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Timely and accurate fault detection and localization are essential for reliable operation of distribution 

networks. This paper presents a hybrid edge–cloud framework that integrates convolutional neural 

networks (CNNs) with edge computing to achieve real-time performance. The proposed method distributes 

computational tasks such that edge devices handle data acquisition, preprocessing, and CNN-based 

inference, while cloud servers manage model retraining and historical data storage. The CNN 

architecture comprises three convolutional layers with ReLU activation, max-pooling, and two fully 

connected layers optimized for lightweight inference. A 33 kV distribution network model was used to 

generate fault scenarios, including single line-to-ground, double line-to-ground, line-to-line, three-phase, 

and three-phase-to-ground faults under varying resistances and loads. Experimental results show that the 

proposed framework achieves 100% fault-type classification accuracy, an average fault localization error 

of 0.18 km (vs. 1.25 km for impedance-based methods), and a 50% latency reduction compared to cloud-

only implementations. These results confirm that the framework enhances both responsiveness and 

resilience, offering a scalable solution for modern distribution network fault management. 

Povzetek: Pristop uporablja “pametno” računalniško metodo, kjer del izračunov poteka že na napravah 

na terenu, preostanek pa v oblaku, zato okvare v električnem omrežju zazna hitreje in jih tudi bolj 

natančno locira. 

 

1 Introduction 
Timely and accurate fault detection remains one of the 

most critical requirements for ensuring the reliability and 

resilience of modern distribution networks. As networks 

expand in scale and complexity, the volume of data 

generated by advanced monitoring devices such as phasor 

measurement units (PMUs) has increased significantly. 

Centralized fault management systems face inherent 

challenges under these conditions, as transmitting high-

frequency measurements to control centers can introduce 

delays that compromise real-time decision-making [1], 

[2], [3]. Therefore, it is scientifically essential to develop 

new approaches that can deliver low-latency fault 

recognition, minimize communication burdens, and 

maintain dependable operation in decentralized 

distribution environments [4]–[6]. 

Recent advancements in fault detection 

methodologies increasingly incorporate machine learning 

(ML) techniques such as convolutional neural networks 

(CNNs), which provide powerful feature extraction and 

classification capabilities. CNNs demonstrate efficiency 

and effectiveness in fault and anomaly detection across 

applications involving images and signals in diverse 

domains [7], [8], [9]. Their application in distribution  

 

networks is also well documented, particularly in 

centralized schemes where computational tasks are  

handled by cloud-based servers. While these models 

achieve high accuracy, their reliance on centralized 

processing introduces latency that is undesirable for real-

time responses [10]. 

Edge computing addresses this challenge by moving 

computational tasks closer to the data sources, thereby 

reducing latency. Multiple studies confirm that edge 

computing significantly decreases data processing time 

and improves decision-making in domains such as 

industrial IoT, smart grids, and network monitoring [11], 

[12], [13]. In the context of distribution networks, 

researchers investigate general edge data processing 

frameworks [14], and more recently, hybrid edge–cloud 

architectures where edge devices process immediate 

signals while cloud servers perform resource-intensive 

computations [15]. These architectures aim to balance 

workloads between the edge and the cloud for optimized 

performance and resource utilization. 

Within the power systems domain, CNN-based fault 

detection has gained attention for its robustness under 

varied fault types and operating conditions. Mora-Florez 

et al. compare impedance-based and learning-assisted 

fault location methods in distribution systems [16], while 
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Personal et al. present advanced impedance-based 

schemes for underground systems [17], [18]. Nouri et al. 

introduce wavelet-transform-based techniques for 

locating faults in distribution lines [19], and Hamidi et al. 

develop traveling-wave detection approaches using 

matrix-pencil methods [20]. Similarly, Milioudis et al. 

propose communication-assisted schemes for smart grid 

fault localization [21]. These studies highlight the 

diversity of methodologies that complement or serve as 

baselines for CNN-based approaches. 

More recent contributions explicitly combine CNNs 

with edge-based implementations for enhanced fault 

detection. Niu et al. (2023) propose a lightweight 

YOLOv5-based CNN optimized with GhostNet to detect 

defects in distribution line components in real time, 

achieving a substantial improvement in both accuracy and 

inference speed on edge devices [22]. Pour Shafei et al. 

