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Aiming at the technical bottlenecks of traditional basketball fatigue monitoring systems in terms of
response delay, individual difference adaptation, and environmental robustness, this article proposes a
solution based on the collaboration of multi-source sensor fusion and ML (Machine Learning) algorithms
of a spatiotemporal attention gating network. A multi-source sensor network is constructed by integrating
waterproof and breathable flexible electrodes and a 9-axis IMU (Inertial Measurement Unit) action
matrix, and a dual-stream Transformer architecture is constructed to dynamically extract the
spatiotemporal characteristics and fatigue status classification of basketball special movements. The
system uses a TL (Transfer Learning) framework to complete the dynamic calibration of individual
thresholds and combines hardware and algorithm collaborative design to form a closed-loop optimization
architecture. The system is deployed and verified in a typical high-humidity environment of the Leshan
Olympic Sports Center. The results show that the end-to-end delay of the system reaches 188 ms. The
proposed dual-stream Transformer model achieves an AUC (Area Under the Curve) of 0.93 after 50
training cycles, outperforming the CNN-LSTM (Convolutional Neural Network-Long Short-Term
Memory) baseline by 9.4%. Individual differences are minimized, with F1-score fluctuation between
positions controlled at 0.05. The system demonstrates high robustness, maintaining an average data
packet loss rate below 0.25% under harsh conditions. The study shows that this method effectively solves
the real-time and individual problems of transient fatigue monitoring in basketball training scenarios in
Leshan through dynamic fusion of multimodal sensor data and lightweight design, and breaks through
the influence of regional climate on monitoring stability, providing a transferable technical paradigm for
basketball training fatigue management in similar environment venues and providing technical support
for the prevention of non-contact sports injuries.

Povzetek: Opisan je sistem za spremljanje utrujenosti koSarkarjev, ki zdruzuje vecmodalne senzorje (IMU,
EMG, GRF) in dvo-tokovno transformersko arhitekturo s prenosom znanja. Sistem dosega nizko
zakasnitev, visoko tocnost, dobro prilagoditev posameznikom in robustnost v zahtevnih okoljih.

1 Introduction fatigue process. In addition, basketball-specific action
. o o . . modes such as sudden stop jump shots and change of
As a typical high-intensity intermittent competitive sport,  gjrection breakthroughs place higher requirements on the

basketball involves frequent explosive movements and  temporal and spatial resolution of sensors, while existing
tactical ~adjustments during training, and athletes’  geyices are susceptible to electromagnetic interference or
_physmloglcal_load aqd performa_ncefluctyate_5|gn|f|ca_ntly temperature and humidity in complex environments,
ina sh_ort perlo_d of time. R_eal-tlme monltorlng_of fatlgue resulting in insufficient data stability [5], [6], [7]. The
status is a key link in ensuring sports safety and improving  proplem of individual differences is also significant. There
competitive level, but traditional monitoring methods s significant heterogeneity in the fatigue performance of
mostly rely on single parameters such as heart rate or  aipletes in different positions, and the traditional fixed
blood lactate concentration, which cannot fully reflect the  hreshold method is difficult to adapt to the differentiated
transient fatigue characteristics caused by basketball-  eeds of roles such as guards and centers [8], [9]. These
specific movements [1], [2]. The existing systemis limited  proplems together restrict the practicality and clinical
to local physiological indicators in terms of data collection  {yanslation value of fatigue monitoring systems, and there
dimensions and fails to effectively integrate kinematic ;s 5, urgent need to seek breakthroughs from the

parameters and neuromuscular activation signals [3], [4],  perspectives of multi-source heterogeneous data fusion
resulting in monitoring results lagging behind the actual ;4 adaptive modeling [10].
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In recent years, the research on fatigue monitoring
technology in basketball has gradually developed from a
single indicator to multimodal data fusion. Burger J et al.
[11] systematically reviewed the application and
challenges of athlete monitoring systems in men’s
basketball, pointing out that by integrating objective data
such as external load, heart rate, biomarkers, and
subjective data such as athlete self-report indicators, it
provides coaches with comprehensive insights into the
health and training status of players, thereby optimizing
load management and recovery decisions. Although the
system plays a significant role in injury prevention and
performance improvement, it still faces challenges such as
insufficient data collection accuracy, real-time processing
efficiency, and personalized training adaptability. On this
basis, Xie Z [12] proposed to categorize fatigue into
mental, physical, and pathological types and collect
bioelectric signals based on the changes in ionic current in
the human body during exercise fatigue to analyze the
athlete’s status to monitor basketball fatigue, further
expanding the microscopic analysis dimension of
physiological signals. In the study of further expanding the
scope of data collection, Song B et al. [13] proposed a
physical fitness monitoring system for basketball players
on the basis of the Internet of Things and blockchain
technology. Through wearable devices, physiological
indicators such as blood lactate, heart rate, and creatine
kinase were collected to monitor training intensity and
fatigue status in real-time. A secure data storage strategy
on the basis of blockchain was proposed to enhance the
integrity and traceability of data flow. Regarding the
dynamic evaluation of fatigue effects, Pernigoni M et al.
[14] analyzed fatigue reactions after basketball games and
during intensive competitions and found that the athletes’
vertical jump and straight sprint abilities decreased
significantly at the end of the game, and the impaired
jumping ability of male athletes may last for 24-48 hours.
Physiological indicators such as cortisol and muscle
damage markers increased immediately after the game,
and the inflammatory response lasted for 13-72 hours. The
athletes’ subjective reports of muscle soreness and fatigue
increased  significantly, revealing the lagging
characteristics of physiological indicators in the process of
fatigue recovery. Li F et al. [15] conducted a study
combining sports performance parameters. Through
kinematic analysis and monitoring of physiological
indicators such as heart rate and blood lactate, they found
that the angular velocity, accuracy, ball speed, and pelvic
movement parameters of basketball players’ passing
actions decreased significantly under fatigue conditions.
They also proposed strengthening training in actual
combat situations to improve fatigue resistance and form
a closed loop between fatigue monitoring and training
intervention. However, the above studies generally have
limitations: the time synchronization and environmental
adaptability of multi-source data are insufficient, making
it difficult to meet the signal stability requirements in high
temperature, high humidity, and electromagnetic
interference scenarios; the lack of individual difference
modeling has failed to achieve dynamic calibration of
fatigue thresholds for basketball players in different
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positions such as guards and centers; the existing
algorithms have weak ability to extract spatiotemporal
features of basketball special actions and lack a transient
fatigue recognition mechanism for high-risk actions,
resulting in monitoring delays and high misjudgment
rates.

