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Aiming at the technical bottlenecks of traditional basketball fatigue monitoring systems in terms of 

response delay, individual difference adaptation, and environmental robustness, this article proposes a 

solution based on the collaboration of multi-source sensor fusion and ML (Machine Learning) algorithms 

of a spatiotemporal attention gating network. A multi-source sensor network is constructed by integrating 

waterproof and breathable flexible electrodes and a 9-axis IMU (Inertial Measurement Unit) action 

matrix, and a dual-stream Transformer architecture is constructed to dynamically extract the 

spatiotemporal characteristics and fatigue status classification of basketball special movements. The 

system uses a TL (Transfer Learning) framework to complete the dynamic calibration of individual 

thresholds and combines hardware and algorithm collaborative design to form a closed-loop optimization 

architecture. The system is deployed and verified in a typical high-humidity environment of the Leshan 

Olympic Sports Center. The results show that the end-to-end delay of the system reaches 188 ms. The 

proposed dual-stream Transformer model achieves an AUC (Area Under the Curve) of 0.93 after 50 

training cycles, outperforming the CNN-LSTM (Convolutional Neural Network-Long Short-Term 

Memory) baseline by 9.4%. Individual differences are minimized, with F1-score fluctuation between 

positions controlled at 0.05. The system demonstrates high robustness, maintaining an average data 

packet loss rate below 0.25% under harsh conditions. The study shows that this method effectively solves 

the real-time and individual problems of transient fatigue monitoring in basketball training scenarios in 

Leshan through dynamic fusion of multimodal sensor data and lightweight design, and breaks through 

the influence of regional climate on monitoring stability, providing a transferable technical paradigm for 

basketball training fatigue management in similar environment venues and providing technical support 

for the prevention of non-contact sports injuries. 

Povzetek: Opisan je sistem za spremljanje utrujenosti košarkarjev, ki združuje večmodalne senzorje (IMU, 

EMG, GRF) in dvo-tokovno transformersko arhitekturo s prenosom znanja. Sistem dosega nizko 

zakasnitev, visoko točnost, dobro prilagoditev posameznikom in robustnost v zahtevnih okoljih. 

 

 

1 Introduction 
As a typical high-intensity intermittent competitive sport, 

basketball involves frequent explosive movements and 

tactical adjustments during training, and athletes’ 

physiological load and performance fluctuate significantly 

in a short period of time. Real-time monitoring of fatigue 

status is a key link in ensuring sports safety and improving 

competitive level, but traditional monitoring methods 

mostly rely on single parameters such as heart rate or 

blood lactate concentration, which cannot fully reflect the 

transient fatigue characteristics caused by basketball-

specific movements [1], [2]. The existing system is limited 

to local physiological indicators in terms of data collection 

dimensions and fails to effectively integrate kinematic 

parameters and neuromuscular activation signals [3], [4], 

resulting in monitoring results lagging behind the actual  

 

fatigue process. In addition, basketball-specific action 

modes such as sudden stop jump shots and change of  

direction breakthroughs place higher requirements on the 

temporal and spatial resolution of sensors, while existing 

devices are susceptible to electromagnetic interference or 

temperature and humidity in complex environments, 

resulting in insufficient data stability [5], [6], [7]. The 

problem of individual differences is also significant. There 

is significant heterogeneity in the fatigue performance of 

athletes in different positions, and the traditional fixed 

threshold method is difficult to adapt to the differentiated 

needs of roles such as guards and centers [8], [9]. These 

problems together restrict the practicality and clinical 

translation value of fatigue monitoring systems, and there 

is an urgent need to seek breakthroughs from the 

perspectives of multi-source heterogeneous data fusion 

and adaptive modeling [10]. 
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In recent years, the research on fatigue monitoring 

technology in basketball has gradually developed from a 

single indicator to multimodal data fusion. Burger J et al. 

[11] systematically reviewed the application and 

challenges of athlete monitoring systems in men’s 

basketball, pointing out that by integrating objective data 

such as external load, heart rate, biomarkers, and 

subjective data such as athlete self-report indicators, it 

provides coaches with comprehensive insights into the 

health and training status of players, thereby optimizing 

load management and recovery decisions. Although the 

system plays a significant role in injury prevention and 

performance improvement, it still faces challenges such as 

insufficient data collection accuracy, real-time processing 

efficiency, and personalized training adaptability. On this 

basis, Xie Z [12] proposed to categorize fatigue into 

mental, physical, and pathological types and collect 

bioelectric signals based on the changes in ionic current in 

the human body during exercise fatigue to analyze the 

athlete’s status to monitor basketball fatigue, further 

expanding the microscopic analysis dimension of 

physiological signals. In the study of further expanding the 

scope of data collection, Song B et al. [13] proposed a 

physical fitness monitoring system for basketball players 

on the basis of the Internet of Things and blockchain 

technology. Through wearable devices, physiological 

indicators such as blood lactate, heart rate, and creatine 

kinase were collected to monitor training intensity and 

fatigue status in real-time. A secure data storage strategy 

on the basis of blockchain was proposed to enhance the 

integrity and traceability of data flow. Regarding the 

dynamic evaluation of fatigue effects, Pernigoni M et al. 

[14] analyzed fatigue reactions after basketball games and 

during intensive competitions and found that the athletes’ 

vertical jump and straight sprint abilities decreased 

significantly at the end of the game, and the impaired 

jumping ability of male athletes may last for 24-48 hours. 

Physiological indicators such as cortisol and muscle 

damage markers increased immediately after the game, 

and the inflammatory response lasted for 13-72 hours. The 

athletes’ subjective reports of muscle soreness and fatigue 

increased significantly, revealing the lagging 

characteristics of physiological indicators in the process of 

fatigue recovery. Li F et al. [15] conducted a study 

combining sports performance parameters. Through 

kinematic analysis and monitoring of physiological 

indicators such as heart rate and blood lactate, they found 

that the angular velocity, accuracy, ball speed, and pelvic 

movement parameters of basketball players’ passing 

actions decreased significantly under fatigue conditions. 

They also proposed strengthening training in actual 

combat situations to improve fatigue resistance and form 

a closed loop between fatigue monitoring and training 

intervention. However, the above studies generally have 

limitations: the time synchronization and environmental 

adaptability of multi-source data are insufficient, making 

it difficult to meet the signal stability requirements in high 

temperature, high humidity, and electromagnetic 

interference scenarios; the lack of individual difference 

modeling has failed to achieve dynamic calibration of 

fatigue thresholds for basketball players in different 

positions such as guards and centers; the existing 

algorithms have weak ability to extract spatiotemporal 

features of basketball special actions and lack a transient 

fatigue recognition mechanism for high-risk actions, 

resulting in monitoring delays and high misjudgment 

rates. 

