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Timely and accurate fault detection and localization are essential for reliable operation of distribution
networks. This paper presents a hybrid edge—cloud framework that integrates convolutional neural
networks (CNNs) with edge computing to achieve real-time performance. The proposed method distributes
computational tasks such that edge devices handle data acquisition, preprocessing, and CNN-based
inference, while cloud servers manage model retraining and historical data storage. The CNN
architecture comprises three convolutional layers with ReLU activation, max-pooling, and two fully
connected layers optimized for lightweight inference. A 33 kV distribution network model was used to
generate fault scenarios, including single line-to-ground, double line-to-ground, line-to-line, three-phase,
and three-phase-to-ground faults under varying resistances and loads. Experimental results show that the
proposed framework achieves 100% fault-type classification accuracy, an average fault localization error
of 0.18 km (vs. 1.25 km for impedance-based methods), and a 50% latency reduction compared to cloud-
only implementations. These results confirm that the framework enhances both responsiveness and
resilience, offering a scalable solution for modern distribution network fault management.

Povzetek: Pristop uporablja “pametno” racunalnisko metodo, kjer del izracunov poteka Ze na napravah
na terenu, preostanek pa v oblaku, zato okvare v elektricnem omrezju zazna hitreje in jih tudi bolj

natancno locira.

1 Introduction

Timely and accurate fault detection remains one of the
most critical requirements for ensuring the reliability and
resilience of modern distribution networks. As networks
expand in scale and complexity, the volume of data
generated by advanced monitoring devices such as phasor
measurement units (PMUSs) has increased significantly.
Centralized fault management systems face inherent
challenges under these conditions, as transmitting high-
frequency measurements to control centers can introduce
delays that compromise real-time decision-making [1],
[2], [3]- Therefore, it is scientifically essential to develop
new approaches that can deliver low-latency fault
recognition, minimize communication burdens, and
maintain  dependable operation in decentralized
distribution environments [4]-[6].

Recent  advancements in  fault  detection
methodologies increasingly incorporate machine learning
(ML) techniques such as convolutional neural networks
(CNNSs), which provide powerful feature extraction and
classification capabilities. CNNs demonstrate efficiency
and effectiveness in fault and anomaly detection across
applications involving images and signals in diverse
domains [7], [8], [9]. Their application in distribution

networks is also well documented, particularly in
centralized schemes where computational tasks are
handled by cloud-based servers. While these models
achieve high accuracy, their reliance on centralized
processing introduces latency that is undesirable for real-
time responses [10].

Edge computing addresses this challenge by moving
computational tasks closer to the data sources, thereby
reducing latency. Multiple studies confirm that edge
computing significantly decreases data processing time
and improves decision-making in domains such as
industrial 10T, smart grids, and network monitoring [11],
[12], [13]. In the context of distribution networks,
researchers investigate general edge data processing
frameworks [14], and more recently, hybrid edge—cloud
architectures where edge devices process immediate
signals while cloud servers perform resource-intensive
computations [15]. These architectures aim to balance
workloads between the edge and the cloud for optimized
performance and resource utilization.

Within the power systems domain, CNN-based fault
detection has gained attention for its robustness under
varied fault types and operating conditions. Mora-Florez
et al. compare impedance-based and learning-assisted
fault location methods in distribution systems [16], while



332 Informatica 49 (2025) 331342

Personal et al. present advanced impedance-based
schemes for underground systems [17], [18]. Nouri et al.
introduce  wavelet-transform-based  techniques for
locating faults in distribution lines [19], and Hamidi et al.
develop traveling-wave detection approaches using
matrix-pencil methods [20]. Similarly, Milioudis et al.
propose communication-assisted schemes for smart grid
fault localization [21]. These studies highlight the
diversity of methodologies that complement or serve as
baselines for CNN-based approaches.

More recent contributions explicitly combine CNNs
with edge-based implementations for enhanced fault
detection. Niu et al. (2023) propose a lightweight
YOLOv5-based CNN optimized with GhostNet to detect
defects in distribution line components in real time,
achieving a substantial improvement in both accuracy and
inference speed on edge devices [22]. Pour Shafei et al.
(2024) present a CNN model using Park’s vector
transformation of three-phase signals, enabling accurate
detection and categorization of faults in medium-voltage
distribution networks with over 93% accuracy [23]. Gao
et al. (2023) design a two-stage edge framework where a
lightweight 1D CNN detects transients, followed by a
ResNet-18 classifier operating on Hilbert-spectrum
images to identify high-impedance faults in resonant-
grounded systems [24]. Wang et al. (2024) further
enhance high-impedance fault detection by fusing time—
frequency—space features and training a hybrid CNN,
achieving 98.85% detection accuracy under diverse
conditions [25]-[27]. These works demonstrate that edge-
enhanced CNNs can deliver robust performance while
meeting the low-latency requirements of modern
distribution systems.