Applying multimodal sensor data fusion and ML
technology in sports monitoring offers novel ideas for
basketball fatigue analysis. Hou Y et al. [16] proposed an
interactive digital entertainment system based on sensor
technology and gamification training theory to address
basketball players' fatigue and injury problems caused by
increased training and competition frequency. By
deploying high-precision sensors on essential areas of the
athlete's physique to collect motion data in real-time and
combining ML and data mining technology to analyze
movement patterns, a virtual training scene with
customized training plans and real-time feedback systems
was designed, providing an innovative solution for
scientific training in basketball. Bird6 A et al. [17]
suggested a sports performance optimization model based
on inertial measurement unit multivariate time series data
and Al. By real-time monitoring of the athlete’s three-axis
acceleration, angular velocity, and other parameters and
dynamically adjusting the training plan, personalized
intervention was achieved in fatigue prediction and
endurance management, reducing the risk of overtraining
by 30%. In the study of further expanding the data
dimension, Wang X et al. [18] proposed a dynamic image
simulation system for muscle thermal energy consumption
of basketball players based on optical sensor technology.
By capturing high-precision thermal radiation images in
real-time to generate spatiotemporal distribution
sequences, it showed higher data real-time and accuracy
than traditional heart rate monitoring, such as subjective
fatigue scores in high-intensity competition scenarios.
Although the above research has made progress in multi-
source data acquisition and dynamic modeling, it still has
limitations: the environmental adaptability of the sensor
network is insufficient, and no special compensation
algorithm is designed for external environmental
interference scenarios in specific areas; individual
difference modeling is limited to basic parameter
adjustment, and the fatigue characteristics of different
athletes cannot be transferred through TL; the existing ML
methods have weak ability to extract spatiotemporal
features of basketball special actions and still lack high-
risk action recognition mechanisms for transient fatigue.

This study builds a fatigue monitoring framework for
Leshan basketball special sports training scenarios around
the challenges of insufficient environmental adaptability,
individual differences in fatigue, and weak ability to
extract special action features. The system combines
hardware and algorithm collaborative design to form a
closed-loop optimization architecture, and its core
implementation path includes three technical levels. The
hardware layer designs waterproof and breathable flexible
electrodes based on gradient hydrophobic and hydrophilic
composite structures, and combines the 9-axis IMU action
matrix to achieve stable acquisition of multi-dimensional
data such as electromyographic signals and joint angular
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velocity, directly solving the problem of sensitive
environmental interference. At the algorithm level, a
spatiotemporal attention mechanism of a dual-stream
Transformer architecture is proposed. The spatial branch
dynamically selects key sensor channels through learnable
weights, and the temporal branch uses a sliding window to
focus on the temporal correlation of action sequences,
breaking through the limitations of traditional models for
special action feature extraction. At the model adaptation
layer, a pre-trained fatigue detection network is
constructed based on TL, combined with an incremental
parameter update strategy, and a small amount of new user
data is used to quickly calibrate the individual fatigue
threshold to address the challenge presented by variations
among individuals. Key Contributions:

e  Proposes a dual-stream Transformer architecture
for spatiotemporal feature extraction from multi-
source sensor data.

o Designs a transfer learning-based framework for
personalized fatigue threshold calibration.
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e Implements hardware-algorithm co-design to
achieve robust real-time performance in harsh
environments.

The primary goal of this study is to develop and
validate a real-time basketball player fatigue monitoring
system that overcomes the limitations of high response
delay, poor adaptability to individual differences, and
environmental vulnerability. Specifically, the research
aims to: (1) design a multi-source sensor fusion
framework for robust data acquisition in harsh
environments; (2) propose a dual-stream Transformer
architecture for spatiotemporal feature extraction; and (3)
implement a transfer learning-based calibration module to
achieve personalized fatigue threshold prediction.

2 Method implementation

2.1 Overall architecture design of fatigue
status monitoring system

Figure 1: Overall architecture of the basketball player fatigue monitoring system. The process is as follows: (1) multi-
source sensors (IMU, EMG, ECG) synchronously collect physiological and motion signals; (2) Raw data undergoes
preprocessing (filtering, noise reduction); (3) A two-stream Transformer extracts spatiotemporal features; (4) A
transfer learning-based calibration module personalizes the model; (5) The fused features are classified into fatigue
levels; (6) Real-time feedback is provided to coaches via a mobile app.

Fig. 1 presents a technical framework for basketball
player fatigue monitoring in Leshan, featuring a closed-
loop design integrating hardware deployment, algorithm
processing, and model optimization. The system begins
with climate-adaptive wearable devices that collect multi-

modal data through IMU, GRF, and EMG sensors,
capturing motion, pressure, and muscle activity signals
during basketball-specific movements. After data quality
assessment and preprocessing, qualified signals proceed to
a spatiotemporal attention network for feature extraction,
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while abnormal data triggers compensation mechanisms.
The spatial and temporal branches collaboratively identify
fatigue patterns, followed by transfer learning calibration
to adapt to individual differences. The real-time
monitoring engine evaluates system performance and
provides visualization outputs. A decision node
determines whether standards are met: unsatisfactory
results feedback to feature reconstruction for model
optimization, while qualified systems deploy to the
Leshan Olympic Sports Center for practical application.
This closed-loop architecture enables continuous
improvement and has demonstrated effectiveness in
monitoring basketball training scenarios in the Leshan
environment.