Applying multimodal sensor data fusion and ML 

technology in sports monitoring offers novel ideas for 

basketball fatigue analysis. Hou Y et al. [16] proposed an 

interactive digital entertainment system based on sensor 

technology and gamification training theory to address 

basketball players' fatigue and injury problems caused by 

increased training and competition frequency. By 

deploying high-precision sensors on essential areas of the 

athlete's physique to collect motion data in real-time and 

combining ML and data mining technology to analyze 

movement patterns, a virtual training scene with 

customized training plans and real-time feedback systems 

was designed, providing an innovative solution for 

scientific training in basketball. Biró A et al. [17] 

suggested a sports performance optimization model based 

on inertial measurement unit multivariate time series data 

and AI. By real-time monitoring of the athlete’s three-axis 

acceleration, angular velocity, and other parameters and 

dynamically adjusting the training plan, personalized 

intervention was achieved in fatigue prediction and 

endurance management, reducing the risk of overtraining 

by 30%. In the study of further expanding the data 

dimension, Wang X et al. [18] proposed a dynamic image 

simulation system for muscle thermal energy consumption 

of basketball players based on optical sensor technology. 

By capturing high-precision thermal radiation images in 

real-time to generate spatiotemporal distribution 

sequences, it showed higher data real-time and accuracy 

than traditional heart rate monitoring, such as subjective 

fatigue scores in high-intensity competition scenarios. 

Although the above research has made progress in multi-

source data acquisition and dynamic modeling, it still has 

limitations: the environmental adaptability of the sensor 

network is insufficient, and no special compensation 

algorithm is designed for external environmental 

interference scenarios in specific areas; individual 

difference modeling is limited to basic parameter 

adjustment, and the fatigue characteristics of different 

athletes cannot be transferred through TL; the existing ML 

methods have weak ability to extract spatiotemporal 

features of basketball special actions and still lack high-

risk action recognition mechanisms for transient fatigue. 

This study builds a fatigue monitoring framework for 

Leshan basketball special sports training scenarios around 

the challenges of insufficient environmental adaptability, 

individual differences in fatigue, and weak ability to 

extract special action features. The system combines 

hardware and algorithm collaborative design to form a 

closed-loop optimization architecture, and its core 

implementation path includes three technical levels. The 

hardware layer designs waterproof and breathable flexible 

electrodes based on gradient hydrophobic and hydrophilic 

composite structures, and combines the 9-axis IMU action 

matrix to achieve stable acquisition of multi-dimensional 

data such as electromyographic signals and joint angular 
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velocity, directly solving the problem of sensitive 

environmental interference. At the algorithm level, a 

spatiotemporal attention mechanism of a dual-stream 

Transformer architecture is proposed. The spatial branch 

dynamically selects key sensor channels through learnable 

weights, and the temporal branch uses a sliding window to 

focus on the temporal correlation of action sequences, 

breaking through the limitations of traditional models for 

special action feature extraction. At the model adaptation 

layer, a pre-trained fatigue detection network is 

constructed based on TL, combined with an incremental 

parameter update strategy, and a small amount of new user 

data is used to quickly calibrate the individual fatigue 

threshold to address the challenge presented by variations 

among individuals. Key Contributions: 

 

• Proposes a dual-stream Transformer architecture 

for spatiotemporal feature extraction from multi-

source sensor data. 

• Designs a transfer learning-based framework for 

personalized fatigue threshold calibration. 

• Implements hardware-algorithm co-design to 

achieve robust real-time performance in harsh 

environments. 

The primary goal of this study is to develop and 

validate a real-time basketball player fatigue monitoring 

system that overcomes the limitations of high response 

delay, poor adaptability to individual differences, and 

environmental vulnerability. Specifically, the research 

aims to: (1) design a multi-source sensor fusion 

framework for robust data acquisition in harsh 

environments; (2) propose a dual-stream Transformer 

architecture for spatiotemporal feature extraction; and (3) 

implement a transfer learning-based calibration module to 

achieve personalized fatigue threshold prediction. 

2 Method implementation 

2.1 Overall architecture design of fatigue 

status monitoring system 

 
Figure 1: Overall architecture of the basketball player fatigue monitoring system. The process is as follows: (1) multi-

source sensors (IMU, EMG, ECG) synchronously collect physiological and motion signals; (2) Raw data undergoes 

preprocessing (filtering, noise reduction); (3) A two-stream Transformer extracts spatiotemporal features; (4) A 

transfer learning-based calibration module personalizes the model; (5) The fused features are classified into fatigue 

levels; (6) Real-time feedback is provided to coaches via a mobile app. 

 

Fig. 1 presents a technical framework for basketball 

player fatigue monitoring in Leshan, featuring a closed-

loop design integrating hardware deployment, algorithm 

processing, and model optimization. The system begins 

with climate-adaptive wearable devices that collect multi-

modal data through IMU, GRF, and EMG sensors, 

capturing motion, pressure, and muscle activity signals 

during basketball-specific movements. After data quality 

assessment and preprocessing, qualified signals proceed to 

a spatiotemporal attention network for feature extraction, 
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while abnormal data triggers compensation mechanisms. 

The spatial and temporal branches collaboratively identify 

fatigue patterns, followed by transfer learning calibration 

to adapt to individual differences. The real-time 

monitoring engine evaluates system performance and 

provides visualization outputs. A decision node 

determines whether standards are met: unsatisfactory 

results feedback to feature reconstruction for model 

optimization, while qualified systems deploy to the 

Leshan Olympic Sports Center for practical application. 

This closed-loop architecture enables continuous 

improvement and has demonstrated effectiveness in 

monitoring basketball training scenarios in the Leshan 

environment. 

2.2 Design of climate-adaptive wearable 

devices 

In view of the climate characteristics of Leshan area with 

an average annual relative humidity of ＞80% and a high 

surface temperature of ＞40℃ in summer, the wearable 

device adopts a gradient hydrophobic and hydrophilic 

composite structure design: the outer substrate is made of 

polydimethylsiloxane and zinc oxide nanowire composite 

material, and its contact angle hysteresis is about 15° to 

ensure the directional diffusion of sweat; the inner layer 

integrates silver nanowires and graphene heterojunction 

electrodes, and the conductivity meets the signal-to-noise 

ratio requirements of electromyographic signal 

acquisition. The sensor module is encapsulated with a 

thermoplastic polyurethane film formed by hot pressing, 

and its water vapor permeability meets the IP68 protection 

grade standard. At the circuit design level, an impedance 

compensation model is constructed: 

𝑍(𝑇, 𝐻) = 𝑅0[1 + 𝛼(𝑇 − 𝑇0)] ⋅ exp⁡ (
−𝛽𝐻

𝜀𝑟
) (1) 

In Formula 1, 𝑍  is the equivalent impedance; 

𝑅0=1.2kΩ is the reference resistance; 𝛼=0.0035/K is the 

temperature coefficient; 𝛽=0.15 is the humidity sensitivity 

factor; 𝜀𝑟 =3.8 is the dielectric constant of the 

encapsulation material. The temperature sensor 

(DS18B20) and humidity sensor (SHT35) data are 

collected in real-time through the on-chip microcontroller 

(STM32H743), and the gain coefficient of the 

preamplifier is dynamically adjusted to control the signal 

amplitude fluctuation within ±3%. 