Although prior works demonstrate significant
progress in applying CNNs and edge computing for power
system fault detection, two critical gaps remain that our
proposed method aims to address:

e Integrated detection and localization at the
edge: Most existing studies focus either on fault
detection or fault classification, with limited
attention to precise fault localization. Our
framework enables both detection and accurate
localization in real time directly at the edge,
reducing dependence on cloud servers.

e Generalizable and efficient architecture:
Several recent approaches rely on complex
preprocessing  pipelines  (e.g.,  wavelet
transforms, Hilbert spectra, or image generation)
or deep networks with high computational costs.
Our method introduces a streamlined hybrid
edge—cloud CNN that learns fault signatures end-
to-end, ensuring scalability across different fault
types while remaining lightweight enough for
deployment on typical distribution network edge
devices.

In light of the identified research gaps, the key
contributions and novelties of our work can be
summarized as follows:

1. Hybrid edge-cloud CNN framework for
simultaneous detection and localization: We
designed and implemented a CNN-based
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architecture that executes real-time fault
detection and localization directly on edge
devices, while delegating retraining and
historical data management to the cloud. This
hybrid arrangement ensures ultra-low latency
and accurate location prediction under diverse
operating conditions.

2. Lightweight and scalable architecture

validated on real distribution networks:
Unlike prior approaches that depend on heavy
preprocessing or computationally expensive
CNNSs, our method employs a streamlined deep
learning model optimized for edge deployment.
Extensive experiments on a 33 kV distribution
network demonstrated superior performance,
achieving 100% fault-type classification
accuracy, average fault localization error of
only 0.18 km, and a 50% reduction in latency
compared to cloud-only systems.

Section 2 of the paper outlines the limitations of
traditional approaches and explores the potential of edge
computing and deep learning. Section 3: Background and
related work discusses the current faults in power systems.
The fault location issue with CNNs in the edge-cloud
computing architecture is formulated, and the system
model is described in Section 4. The proposed CNN-based
method for fault detection is detailed, covering aspects
such as architecture, data pre-processing, integration with
the edge-cloud infrastructure, and the associated
mathematical formulations. The outcomes and simulation
tests, which showcase the efficacy of the suggested
approach in a variety of circumstances, will be covered in
detail in Section 5. This paper's core results,
consequences, and recommendations for further research
are outlined in Section 6.

2 Dual edge-cloud system

2.1 Basis for adopting the edge-cloud design

Measurement devices in TNs produce vast quantities of
data, commonly relayed to control centers through
specialized optical communication channels. However,
Distribution ~ Networks (DNs) often lack this
infrastructure, necessitating the use of other
communication technologies like LTE networks. An
analysis of latency and data transmission reliability should
precede any systems utilizing these technologies in DNs.
This chapter focuses on the QoS evaluation of PMU data
across an LTE network. This is part of the development of
a computationally robust framework for localizing faults
in DNs with the help of PMU data.

Three types of requirements from the IEC 61850-90-

5 norm apply to real-time synchronized phasor
measurement data exchange in power systems.

e Ultra-low latency applications in real-time.
Generally, these applications fall within the
millisecond range. Adaptive relaying and out-of-
step protection, which require instantaneous
responses to maintain system stability, are among
these applications.
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e Near real-time (observability) applications.
These would involve state estimation, situational
awareness, and online security assessment.
Tolerance to higher delays, typically on the order
of seconds, is achievable for monitoring and,
occasionally, for visualization purposes.

e Archiving applications: Due to their use in after-
event analysis, they are not subject to strict
latency constraints. However, lossless data
transfer is critical in ensuring record accuracy.
The remainder of this chapter explains the IEC
61850-90-5 QoS requirements in the context of
LTE networks.

