/zgg—uzl(m)x(m)) €))

Equation 1 explains the spatial graph convolution for
electrical topology encoding where an electrical structure
is represented using normalized carries out a spatial graph
convolution.In this 1™ is the feature matrix at layer,
where O is the number of electrical nodes and G, is the
feature dimension, B is the adjacency matrix with self-
loops, where B encodes node connectivity, E is the
diagonal matrix with node degrees of B, X(™ is the
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trainable weight matrix at layer, and A(.) is the nonlinear
activation function.

To represent how defects change over time through
system dynamics, temporal dependencies must be
(i dy) = MTUN (I, (iy-1, du-1)) (2)

Equation 2 explains the temporal modeling using
LSTM over node features represented by this equation.

In this I, is the spatially convolved features at time
from previous GCN layer, i, is the hidden state at time
representing short-term memory, d,, is the cell state at time
representing long-term memory, MTUN (.) is the recurrent
unit mapping inputs and previous states to new states, and

yj(m+ 1) _ P

keo(j)

Equation 3 explains node feature aggregation uses
degree-normalized weighting to gather information from
its neighbors to update the feature image of the node at
layer.

In this y]-(m) is the feature vector of node at layer, O (j)
is the set of neighboring nodes connected to node, e}, e
are the degrees of nodes, X™ is the trainable

i = Hsv(y

Equation 4 explains the temporal flow integration via
gated recurrent units is the temporal evolution of node
characteristics over time is captured by this equation using
a GRU cell.

In this y]-(u) is the aggregated spatial feature of node at

()
j

time, i; ~ is the updated hidden state representing temporal

memory for node, ij(u_l) is the hidden state
L-1 G

— xmym
N ejek
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described once have been
incorporated.
Temporal modeling using LSTM over node features

(i, d,) is expressed using equation 2,

spatial dependencies

iy_1,d,_q1 are the previous time step’s hidden and cell
states.

These spatiotemporal images are delivered to a fully
linked decoder after temporal encoding for reliable and
real-time fault detection in weak power lines.

Neighborhood-aware node feature

y].(m“) is expressed using equation 3,

aggregation

3)

weight matrix at layer, and d(.) is the nonlinear
activation function.

The following equation results from the need to
explain the sequential fluctuation of node states brought on
by temporally fault propagation by neighbor feature
aggregation.

Temporal flow integration via gated recurrent units
Q)

i;" is expressed using equation 4,

(u) l'_(u_l)) (4_)

)

from the previous time step, and HSV (.) is the gated
recurrent unit function that encodes temporal relationships
in sequential data.

High-resolution spatio-temporal fault characterization
is made possible by the fault signature encoder.

Temporal convolution over spatial feature embedding

A](li is expressed using equation 5,

l l
A=) D s s+ ©
0=0g=1

Equation 5 explains that the temporal convolution
over spatial feature embedding is the spatial properties to

a 1D longitudinal convolution represented by this equation.

In this I}(ﬁ)_ 5 is the input feature from node, y;% is the
temporal kernel weight for feature, L is the temporal
kernel width, G is the number of input features, A](l; is the

output of the temporal convolution for node, and ¢ is the
bias term for the output channel.

4.5 Node embedding,
aggregation, and temporal flow

neighborhood

At each period, these nodes (e.g., sensors, breakers,
transformers) are modeled using feature vectors that
include voltage, current, harmonic, and phase data. These
are ranked in a high-dimensional space using a node
embedding algorithm that preserves both feature similarity
and spatial locality.
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In neighborhood aggregation, localized fault effects are
considered in that features of neighboring nodes are
combined with those of the original node to update its
representation. It processes the temporal flow through a

J. Shen et al.

1D convolution along the time dimension, allowing the
model to learn how dependencies operate between
multiple timesteps. Such a structure enables the ST-GCN
to learn both sudden and slow shifts in system behavior.