In terms of mechanical structure design [19], the 9-

axis IMU uses a cantilever beam combined with a 

honeycomb composite shock-absorbing structure to 

suppress the measurement noise caused by the ground 

vibration of the Leshan Olympic Sports Center. This 

design ensures that the output signal drift of the device is 

less than 0.8%/h in the high-temperature and high-

humidity accelerated aging test, and the data packet loss 

rate is stable below 0.25%, meeting the long-term 

monitoring needs of high-intensity basketball training 

scenarios. 

2.3 Signal acquisition matrix for basketball-

specific actions 

In view of the mechanical characteristics of high-dynamic 

actions such as sudden stop jump shot, change of direction 

breakthrough, and block in basketball, the signal 

acquisition matrix adopts a distributed multimodal sensor 

network: 9-axis IMU is deployed at the ankle joint at the 

lower edge of the talus, the knee joint at the lower pole of 

the patella, and the lumbar spine of the L3 spinous process. 

The sampling rate 𝑓𝑠  is 200HZ; the angular velocity 

measurement range 𝜔𝑚𝑎𝑥  is ±2000°/s; the acceleration 

range is 𝑎𝑚𝑎𝑥 = ±16𝑔 . The formula is updated by 

quaternions: 

𝑞̇ =
1

2
𝛺(𝜔)𝑞 (2) 

The joint angles are solved in real-time. In Formula 2, 

Ω(𝜔)  is the antisymmetric matrix composed of the 

gyroscope angular velocity 𝜔 = [𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]
𝑇 ; 𝑞 =

[𝑞0, 𝑞1, 𝑞2, 𝑞3]
𝑇 is the attitude quaternion; 𝑞0 is the scalar 

part representing half of the cosine value of the rotation 

angle; 𝑞1, 𝑞2, 𝑞3  are the vector part, representing the 

square root of the cosine value of the rotation axis 

direction. This representation can avoid the Euler angle 

universal lock problem. 

16 piezoresistive sensors are distributed on the sole of 

the foot, the sampling rate 𝑓𝑠  is set to 100HZ, and the 

range 𝐹𝑚𝑎𝑥 = 25𝑁 . The spatiotemporal distribution 

matrix of the ground reaction force is constructed: 

𝑭𝐺𝑅𝐹(𝑡) = [𝑓1(𝑡), 𝑓2(𝑡), . . . , 𝑓16(𝑡)]
𝑇 (3) 

The vertical impulse in the single-step support period 

is calculated by impulse integration: 

𝐽𝑧 = ∫  
𝑡1

𝑡0

𝐹𝑧(𝑡)𝑑𝑡 (4) 

The attenuation rate of the take-off ability is 

quantified: 

𝜂 = 1 − 𝐽𝑧
(𝑛+1)

/𝐽𝑧
(𝑛)

 (5) 

In Formula 5, 𝑛  is the jump period. The 

electromyographic signal is collected through Ag/AgCl 

electrodes with a bandwidth of 20-500Hz and a sampling 

rate of 𝑓𝑠=1000Hz. The median frequency is calculated 

after wavelet denoising: 

𝑀𝐹 =
∫  
𝑓𝑚𝑎𝑥

0
𝑓 ⋅ 𝑃(𝑓)𝑑𝑓

∫  
𝑓𝑚𝑎𝑥

0
𝑃(𝑓)𝑑𝑓

 (6) 

In Formula 6, 𝑃(𝑓)  signifies the power spectral 

density function. When the quadriceps are fatigued, MF 

(Medium Frequency) is positively correlated with the 

muscle fiber conduction velocity, and its decline rate can 

reflect the degree of lactic acid accumulation. 

Multi-source data is synchronized at the microsecond 

level through the IEEE 1588v2 protocol, and the clock 

offset error Δt does not exceed 2μs, and a feature tensor is 

constructed: 

𝒳 ∈ ℝ𝑇×𝑁×𝑀 (7) 

In Formula 7, 𝑇 denotes the time step; 𝑁=33 signifies 

the number of sensor channels; 𝑀 =6 is the feature 
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dimension including angular velocity, acceleration, GRF 

amplitude, MF, and other key fatigue indicators. 

This matrix captures the fatigue-induced peak 

decrease rate of ankle angular velocity in the continuous 

change of direction dribbling test, which is significantly 

correlated with blood lactate concentration, verifying the 

effectiveness of feature selection and providing high 

temporal and spatial resolution feature input for transient 

fatigue identification. 

2.4 Fatigue feature extraction based on 

spatiotemporal attention network 

In view of the spatiotemporal feature heterogeneity of 

basketball special actions, a two-stream Transformer 

architecture is constructed to realize the dynamic fusion of 

multi-source sensor data [20]. The temporal branch uses a 

sliding window (size=128, step=64) with self-attention to 

capture long-range dependencies; the spatial branch 

dynamically re-weights EMG/IMU channels. Their 

outputs are concatenated for classification. The spatial 

branch selects key sensor channels through the learnable 

weight matrix 𝐖𝑠 ∈ ℝ𝑁×𝑑𝑘 , where 𝑑𝑘 =64 is the key 

vector dimension; the temporal branch uses a sliding 

window mechanism to process the time series of length 

𝑇=128 and retains the temporal information through the 

position encoding 𝐄𝑝𝑜𝑠 ∈ ℝ𝑇×𝑑𝑚, where 𝑑𝑚 is the feature 

dimension. 

In the specific implementation, the sensor feature 

matrix 𝐗 ∈ ℝ𝑇×𝑁×𝑀  is linearly transformed to generate 

the query matrix, key matrix, and value matrix: 

𝑸 = 𝑿𝑾𝑞, 𝑲 = 𝑿𝑾𝑘, 𝑽 = 𝑿𝑾𝑣 (8) 

In Formula 8, 𝐖𝑞 , 𝐖𝑘 , 𝐖𝑣 ∈ ℝ𝑀×𝑑𝑘  are trainable 

parameters. The attention weight is calculated by the 

softmax function: 

𝑨𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑸𝑠𝑲𝑠

𝑇

√𝑑𝑘
) ∈ ℝ𝑁×𝑁 (9) 

In Formula 9, 𝐐𝑠  and 𝐊𝑠  are the query and key 

matrices of the spatial branch, and √𝑑𝑘  is the scaling 

factor to prevent the gradient from disappearing. The 

temporal branch uses the gated recurrent unit GRU (Gated 

Recurrent Unit) to update the hidden state 𝐡𝑡: 
𝒉𝑡 = (1 − 𝒛𝑡) ⊙ 𝒉𝑡−1 + 𝒛𝑡

⊙ 𝑡𝑎𝑛ℎ⁡(𝑾ℎ[𝒙𝑡; 𝒉𝑡−1]) 
(10) 

In Formula 10, 𝐳𝑡 is the update gate; ⊙ represents the 

Hadamard product; 𝐖ℎ  denotes the weight matrix; 𝐱𝑡 
signifies the input feature of the 𝑡 -th step. The fused 

feature tensor 𝐙 ∈ ℝ𝑇×𝑑𝑚 is mapped to the fatigue index 

space through the fully connected layer: 

𝒀𝑓𝑎𝑡𝑖𝑔𝑢𝑒 = 𝜎(𝑾𝑓 ⋅ 𝐿𝑆𝑇𝑀(𝒁) + 𝒃𝑓) (11) 

In Formula 11, 𝐖𝑓 ∈ ℝ𝑑𝑚×1  signifies the 

classification weight; 𝜎  denotes the Sigmoid activation 

function; 𝐛𝑓  is the bias term. The LSTM (Long Short-

Term Memory) layer comprises 256 concealed units to 

record long-term dependencies. The model's learning 

process uses the cross-entropy loss function. 