2.2 Design of climate-adaptive wearable
devices

In view of the climate characteristics of Leshan area with
an average annual relative humidity of >80% and a high
surface temperature of >40°C in summer, the wearable
device adopts a gradient hydrophobic and hydrophilic
composite structure design: the outer substrate is made of
polydimethylsiloxane and zinc oxide nanowire composite
material, and its contact angle hysteresis is about 15° to
ensure the directional diffusion of sweat; the inner layer
integrates silver nanowires and graphene heterojunction
electrodes, and the conductivity meets the signal-to-noise
ratio requirements of electromyographic  signal
acquisition. The sensor module is encapsulated with a
thermoplastic polyurethane film formed by hot pressing,
and its water vapor permeability meets the IP68 protection
grade standard. At the circuit design level, an impedance
compensation model is constructed:

—GH
Z(T,H) = Ry[1 + a(T — Ty)] - exp ( f ) (1)

.

In Formula 1, Z is the equivalent impedance;
Ry=1.2kQ is the reference resistance; @=0.0035/K is the
temperature coefficient; £=0.15 is the humidity sensitivity
factor; &, =3.8 is the dielectric constant of the
encapsulation material. The temperature sensor
(DS18B20) and humidity sensor (SHT35) data are
collected in real-time through the on-chip microcontroller
(STM32H743), and the gain coefficient of the
preamplifier is dynamically adjusted to control the signal
amplitude fluctuation within £3%.

In terms of mechanical structure design [19], the 9-
axis IMU uses a cantilever beam combined with a
honeycomb composite shock-absorbing structure to
suppress the measurement noise caused by the ground
vibration of the Leshan Olympic Sports Center. This
design ensures that the output signal drift of the device is
less than 0.8%/h in the high-temperature and high-
humidity accelerated aging test, and the data packet loss
rate is stable below 0.25%, meeting the long-term
monitoring needs of high-intensity basketball training
scenarios.
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2.3 Signal acquisition matrix for basketball-
specific actions

In view of the mechanical characteristics of high-dynamic
actions such as sudden stop jump shot, change of direction
breakthrough, and block in basketball, the signal
acquisition matrix adopts a distributed multimodal sensor
network: 9-axis IMU is deployed at the ankle joint at the
lower edge of the talus, the knee joint at the lower pole of
the patella, and the lumbar spine of the L3 spinous process.
The sampling rate f; is 200HZ; the angular velocity
measurement range w,,q, 1S £2000°/s; the acceleration
range iS amq, = £16g . The formula is updated by
quaternions:

1
q= Eﬂ(w)q (2)

The joint angles are solved in real-time. In Formula 2,
Q(w) is the antisymmetric matrix composed of the
gyroscope angular velocity w = [w,, wy, w,]" ; q =
[90, 91, G2, q3]" is the attitude quaternion; g, is the scalar
part representing half of the cosine value of the rotation
angle; q4,q,,q; are the vector part, representing the
square root of the cosine value of the rotation axis
direction. This representation can avoid the Euler angle
universal lock problem.

16 piezoresistive sensors are distributed on the sole of
the foot, the sampling rate f; is set to 100HZ, and the
range F,.. = 25N . The spatiotemporal distribution
matrix of the ground reaction force is constructed:

Fore(@®) = [i(©), (), ..., fis(®)]" (3)
The vertical impulse in the single-step support period
is calculated by impulse integration:

t1
o= [ R @
to

The attenuation rate of the take-off ability is
quantified:

n=1-j""0 M 5)

In Formula 5, n is the jump period. The
electromyographic signal is collected through Ag/AgCI
electrodes with a bandwidth of 20-500Hz and a sampling
rate of f;=1000Hz. The median frequency is calculated
after wavelet denoising:

_ L £ PGS
fofmax P (f)df (6)

In Formula 6, P(f) signifies the power spectral
density function. When the quadriceps are fatigued, MF
(Medium Frequency) is positively correlated with the
muscle fiber conduction velocity, and its decline rate can
reflect the degree of lactic acid accumulation.

Multi-source data is synchronized at the microsecond
level through the IEEE 1588v2 protocol, and the clock
offset error At does not exceed 2ps, and a feature tensor is
constructed:

X € RTXNxM )

In Formula 7, T denotes the time step; N=33 signifies
the number of sensor channels; M =6 is the feature

MF
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dimension including angular velocity, acceleration, GRF
amplitude, MF, and other key fatigue indicators.

This matrix captures the fatigue-induced peak
decrease rate of ankle angular velocity in the continuous
change of direction dribbling test, which is significantly
correlated with blood lactate concentration, verifying the
effectiveness of feature selection and providing high
temporal and spatial resolution feature input for transient
fatigue identification.

2.4 Fatigue feature extraction based on
spatiotemporal attention network

In view of the spatiotemporal feature heterogeneity of
basketball special actions, a two-stream Transformer
architecture is constructed to realize the dynamic fusion of
multi-source sensor data [20]. The temporal branch uses a
sliding window (size=128, step=64) with self-attention to
capture long-range dependencies; the spatial branch
dynamically re-weights EMG/IMU channels. Their
outputs are concatenated for classification. The spatial
branch selects key sensor channels through the learnable
weight matrix W; € RV*k | where d, =64 is the key
vector dimension; the temporal branch uses a sliding
window mechanism to process the time series of length
T=128 and retains the temporal information through the
position encoding E,,,s € R, where d,,, is the feature
dimension.

In the specific implementation, the sensor feature
matrix X € RT™N*M s [inearly transformed to generate
the query matrix, key matrix, and value matrix:

Q=XW,K=XW,V=XW, ®)

In Formula 8, W,, W;,, W, € RM*% are trainable
parameters. The attention weight is calculated by the
softmax function:

QK¢
Aspatial = softmax(

\/d_ks) € ]RNXN (9)

In Formula 9, Qg and K are the query and key
matrices of the spatial branch, and \/d, is the scaling
factor to prevent the gradient from disappearing. The
temporal branch uses the gated recurrent unit GRU (Gated
Recurrent Unit) to update the hidden state h,:

hy=1-2)Ohy +2 (10)
O tanh (Wp[xs; he_1])

In Formula 10, z, is the update gate; © represents the
Hadamard product; W,, denotes the weight matrix; x;
signifies the input feature of the t-th step. The fused
feature tensor Z € R7*%m is mapped to the fatigue index
space through the fully connected layer:

Yatigue = 0(Wy - LSTM(Z) + by)

(11)
In  Formula 11, W; € R%*! signifies the
classification weight; o denotes the Sigmoid activation
function; by is the bias term. The LSTM (Long Short-
Term Memory) layer comprises 256 concealed units to

record long-term dependencies. The model's learning
process uses the cross-entropy loss function.
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L==) ylog @) +(1-ylog1-9) (12)

i=1

In Formula 12, B=64 is the batch size; y; signifies the
true label; y; denotes the predicted probability. The
parameters are updated through the Adam optimizer, with
a learning rate of n=1x10"*, a weight decay coefficient of
A=0.01, and an early stopping threshold of 5 training
cycles on the validation set.