(2024) present a CNN model using Park’s vector 

transformation of three-phase signals, enabling accurate 

detection and categorization of faults in medium-voltage 

distribution networks with over 93% accuracy [23]. Gao 

et al. (2023) design a two-stage edge framework where a 

lightweight 1D CNN detects transients, followed by a 

ResNet-18 classifier operating on Hilbert-spectrum 

images to identify high-impedance faults in resonant-

grounded systems [24]. Wang et al. (2024) further 

enhance high-impedance fault detection by fusing time–

frequency–space features and training a hybrid CNN, 

achieving 98.85% detection accuracy under diverse 

conditions [25]-[27]. These works demonstrate that edge-

enhanced CNNs can deliver robust performance while 

meeting the low-latency requirements of modern 

distribution systems. 

Although prior works demonstrate significant 

progress in applying CNNs and edge computing for power 

system fault detection, two critical gaps remain that our 

proposed method aims to address: 

• Integrated detection and localization at the 

edge: Most existing studies focus either on fault 

detection or fault classification, with limited 

attention to precise fault localization. Our 

framework enables both detection and accurate 

localization in real time directly at the edge, 

reducing dependence on cloud servers. 

• Generalizable and efficient architecture: 

Several recent approaches rely on complex 

preprocessing pipelines (e.g., wavelet 

transforms, Hilbert spectra, or image generation) 

or deep networks with high computational costs. 

Our method introduces a streamlined hybrid 

edge–cloud CNN that learns fault signatures end-

to-end, ensuring scalability across different fault 

types while remaining lightweight enough for 

deployment on typical distribution network edge 

devices. 

In light of the identified research gaps, the key 

contributions and novelties of our work can be 

summarized as follows: 

1. Hybrid edge–cloud CNN framework for 

simultaneous detection and localization: We 

designed and implemented a CNN-based 

architecture that executes real-time fault 

detection and localization directly on edge 

devices, while delegating retraining and 

historical data management to the cloud. This 

hybrid arrangement ensures ultra-low latency 

and accurate location prediction under diverse 

operating conditions. 

2. Lightweight and scalable architecture 

validated on real distribution networks: 

Unlike prior approaches that depend on heavy 

preprocessing or computationally expensive 

CNNs, our method employs a streamlined deep 

learning model optimized for edge deployment. 

Extensive experiments on a 33 kV distribution 

network demonstrated superior performance, 

achieving 100% fault-type classification 

accuracy, average fault localization error of 

only 0.18 km, and a 50% reduction in latency 

compared to cloud-only systems. 

Section 2 of the paper outlines the limitations of 

traditional approaches and explores the potential of edge 

computing and deep learning. Section 3: Background and 

related work discusses the current faults in power systems. 

The fault location issue with CNNs in the edge-cloud 

computing architecture is formulated, and the system 

model is described in Section 4. The proposed CNN-based 

method for fault detection is detailed, covering aspects 

such as architecture, data pre-processing, integration with 

the edge-cloud infrastructure, and the associated 

mathematical formulations. The outcomes and simulation 

tests, which showcase the efficacy of the suggested 

approach in a variety of circumstances, will be covered in 

detail in Section 5. This paper's core results, 

consequences, and recommendations for further research 

are outlined in Section 6. 

2 Dual edge-cloud system 

2.1 Basis for adopting the edge-cloud design 

Measurement devices in TNs produce vast quantities of 

data, commonly relayed to control centers through 

specialized optical communication channels. However, 

Distribution Networks (DNs) often lack this 

infrastructure, necessitating the use of other 

communication technologies like LTE networks. An 

analysis of latency and data transmission reliability should 

precede any systems utilizing these technologies in DNs. 

This chapter focuses on the QoS evaluation of PMU data 

across an LTE network. This is part of the development of 

a computationally robust framework for localizing faults 

in DNs with the help of PMU data. 

Three types of requirements from the IEC 61850-90-

5 norm apply to real-time synchronized phasor 

measurement data exchange in power systems. 

• Ultra-low latency applications in real-time. 

Generally, these applications fall within the 

millisecond range. Adaptive relaying and out-of-

step protection, which require instantaneous 

responses to maintain system stability, are among 

these applications.  
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• Near real-time (observability) applications. 

These would involve state estimation, situational 

awareness, and online security assessment. 

Tolerance to higher delays, typically on the order 

of seconds, is achievable for monitoring and, 

occasionally, for visualization purposes. 

• Archiving applications: Due to their use in after-

event analysis, they are not subject to strict 

latency constraints. However, lossless data 

transfer is critical in ensuring record accuracy. 