ℒ = −∑  

𝐵

𝑖=1

𝑦𝑖𝑙𝑜𝑔⁡(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔⁡(1 − 𝑦̂𝑖) (12) 

In Formula 12, 𝐵=64 is the batch size; 𝑦𝑖  signifies the 

true label; 𝑦̂𝑖  denotes the predicted probability. The 

parameters are updated through the Adam optimizer, with 

a learning rate of η=1×10−4, a weight decay coefficient of 

λ=0.01, and an early stopping threshold of 5 training 

cycles on the validation set. 

2.5 Dynamic calibration of individual 

fatigue threshold 

The high-dimensional data output by the above-mentioned 

spatiotemporal feature extraction module needs to be 

further adapted to individual differences. To this end, this 

section constructs a pre-trained fatigue detection network 

based on TL and combines it with an incremental 

parameter update strategy to quickly calibrate the 

individual fatigue threshold using a small amount of new 

user data. 

Based on the TL framework, an individual fatigue 

threshold calibration mechanism is constructed [21]. Its 

core is to achieve rapid model convergence through 

feature distribution adaptation and parameter fine-tuning: 

in the pre-training stage, the 25-player data of the Leshan 

Normal University men’s basketball team are used to train 

the general fatigue detection network ℱ𝑏𝑎𝑠𝑒 , and its 

parameter 𝜃𝑏𝑎𝑠𝑒 is optimized by cross-entropy loss: 

ℒ𝑐𝑙𝑠 = −∑  

𝐵

𝑖=1

𝑦𝑖𝑙𝑜𝑔⁡(𝑦̂𝑖) (13) 

During the new user adaptation phase, the parameters 

of the underlying convolutional layer are fixed, and 

updates are exclusively applied to the weights of the top 

fully connected layer. The loss function applies the 

maximum mean difference constraint: 

ℒ𝑎𝑑𝑎𝑝𝑡 = ℒ𝑐𝑙𝑠 + 𝜆 

⋅
∥
∥
∥
∥
∥ 1

𝑁𝑠
∑ 

𝑁𝑠

𝑗=1

𝜙(𝒙𝑗
(𝑠)
) −

1

𝑁𝑡
∑ 

𝑁𝑡

𝑘=1

𝜙(𝒙𝑘
(𝑡)
)
∥
∥
∥
∥
∥

ℋ

2

 
(14) 

In Formula 14, 𝜆 = 0.5  is the regularization 

coefficient; 𝜙⁡(⋅) is the reproducing kernel Hilbert space 

mapping function; 𝐱(𝑠)  and 𝐱(𝑡)  represent the feature 

distribution of the source domain (pre-training data) and 

the target domain (new user data), respectively; 𝑁𝑠 and 𝑁𝑡 
are the sample sizes. The limited memory quasi-Newton 

method is used for parameter update; the upper limit of the 

number of iterations is set to 100; the early stopping 

threshold is that the validation set loss decreases by less 

than 0.001. The fatigue threshold 𝜏 is calculated by the 

dynamic percentile method: 

𝜏 = 𝜇𝑏𝑎𝑠𝑒 + 𝛼 ⋅ 𝜎𝑏𝑎𝑠𝑒 + 𝜌 ⋅ (𝜇𝑛𝑒𝑤 − 𝜇𝑏𝑎𝑠𝑒) (15) 

In Formula 15, 𝜇𝑏𝑎𝑠𝑒  and 𝜎𝑏𝑎𝑠𝑒  are the probability 

mean, and standard deviation of the output of the pre-

trained model; 𝜇𝑛𝑒𝑤  is the predicted mean of the 

validation set after fine-tuning for new users; 𝛼 and 𝜌 are 

empirical coefficients. This method verifies the role of 
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individualized calibration in improving the stability of 

long-term monitoring. 

3 Experimental design 
The experimental design of this study focuses on the 

fatigue monitoring needs in basketball training scenarios 

in the Leshan area to verify the technical advantages of the 

collaborative framework of multi-source sensor fusion 

and ML algorithms in real-time, individual adaptation, and 

environmental robustness. The experimental subjects are 

25 athletes from the men’s basketball team of Leshan 

Normal University, covering three positions: guard, 

forward, and center. The experimental devices include 

self-designed waterproof and breathable flexible 

electrodes, 9-axis IMU modules, and supporting edge 

computing terminals. The sampling rates are uniformly set 

to IMU 200Hz, EMG 1000Hz, and GRF 100Hz, and 

microsecond time synchronization is achieved through the 

IEEE 1588v2 protocol. 

In the first phase of the experiment, the progressive 

fatigue test protocol is used for benchmark data collection, 

including 3v3 confrontation, free throw test, and shuttle 

run combination, which lasts for 90 minutes, and blood 

lactate concentration is collected every 15 minutes as the 

gold standard. In the second phase of system performance 

evaluation, double-blind tests are used to compare the 

differences between the system in this study and the 

traditional model in terms of end-to-end delay, AUC, F1-

score, and other indicators. The third stage is individual 

calibration verification, which fine-tunes the TL 

parameters for new users and records the model update 

amount, accuracy fluctuations, and data integrity under 

environmental interference. 

During the experiment, athletes need to complete 

standardized training actions: emergency stop jump shot, 

continuous change of direction dribbling, and block 

simulation. Each action is repeated 20 times, and the 

action cycle is recorded by a high-speed camera (sampling 

rate 1000Hz). The fatigue state is determined by dual 

standards: a subjective Borg scale score ≥17 points and a 

blood lactate concentration ≥4mmol/L. In the data 

preprocessing stage, the IMU signal is low-pass filtered, 

and the EMG signal is band-pass filtered and rectified 

using a surface electromyography signal analysis system. 

The approximate waveform of the quadriceps EMG signal 

changes in a short period of time before and after athlete 

fatigue is shown in Fig. 2.

 

Figure 2: EMG signal waveform before and after fatigue 

The reason why the signal shows low-frequency 

oscillation and amplitude attenuation after fatigue is: 1) 

decrease in muscle fiber conduction speed: the conduction 

rate of muscle fiber action potential decreases during 

fatigue, resulting in the left shift of the signal main 

frequency, which is directly related to the decline in 

neuromuscular conduction efficiency caused by blood 

lactate accumulation; 2) enhanced motor unit 

synchronization: the motor unit recruitment pattern 

changes under fatigue, and the EMG signal waveform 

tends to be smooth (oscillation weakens), reflecting the 

decline in muscle control ability; 3) metabolic product 

interference: increased lactate concentration causes 

fluctuations in extracellular fluid ion concentration and 

inhibits action potential transmission efficiency, and the 

signal amplitude decays faster over time. 