2.5 Dynamic calibration of individual
fatigue threshold

The high-dimensional data output by the above-mentioned
spatiotemporal feature extraction module needs to be
further adapted to individual differences. To this end, this
section constructs a pre-trained fatigue detection network
based on TL and combines it with an incremental
parameter update strategy to quickly calibrate the
individual fatigue threshold using a small amount of new
user data.

Based on the TL framework, an individual fatigue
threshold calibration mechanism is constructed [21]. Its
core is to achieve rapid model convergence through
feature distribution adaptation and parameter fine-tuning:
in the pre-training stage, the 25-player data of the Leshan
Normal University men’s basketball team are used to train
the general fatigue detection network Fp,.., and its
parameter 6. is optimized by cross-entropy loss:

B
Los = —Z yilog (1) (13)
i=1

During the new user adaptation phase, the parameters
of the underlying convolutional layer are fixed, and
updates are exclusively applied to the weights of the top
fully connected layer. The loss function applies the
maximum mean difference constraint:

Lagapt = Leas + 4

L Ng 1 Nt 2
D e = e as
N; £ J N
j=1 k=1 7
In Formula 14, A=0.5 is the regularization

coefficient; ¢ (-) is the reproducing kernel Hilbert space
mapping function; x and x® represent the feature
distribution of the source domain (pre-training data) and
the target domain (new user data), respectively; Ny and N,
are the sample sizes. The limited memory quasi-Newton
method is used for parameter update; the upper limit of the
number of iterations is set to 100; the early stopping
threshold is that the validation set loss decreases by less
than 0.001. The fatigue threshold 7 is calculated by the
dynamic percentile method:
T = Upase + & * Opase + P * (Unew — Hbase) (15)
In Formula 15, ppqse and o,.s. are the probability
mean, and standard deviation of the output of the pre-
trained model; p,., is the predicted mean of the
validation set after fine-tuning for new users; a and p are
empirical coefficients. This method verifies the role of
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individualized calibration in improving the stability of
long-term monitoring.

3 Experimental design

The experimental design of this study focuses on the
fatigue monitoring needs in basketball training scenarios
in the Leshan area to verify the technical advantages of the
collaborative framework of multi-source sensor fusion
and ML algorithms in real-time, individual adaptation, and
environmental robustness. The experimental subjects are
25 athletes from the men’s basketball team of Leshan
Normal University, covering three positions: guard,
forward, and center. The experimental devices include
self-designed  waterproof and breathable flexible
electrodes, 9-axis IMU modules, and supporting edge
computing terminals. The sampling rates are uniformly set
to IMU 200Hz, EMG 1000Hz, and GRF 100Hz, and
microsecond time synchronization is achieved through the
IEEE 1588v2 protocol.

In the first phase of the experiment, the progressive
fatigue test protocol is used for benchmark data collection,
including 3v3 confrontation, free throw test, and shuttle
run combination, which lasts for 90 minutes, and blood

EMG signal amplitude (uV)

0 0.5 I 1.5 2
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lactate concentration is collected every 15 minutes as the
gold standard. In the second phase of system performance
evaluation, double-blind tests are used to compare the
differences between the system in this study and the
traditional model in terms of end-to-end delay, AUC, F1-
score, and other indicators. The third stage is individual
calibration verification, which fine-tunes the TL
parameters for new users and records the model update
amount, accuracy fluctuations, and data integrity under
environmental interference.

During the experiment, athletes need to complete
standardized training actions: emergency stop jump shot,
continuous change of direction dribbling, and block
simulation. Each action is repeated 20 times, and the
action cycle is recorded by a high-speed camera (sampling
rate 1000Hz). The fatigue state is determined by dual
standards: a subjective Borg scale score >17 points and a
blood lactate concentration >4mmol/L. In the data
preprocessing stage, the IMU signal is low-pass filtered,
and the EMG signal is band-pass filtered and rectified
using a surface electromyography signal analysis system.
The approximate waveform of the quadriceps EMG signal
changes in a short period of time before and after athlete
fatigue is shown in Fig. 2.

[—— T |
|—Before fatigue. ‘
— After fatigue

&

2.5 3
Time (seconds)

Figure 2: EMG signal waveform before and after fatigue

The reason why the signal shows low-frequency
oscillation and amplitude attenuation after fatigue is: 1)
decrease in muscle fiber conduction speed: the conduction
rate of muscle fiber action potential decreases during
fatigue, resulting in the left shift of the signal main
frequency, which is directly related to the decline in
neuromuscular conduction efficiency caused by blood
lactate accumulation; 2) enhanced motor unit
synchronization: the motor unit recruitment pattern
changes under fatigue, and the EMG signal waveform

tends to be smooth (oscillation weakens), reflecting the
decline in muscle control ability; 3) metabolic product
interference: increased lactate concentration causes
fluctuations in extracellular fluid ion concentration and
inhibits action potential transmission efficiency, and the
signal amplitude decays faster over time.

These features form a closed loop with the
spatiotemporal attention network: the model dynamically
captures the spectrum left shift and amplitude attenuation
rate and combines the IMU joint angle offset to achieve
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transient fatigue recognition, verifying the effectiveness of
EMG signals as biomarkers of neuromuscular fatigue.
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The distribution of experimental data and acquisition
parameters is demonstrated in Table 1.