2.1.1 Configuration of the IEC 61850 — 90 — 5
Testbed Evaluation

To evaluate QoS, a testbed was constructed, as shown in
Fig. 1. The testbed was a PMU emulator that was set up to
simulate the network traffic that a PMU would typically
experience using the DEKRA Performance Test Tool.
This emulator simulated different LTE network
circumstances by connecting via an RF coaxial wire to a
Keysight UXM LTE base-station emulator. Additionally,
the testbed had a secondary Ethernet connection to a PC
for controlling the experiments [22].

Automation and sequencing were handled by the
Keysight Test Automation Platform, using scripts to
manage the PMU emulator, UXM, and data recording. By
acting as a traffic generator and performance assessor, the
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DEKRA Performance Tool computed important
performance indicators, including packet loss, delay, and
throughput. While the DEKRA server operated on the
testbed PC, the client was running on the modeled PMU.

2.1.2 Implementation of IEC 61850 — 90 — 5 in
a Practical Evaluation Scenario

The use case mirrored common DN situations and
concentrated on an urban-pedestrian LTE network
scenario. Four sub-scenarios reflecting various urban
settings were created from this scenario, which was
established by the LTE testbed supplier. Each sub-
scenario was executed for 30 seconds, allowing the LTE
network to stabilize within a few hundred milliseconds
after each switch. To lessen the effect of scenario change,
each was executed five times throughout a 600-second test
period.

With a 50 Hz reporting rate, the DEKRA tool
replicated a typical PMU configuration by simulating an
80 kbit/s data stream at 50 packets/s. When the PMU was
in synchrophasor mode, it transmitted IEEE €37.118 —
2018 packets to a concentrator that included grid voltage
and current measurements. Both TCP and UDP protocols
were tested under the urban-pedestrian scenario [23].
While TCP guarantees packet delivery through

acknowledgment, it may introduce latency when packets
are lost. In contrast, UDP, which does not require
acknowledgment, offers lower latency at the expense of
potential packet loss.

Testbed PC:
DEKRA Server

o

UXM:

LTE Base Station
emulation

TAP

PMU Emulator:
DEKRA Client

o

Figure 1: IEC 61850 — 90 — 5 evaluation testbed.

2.1.3 Evaluation results

The evaluation results highlight the trade-offs between
latency and reliability when using LTE networks for PMU
data transmission in DNs. The results are summarized in

Figs. 2 and 3, showing the performance metrics under both
TCP and UDP protocols across the four sub-scenarios.

e Latency: Under TCP, average latency was
higher, especially when packet loss occurred, as
the  protocol's error-handling  mechanism
introduced delays. In contrast, UDP exhibited
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consistently lower latency, making it more
suitable for time-critical applications. Fig. 2
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However, as network conditions deteriorated,
TCP's throughput decreased due to the additional

overhead from error correction. On the other
hand, UDP showed fairly constant throughput,
which is the most critical factor in applications
that require timely data delivery rather than
reliability.

These results have indicated that the choice between
TCP and UDP should be application-dependent. Despite
showing higher packet loss, real-time applications that
require low latency may prefer UDP over TCP.
Conversely, TCP's reliability justifies higher latency for
applications that cannot compromise integrity.

illustrates the latency measurements across
different sub-scenarios for both protocols.

e Packet Loss: As expected, UDP suffered from
higher packet loss, particularly in scenarios with
poor network conditions. TCP, on the other hand,
maintained near-zero packet loss due to its
acknowledgment and retransmission features.
However, this came at the cost of increased
latency. Fig. 3 shows the packet loss rates under
both protocols.

e Throughput: Both protocols maintained similar
throughput under ideal network conditions.
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Figure 3: Latency measurements across TCP.

resources at the edge of the cloud symbiotically to attain
the best trade-off between latency and reliability. For
example, the edge can execute time-critical tasks closer to
the source with minimal latency, while the cloud can
process less time-sensitive tasks deeper to ensure data
integrity and storage.

2.2 Implications for edge-cloud computing
in DNs
These evaluation results present valuable insight into

developing optimum architectures for edge-cloud
computing in DNs. The balanced approach exploits the
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The integration of the LTE network with the edge-
cloud computing framework necessitates careful
evaluation of both network and application conditions.
Properly picking the right communication protocol and
optimizing the deployment of edge and cloud resources
could ensure a robust and efficient system for fault
localization and other advanced DN applications. This
comprehensive assessment of the IEC 61850-90-5
standard over LTE networks can, therefore, form the very
basis for further research in optimizing the edge-cloud
architectures toward making DNs capable of meeting the
stringent demands put on them by modern power systems.