Node Feature
Initialization

@i

=4

Voltage Current Signal
Node Update : Neighbor
Function Aggregation
—_—
v Embedded Vector
Temporal Flow Fault Signature
Integration Encoding
Figure 3: Node-Level ST-GCN operation flow
Figure 3 illustrates the spatio-temporal feature detection and localization in weak electrical grid

extraction pipeline in a graph neural network for fault
diagnosis. It begins with voltage, current, and signal data
used to initialize node features. Through neighbor
aggregation, the

local structural context is captured. The node update
function refines feature states, which are then passed
through temporal flow integration to model sequential
dependencies. Finally, a fault signature encoding step
captures dynamic fault patterns, enabling robust anomaly
>

(Y
M=-
=1

Q|+

J

Equation 6 explains the multi-class cross-entropy loss
for fault classification calculates the categorized cross-
entropy loss.

In this O is the total number of labeled fault samples,

(@)

D is the number of distinct fault classes, z;™ is the ground

truth label indicator for sample, log (.) is the natural

logarithm function, 2@ is the predicted probability for the

J

5(d) _
z;" =

Equation 7 explains that the soft max-based fault class
prediction from the ST-GCN embedding function is

Zj

a=1

topologies [23].

Following the extraction of spatiotemporal mappings
of features, the model uses a distinguished loss function
and a Bayesian output distribution to maximize its
prediction ability.

Multi-class cross-entropy loss for fault classification
M is expressed using equation 6,

@D1og(2/”) (6)

sample, and M is the total loss used for training
optimization.

By changing network weights to enhance the
alignment between anticipated and genuine fault classes,
to reliably categorize fault occurrences in weak power
systems.

Softmax-based fault class prediction from ST-GCN

embedding Z”j(d) is expressed using equation 7,

(d)

fijv(k) (7)
k=S

applied to the resulting logits of the dense classifying layer
for a node in this equation.
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In this ZAJ-(d) is the predicted probability that the node

belongs to the fault class, vj(d

D is the total number of distinct fault categories, and f is
the Euler’s number, used in exponentiation.

) is the logit value for node,

. 5(d)
Aiz{l if maxg Z; >6(
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The system must choose whether to initiate a real-time
reaction after obtaining the soft max probability by
determining if the fault prediction's confidence level is
above a predetermined threshold.

Real-time fault decision and alert dispatch rule 4; is
expressed using equation 8§,

8)

0 otherwise

Equation 8 explains the real-time fault decision and
the alert dispatch rule determines if a predetermined
confidence level is exceeded by the highest anticipated
fault likelihood for a node.

In this 2].(d) is the predicted softmax probability for

node, 0 is the decision threshold for triggering fault alerts,

maxgy ZA]-(d) is the maximum predicted probability over all
fault classes for node, and A; is the real-time fault alert

status for the node.

4.3 Architecture pipeline and training
paradigm
The proposed ST-GCN framework can help learn intricate
node-level spatial and temporal relationships to achieve
successful fault localization in weak electrical systems.
The first layer will be an input that receives a time series
of graph-structured information, where each graph instant
contains node-level features, such as voltage, current, or
frequency, and an adjacency matrix, which determines the
network's connectivity. These input graphs are fed to a
chain of spatial-temporal blocks, with each block adding
some form of spatial-temporal convolution block, a
temporal convolution block here to model temporal
change, with a graph convolution block to model spatial
co-occurrence.

Residual connections and batch normalization layers
are incorporated within each block to enhance training
stability and accelerate convergence. Their fully connected

layers are then supplied with the flattened high-level
features obtained from these spatio-temporal blocks. They
are used to perform the ultimate classification or regression,
i.e., identifying the fault type or estimating the fault
location. Multi-class classification is performed using a
softmax activation at the output layer, containing a cross-
entropy loss-based training network. The Adam optimizer
is applied in the training process, based on mini-batch
gradient descent, and methods to avoid overfitting are
employed, including dropout regularization. The power
networks can be part of a dynamic, sensor-based system
that accurately diagnoses faults in real-time via this
architecture.