These features form a closed loop with the 

spatiotemporal attention network: the model dynamically 

captures the spectrum left shift and amplitude attenuation 

rate and combines the IMU joint angle offset to achieve 
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transient fatigue recognition, verifying the effectiveness of 

EMG signals as biomarkers of neuromuscular fatigue. 

The distribution of experimental data and acquisition 

parameters is demonstrated in Table 1.

 

Table 1: Data distribution and parameters 

Classification Dimension Data content Value/Range 

Experimental subjects Total number of athletes 25 people 

Location Distribution Guard (n=9), Forward (n=10), Center (n=6) 

Age Range 19-24 years old 

BMI range 21.8-24.7 

Sensor parameters IMU sampling rate 200Hz 

EMG sampling rate 1000Hz 

GRF Sampling Rate 100Hz 

IMU measurement range 

(acceleration/angular velocity) 

±16g / ±2000°/s 

GRF sensor range 25N (single point) 

Electrode impedance ＜5kΩ 

Fatigue criteria Borg scale score ≥17 points 

Blood lactate concentration ≥4mmol/L 

Data collection phase Baseline data collection (progressive 

fatigue testing) 

90 minutes, blood lactate sampling every 15 

minutes 

System performance evaluation (double-

blind test) 

5-fold cross-validation 

Individualized calibration verification 

(TL) 

5 minutes to fine-tune the data volume for 

new users 

Sensor data distribution IMU feature dimensions Angular velocity, acceleration, joint angle 

(3×3 axes) 

Number of GRF channels 16 channels (foot distribution) 

EMG acquisition of muscle location Quadriceps, gastrocnemius, erector spinae 

(8 channels in total) 

 

In terms of experimental quality control, all 

physiological signal acquisitions are carried out under the 

guidance of sports medicine experts to control the 

electrode impedance of the electromyographic signal and 

the IMU installation error angle. The data acquisition 

process adopts a dual backup mechanism. The main 

device is the self-developed edge computing terminal, and 

the auxiliary device is the Nexelsensor NS-IMU9000 

commercial system. The cross-correlation coefficient 

verifies the consistency of the data between the two. SPSS 

26.0 is employed for statistical analysis. The measurement 

data are expressed as mean ± standard deviation. Repeated 

measures analysis of variance is utilized for inter-group 

comparisons, and the significance level is set at α = 0.05. 

The final experiment deploys the system in the 

basketball game at the Leshan Olympic Sports Center to 

monitor the fatigue status of athletes in real time and 

record non-contact injury events. Cohen’s κ coefficient 

evaluates the correlation between the system warning and 

actual injury to verify the technical solution's application 

value in real training scenarios. 

4 Model training and evaluation 
The model training adopts a phased strategy, including 

two stages: pre-training and individualized fine-tuning. In 

the pre-training stage, a general fatigue detection network 

is constructed based on the data of the men’s basketball 

team of Leshan Normal University, and the feature tensor 

𝒳 ∈ ℝ𝑇×𝑁×𝑀  is input. The feature normalization adopts 

Z-score standardization: 

𝑥̂𝑡,𝑛,𝑚 =
𝑥𝑡,𝑛,𝑚 − 𝜇𝑛,𝑚

𝜎𝑛,𝑚
 (16) 

In Formula 16, 𝜇𝑛,𝑚  and 𝜎𝑛,𝑚  are the mean and 

standard deviation of the 𝑚-th feature of the 𝑛-th channel. 

The network parameters are initialized using the He 

normal distribution, and the weight of the convolution 

layer is: 

𝑾 ∼ 𝒩(0,√2/(𝑘2 ⋅ 𝐶𝑖𝑛)) (17) 

In Formula 17, 𝐶𝑖𝑛 is the number of input channels, 

and 𝑘=3 is the convolution kernel size. 

A dynamic learning rate adjustment strategy is 

adopted during the training process: the initial learning 

rate η decays by 10% every 5 training cycles, and the 

weight decay coefficient λ=0.01. The loss function 

includes the classification loss ℒ𝑐𝑙𝑠  and the maximum 

mean difference constraint term ℒ𝑚𝑚𝑑 : 

ℒ = ℒ𝑐𝑙𝑠 + 𝜆 ⋅ ℒ𝑚𝑚𝑑  (18) 

In Formula 18, ℒ𝑐𝑙𝑠 denotes the binary cross-entropy 

loss, and ℒ𝑚𝑚𝑑  calculates the difference in feature 

distribution between the source and target domains 

through the kernel method. The training adopts 5-fold 

cross validation, and each fold is separated into a training 

set and a validation set = 4:1. The early stopping threshold 
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is set to the validation set loss without improvement for 5 

consecutive cycles. During the individualized fine-tuning 

phase, the parameters of the bottom convolutional layer 

are held constant, while only the weights of the upper fully 

connected layer are adjusted. The maximum number of 

iterations is established at 100, and the early stopping 

criterion is defined as a reduction in validation set loss of 

less than 0.001. The model parameters have been 

initialized, and the outcomes are presented in Table 2.

Table 2: Model parameter initialization table 

Network Layer Parameter Type Initialization method Numeric 

Convolutional layer (Conv1D) Weight Matrix He normal distribution k=3, 𝐶𝑖𝑛=64 

Bias Vector Zero initialization 0 

Batch Normalization Layer 

(BatchNorm) 

Scaling Factor γ 1.0 1.0 

Translation Factor 0 0 

Fully connected layer (FC) Weight Matrix Xavier Uniform Distribution range = [−0.1, 0.1] 

Bias Vector Zero initialization 0 

Attention weight matrix Query matrix Q Orthogonal initialization  

Key matrix K Orthogonal initialization  

LSTM Hidden Layer Weight Matrix Glorot Normal Distribution σ=0.05 

Adam Optimizer Learning rate η Fixed value 1×10−4 

Momentum parameter 𝛽1 Fixed value 0.9 

Momentum parameter 𝛽2 Fixed value 0.999 

 

After the model training is completed, the model is 

evaluated. The evaluation indicators cover several aspects 

such as system performance, multi-source data fusion 

efficiency, fatigue monitoring effect, and personalized 

adaptation ability. The calculation method is as follows: 

End-to-end delay refers to the time interval from 

sensor data collection to fatigue status output, which is 

calculated by the timestamp difference method: 

𝛥𝑡 = 𝑡𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑖𝑛𝑝𝑢𝑡 (19) 

In Formula 19, 𝑡𝑖𝑛𝑝𝑢𝑡  is the timestamp of the first 

sensor collection, and 𝑡𝑜𝑢𝑡𝑝𝑢𝑡  is the timestamp of the 

system output prediction result, which is required to meet 

the response requirements of basketball rules for tactical 

adjustments. 

The area beneath the receiver operating characteristic 

curve evaluates the overall effectiveness of the classifier, 

with the computation method utilizing trapezoidal 

integration. 