The remainder of this chapter explains the IEC 

61850-90-5 QoS requirements in the context of 

LTE networks. 

2.1.1 Configuration of the 𝐈𝐄𝐂 𝟔𝟏𝟖𝟓𝟎 − 𝟗𝟎 − 𝟓 

Testbed Evaluation 

To evaluate QoS, a testbed was constructed, as shown in 

Fig. 1. The testbed was a PMU emulator that was set up to 

simulate the network traffic that a PMU would typically 

experience using the DEKRA Performance Test Tool. 

This emulator simulated different LTE network 

circumstances by connecting via an RF coaxial wire to a 

Keysight UXM LTE base-station emulator. Additionally, 

the testbed had a secondary Ethernet connection to a PC 

for controlling the experiments [22]. 

Automation and sequencing were handled by the 

Keysight Test Automation Platform, using scripts to 

manage the PMU emulator, UXM, and data recording. By 

acting as a traffic generator and performance assessor, the 

𝑫𝑬𝑲𝑹𝑨 Performance Tool computed important 

performance indicators, including packet loss, delay, and 

throughput. While the 𝑫𝑬𝑲𝑹𝑨 server operated on the 

testbed 𝑷𝑪, the client was running on the modeled 𝑷𝑴𝑼. 

2.1.2 Implementation of 𝑰𝑬𝑪 𝟔𝟏𝟖𝟓𝟎 − 𝟗𝟎 − 𝟓 in 

a Practical Evaluation Scenario 

The use case mirrored common DN situations and 

concentrated on an urban-pedestrian LTE network 

scenario. Four sub-scenarios reflecting various urban 

settings were created from this scenario, which was 

established by the LTE testbed supplier. Each sub-

scenario was executed for 30 seconds, allowing the LTE 

network to stabilize within a few hundred milliseconds 

after each switch. To lessen the effect of scenario change, 

each was executed five times throughout a 600-second test 

period. 

With a 50 Hz reporting rate, the DEKRA tool 

replicated a typical PMU configuration by simulating an 

80 kbit/s data stream at 50 packets/s. When the 𝑷𝑴𝑼 was 

in synchrophasor mode, it transmitted 𝑰𝑬𝑬𝑬 𝑪𝟑𝟕. 𝟏𝟏𝟖 −
𝟐𝟎𝟏𝟖 packets to a concentrator that included grid voltage 

and current measurements. Both TCP and UDP protocols 

were tested under the urban-pedestrian scenario [23]. 

While TCP guarantees packet delivery through 

acknowledgment, it may introduce latency when packets 

are lost. In contrast, UDP, which does not require 

acknowledgment, offers lower latency at the expense of 

potential packet loss.

 

Figure 1: IEC 61850 − 90 − 5 evaluation testbed. 

2.1.3 Evaluation results 

The evaluation results highlight the trade-offs between 

latency and reliability when using LTE networks for PMU 

data transmission in DNs. The results are summarized in 

Figs. 2 and 3, showing the performance metrics under both 

TCP and UDP protocols across the four sub-scenarios. 

• Latency: Under TCP, average latency was 

higher, especially when packet loss occurred, as 

the protocol's error-handling mechanism 

introduced delays. In contrast, UDP exhibited 
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consistently lower latency, making it more 

suitable for time-critical applications. Fig. 2 

illustrates the latency measurements across 

different sub-scenarios for both protocols. 

• Packet Loss: As expected, UDP suffered from 

higher packet loss, particularly in scenarios with 

poor network conditions. TCP, on the other hand, 

maintained near-zero packet loss due to its 

acknowledgment and retransmission features. 

However, this came at the cost of increased 

latency. Fig. 3 shows the packet loss rates under 

both protocols. 

• Throughput: Both protocols maintained similar 

throughput under ideal network conditions. 

However, as network conditions deteriorated, 

TCP's throughput decreased due to the additional 

overhead from error correction. On the other 

hand, UDP showed fairly constant throughput, 

which is the most critical factor in applications 

that require timely data delivery rather than 

reliability. 

These results have indicated that the choice between 

TCP and UDP should be application-dependent. Despite 

showing higher packet loss, real-time applications that 

require low latency may prefer UDP over TCP. 

Conversely, TCP's reliability justifies higher latency for 

applications that cannot compromise integrity.

 

Figure 2: Latency measurements across UDP. 

 

Figure 3: Latency measurements across TCP. 