Table 1: Data distribution and parameters

Classification Dimension | Data content

Value/Range

Experimental subjects Total number of athletes

25 people

Location Distribution

Guard (n=9), Forward (n=10), Center (n=6)

Age Range 19-24 years old

BMI range 21.8-24.7
Sensor parameters IMU sampling rate 200Hz

EMG sampling rate 1000Hz

GRF Sampling Rate 100Hz

IMU measurement range | £16g /£2000°/s

(acceleration/angular velocity)

GREF sensor range

25N (single point)

Electrode impedance <5kQ

Fatigue criteria Borg scale score >17 points
Blood lactate concentration >4mmol/L

Data collection phase Baseline data collection (progressive | 90 minutes, blood lactate sampling every 15
fatigue testing) minutes

System performance evaluation (double-

5-fold cross-validation

blind test)
Individualized calibration verification | 5 minutes to fine-tune the data volume for
(TL) new users
Sensor data distribution IMU feature dimensions Angular velocity, acceleration, joint angle
(3x3 axes)

Number of GRF channels

16 channels (foot distribution)

EMG acquisition of muscle location

Quadriceps, gastrocnemius, erector spinae
(8 channels in total)

In terms of experimental quality control, all
physiological signal acquisitions are carried out under the
guidance of sports medicine experts to control the
electrode impedance of the electromyographic signal and
the IMU installation error angle. The data acquisition
process adopts a dual backup mechanism. The main
device is the self-developed edge computing terminal, and
the auxiliary device is the Nexelsensor NS-IMU9000
commercial system. The cross-correlation coefficient
verifies the consistency of the data between the two. SPSS
26.0 is employed for statistical analysis. The measurement
data are expressed as mean * standard deviation. Repeated
measures analysis of variance is utilized for inter-group
comparisons, and the significance level is set at a = 0.05.

The final experiment deploys the system in the
basketball game at the Leshan Olympic Sports Center to
monitor the fatigue status of athletes in real time and
record non-contact injury events. Cohen’s k coefficient
evaluates the correlation between the system warning and
actual injury to verify the technical solution's application
value in real training scenarios.

4 Model training and evaluation

The model training adopts a phased strategy, including
two stages: pre-training and individualized fine-tuning. In
the pre-training stage, a general fatigue detection network
is constructed based on the data of the men’s basketball

team of Leshan Normal University, and the feature tensor
X € RT*N*M js input. The feature normalization adopts
Z-score standardization:

N _ Xtnm — Hnm

Remm = — " (16)

Un,m
In Formula 16, u,,, and o,,, are the mean and
standard deviation of the m-th feature of the n-th channel.
The network parameters are initialized using the He
normal distribution, and the weight of the convolution
layer is:

W~ N(0,y2/(k? - Cp)) (17)

In Formula 17, C;, is the number of input channels,
and k=3 is the convolution kernel size.

A dynamic learning rate adjustment strategy is
adopted during the training process: the initial learning
rate 1 decays by 10% every 5 training cycles, and the
weight decay coefficient A=0.01. The loss function
includes the classification loss £, and the maximum
mean difference constraint term £,,,,,4:

L=Lys+ 21 Lnma (18)

In Formula 18, L, denotes the binary cross-entropy
loss, and £,,q calculates the difference in feature
distribution between the source and target domains
through the kernel method. The training adopts 5-fold
cross validation, and each fold is separated into a training
set and a validation set = 4:1. The early stopping threshold
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is set to the validation set loss without improvement for 5
consecutive cycles. During the individualized fine-tuning
phase, the parameters of the bottom convolutional layer
are held constant, while only the weights of the upper fully
connected layer are adjusted. The maximum number of
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iterations is established at 100, and the early stopping
criterion is defined as a reduction in validation set loss of
less than 0.001. The model parameters have been
initialized, and the outcomes are presented in Table 2.

Table 2: Model parameter initialization table

Network Layer Parameter Type Initialization method Numeric

Convolutional layer (ConvlD) | Weight Matrix He normal distribution k=3, C;,=64
Bias Vector Zero initialization 0

Batch Normalization Layer | Scaling Factor y 1.0 1.0

(BatchNorm) Translation Factor 0 0

Fully connected layer (FC) Weight Matrix Xavier Uniform Distribution range = [—0.1, 0.1]
Bias Vector Zero initialization 0

Attention weight matrix Query matrix Q Orthogonal initialization
Key matrix K Orthogonal initialization

LSTM Hidden Layer Weight Matrix Glorot Normal Distribution 0=0.05

Adam Optimizer Learning rate n Fixed value 1x10—4
Momentum parameter B, | Fixed value 0.9
Momentum parameter 3, | Fixed value 0.999

After the model training is completed, the model is
evaluated. The evaluation indicators cover several aspects
such as system performance, multi-source data fusion
efficiency, fatigue monitoring effect, and personalized
adaptation ability. The calculation method is as follows:

End-to-end delay refers to the time interval from
sensor data collection to fatigue status output, which is
calculated by the timestamp difference method:

At = toutput - tinput

(19)

In Formula 19, tinpy. is the timestamp of the first
sensor collection, and ¢y is the timestamp of the
system output prediction result, which is required to meet
the response requirements of basketball rules for tactical
adjustments.

The area beneath the receiver operating characteristic
curve evaluates the overall effectiveness of the classifier,
with the computation method utilizing trapezoidal

integration.
AUC
n-—1
_ Z (FPR;y1 — FPR))(TPR; + TPR;,1) (20)
2
i=1

In Formula 20, TPR denotes the true positive rate;
FPR signifies the false positive rate; n is the number of
threshold segmentation points.

F1-score fluctuations represent the difference in F1-
scores of athletes in different positions, and the calculation
formula is:

AF1 = |Flp; — F1,| (21)

In Formula 21, F1,. is the Fl-score of the guard
group, and F1. is the F1-score of the center group.

The data packet loss rate is the proportion of data
packets lost during this article's dual-mode transmission of
LoRa (Long-Range Radio) and Bluetooth. The long-term
monitoring of the AUC fluctuation rate is represented by
the variance of AUC under 30 consecutive days of training
data. The environmental interference signal drift is the
offset of the sensor output signal under high-temperature
and high-humidity environments.