3 Faults in power systems

3.1 Overview of fault types in power systems

Power system faults are abnormal conditions that disturb
the typical functioning of electrical networks. They may
cause large disturbances: equipment damage, service
interruptions, and safety hazards. Therefore, it is crucial to
understand and precisely detect them to ensure stability,
safety, and minimal downtime. In general, power system
malfunctions fall into one of the following categories:

e Symmetrical Faults: These involve all three
phases and are relatively rare but severe, as they
lead to a substantial drop in system voltage. The
3-phase short circuit is a typical kind of
symmetrical defect.

e Unsymmetrical Faults: These faults affect only
one or two phases and are more common. Line-
to-line (L — L), line-to-ground (L — G), and
double line-to-ground (LL — G) faults are among
them.

e Open-Circuit Faults: These occur when a
conductor breaks, leading to an open circuit.
Such faults are less severe but can cause
unbalanced system operation.

3.2 Mathematical modeling of faults

For fault analysis and detection, the mathematical
modeling of faults in power systems has to be as precise
as possible. Network equations based on symmetrical
components and sequence networks can represent
variations in system impedance, voltage, and current that
occur under faults.

3.2.1 Symmetrical faults

This includes three-phase faults. All phases experience
equal effects due to the balance of a three-phase fault. The
following equation calculates the current I at the time of

a three-phase fault.
E

= za (1)

where:

e At the site of the fault, E is the system voltage.

e The Thevenin equivalent impedance, as viewed
from the fault location, is Z,,.
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The symmetry of the fault implies that I, = I, = lo; that
is, all sequence components of the current are equal, and
this simplifies the analysis accordingly.

3.2.2 Unsymmetrical faults

Unsymmetrical faults lead to system imbalance.
Symmetrical components in a system, represented by
three sequence networks: zero sequences, positive, and
negative, are the basis for their analysis.

e Single L — G Fault:

When an L — G fault occurs at phase a, the fault
current I'r may be written as follows:

3E

T Z 42, + 2, + 3% )

Iy

where:

o 7y, Z,, and Z, signify the positive, zero-
sequence, and negative impedances,
respectively.

e Z; isthe fault impedance.

o L —L fault:

For an L — L fault between phases a and b, the fault

current I is given by:
E
=z, 72 ©)

Here, the zero-sequence impedance Z, does not
contribute, as the sum of the fault currents in the three
phases is zero.

e LL — G fault:

For an LL — G fault involving phases a and b, the
fault current I is:

; E-(Z,+Z,)
=@ +2)Zy + 2) + 2,2y + 2, + Z,) D)

This equation reflects the combined effects of the
positive, zero-sequence, and negative networks.

4 Fault location method using CNN
and edge computing

4.1 Overview of the recommended tactic

Finding the exact location of defects is essential in
contemporary power systems to improve power delivery
efficiency and reliability. A potent solution for real-time
defect identification and localization is achieved through
the combination of edge computing and advanced ML
algorithms such as convolutional neural networks
(CNNs). This section introduces our CNN-based edge
computing framework for fault location, which processes
PMU data efficiently and provides accurate localization
even in complex distribution network topologies.

4.2 CNN-based fault location method

CNNs, as a subclass of deep learning models, excel in
signal and pattern recognition tasks. In power systems,
CNNs can analyze current waveforms captured by PMUs
during fault events. Our approach consists of three main
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stages: (i) data preprocessing, (ii) CNN model design, and
(iii) fault location prediction.

4.2.1 Data Pre-processing

The raw PMU data consists of time-series current
measurements, which undergo preprocessing to extract
relevant features.

1. Data normalization: Normalization ensures
consistent CNN input and is applied according
to:

X(t)—nu
Xnorm (t) = % (5)
where X(t) represents the current measurement at
time t, and uy and gy are the mean and standard deviation
of the measurement series X (t).

2 Sequence Component Transformation: To
capture the unbalanced nature of distribution
faults, the normalized three-phase current signals
are transformed into symmetrical components:

Io(t) + 1,(t) + 1.()

Iy(t) = 3

I,(t I (t Zor.(t
L = & +a b(3)+a ® ©)
L = I,(t) +a?- 1,,3(t) +a-I.(t)

where I,(t),1;(t), and I,(t) denote the zero-,
positive-, and negative-sequence currents, respectively,
and a = e/2™/3 is the 120° phase-shift operator.