2.2 Implications for edge-cloud computing 

in DNs 

These evaluation results present valuable insight into 

developing optimum architectures for edge-cloud 

computing in DNs. The balanced approach exploits the 

resources at the edge of the cloud symbiotically to attain 

the best trade-off between latency and reliability. For 

example, the edge can execute time-critical tasks closer to 

the source with minimal latency, while the cloud can 

process less time-sensitive tasks deeper to ensure data 

integrity and storage. 
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The integration of the LTE network with the edge-

cloud computing framework necessitates careful 

evaluation of both network and application conditions. 

Properly picking the right communication protocol and 

optimizing the deployment of edge and cloud resources 

could ensure a robust and efficient system for fault 

localization and other advanced DN applications. This 

comprehensive assessment of the IEC 61850-90-5 

standard over LTE networks can, therefore, form the very 

basis for further research in optimizing the edge-cloud 

architectures toward making DNs capable of meeting the 

stringent demands put on them by modern power systems. 

3 Faults in power systems 

3.1 Overview of fault types in power systems 

Power system faults are abnormal conditions that disturb 

the typical functioning of electrical networks. They may 

cause large disturbances: equipment damage, service 

interruptions, and safety hazards. Therefore, it is crucial to 

understand and precisely detect them to ensure stability, 

safety, and minimal downtime. In general, power system 

malfunctions fall into one of the following categories: 

• Symmetrical Faults: These involve all three 

phases and are relatively rare but severe, as they 

lead to a substantial drop in system voltage. The 

3-phase short circuit is a typical kind of 

symmetrical defect. 

• Unsymmetrical Faults: These faults affect only 

one or two phases and are more common. Line-

to-line (𝑳 − 𝑳), line-to-ground (𝑳 − 𝑮), and 

double line-to-ground (𝑳𝑳 − 𝑮) faults are among 

them. 

• Open-Circuit Faults: These occur when a 

conductor breaks, leading to an open circuit. 

Such faults are less severe but can cause 

unbalanced system operation. 

3.2 Mathematical modeling of faults 

For fault analysis and detection, the mathematical 

modeling of faults in power systems has to be as precise 

as possible. Network equations based on symmetrical 

components and sequence networks can represent 

variations in system impedance, voltage, and current that 

occur under faults. 

3.2.1 Symmetrical faults 

This includes three-phase faults. All phases experience 

equal effects due to the balance of a three-phase fault. The 

following equation calculates the current 𝑰𝒇 at the time of 

a three-phase fault. 

𝑰𝒇 =
𝑬

𝒁𝒕𝒉

 (1) 

where: 

• At the site of the fault, 𝑬 is the system voltage. 

• The Thevenin equivalent impedance, as viewed 

from the fault location, is 𝒁𝒕𝒉. 

The symmetry of the fault implies that Ip = In = I0; that 

is, all sequence components of the current are equal, and 

this simplifies the analysis accordingly. 

3.2.2 Unsymmetrical faults 

Unsymmetrical faults lead to system imbalance. 

Symmetrical components in a system, represented by 

three sequence networks: zero sequences, positive, and 

negative, are the basis for their analysis. 

• Single 𝑳 − 𝑮 Fault: 

When an 𝑳 − 𝑮 fault occurs at phase 𝒂, the fault 

current 𝑰𝒇 may be written as follows: 

𝑰𝒇 =
𝟑𝑬

𝒁𝟏 + 𝒁𝟐 + 𝒁𝟎 + 𝟑𝒁𝒇

 (2) 

where: 

• 𝒁𝟏, 𝒁𝟎, and 𝒁𝟐 signify the positive, zero-

sequence, and negative impedances, 

respectively. 

• 𝒁𝒇 is the fault impedance. 

• 𝑳 − 𝑳 fault: 

For an 𝑳 − 𝑳 fault between phases 𝒂 and 𝒃, the fault 

current 𝑰𝒇 is given by: 

𝑰𝒇 =
𝑬

𝒁𝟏 + 𝒁𝟐

 (3) 

Here, the zero-sequence impedance 𝒁𝟎 does not 

contribute, as the sum of the fault currents in the three 

phases is zero. 

• 𝑳𝑳 − 𝑮 fault: 

For an 𝑳𝑳 − 𝑮 fault involving phases 𝒂 and 𝒃, the 

fault current 𝑰𝒇 is: 

𝑰𝒇 =
𝑬 ⋅ (𝒁𝟐 + 𝒁𝟎)

(𝒁𝟏 + 𝒁𝟐)(𝒁𝟐 + 𝒁𝟎) + 𝒁𝒇(𝒁𝟏 + 𝒁𝟐 + 𝒁𝟎)
 (4) 

This equation reflects the combined effects of the 

positive, zero-sequence, and negative networks. 