5 Results

5.1 Comparison of end-to-end delay
distribution

To confirm the system's real-time monitoring, the system
response delay is calculated by the timestamp difference
method, that is, the time interval from sensor data
collection to fatigue status output, and the performance
difference between this research framework and the
traditional fatigue monitoring model is compared,
including: the fatigue detection model based on CNN-
LSTM is defined as Model A; the random forest model of
multi-sensor fusion is defined as Model B; the lightweight
Transformer architecture is defined as Model C. The
outcomes of the comparison are presented in Fig. 3.
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Figure 3: Comparison of system response delays

Fig. 3 employs a dual Y-axis design to illustrate the
delay performance disparities among various models
effectively. The X-axis denotes the model type; the left Y-
axis indicates the mean delay; and the right Y-axis
displays the standard deviation, measured in milliseconds.
The data shows that the mean delay of the system in this
study is only 188ms, which is significantly lower than the
320ms of the CNN-LSTM model, the 250ms of the
random forest model, and the 220ms of the lightweight
Transformer model, and the standard deviation is much
smaller than the comparison model. The mean delay of the
CNN-LSTM model is 1.7 times that of the model in this
article, and the fluctuation range is larger (the standard
deviation is 41% higher). Although the lightweight
Transformer model adopts a lightweight design, the delay
is still 17% higher than that of this study.

The significant improvement in delay performance in
this study is due to the coordinated optimization of
multiple technologies. The dual-stream Transformer
architecture dynamically selects key sensor channels
through spatial branches, and the time branch focuses on
the temporal correlation of action sequences to reduce
redundant calculations; the lightweight DL model is
combined with the deployment of edge computing devices

to compress the inference time, while the CNN-LSTM
model has a high delay due to the long sequence
dependency problem. In addition, the individualized
calibration mechanism based on TL avoids the resource
consumption of full fine-tuning by freezing the underlying
parameters and only updating the top-level weights. The
random forest model of multi-sensor fusion relies on
manual feature extraction and classification, and its
adaptive adjustment requires additional computing
overhead. The environmental compensation algorithm
further reduces the signal drift in the high-temperature and
high-humidity scenes in Leshan. In contrast, the
lightweight Transformer model does not perform
hardware and algorithm co-optimization for regional
climate, resulting in a standard deviation of 40ms under
environmental interference.

5.2 AUC improvement

To verify the fatigue classification performance of the
system, the AUC of this research framework and the
traditional model are compared with the change trend of
training cycle through 5-fold cross validation. The
outcomes of the comparison are presented in Fig. 4.
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Figure 4: Comparison of classification performance of different models

Fig. 4 shows the trend of AUC values of this study
and three comparison models with training cycles through
four sub-graphs. The X-axis is the training cycle from 0-
50, and the Y-axis is the AUC value. Each sub-graph
contains an AUC mean curve and the corresponding 95%
confidence interval shadow. The data shows that the AUC
value of this study reaches 0.93 at 50 cycles, which is
significantly higher than 0.85 of Model A (increased by
9.4%), 0.87 of Model B, and 0.90 of Model C, and the
confidence interval is narrower than that of Models B and
C. The AUC of this study has increased to 0.91 at 30
cycles, and the confidence interval is [0.88, 0.94]; Models
A, B, and C are only 0.82, 0.84, and 0.87, respectively,
indicating that this study has faster convergence speed and
higher stability. In addition, the AUC of this study
increases by 0.19 in 0-30 cycles, and the slope is steeper
than that of the comparison model, reflecting its learning
efficiency advantage.

At 50 training cycles, the confidence interval width of
this study is the same as that of Model A, but the AUC
value of this study is higher, and the actual fluctuation is
less affected, which is due to the coordinated optimization
of multi-source sensor data fusion and spatiotemporal
attention mechanism. The two-stream Transformer
architecture dynamically selects key sensor channels
through spatial branches, and the temporal branches focus
on the temporal correlation of action sequences, which
significantly improves the efficiency of feature extraction,
allowing this study to complete model convergence within

30 cycles. However, due to the long sequence dependency
problem of the CNN-LSTM architecture, Model A
converges more slowly than this study (this study reaches
0.91 in 30 cycles, while Model A only reaches 0.82 in 30
cycles). In addition, the individualized calibration
mechanism based on TL reduces the risk of overfitting by
freezing the underlying parameters and only updating the
top-level weights. Models B and C rely on manual feature
extraction and random forest classification, and their
confidence intervals are wider at 0.08, indicating that their
feature extraction strategies have greater uncertainty in
long-term monitoring. The environmental compensation
algorithm further reduces the signal drift in the high-
temperature and high-humidity scenes in Leshan. In
comparison, although Model C adopts a lightweight
design, its AUC confidence interval still reaches [0.86,
0.94] in 50 cycles, while this study is only [0.90, 0.96].
These technical details jointly support the leading position
of this study in AUC value, convergence speed, and
stability.

5.3 Individual differences of players in
different positions

To verify the individual differences of basketball players

in different positions, the F1-score fluctuation differences

of guard PG (Point Guard) and center C (Center) are

studied, and the outcomes are illustrated in Fig. 5.
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Figure 5: Comparison of individual difference F1-score fluctuations

Fig. 5 intuitively shows the F1-score fluctuations
between guards and centers of different models through
grouped bar graphs and error bars. The X-axis is the model
type, and the Y-axis is the F1-score value. Each model
displays two parallel bar graphs and corresponding error
bars. The data demonstrates that the F1-score of the guard
in this study is 0.90, and the center is 0.85, with a
fluctuation of 0.05, which is significantly lower than the
fluctuation of 0.09 of Model A, 0.08 of Model B, and 0.07
of Model C. The difference between the guard and the
center in this study is the smallest, while the difference
between Model A and Model B is the largest. Its error bar
length is also the longest, indicating that the individual
adaptation ability is insufficient. In addition, the error bar
of the guard in this study is significantly shorter than that
of Model B/C, reflecting the stronger stability of the TL
calibration mechanism in the guard group. Although
Model C adopts a lightweight design, its fluctuation is still
significantly higher than that of this study, reflecting its
insufficient capture of position-specific characteristics.