𝐴𝑈𝐶

= ∑  

𝑛−1

𝑖=1

(𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖)(𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖+1)

2
 (20) 

In Formula 20, 𝑇𝑃𝑅  denotes the true positive rate; 

𝐹𝑃𝑅 signifies the false positive rate; 𝑛 is the number of 

threshold segmentation points. 

F1-score fluctuations represent the difference in F1-

scores of athletes in different positions, and the calculation 

formula is: 

𝛥𝐹1 = |𝐹1𝑃𝐺 − 𝐹1𝐶| (21) 

In Formula 21, 𝐹1𝑃𝐺  is the F1-score of the guard 

group, and 𝐹1𝐶  is the F1-score of the center group. 

The data packet loss rate is the proportion of data 

packets lost during this article's dual-mode transmission of 

LoRa (Long-Range Radio) and Bluetooth. The long-term 

monitoring of the AUC fluctuation rate is represented by 

the variance of AUC under 30 consecutive days of training 

data. The environmental interference signal drift is the 

offset of the sensor output signal under high-temperature 

and high-humidity environments. 

5 Results 

5.1 Comparison of end-to-end delay 

distribution 

To confirm the system's real-time monitoring, the system 

response delay is calculated by the timestamp difference 

method, that is, the time interval from sensor data 

collection to fatigue status output, and the performance 

difference between this research framework and the 

traditional fatigue monitoring model is compared, 

including: the fatigue detection model based on CNN-

LSTM is defined as Model A; the random forest model of 

multi-sensor fusion is defined as Model B; the lightweight 

Transformer architecture is defined as Model C. The 

outcomes of the comparison are presented in Fig. 3.
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Figure 3: Comparison of system response delays 

Fig. 3 employs a dual Y-axis design to illustrate the 

delay performance disparities among various models 

effectively. The X-axis denotes the model type; the left Y-

axis indicates the mean delay; and the right Y-axis 

displays the standard deviation, measured in milliseconds. 

The data shows that the mean delay of the system in this 

study is only 188ms, which is significantly lower than the 

320ms of the CNN-LSTM model, the 250ms of the 

random forest model, and the 220ms of the lightweight 

Transformer model, and the standard deviation is much 

smaller than the comparison model. The mean delay of the 

CNN-LSTM model is 1.7 times that of the model in this 

article, and the fluctuation range is larger (the standard 

deviation is 41% higher). Although the lightweight 

Transformer model adopts a lightweight design, the delay 

is still 17% higher than that of this study. 

The significant improvement in delay performance in 

this study is due to the coordinated optimization of 

multiple technologies. The dual-stream Transformer 

architecture dynamically selects key sensor channels 

through spatial branches, and the time branch focuses on 

the temporal correlation of action sequences to reduce 

redundant calculations; the lightweight DL model is 

combined with the deployment of edge computing devices 

to compress the inference time, while the CNN-LSTM 

model has a high delay due to the long sequence 

dependency problem. In addition, the individualized 

calibration mechanism based on TL avoids the resource 

consumption of full fine-tuning by freezing the underlying 

parameters and only updating the top-level weights. The 

random forest model of multi-sensor fusion relies on 

manual feature extraction and classification, and its 

adaptive adjustment requires additional computing 

overhead. The environmental compensation algorithm 

further reduces the signal drift in the high-temperature and 

high-humidity scenes in Leshan. In contrast, the 

lightweight Transformer model does not perform 

hardware and algorithm co-optimization for regional 

climate, resulting in a standard deviation of 40ms under 

environmental interference. 

5.2 AUC improvement 

To verify the fatigue classification performance of the 

system, the AUC of this research framework and the 

traditional model are compared with the change trend of 

training cycle through 5-fold cross validation. The 

outcomes of the comparison are presented in Fig. 4.
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Figure 4: Comparison of classification performance of different models 

Fig. 4 shows the trend of AUC values of this study 

and three comparison models with training cycles through 

four sub-graphs. The X-axis is the training cycle from 0-

50, and the Y-axis is the AUC value. Each sub-graph 

contains an AUC mean curve and the corresponding 95% 

confidence interval shadow. The data shows that the AUC 

value of this study reaches 0.93 at 50 cycles, which is 

significantly higher than 0.85 of Model A (increased by 

9.4%), 0.87 of Model B, and 0.90 of Model C, and the 

confidence interval is narrower than that of Models B and 

C. The AUC of this study has increased to 0.91 at 30 

cycles, and the confidence interval is [0.88, 0.94]; Models 

A, B, and C are only 0.82, 0.84, and 0.87, respectively, 

indicating that this study has faster convergence speed and 

higher stability. In addition, the AUC of this study 

increases by 0.19 in 0-30 cycles, and the slope is steeper 

than that of the comparison model, reflecting its learning 

efficiency advantage. 

At 50 training cycles, the confidence interval width of 

this study is the same as that of Model A, but the AUC 

value of this study is higher, and the actual fluctuation is 

less affected, which is due to the coordinated optimization 

of multi-source sensor data fusion and spatiotemporal 

attention mechanism. The two-stream Transformer 

architecture dynamically selects key sensor channels 

through spatial branches, and the temporal branches focus 

on the temporal correlation of action sequences, which 

significantly improves the efficiency of feature extraction, 

allowing this study to complete model convergence within 

30 cycles. However, due to the long sequence dependency 

problem of the CNN-LSTM architecture, Model A 

converges more slowly than this study (this study reaches 

0.91 in 30 cycles, while Model A only reaches 0.82 in 30 

cycles). In addition, the individualized calibration 

mechanism based on TL reduces the risk of overfitting by 

freezing the underlying parameters and only updating the 

top-level weights. Models B and C rely on manual feature 

extraction and random forest classification, and their 

confidence intervals are wider at 0.08, indicating that their 

feature extraction strategies have greater uncertainty in 

long-term monitoring. The environmental compensation 

algorithm further reduces the signal drift in the high-

temperature and high-humidity scenes in Leshan. In 

comparison, although Model C adopts a lightweight 

design, its AUC confidence interval still reaches [0.86, 

0.94] in 50 cycles, while this study is only [0.90, 0.96]. 

These technical details jointly support the leading position 

of this study in AUC value, convergence speed, and 

stability. 

5.3 Individual differences of players in 

different positions 

To verify the individual differences of basketball players 

in different positions, the F1-score fluctuation differences 

of guard PG (Point Guard) and center C (Center) are 

studied, and the outcomes are illustrated in Fig. 5.
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Figure 5: Comparison of individual difference F1-score fluctuations 

Fig. 5 intuitively shows the F1-score fluctuations 

between guards and centers of different models through 

grouped bar graphs and error bars. The X-axis is the model 

type, and the Y-axis is the F1-score value. Each model 

displays two parallel bar graphs and corresponding error 

bars. The data demonstrates that the F1-score of the guard 

in this study is 0.90, and the center is 0.85, with a 

fluctuation of 0.05, which is significantly lower than the 

fluctuation of 0.09 of Model A, 0.08 of Model B, and 0.07 

of Model C. The difference between the guard and the 

center in this study is the smallest, while the difference 

between Model A and Model B is the largest. Its error bar 

length is also the longest, indicating that the individual 

adaptation ability is insufficient. In addition, the error bar 

of the guard in this study is significantly shorter than that 

of Model B/C, reflecting the stronger stability of the TL 

calibration mechanism in the guard group. Although 

Model C adopts a lightweight design, its fluctuation is still 

significantly higher than that of this study, reflecting its 

insufficient capture of position-specific characteristics. 