4 Fault location method using CNN 

and edge computing 

4.1 Overview of the recommended tactic 

Finding the exact location of defects is essential in 

contemporary power systems to improve power delivery 

efficiency and reliability. A potent solution for real-time 

defect identification and localization is achieved through 

the combination of edge computing and advanced ML 

algorithms such as convolutional neural networks 

(CNNs). This section introduces our CNN-based edge 

computing framework for fault location, which processes 

PMU data efficiently and provides accurate localization 

even in complex distribution network topologies. 

4.2 CNN-based fault location method 

CNNs, as a subclass of deep learning models, excel in 

signal and pattern recognition tasks. In power systems, 

CNNs can analyze current waveforms captured by PMUs 

during fault events. Our approach consists of three main 
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stages: (i) data preprocessing, (ii) CNN model design, and 

(iii) fault location prediction. 

4.2.1 Data Pre-processing 

The raw PMU data consists of time-series current 

measurements, which undergo preprocessing to extract 

relevant features. 

1. Data normalization: Normalization ensures 

consistent CNN input and is applied according 

to: 

𝑿norm (𝒕) =
𝑿(𝒕) − 𝝁𝑿

𝝈𝑿

 (5) 

where 𝑋(𝑡) represents the current measurement at 

time 𝑡, and 𝜇𝑋 and 𝜎𝑋 are the mean and standard deviation 

of the measurement series 𝑋(𝑡). 

2 Sequence Component Transformation: To 

capture the unbalanced nature of distribution 

faults, the normalized three-phase current signals 

are transformed into symmetrical components: 

𝑰𝟎(𝒕)  =
𝑰𝒂(𝒕) + 𝑰𝒃(𝒕) + 𝑰𝒄(𝒕)

𝟑

𝑰𝟏(𝒕)  =
𝑰𝒂(𝒕) + 𝒂 ⋅ 𝑰𝒃(𝒕) + 𝒂𝟐 ⋅ 𝑰𝒄(𝒕)

𝟑

𝑰𝟐(𝒕)  =
𝑰𝒂(𝒕) + 𝒂𝟐 ⋅ 𝑰𝒃(𝒕) + 𝒂 ⋅ 𝑰𝒄(𝒕)

𝟑

 (6) 

where 𝐼0(𝑡), 𝐼1(𝑡), and 𝐼2(𝑡) denote the zero-, 

positive-, and negative-sequence currents, respectively, 

and 𝑎 = 𝑒𝑗2𝜋/3 is the 120∘ phase-shift operator. 

The dataset was generated using a 33 kV semi-urban 

distribution network modeled in MATLAB/Simulink. A 

total of 5,000 fault scenarios were simulated, including 

single line-to-ground, double line-to-ground, line-to-line, 

three-phase, and three-phase-to-ground faults. Fault 

resistances were varied between 1–10 Ω, and simulations 

were conducted under multiple load levels and 

communication delay conditions to ensure diversity. Each 

scenario produced time-series current waveforms captured 

from PMUs. These data were labeled with both fault type 

and location, forming the supervised dataset. 
 

4.2.2 CNN model design 

The CNN consists of three convolutional layers with 3×3 

filters and ReLU activation, each followed by max-

pooling layers to reduce dimensionality. The feature maps 

are flattened and connected to two fully connected layers. 

The final outputs include: (i) a softmax activation layer for 

fault type classification, and (ii) a linear regression output 

for fault location estimation. Training was performed 

using the Adam optimizer with learning rate 0.001, batch 

size 64, and up to 100 epochs. A hybrid loss function 

combining categorical cross-entropy (classification) and 

mean squared error (location) was applied. 

1 Input Layer: The input layer receives the 

sequence components of the PMU data as a 

multichannel input, where each channel 

corresponds to a different sequence component 

(e.g., 𝑰𝟎, 𝑰𝟏, 𝑰𝟐 ). 

2 Convolutional Layers: Convolutional filters are 

applied to the input data by these layers in order 

to extract temporal and spatial properties that are 

pertinent to fault detection. The output of a 

convolutional layer 𝒀 for input 𝑿 and filter 𝑾 is 

given by: 

𝒀(𝒕) = 𝝈 (∑  

𝑵

𝒊=𝟏

 𝑿(𝒕 − 𝒊) ⋅ 𝑾(𝒊) + 𝒃) (7) 

where: 

• 𝝈(⋅) is the activation function (e.g., ReLU). 