Figure 4 depicts the ST-GCN-based fault classification
pipeline using historical sensor datasets. The workflow
begins by normalizing and segmenting the temporal data,
including labeled faults and timestamps. A combination of
spatial GCN and 1D temporal convolution extracts spatio-
temporal features. These features feed into a dense
classification head with a softmax activation to predict
fault types. Training utilizes cross-entropy loss and the
Adam optimizer, enabling robust learning of dynamic fault
patterns in electrical grid sensor data.

In order to respond quickly to an alarm, the system's
mitigation module logs a date and time, node ID, projected
fault, the lesson, and confidence score.

Node-level anomaly score via temporal embedding
deviation T; (u) is expressed using equation 9,

T = [|50) — 9|, 9
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Figure 4: Full model training pipeline

Equation 9 explains the node-level anomaly score via
temporal embedding deviation by calculating the standard
deviation (L2) of the variance between the present-day.

In this i;(u) is the Node embedding vector at time, 0;
is the temporal mean embedding of a node over a reference
window of length, ||. ||, is the L2 (Euclidean) norm, and
T;(u) is the anomaly score indicating deviation magnitude
for node.

5 Fault intelligence layer

5.1 Real-time fault detection mechanism

The real-time identification model runs on the incoming
data. The module utilizes the ST-GCN model, which has
been previously trained. The system flags the presence of
a fault once deviations from expected patterns are detected.
The system, equipped with a low-latency temporal
convolution, can operate with minimal delay, detecting
faults as soon as they appear within a few milliseconds. It
is beneficial in situations where a quick response time is
crucial for safety and asset protection.
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Figure 5: Real-Time Fault Detection Flow (ST-GCN Inference Pipeline)

Figure 5 illustrates the real-time ST-GCN-based fault
detection pipeline for smart electrical grids. Live voltage,
current, and status bit streams are converted into graph
snapshots. A pre-trained ST-GCN performs forward
propagation to generate node embeddings. The output is
passed to a softmax-based fault -classifier, which
determines the most probable fault class. If fault
probability exceeds a threshold, a real-time alert dispatcher

exp(B * U; +y = B;)

logs the timestamp, fault label, and confidence, enabling
rapid fault mitigation and network resilience.

A confidence score that takes into consideration both
signal variability and topological agreement among nearby
nodes is estimated using anomaly scores.

Confidence score from signal stability and
neighborhood consistency C; is expressed using equation
10,

" Skerexp(B + Uy +v * By)

Equation 10 explains that the confidence score from

signal stability and neighborhood consistency is calculated.

In this U; is the signal deviation sharpness for node
normalized, B; is the structural consistency score based on

anomalous neighbor alignment, 5,y are the weighting
factors for signal and structural terms, L is the set of top

(10

candidate nodes based on anomaly scores, and C; is the
final normalized confidence score for node fault prediction.
The node designated as the probable fault origin is the
one with the greatest confidence score.
Accuracy evaluation Ac is expressed using equation
11,
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UQ + U0

Ac

Equation 11 explains the accuracy evaluation is the
ratio of accurate fault forecasts, both positive and negative,
to all predictions is known as accuracy.

In this UQ is the true positives correctly identified as
fault cases, UO is the true negatives correctly identified as
non-fault cases, GQ is the false positives incorrect fault
predictions, and GO is the false negatives are missed fault
cases.

S
ST-GON Node
Embeddings

-

Per Time Step t

v

“UQ+UO0+GQ+Go

h_i{t) for each
component node

(11)

5.2 Localization engine for fault origin
tracing

Once a fault has been observed, the model applies the
learned spatial embeddings to backtrack the fault to its root
cause. The method that can enable the system to identify
the most likely source of failure is to analyze which nodes
contributed the most significant amount of anomaly
through an attention mechanism or gradient-based
attribution. The model identifies the node(s), sector, or
component that operators can isolate and fix within a very
short time, eliminating the need for time-consuming
inspections.