The F1-score fluctuation of the guard and center in 

this study is the smallest, and the standard deviation is the 

narrowest, which is due to the synergy of the TL 

framework and the spatiotemporal attention mechanism. 

The individualized calibration mechanism based on TL 

freezes the parameters of the underlying convolutional 

layer and only updates the top-layer weights, so that the 

feature extraction paths of the guard and the center are 

dynamically adapted. The CNN-LSTM model of Model A 

relies on a fixed feature extraction layer, resulting in a 

large difference in F1-score between the guard and the 

center. In addition, the spatiotemporal attention network 

dynamically selects key sensor channels through spatial 

branches, and the temporal branch focuses on the temporal 

association of action sequences, making the standard 

deviation of the F1-score of the guard group in this study 

less than that of other models. Model B relies on manual 

feature extraction and random forest classification, 

reflecting that the static nature of feature selection limits 

individual adaptation. In contrast, Model C is not 

optimized for regional climate, and its F1 value is slightly 

better than that of other models, but still lower than that of 

this study. 

5.4 Data packet loss rate environmental 

adaptability test 

To confirm the environmental robustness of the system, 

the high temperature, high humidity, and electromagnetic 

interference scenes are simulated in the Leshan Olympic 

Sports Center venue to test the data PLR (Packet Loss 

Rate). The PLR distributions under the three environments 

are compared, and the comparison findings are illustrated 

in Fig. 6.
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Figure 6: PLR distribution comparison results 

Fig. 6 combines horizontal error bars with mean 

points to intuitively show the data packet loss rate 

distribution and stability differences of different models 

under three environments. The X-axis is the PLR value, 

and the Y-axis is repeatedly marked according to the 

environmental conditions, corresponding to the error bar 

groups of different models. The error bar length represents 

the IQR (Interquartile Range) range, and the solid dots 

mark the mean. The data shows that the PLR mean under 

high temperature and humidity in this study is 0.22% and 

0.24%; the PLR mean under electromagnetic interference 

is only 0.25%, and the error bar range is 0.21-0.29%, 

which is significantly lower than the mean of Model A 

(1.5%), range 1.05-1.6%, the mean of Model B (1.2%), 

range 0.9-1.25%, and the mean of Model C (1%), range 

0.8-1.1%. The error bar length of Model A is 0.55%, while 

that of this study is only 0.08%, indicating that its 

environmental compensation algorithm can effectively 

suppress the impact of electromagnetic interference on 

data transmission. In addition, the PLR mean of this study 

is 0.13-0.23 percentage points lower than that of Model 

A/B/C under a high temperature environment, and the 

error bar length is shorter, reflecting its robustness 

advantage in a complex climate. 

The PLR mean and IQR range of this study under 

electromagnetic interference are considerably less than 

those in the comparison model, which is due to its 

hardware combined with an algorithm collaborative 

optimization strategy. Based on the temperature and 

humidity impedance compensation model and waterproof 

and breathable electrode design, the signal drift of the 

device in this study is less than 0.8%/h under high 

temperature and high humidity environment, while other 

models are not optimized for the climate in Leshan area, 

resulting in increased sensor impedance fluctuations under 

high temperature and increased signal attenuation under 

high humidity. In addition, the dual-stream Transformer 

architecture used in this study dynamically selects key 

sensor channels through spatial branches, and the time 

branch focuses on the temporal correlation of action 

sequences. The CNN-LSTM model of Model A causes the 

packet loss rate to surge to 1.50% under electromagnetic 

interference due to long sequence dependency problems. 

The TL framework freezes the bottom-level parameters 

and only updates the top-level weights, which minimizes 

the PLR fluctuation under electromagnetic interference in 

this study. Model B relies on manual feature extraction 

and random forest classification, and its error bar length 

reaches 0.35%, reflecting that the static nature of feature 

selection limits dynamic environmental adaptation. The 

impact of electromagnetic interference on wireless 

transmission is particularly obvious in Models A/B/C, 

while the dual-mode transmission of this study controls 

the packet loss rate within 0.25%, verifying the 

effectiveness of multi-technology fusion in complex 

environments. 

5.5 Long-term monitoring model stability 

To explore the system stability of multi-source sensors 

under long-term working conditions, training data is 

collected for 30 consecutive days, and the model 

attenuation rate is recorded. The long-term monitoring 

stability record results are shown in Fig. 7.



A Dual-Stream Transformer Framework for Real-Time…                                                            Informatica 49 (2025) 255–272    267 

 

 

a. Changes in AUC values during long-term monitoring 

b. Changes in standard deviation 

Figure 7: Long-term attenuation results of system models 

Figs. 7a and 7b respectively show the changing trends 

of the AUC values and their standard deviations of each 

model over time during long-term monitoring. In Fig. 7a, 

the X-axis is the number of monitoring days, and the Y-

axis is the AUC value; the four broken lines correspond to 

different models. The data shows that the AUC value of 

the model in this study slowly reduces from 0.93 to 0.90 

and only decreases by 3.2% within 30 days, which is 

significantly better than Model A, decreasing from 0.85 to 

0.79, a decrease of 7%, Model B, decreasing from 0.87 to 

0.81, a decrease of 6.9%, and Model C, decreasing from 

0.90 to 0.84, a decrease of 6.7%. In Fig. 7b, the X-axis is 

the number of monitoring days, and the Y-axis is the 

standard deviation; the four broken lines correspond to the 

changes in the standard deviation of each model. The 

standard deviation of the model in this study is always the 

lowest, and the growth rate is the slowest; the standard 

deviations of other models are significantly higher, and the 

growth rate is faster; the stability is significantly inferior 

to that of this study. On the 25th day, the standard 

deviation of the model in this study is only 0.04, while that 

of Model B reaches 0.08. The results reflect the effective 

suppression of long-term monitoring fluctuations by the 

individualized calibration mechanism. 

The model in this study maintains high AUC values 

and low standard deviations in long-term monitoring due 

to its dynamic feature extraction and parameter update 

strategy. The spatiotemporal attention network focuses on 

key sensor channels through spatial branches and captures 

action sequence associations through temporal branches, 

while Models A/B/C rely on static feature selection or 

manually designed features, resulting in a continuous 

decrease in AUC values in the later stages of monitoring. 

The TL framework keeps the standard deviation growth 

rate of the model in this article within a certain range. 