• 𝑵 implies the filter size. 

• 𝒃 is the bias term. 

3 Pooling Layers: These layers lower the feature 

maps' dimensions while keeping the most 

important features and simplifying computation. 

A popular technique is max pooling, which is 

described as: 

𝒀pool (𝒕) = 𝒎𝒂𝒙
𝒊∈𝑷

 𝒀(𝒕 + 𝒊) 
(8) 

where: 

• 𝑷 is the pooling window. 

4 Fully Connected Layers: These layers generate a 

final prediction by combining the traits that the 

convolutional layers have retrieved. A 

completely linked layer's output 𝑶 is determined 

by: 

𝑶 = 𝝈 (∑  

𝒋

 𝑾𝒋 ⋅ 𝒀𝒋 + 𝒃) (9) 

where: 

• 𝑾𝒋 are the weights associated with the features 

𝒀𝒋 from the previous layer. 

5 Output Layer: The final layer outputs the fault 

location as a continuous variable 𝒅, representing 

the gap to the fault from a reference point (e.g., 

the substation). The output can be expressed as: 

𝒅 = 𝑾𝒇 ⋅ 𝒀𝒇 + 𝒃𝒇 (10) 

where: 

• 𝑾𝒇 and 𝒃𝒇 display the weights and bias of the 

final layer. 

• 𝒀𝒇 represents the feature vector from the last 

fully connected layer. 

The CNN was trained using the Adam optimizer with a 

learning rate of 0.001, a batch size of 64, and a maximum 

of 100 epochs. The loss function combined mean squared 

error (for fault location regression) with categorical cross-

entropy (for fault type classification). To avoid over 

fitting, an early stopping criterion was applied if the 

validation loss did not improve for 10 consecutive epochs. 

Each training run was repeated five times with different 

random seeds to ensure convergence consistency. 

The dataset was partitioned into 70% training, 15% 

validation, and 15% testing subsets, ensuring balanced 

representation of all fault categories and locations. To 

confirm reproducibility, each experiment was repeated 

five times with different random seeds, and results are 

reported as averages with standard deviations. Model 
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weights were initialized using Xavier initialization, and 

training employed early stopping when validation loss did 

not improve for 10 epochs. 

4.3 Integration with edge computing 

Once trained, the CNN model can predict fault locations 

in real time for any incoming PMU data. New data may be 

added to the model on a regular basis to improve forecast 

accuracy. The CNN's output may be used with 

conventional impedance-based techniques to improve the 

fault-location process further. 

The proposed hybrid architecture divides responsibilities 

between the edge and the cloud. Edge devices, such as 

feeder-level PMUs and intelligent electronic devices 

(IEDs), are responsible for immediate acquisition of 

voltage and current signals, data normalization, 

symmetrical component transformation, and real-time 

CNN inference for both fault detection and localization. 

These tasks are optimized for low-latency response and 

can be executed with limited computational resources. 

The cloud servers, on the other hand, manage model 

retraining, long-term historical data storage, and periodic 

synchronization of updated model weights to the edge 

nodes. This ensures that the CNN deployed at the edge 

remains adaptive to evolving operating conditions while 

maintaining ultra-fast inference locally. During fault 

events, only the prediction results (fault type and location) 

are communicated to the control center, thereby reducing 

bandwidth usage compared to transmitting raw 

measurements. 

4.4 Evaluation and performance metrics 

Finally, the productivity of the recommended tactic can be 

measured based on various criteria, including accuracy, 

latency, and computational efficiency. It can be evaluated 

as follows: 

• Accuracy: Measured as the deviation between 

the predicted fault location 𝒅pred  and the actual 

fault location 𝒅true  : 

Accuracy = 𝟏 −
|𝒅pred − 𝒅true |

𝒅true 

 (11) 

• Latency: Time from fault occurrence to fault 

location prediction. This would include data 

transmission, pre-processing, CNN inference, 

and results output. 

• Computational Efficiency: Assessed in terms of 

edge device resource use and processing time. 

A solution for the proposed CNN-based method in an 

edge computing framework looks very promising for 

achieving great performance improvements in both fault 

location precision and speed, especially in complex 

distribution networks. Fault management in power 

systems would become far more reliable and timely using 

advanced ML techniques, together with the computational 

advantages provided by the concept of edge computing. 