- T
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Figure 6: Fault origin tracing + confidence score pipeline

This figure 6 illustrates the fault localization pipeline
using ST-GCN node embeddings. At each timestep, node
representations hi(t), h_i(t), hi(t) are evaluated for
deviation, generating a fault heatmap. The Top-K
suspicious nodes with the highest anomaly scores are
selected. Neighborhood consistency analysis validates

these anomalies using structural correlations. A confidence
estimation module computes a softmax-based score by
combining signal stability and structural agreement. The
final output includes predicted fault location (node ID),
confidence score (0—1), and visual annotation on the smart
grid map.



Spatial-Temporal Graph Convolutional Network for Fault... Informatica 50 (2026) 151-174 165

Algorithm: Fault Origin Tracing and Confidence Scoring using ST-GCN

Inputs:

e Node embeddings over time: H = {h_i(t)}
e Graph structure: G(V,E)

e Parameters: t_deviation, K, a_stability, f_structure

Outputs:

e Fault_Node_ID: Predicted faulty node
e C(Confidence_Score € [0,1]

e Annotated_Grid_Map

Step 1: Compute deviation scores
for eachnode i in G:
for each timestep t:
deviation_score[i][t] = compute_deviation(h_i(t))
Step 2: Generate heatmap
for each node i:
if deviation_score[i][t] > t_deviation:
heatmap[i] = deviation_score][i][t]
else:
heatmapl[i] = 0
Step 3: Select Top — K suspicious nodes
top_k_nodes = select_top_k(heatmap, K)
Step 4: Neighborhood consistency check
for each node i in top_k_nodes:
neighbors = get_neighbors(i,G)
valid_neighbors = 0
for each neighbor j in neighbors:
if deviation_score[j|[t] > t_deviation:
valid_neighbors += 1
if valid_neighbors < len(neighbors) * 0.5: # threshold_ratio = 0.5
remove i from top_k_nodes
Step 5: Confidence estimation
for each node i in top_k_nodes:
signal_stability = compute_signal_stability(h_i(t))
structure_agreement = compute_structure_agreement(i,neighbors)

score[i] = a_stability * signal_stability + [_structure x structure_agreement
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confidence_score[i] = softmax(score[i])
Step 6: Final fault prediction

Fault_Node_ID = argmax(confidence_score[i])
Confidence_Score =

Step 7: Annotate and return

confidence_score[Fault_Node_ID]

annotate_grid_map(Fault_Node_ID, Confidence_Score)

return Fault_Node_ID, Confidence_Score, Annotated_Grid_Map

This algorithm 1 identifies faults in a smart grid by
analyzing ST-GCN node embeddings over time. It
computes deviation scores, selects the Top-K anomalous
nodes, verifies them using neighborhood consistency, and
calculates a confidence score combining signal and
structural cues. The output is a fault location with visual
and numerical confidence.

5.3 Anomaly scoring and confidence
estimation

The model also has an anomaly scoring function that
measures the degree of deviation of the current signal from
normal operational behavior. Each of the detections is
accompanied by a confidence score, in turn constituted of
the softmax output probabilities or as a Bayesian model of
uncertainty. The scores help prioritize tasks and minimize
false alarms. To illustrate, a fault with an oddity score of

Gl =

Equation 12 explains the F1 score analysis emphasizes
the balance across errors in judgment and false negatives
by combining accuracy and recall using a harmonic mean.

In this Pn is the proportion of predicted faults that are
true, Rl is the proportion of actual faults detected correctly,
and G1 is the composite performance indicator for
classification under imbalance.

LcAc =

Equation 13 explains that the fault localization
accuracy is the correctness of fault nodes prediction among
the top predicted nodes in comparison to actual fault sites
is calculated.

In this L is the number of test fault cases or evaluated
fault events, o; is the ground truth fault node for case, 0; is
the predicted fault node for case, 1[.] is the indicator

2*Pnx*RI
Pn + RI

ZJL'=1 1[01' = 61‘]
L

0.91 and a confidence of 98 per cent is handled as high-
priority over low-confidence ones.

5.4 Metrics for evaluation

Evaluating fault detection systems in smart grids demands
robust and diverse metrics beyond simple accuracy. This
section introduces key performance indicators, including
Fl-score, fault localization accuracy, latency, confusion
matrix analysis, precision-recall curves, loss convergence,
and scalability. Together, they offer a comprehensive
evaluation of model reliability, responsiveness, and
adaptability to network growth.