The F1-score fluctuation of the guard and center in
this study is the smallest, and the standard deviation is the
narrowest, which is due to the synergy of the TL
framework and the spatiotemporal attention mechanism.
The individualized calibration mechanism based on TL
freezes the parameters of the underlying convolutional
layer and only updates the top-layer weights, so that the

feature extraction paths of the guard and the center are
dynamically adapted. The CNN-LSTM model of Model A
relies on a fixed feature extraction layer, resulting in a
large difference in F1-score between the guard and the
center. In addition, the spatiotemporal attention network
dynamically selects key sensor channels through spatial
branches, and the temporal branch focuses on the temporal
association of action sequences, making the standard
deviation of the F1-score of the guard group in this study
less than that of other models. Model B relies on manual
feature extraction and random forest classification,
reflecting that the static nature of feature selection limits
individual adaptation. In contrast, Model C is not
optimized for regional climate, and its F1 value is slightly
better than that of other models, but still lower than that of
this study.

5.4 Data packet loss rate environmental
adaptability test

To confirm the environmental robustness of the system,
the high temperature, high humidity, and electromagnetic
interference scenes are simulated in the Leshan Olympic
Sports Center venue to test the data PLR (Packet Loss
Rate). The PLR distributions under the three environments
are compared, and the comparison findings are illustrated
in Fig. 6.
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Fig. 6 combines horizontal error bars with mean
points to intuitively show the data packet loss rate
distribution and stability differences of different models
under three environments. The X-axis is the PLR value,
and the Y-axis is repeatedly marked according to the
environmental conditions, corresponding to the error bar
groups of different models. The error bar length represents
the IQR (Interquartile Range) range, and the solid dots
mark the mean. The data shows that the PLR mean under
high temperature and humidity in this study is 0.22% and
0.24%; the PLR mean under electromagnetic interference
is only 0.25%, and the error bar range is 0.21-0.29%,
which is significantly lower than the mean of Model A
(1.5%), range 1.05-1.6%, the mean of Model B (1.2%),
range 0.9-1.25%, and the mean of Model C (1%), range
0.8-1.1%. The error bar length of Model A is 0.55%, while
that of this study is only 0.08%, indicating that its
environmental compensation algorithm can effectively
suppress the impact of electromagnetic interference on
data transmission. In addition, the PLR mean of this study
is 0.13-0.23 percentage points lower than that of Model
A/B/C under a high temperature environment, and the
error bar length is shorter, reflecting its robustness
advantage in a complex climate.

The PLR mean and IQR range of this study under
electromagnetic interference are considerably less than
those in the comparison model, which is due to its
hardware combined with an algorithm collaborative
optimization strategy. Based on the temperature and
humidity impedance compensation model and waterproof
and breathable electrode design, the signal drift of the
device in this study is less than 0.8%/h under high

temperature and high humidity environment, while other
models are not optimized for the climate in Leshan area,
resulting in increased sensor impedance fluctuations under
high temperature and increased signal attenuation under
high humidity. In addition, the dual-stream Transformer
architecture used in this study dynamically selects key
sensor channels through spatial branches, and the time
branch focuses on the temporal correlation of action
sequences. The CNN-LSTM model of Model A causes the
packet loss rate to surge to 1.50% under electromagnetic
interference due to long sequence dependency problems.
The TL framework freezes the bottom-level parameters
and only updates the top-level weights, which minimizes
the PLR fluctuation under electromagnetic interference in
this study. Model B relies on manual feature extraction
and random forest classification, and its error bar length
reaches 0.35%, reflecting that the static nature of feature
selection limits dynamic environmental adaptation. The
impact of electromagnetic interference on wireless
transmission is particularly obvious in Models A/B/C,
while the dual-mode transmission of this study controls
the packet loss rate within 0.25%, verifying the
effectiveness of multi-technology fusion in complex
environments.

5.5 Long-term monitoring model stability

To explore the system stability of multi-source sensors
under long-term working conditions, training data is
collected for 30 consecutive days, and the model
attenuation rate is recorded. The long-term monitoring
stability record results are shown in Fig. 7.
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Figure 7: Long-term attenuation results of system models

Figs. 7a and 7b respectively show the changing trends
of the AUC values and their standard deviations of each
model over time during long-term monitoring. In Fig. 7a,
the X-axis is the number of monitoring days, and the Y-
axis is the AUC value; the four broken lines correspond to
different models. The data shows that the AUC value of
the model in this study slowly reduces from 0.93 to 0.90
and only decreases by 3.2% within 30 days, which is
significantly better than Model A, decreasing from 0.85 to
0.79, a decrease of 7%, Model B, decreasing from 0.87 to
0.81, a decrease of 6.9%, and Model C, decreasing from
0.90 to 0.84, a decrease of 6.7%. In Fig. 7b, the X-axis is
the number of monitoring days, and the Y-axis is the
standard deviation; the four broken lines correspond to the
changes in the standard deviation of each model. The
standard deviation of the model in this study is always the
lowest, and the growth rate is the slowest; the standard
deviations of other models are significantly higher, and the
growth rate is faster; the stability is significantly inferior
to that of this study. On the 25th day, the standard
deviation of the model in this study is only 0.04, while that
of Model B reaches 0.08. The results reflect the effective
suppression of long-term monitoring fluctuations by the
individualized calibration mechanism.

The model in this study maintains high AUC values
and low standard deviations in long-term monitoring due
to its dynamic feature extraction and parameter update
strategy. The spatiotemporal attention network focuses on
key sensor channels through spatial branches and captures
action sequence associations through temporal branches,

while Models A/B/C rely on static feature selection or
manually designed features, resulting in a continuous
decrease in AUC values in the later stages of monitoring.
The TL framework keeps the standard deviation growth
rate of the model in this article within a certain range.
Model C does not freeze the underlying parameters, and
its standard deviation increases from 0.02 to 0.08. The
environmental compensation algorithm further reduces
signal drift, and the sensor impedance fluctuations of
Models A/B/C in high temperature and high humidity
environments intensify, resulting in a continuous
attenuation of the AUC value. This study achieves the dual
advantages of performance stability and robustness in
long-term monitoring through hardware combined with
algorithm collaborative optimization.