The model performance was evaluated using 

classification accuracy, precision, recall, F1-score, and 

localization error (km). In addition, latency from fault 

occurrence to final prediction was measured, including 

data preprocessing and CNN inference time. 

The dataset was partitioned into training (70%), 

validation (15%), and testing (15%) subsets, ensuring 

balanced representation of all fault types and locations. To 

confirm generalizability, we implemented 5-fold cross-

validation, where the model was trained on 80% and 

validated on 20% of the data in each fold. The averaged 

accuracy, precision, recall, and F1-scores across folds are 

reported. In addition, unseen test scenarios with fault 

resistances and load conditions not present in the training 

data were reserved for final evaluation. On these unseen 

scenarios, the CNN achieved 100% fault-type 

classification accuracy and an average localization error 

of 0.18 km. 

5 Case study and detailed analysis 
The findings of an extensive case study confirming the 

suggested fault identification technique utilizing CNN and 

edge computing are shown in this section. The case study 

was conducted on a real distribution network, with results 

illustrated through figures and detailed tables. 

5.1 Case study overview 

In a semi-urban area, a 33 kV distribution network with 

five feeders supplying a mix of customer sectors 

(residential, commercial, and industrial) underwent the 

case study. The network is about 120 km long, with 

multiple PMUs installed at appropriate locations within 

substations and critical junctions of the network. The case 

study aimed to analyze performances from the CNN-based 

fault location method under real operational conditions, 

including different fault types, changes in load, and delays 

in communication. 

5.2 Simulation scenarios and data collection 

The network was modeled using MATLAB/Simulink, 

with faults introduced at random locations and times to 

simulate real operational conditions. Various fault 

scenarios, including symmetrical and unsymmetrical 

faults, were simulated with diverse fault resistances, 

locations, and load conditions are provided in Table 1.

Table 1: Fault scenarios and network conditions. 

Scenario Fault Type Location (km) Fault Resistance (Ohms) Load Condition 
Communication Delay 

(ms) 

1 Single Line-to-Ground 10.5 5 Low 10 

2 Double Line-to-Ground 45.0 3 High 50 

3 Three-Phase 75.0 2 Medium 20 

4 Line-to-Line 60.0 10 High 30 

5 Three phase-to-Ground 105.0 1 Low 15 
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Figure 4: Network topology, PMU placement, and functional mapping of the edge-cloud architecture showing the 

division of tasks between local edge devices (data processing and CNN inference) and cloud servers (retraining and 

storage). 

Fig. 4 shows the topology of the dispersion network 

used in the case study, along with the placement of PMUs. 

The network is divided into several feeders, each serving 

a specific area with different load characteristics. 

5.3 Results and analysis 

The situations listed in Table 1 were subjected to the 

CNN-based fault location technique. Table 2 provide a 

summary of the fault site prediction results, including 

error metrics and delay.

Table 2: Fault location prediction results. 

Scenario Actual Location(km) Predicted Location(km) Error (km) Error (%) Latency (ms) 

1 10.5 10.4 0.1 0.95 45 

2 45.0 44.8 0.2 0.44 60 

3 75.0 74.9 0.1 0.13 50 

4 60.0 59.7 0.3 0.50 55 

5 105.0 104.8 0.2 0.19 40 

The majority of predictions have an error margin of 

less than 0.5%, highlighting the precision of the CNN 

model (Table 3).

Table 3: Fault type categorization precision. 

Scenario Fault Type Classification Accuracy (%) 

1 Single Line-to-Ground 98.5 

2 Double Line-to-Ground 97.2 

3 Three-Phase 98.7 

4 Line-to-Line 96.14 
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Figure 5: Fault type categorization confusion matrix 

Fig. 5 presents the confusion matrix for fault type 

classification, showing that the CNN model accurately 

classified the fault types across all scenarios with 100% 

classification accuracy. 

5.4 Latency analysis 

Latency is a critical factor in fault detection and 

localization, especially in real-time power system 

operations. The edge-cloud framework implemented in 

this study significantly reduced the overall latency 

compared to a traditional cloud-only approach (Table 4).

Table 4: Comparative latency analysis 

Scenario Edge-Cloud Latency (ms) Cloud-Only Latency (ms) Improvement (%) 

1 45 90 50 

2 60 120 50 

3 50 100 50 

4 55 110 50 

5 40 80 50 

Table 4 shows the reduction in latency achieved by 

the edge-cloud framework. The results show a consistent 

50% reduction in latency across all scenarios, 

demonstrating the efficiency of the proposed approach in 

real-time fault management. 