The Fl-score is calculated next for a balanced
evaluation since, although accuracy indicates overall
correctness, it may mask class imbalance.

F1 score analysis G1 is expressed using equation 12,

(12)

Real-time systems require spatial assessment in
addition to classification metrics, which brings us to the
following metric fault localization accuracy.

Fault localization accuracy LA is expressed using
equation 13,

(13)

function, and LcAc is the proportion of correctly localized
faults.

Temporal responsiveness is crucial, even though
localization gauges accuracy. Latency is the next indicator
that measures system responsiveness.

Detection time Lcy is expressed using equation 14,

L
1
Lcy = ZZ(uf - u]f) (14)
=

Equation 14 explains that the detection time is the
mean time interval between a fault's actual occurrence and
the model's detection, is known as latency.

In this u}f is the time stamp when the fault occurred,
u}‘-i is the time stamp when the fault was detected, L is the

number of evaluated fault instances, and Lcy is the
average response delay in milliseconds.

The confusion matrix offers a statistical and visual
representation of prediction results to evaluate the
misclassification distribution.

Confusion matrix entry computation Dj; is expressed
using equation 15,



Spatial-Temporal Graph Convolutional Network for Fault...

Informatica 50 (2026) 151-174 167

(o]
D= Y 1la=jn%=j] (15)
=1

Equation 15 explains that the confusion matrix
entry computation is the frequency with which a class
was anticipated to be a class across all samples, is
shown by the confusion matrix column.

In this Dy is the count of instances with the true

class, z; is the actual class label of sample, Z; is the

predicted class label of sample, O is the total number of
test samples, and 1[.] is the logical indicator function.
A precision-recall curve is used to display the
performance trade-off when precision and recall
measurements are retrieved from the confusion matrix.
Precision vs. recall curve construction @S, is
expressed using equation 16,

QS, = (Psy,RL,), V,€[0,1] (16)

Equation 16 explains to shows classification
resilience at different confidence levels.

In this u is the soft max threshold for binary
classification, Ps, is the precision computed at
threshold, QS,, is the tuple for plotting the precision-

recall trade-off, and Rl, is the recall computed at
threshold.

As a result, the following equation uses loss
convergence to monitor training progress.

Loss convergence curve My is expressed using
equation 17,

or
1
4

Equation 17 explains the loss convergence curve
representing the sample-wise loss, often cross-entropy.

In this M is the mean training loss at epoch, M; is the
loss for sample, O is the number of samples processed in
epoch, and f is the current epoch index.

Py, — P,
VP(0) = =

Equation 18 explains topological growth by
calculating the percentage decrease in performance of the
model as the network grows from a base size.

In this P, is the model performance metric at network
size, O, is the baseline network size, and VP(0) is the
percent performance degradation due to scaling.

This evaluation framework ensures balanced
performance analysis using classification metrics, spatial
accuracy, response latency, and visual diagnostics. It
further monitors training progress and assesses scalability
under topological expansion. These metrics collectively
validate the model’s practical effectiveness in real-time
fault localization and its resilience across varying
operational conditions in smart grid environments.

Scalability becomes essential in deployment. As a
result, performance is evaluated as network size grows in
the final calculation.

Scalability vs network size VP (0) is expressed using
equation 18,

24100 (18)

6 Experimental validation

6.1 Dataset overview

Smart Grid Monitoring Dataset, a Kaggle dataset [24],
simulates real-life parameters of smart grid functions with
sensor data that consists of fine-grained sensor data in a
time-series format. It contains voltages, currents,
frequencies, active and reactive power, and FFT converted
features, along with labeled fault events. The dataset is
most suitable for spatial-temporal modeling, which is
intended for applications such as load forecasting, fault
detection, and anomaly analysis. It is a highly multimodal
dataset whose characteristics make it an optimal source for
training and testing ST-GCN models in weak electrical
systems. The parameters about the dataset is shown in
Table 3.