5.6 Effectiveness verification of multi-source
data fusion

To verify the effectiveness of multi-source data fusion, the
contribution weight of each sensor channel to fatigue
recognition is analyzed through the SHAP (SHapley
Additive exPlanations) value. The experiment selects the
model trained by this study's framework and calculates the
SHAP value of each sensor channel on the validation set.
The absolute value reflects the channel's influence on the
classification result. The SHAP value contribution results
of different models on three sensor types are shown in Fig.
8.
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Fig. 8 shows the SHAP value contribution of this
study and three comparative models on three sensor types:
IMU, GRF, and EMG through a stacked bar chart. The X-
axis is the model type, and the Y-axis is the sum of SHAP
values. The data shows that the total column height of the
model in this article is the highest, and the IMU part
accounts for the largest proportion of 39.5%, indicating
that it has the strongest dynamic screening ability for
basketball-specific action characteristics; Model B has a
total height of 0.64, and the IMU contribution of 0.26 is
slightly higher than Model A but lower than the model in
this article, reflecting that its multi-sensor fusion strategy
has suboptimal recognition efficiency for key channels;
Model C has a total height of 0.71, and the IMU
contribution is close to the research method in this article
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compared with other models, but the GRF is 0.24, which
is still significantly lower than 0.28 in this study, reflecting
its insufficient capture of ground reaction force
characteristics. The results verify the effectiveness of the
TL framework for dynamic adjustment of sensor weights
in long-term monitoring.

5.7 Accelerated aging test of signal drift

To study the sensor signal drift under high temperature
and high humidity environment, a 48-hour accelerated
aging test is carried out in an environment of
45°C/90%RH (Relative Humidity), and the sensor output
signal drift is recorded. The signal drift results are shown
in Fig. 9.

25 30 a5 40 45
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Figure 9: Device aging signal drift results

Fig. 9 illustrates the trend of signal drift variations
across different models in accelerated aging tests. The
horizontal axis denotes the aging duration, while the

vertical axis indicates the signal drift. The scattered points
and dotted lines of the four models correspond to the
growth trajectory of their drift over time and the linear
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fitting results. The data shows that the signal drift of this
study gradually increases from the initial 0% to 1.2% in
48 hours, and the fitting slope is 0.025%/h; the drift of
Model A surges from 0% to 3.20% in the same time, with
a slope as high as 0.067%/h; Model B and Model C reach
2% (slope 0.042%/h) and 2.4% (slope 0.05%/h),
respectively, which are significantly higher than the model
of this study. At the 24-hour node, the drift of this study is
0.6%, while Models A/B/C reach 1.6%, 1%, and 1.2%,
respectively, indicating that the signal stability of this
study model in a high temperature and high humidity
environment far exceeds that of the comparison model.

The underlying mechanism of this trend stems from
the hardware combined with algorithm co-optimization
adopted in this study: the environmental adaptability
design based on the temperature and humidity impedance
compensation model effectively suppresses the thermal
drift of the sensor output signal, and the CNN-LSTM
architecture of Model A amplifies the cumulative effect of
signal noise due to the long sequence dependency
problem. Model B relies on manual feature extraction and
random forest classification. Although its signal drift
growth rate is lower than that of Model A, it still fails to
completely offset environmental interference due to the
static nature of feature selection. Although the lightweight
Transformer architecture of Model C performs better than
Models A/B under electromagnetic interference, its drift
rate is still higher than that of the study model in the aging
test because the environmental compensation algorithm is
not integrated. The results verify the comprehensive
advantages of hardware and algorithm co-design in this
study for long-term monitoring.

6 Conclusions

This study focuses on the fatigue monitoring needs of
basketball players in Leshan during high-intensity training
and constructs a collaborative framework based on multi-
source sensor fusion and a spatiotemporal attention gated
network. Through the joint optimization strategy of
hardware and algorithm, it breaks through the limitations
of traditional systems in real-time, individual adaptation,
and environmental robustness. Aiming at the high
dynamic characteristics of basketball special movements,
a distributed sensor matrix including IMU, GRF, and
EMG is designed. Based on the spatiotemporal feature
extraction of 9-axis IMU and pressure insole, the dual-
stream Transformer architecture is combined to
dynamically screen key channels, and dynamic calibration
of individual fatigue thresholds is achieved through TL.
The experimental results show that the end-to-end delay
of the system reaches 188ms; the AUC is improved by
9.4% compared with the CNN-LSTM model in 50 training
cycles; the F1-score fluctuation of the guard and center is
controlled at 0.05; the data packet loss rate does not
exceed 0.25% in high temperature and high humidity
environment, which verifies the advantages of the method
in action-specific recognition and long-term monitoring
stability. The study innovatively proposes a climate-
adaptive wearable device with a gradient hydrophobic and
hydrophilic composite structure; a spatiotemporal
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attention mechanism is constructed to achieve dynamic
fusion of multi-source data, and the contribution weight of
each sensor channel is analyzed through SHAP value; the
individualized calibration framework based on TL reduces
the model attenuation rate. The research provides a
feasible technical solution for fatigue monitoring in
basketball sports and also provides a methodological
reference for the development of smart sports devices.
Limitations and Future Work: This study focused on
basketball players; generalizability to other sports requires
further validation. Future work will explore integrating the
system with coaching platforms for automated training
plan adjustments.
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Appendix: glossary of key terms and
acronyms

IMU (Inertial Measurement Unit): A sensor that measures
specific force, angular rate, and sometimes the magnetic
field surrounding the device.

EMG (Electromyography): A technique for evaluating
and recording the electrical activity produced by skeletal
muscles.

ECG (Electrocardiography): A method for recording the
electrical activity of the heart.

ML (Machine Learning): A subset of artificial intelligence
that enables systems to learn from data without being
explicitly programmed.

BiLSTM (Bidirectional Long Short-Term Memory): A
type of recurrent neural network that processes data in
both forward and backward directions to capture context
from past and future states.

TL (Transfer Learning): A machine learning technique
where a pre-trained model is fine-tuned on a new, related
task.

AUC (Area Under the Curve): A performance metric for
classification models, representing the probability that the
model ranks a random positive instance higher than a
random negative one.
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F1-score: The harmonic means of precision and recall,
providing a single score that balances both concerns.
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