Model C does not freeze the underlying parameters, and 

its standard deviation increases from 0.02 to 0.08. The 

environmental compensation algorithm further reduces 

signal drift, and the sensor impedance fluctuations of 

Models A/B/C in high temperature and high humidity 

environments intensify, resulting in a continuous 

attenuation of the AUC value. This study achieves the dual 

advantages of performance stability and robustness in 

long-term monitoring through hardware combined with 

algorithm collaborative optimization. 

5.6 Effectiveness verification of multi-source 

data fusion 

To verify the effectiveness of multi-source data fusion, the 

contribution weight of each sensor channel to fatigue 

recognition is analyzed through the SHAP (SHapley 

Additive exPlanations) value. The experiment selects the 

model trained by this study's framework and calculates the 

SHAP value of each sensor channel on the validation set. 

The absolute value reflects the channel's influence on the 

classification result. The SHAP value contribution results 

of different models on three sensor types are shown in Fig. 

8.



268   Informatica 49 (2025) 255–272                                                                                                                                         S. Wang 

 

 

Figure 8: Distribution of SHAP value contribution of multi-source sensors 

Fig. 8 shows the SHAP value contribution of this 

study and three comparative models on three sensor types: 

IMU, GRF, and EMG through a stacked bar chart. The X-

axis is the model type, and the Y-axis is the sum of SHAP 

values. The data shows that the total column height of the 

model in this article is the highest, and the IMU part 

accounts for the largest proportion of 39.5%, indicating 

that it has the strongest dynamic screening ability for 

basketball-specific action characteristics; Model B has a 

total height of 0.64, and the IMU contribution of 0.26 is 

slightly higher than Model A but lower than the model in 

this article, reflecting that its multi-sensor fusion strategy 

has suboptimal recognition efficiency for key channels; 

Model C has a total height of 0.71, and the IMU 

contribution is close to the research method in this article 

compared with other models, but the GRF is 0.24, which 

is still significantly lower than 0.28 in this study, reflecting 

its insufficient capture of ground reaction force 

characteristics. The results verify the effectiveness of the 

TL framework for dynamic adjustment of sensor weights 

in long-term monitoring. 

5.7 Accelerated aging test of signal drift 

To study the sensor signal drift under high temperature 

and high humidity environment, a 48-hour accelerated 

aging test is carried out in an environment of 

45℃/90%RH (Relative Humidity), and the sensor output 

signal drift is recorded. The signal drift results are shown 

in Fig. 9.

 

Figure 9: Device aging signal drift results 

Fig. 9 illustrates the trend of signal drift variations 

across different models in accelerated aging tests. The 

horizontal axis denotes the aging duration, while the 

vertical axis indicates the signal drift. The scattered points 

and dotted lines of the four models correspond to the 

growth trajectory of their drift over time and the linear 
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fitting results. The data shows that the signal drift of this 

study gradually increases from the initial 0% to 1.2% in 

48 hours, and the fitting slope is 0.025%/h; the drift of 

Model A surges from 0% to 3.20% in the same time, with 

a slope as high as 0.067%/h; Model B and Model C reach 

2% (slope 0.042%/h) and 2.4% (slope 0.05%/h), 

respectively, which are significantly higher than the model 

of this study. At the 24-hour node, the drift of this study is 

0.6%, while Models A/B/C reach 1.6%, 1%, and 1.2%, 

respectively, indicating that the signal stability of this 

study model in a high temperature and high humidity 

environment far exceeds that of the comparison model. 

The underlying mechanism of this trend stems from 

the hardware combined with algorithm co-optimization 

adopted in this study: the environmental adaptability 

design based on the temperature and humidity impedance 

compensation model effectively suppresses the thermal 

drift of the sensor output signal, and the CNN-LSTM 

architecture of Model A amplifies the cumulative effect of 

signal noise due to the long sequence dependency 

problem. Model B relies on manual feature extraction and 

random forest classification. Although its signal drift 

growth rate is lower than that of Model A, it still fails to 

completely offset environmental interference due to the 

static nature of feature selection. Although the lightweight 

Transformer architecture of Model C performs better than 

Models A/B under electromagnetic interference, its drift 

rate is still higher than that of the study model in the aging 

test because the environmental compensation algorithm is 

not integrated. The results verify the comprehensive 

advantages of hardware and algorithm co-design in this 

study for long-term monitoring. 

6 Conclusions 
This study focuses on the fatigue monitoring needs of 

basketball players in Leshan during high-intensity training 

and constructs a collaborative framework based on multi-

source sensor fusion and a spatiotemporal attention gated 

network. Through the joint optimization strategy of 

hardware and algorithm, it breaks through the limitations 

of traditional systems in real-time, individual adaptation, 

and environmental robustness. Aiming at the high 

dynamic characteristics of basketball special movements, 

a distributed sensor matrix including IMU, GRF, and 

EMG is designed. Based on the spatiotemporal feature 

extraction of 9-axis IMU and pressure insole, the dual-

stream Transformer architecture is combined to 

dynamically screen key channels, and dynamic calibration 

of individual fatigue thresholds is achieved through TL. 

The experimental results show that the end-to-end delay 

of the system reaches 188ms; the AUC is improved by 

9.4% compared with the CNN-LSTM model in 50 training 

cycles; the F1-score fluctuation of the guard and center is 

controlled at 0.05; the data packet loss rate does not 

exceed 0.25% in high temperature and high humidity 

environment, which verifies the advantages of the method 

in action-specific recognition and long-term monitoring 

stability. The study innovatively proposes a climate-

adaptive wearable device with a gradient hydrophobic and 

hydrophilic composite structure; a spatiotemporal 

attention mechanism is constructed to achieve dynamic 

fusion of multi-source data, and the contribution weight of 

each sensor channel is analyzed through SHAP value; the 

individualized calibration framework based on TL reduces 

the model attenuation rate. The research provides a 

feasible technical solution for fatigue monitoring in 

basketball sports and also provides a methodological 

reference for the development of smart sports devices. 

Limitations and Future Work: This study focused on 

basketball players; generalizability to other sports requires 

further validation. Future work will explore integrating the 

system with coaching platforms for automated training 

plan adjustments. 
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Appendix: glossary of key terms and 

acronyms 

IMU (Inertial Measurement Unit): A sensor that measures 

specific force, angular rate, and sometimes the magnetic 

field surrounding the device. 

EMG (Electromyography): A technique for evaluating 

and recording the electrical activity produced by skeletal 

muscles. 

ECG (Electrocardiography): A method for recording the 

electrical activity of the heart. 

ML (Machine Learning): A subset of artificial intelligence 

that enables systems to learn from data without being 

explicitly programmed. 

BiLSTM (Bidirectional Long Short-Term Memory): A 

type of recurrent neural network that processes data in 

both forward and backward directions to capture context 

from past and future states. 

TL (Transfer Learning): A machine learning technique 

where a pre-trained model is fine-tuned on a new, related 

task. 

AUC (Area Under the Curve): A performance metric for 

classification models, representing the probability that the 

model ranks a random positive instance higher than a 

random negative one. 



270   Informatica 49 (2025) 255–272                                                                                                                                         S. Wang 

 

F1-score: The harmonic means of precision and recall, 

providing a single score that balances both concerns. 
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