Table 3: Parameterized table

Parameter Description

Dataset Source Kaggle (ziya07)

Data Type Time-series sensor data
Key Measurements
Derived Features
Sampling Interval 1-second intervals
Fault Labels
Number of Sensors

Applicable Tasks

Voltage (V), Current (I), Frequency (Hz), Active/Reactive Power (kW/kVAR)
FFT coefficients, Total Harmonic Distortion (THD), RMS

Includes labeled fault and regular operation events
Multiple smart meters and grid points (node-level data)

Fault detection, anomaly classification, load forecasting, and pattern mining
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The experiments use the Smart Grid Monitoring
Dataset from Kaggle, which simulates real-life smart grid
operations with fine-grained time-series sensor data. This
dataset contains measurements of voltage (V), current (I),
frequency (Hz), active/reactive power (kW/kVAR), and
derived features such as FFT coefficients, RMS, and Total
Harmonic Distortion (THD), along with labeled fault
events. The dataset is highly multimodal and suitable for
spatial-temporal modeling tasks such as fault detection,
anomaly analysis, and load forecasting. To ensure
reproducibility, the dataset is partitioned into training
(70%), validation (15%), and testing (15%) subsets, and
preprocessing includes denoising via moving-average
filtering, normalization, and segmentation into fixed-
length time windows.

Evaluation Metricst to comprehensively assess model
performance, several metrics are considered. Accuracy
measures the proportion of correctly predicted fault or
normal instances, while the Fl-score evaluates the
harmonic mean of precision and recall for each fault type,
which is particularly useful in imbalanced datasets. Fault
localization accuracy quantifies the ratio of correctly

7.1 Accuracy evaluation
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identified faulty nodes to actual fault locations, and
detection latency captures the time between fault
occurrence and model prediction. Precision-Recall (PR)
curves are analyzed to evaluate trade-offs at different
decision thresholds, which is critical for mission-critical
systems. Loss convergence behavior is monitored during
training to assess learning stability and detect overfitting,
and scalability tests examine performance across varying
network sizes and sensor counts to validate the model’s
applicability in real-time and large-scale scenarios.

7 Results and discussion

The results and discussion section evaluates the ST-GCN
model's effectiveness across diverse performance metrics,
including classification accuracy, Fl-score, fault
localization precision, detection latency, and scalability.
Visual tools like confusion matrices and PR curves support
these findings, providing comprehensive insights into the
model’s robustness, responsiveness, and adaptability
across real-time fault scenarios.

Sample 3 Sample 4

Number of samples

Figure 7: The analysis of accuracy evaluation

Figure 7 explains the suggested ST-GCN model was
tested on a variety of simulated weak electrical system
cases to assess its classification performance against a
broad scope of fault types and conditions. Accuracy was
taken to mean the number of correctly predicted fault or
normal test levels divided by the total tests. The model

demonstrated high performance that remains constant
when tested on varying datasets, which in turn include
differences in fault resistance, fault location, and the time
at which they occur. The topology and temporal nature of
the space enabled a successful network generalization,
which outperformed other classical machine learning
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models, including Decision Trees and SVMs. It was also
most helpful in capturing the patterns of faults that were
more subtle, which are those patterns that occur in low-

7.2 F1-score analysis
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connectivity nodes or sparse sensor input, typical of weak
electrical systems made denoted using equation 11.
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Figure 8: The Analysis of F1 Score

To evaluate the degree of precision versus recall on the
model, F1-scores of each fault type were taken and explain
in figure 8. This measure is essential in imbalanced data,
where some faults are more common than others. ST-GCN
demonstrate a high accuracy but mis-detection in the less
studied types of faults. The ST-GCN achieved a substantial
Fl-score across all classes, indicating that it effectively
reduced both false positives and false negatives.