5.5 Comparative analysis with traditional 

methods 

The CNN-based technique was compared with the 

conventional impedance-oriented method of fault location 

to evaluate its efficiency further. Table 5 summarize the 

results of this comparison.

Table 5: Comparative analysis with impedance-based method. 

Metric CNN-Based Method Impedance-Based Method 

Average Error (km) 0.18 ± 0.05 1.25 

Average Error (%) 0.21 ± 0.07 1.39 

Average Latency (ms) 50 120 

Fault Type Accuracy (%) 100 85 

Precision (%) 99.6 ± 0.3 83.4 

Recall (%) 99.8 ± 0.2 84.1 

F1-Score (%) 99.7 ± 0.3 83.7 

Cross-Validation Accuracy (%) 99.9 (5-fold average) – 

Unseen Test Set Accuracy (%) 100 – 

Table 5 displays the comparison of the fault location 

errors between the CNN- and traditional impedance-based 

tactics. Thus, the CNN-based method is more reliable for 

fault location in modern power system fault localization, 
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with more precision and speed compared to the traditional 

impedance-based methods. 

5.6 Impact of network conditions 

Another test of the robustness of the recommended tactic 

under diverse network conditions, including various load 

profiles and communication delays, shows that even under 

unfavorable conditions, the CNN-based method still 

manages to maintain high accuracy. Table 6 lists the 

performance comparisons.

Table 6: Impact of network conditions on fault location accuracy. 

Scenario Load Condition Communication Delay (ms) Prediction Error (km) Error (%) 

1 Low 10 0.1 0.95 

2 High 50 0.2 0.44 

3 Medium 20 0.1 0.13 

4 High 30 0.3 0.50 

5 Low 15 0.2 0.19 

Table 6 illustrates how varying network conditions 

affect the precision of the fault location predictions. The 

results validate the robustness and reliability of the 

recommended tactic across various operational scenarios. 

The case study's results demonstrate the CNN-based fault 

location method's high accuracy and low latency within an 

edge-cloud framework. The comparative analysis with 

traditional methods indicates that the methodology 

performs satisfactorily even in poor network conditions, 

making it a competitive solution for use in modern power 

systems. 

While the proposed CNN-based edge–cloud 

framework demonstrates excellent performance on a 33 

kV distribution test system, certain limitations remain. 

First, the accuracy of the CNN is dependent on the 

diversity of training data; although multiple fault types, 

resistances, and load conditions were included, extending 

the dataset with field data will be critical for broader 

applicability. Second, the computational efficiency of 

edge devices imposes constraints on model complexity, 

requiring careful design of lightweight architectures. 

Third, scalability to larger distribution systems or meshed 

topologies may involve increased data synchronization 

demands between edge nodes and the cloud. Nonetheless, 

the modular nature of the framework enables deployment 

across multiple feeders, and edge devices can operate 

independently while periodically updating from the cloud. 

Future work will focus on testing the framework under 

higher renewable penetration, cyber attack resilience, and 

across larger IEEE benchmark networks to further validate 

scalability. 

6 Conclusion 
This study introduces a novel strategy for fault detection 

and localization in distribution networks by integrating 

convolutional neural networks (CNNs) with a hybrid 

edge–cloud computing framework. The proposed 

approach leverages the low-latency advantages of edge 

computing together with the predictive power of deep 

learning models, while overcoming the limitations of 

conventional impedance-based methods. Extensive 

simulations and case studies on a 33 kV distribution 

network validated the framework, demonstrating superior 

accuracy, reduced latency, and robustness under diverse 

operating conditions. The CNN-based method not only 

achieved faster response times but also correctly identified 

a wider range of fault types compared to traditional 

approaches. The edge–cloud architecture further 

minimized communication delays, enabling efficient 

decentralized processing. Results across different load 

scenarios and communication settings confirmed the 

adaptability and reliability of the framework for modern 

smart grids. Ultimately, combining CNNs with edge–

cloud computing provides a powerful solution for real-

time fault management, enhancing both the resilience and 

efficiency of distribution networks. Future work will 

extend this methodology to larger and more complex 

topologies and investigate the integration of additional 

data sources, such as weather and load forecasts, to 

improve predictive capability. These outcomes point 

toward the development of the next generation of 

intelligent, adaptive fault management systems in smart 

power grids. 
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