Message-passing in spatial graph and temporal sequence
learning allowed the model to acquire more insights of
complex, non-linear fault behaviors and hence provided an
effective performance of classification regardless of edge-
case scenarios were evaluated using equation 12

7.3 Fault localization accuracy
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Figure 9: The Analysis of Fault Localization Accuracy
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The system's primary feature is its ability to locate the
source of a fault in the network accurately is shown in
figure 9. The model incorporated node embeddings and the
graphical topology of the electric graph to trace the
disturbance signal to its root. The ratio of forecasted fault
nodes to the real fault location determined the performance
of the localization. The model demonstrated high fault
localization accuracy across various topological

7.4 Detection time (latency)

J. Shen et al.

arrangements, including radial layouts and meshed layouts.
It was particularly effective at identifying faults deep in the
network, where more basic models could be negatively
impacted by signal distortion or latency. That success was
dependent on the attention-like behavior of the ST-GCN
architecture, which is driven by its neighborhood
aggregation was calculated using equation 13.

SVM
—»—GAN
—a—GBT
354 —»—ST-GCN
L |
30 4 _—
F
| ) |
_ 254 I—‘
=3
by
&
E 20 —_—
-
15
10 4 -—I
A 4 ] 7

T
Sample 1 Sample 2

T
Sample 3 Sample 4

Number of samples

Figure 10: The analysis of detection time

In practice, the accuracy of fault detection in the smart
grid is not the only parameter to consider; timeliness is also
essential is shown in figure 10. There was ST-GCN model
latency, which was recorded as the time taken between the
introduction of a fault signal to the system and the time
when prediction occurred. Since the 1D temporal
convolution operations are lightweight and the model can
be processed using efficient Graph processing techniques,

the model can achieve a low inference time and hence be
applied to real-time operations. The architecture does not
require extensive historical information or data, and the
network operates efficiently, ensuring that it does not
compromise the reliability of the diagnosis. This renders it
feasible to be combined with supervisory control and data
acquisition (SCADA) systems and edge computing
environments made evaluated by equation 14.
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7.5Confusion Matrix Visualization
Model Performance Comparison (Accuracy Heatmap)

96
—
L
g. 3 81.3 84.0 94
T
wn
92
~
o
o - 80.0 82.5 90
& 2
3
awv =
(=% %)
£ 88 ©
& g
)
E— - 82.4 85.6 .86 <
Q
wv
-84
<t
o
Q- 83.1 86.7 1
S 82
]
wnv
' : -80
SVM GAN ST-GCN (Proposed)

Model

Figure 11: The confusion matrix

The effectiveness of the classification model could be confusion among some fault types with similar electrical
visualized across all output classes, as shown in the structure, e.g., between single-line-to-ground and double-
confusion matrix is shown in figure 11. It will provide an  line-to-ground faults. The visualization demonstrates that
idea of the types of faults that are most frequently the model generates distinct and robust representations of
misclassified and the accurate favorable rates of the classes. each fault category made valuated by equation 15.
The higher the diagonal dominance in the matrix (of the
ST-GCN model), the more precise the predictions were. A 7.6 Precision vs. recall curve
small number of off-diagonal entries indicated minor
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Figure 12: The analysis of precision vs recall curve

Precision-recall curves were also drawn to compare the Such curves play a critical role in applications where the
model response against varied decision thresholds is cost of false alarms or missed detections is high. There was
shown in figure 12 and is calculated using equation 16. a high area under the precision-recall curve (PR AUC)



172 Informatica 50 (2026) 151-174

over all fault conditions, indicating that under any given
condition of creating the model, high precision or rejection
may be attained. This is especially relevant in the field of

7.7 Loss convergence behavior
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mission-critical infrastructures, where false negative
occurrences (i.e., no detection of a fault) should be avoided.
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Figure 13: The analysis of loss convergence behavior

To analyze training convergence, the loss function was
monitored as a function of epoch processs using the
equation 17. The cross-entropy loss reflected good
learning and stopped decreasing, indicating that it had
stabilized and was not overfitting. Such methods of
regularization, such as dropout and batch normalization,
were used to achieve this stability, and early stopping

7.8 Scalability vs network size

mechanisms ensured that training was stopped at favorable
convergence points. When the model was tested against
unbalanced and noisy datasets, it exhibited untroubled and
monotonic training behavior, indicating that the model is
very robust and can generalize effectively is explained in
figure 13.

Model Error Rate Comparison Across Samples
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Figure 14: The analysis of scalability vs network size
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Scalability tests were conducted by applying the ST-
GCN model to networks of varying sizes, small networks
similar to microgrids and larger networks is shown in
figure 14. The model did not fail to perform as accurately
and as quickly as before, though it had added a couple of
nodes and edges were calculated using the equation 18.
This massively parallel architecture is modular in form
because it uses neighborhood aggregation and temporal
segmentation of computation and distributed processes.
This ensures that the model is scalable horizontally in
terms of increased sensor deployments and data volumes,
without significantly increasing the computational cost or
deteriorating diagnostic performance.

The ST-GCN model demonstrated superior accuracy,
balanced F1-scores, rapid detection, and reliable fault
localization, outperforming traditional models even in
sparse or large-scale networks. Its low latency, robust
learning behavior, and scalable architecture validate its
deployment in real-world smart grids, ensuring dependable
fault detection and diagnosis in dynamic electrical
environments.

7.9 Potential limitations and considerations
While the ST-GCN model demonstrates high accuracy,
low latency, and robust fault localization, certain practical
considerations remain. Computational overhead may
increase as network size scales or when processing high-
frequency sensor data, requiring efficient graph processing
and optimized hardware for real-time deployment.
Additionally, careful parameter tuning including the
number of ST-GCN layers, temporal window size, learning
rate, and batch size is necessary to maintain optimal
performance and avoid overfitting. These factors should be
considered when deploying the model in large-scale or
resource-constrained smart grid environments.

Scalability considerations of ST-GCN

While ST-GCN demonstrates strong performance in
capturing spatiotemporal patterns, its application to large-
scale or high-frequency datasets poses computational and
memory challenges due to the graph convolution
operations and temporal modeling. To mitigate these
issues, strategies such as model pruning, mini-batching,
and efficient graph sampling can reduce computation,
while distributed training across multiple GPUs or
parallelized processing can handle larger datasets. Future
work may also explore incremental or streaming-based ST-
GCN variants to improve real-time processing capability
without compromising accuracy.

8 Conclusion and strategic outlook

8.1Summary of findings
The presented paper introduces a new model for failure
analysis and diagnosis of a weak electrical system,

utilizing Spatial-Temporal Graph Convolutional Networks.

The model succinctly represents the topology of the sensor
data as well as its temporal texture, thereby functioning
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effectively in fault detection, classification, and
localization. Extensive evaluation yielded excellent results
in terms of accuracy, low latency, and generalizability
across various network connectivities and fault scenarios.

8.2 Engineering and research implications

As an engineer, the model under consideration provided a
scalable and deployable engineered solution for smart grid
automation, particularly in low-voltage and loosely
coupled networks. The way it was designed to work with
the current infrastructure and leverage edge computing
generates new avenues for decentralized diagnostics. In
research, this publication fills the gap between
sophisticated machine learning methods and their practical
application in electrical engineering, demonstrating the
effectiveness of applying graph neural networks in
mission-critical systems.

8.3 Future scope: multimodal graphs, self-
supervised GNNs

In the future, several directions will enhance the resiliency
and agility of this framework. Multimodal graph input, e.g.,
integrating electrical, environmental, and cyber-physical
signals through contextual awareness, could be provided.
Additionally, the implementation of self-supervised
learning methods on GNNs can reduce the need for large
labeled datasets, making applications possible in
unsupervised or semi-supervised grid setups. The better
use of dynamic graph modeling and online learning
capabilities will also improve the system's resilience to
changing grid topologies and load profiles. While the
proposed ST-GCN model demonstrates effective fault
detection in electrical systems, its generalization to non-
electrical networks (e.g., water distribution or traffic
systems) may be limited. Future work will explore
modality-agnostic  approaches, adaptive temporal
windows, and robustness to noisy or incomplete data to
extend applicability and improve system resilience
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