The dataset was generated using a 33 kV semi-urban
distribution network modeled in MATLAB/Simulink. A
total of 5,000 fault scenarios were simulated, including
single line-to-ground, double line-to-ground, line-to-line,
three-phase, and three-phase-to-ground faults. Fault
resistances were varied between 1-10 Q, and simulations
were conducted under multiple load levels and
communication delay conditions to ensure diversity. Each
scenario produced time-series current waveforms captured
from PMUs. These data were labeled with both fault type
and location, forming the supervised dataset.

4.2.2 CNN model design

The CNN consists of three convolutional layers with 3x3
filters and ReLU activation, each followed by max-
pooling layers to reduce dimensionality. The feature maps
are flattened and connected to two fully connected layers.
The final outputs include: (i) a softmax activation layer for
fault type classification, and (ii) a linear regression output
for fault location estimation. Training was performed
using the Adam optimizer with learning rate 0.001, batch
size 64, and up to 100 epochs. A hybrid loss function
combining categorical cross-entropy (classification) and
mean squared error (location) was applied.

1 Input Layer: The input layer receives the
sequence components of the PMU data as a
multichannel input, where each channel
corresponds to a different sequence component

(eg'l 10'111 12 )
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2  Convolutional Layers: Convolutional filters are
applied to the input data by these layers in order
to extract temporal and spatial properties that are
pertinent to fault detection. The output of a
convolutional layer Y for input X and filter W is

given by:
N
Y(£) = a(Z X(t—i) W) + b> @)
i=1
where:

e a(-) is the activation function (e.g., ReLU).

e N implies the filter size.

e b isthe bias term.

3 Pooling Layers: These layers lower the feature
maps' dimensions while keeping the most
important features and simplifying computation.
A popular technique is max pooling, which is
described as:

Ypool (t) = 1rllEanY(t + l) (8)

where:

e P is the pooling window.

4  Fully Connected Layers: These layers generate a
final prediction by combining the traits that the
convolutional layers have retrieved. A
completely linked layer's output O is determined

0=0 ij-yj+b ©)

e W; are the weights associated with the features
Y; from the previous layer.

5 Output Layer: The final layer outputs the fault
location as a continuous variable d, representing
the gap to the fault from a reference point (e.g.,
the substation). The output can be expressed as:

where:
e W, and by display the weights and bias of the
final layer.

e Y, represents the feature vector from the last
fully connected layer.

The CNN was trained using the Adam optimizer with a
learning rate of 0.001, a batch size of 64, and a maximum
of 100 epochs. The loss function combined mean squared
error (for fault location regression) with categorical cross-
entropy (for fault type classification). To avoid over
fitting, an early stopping criterion was applied if the
validation loss did not improve for 10 consecutive epochs.
Each training run was repeated five times with different
random seeds to ensure convergence consistency.
The dataset was partitioned into 70% training, 15%
validation, and 15% testing subsets, ensuring balanced
representation of all fault categories and locations. To
confirm reproducibility, each experiment was repeated
five times with different random seeds, and results are
reported as averages with standard deviations. Model
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weights were initialized using Xavier initialization, and
training employed early stopping when validation loss did
not improve for 10 epochs.

4.3 Integration with edge computing

Once trained, the CNN model can predict fault locations
in real time for any incoming PMU data. New data may be
added to the model on a regular basis to improve forecast
accuracy. The CNN's output may be used with
conventional impedance-based techniques to improve the
fault-location process further.

The proposed hybrid architecture divides responsibilities
between the edge and the cloud. Edge devices, such as
feeder-level PMUs and intelligent electronic devices
(IEDs), are responsible for immediate acquisition of
voltage and current signals, data normalization,
symmetrical component transformation, and real-time
CNN inference for both fault detection and localization.
These tasks are optimized for low-latency response and
can be executed with limited computational resources.
The cloud servers, on the other hand, manage model
retraining, long-term historical data storage, and periodic
synchronization of updated model weights to the edge
nodes. This ensures that the CNN deployed at the edge
remains adaptive to evolving operating conditions while
maintaining ultra-fast inference locally. During fault
events, only the prediction results (fault type and location)
are communicated to the control center, thereby reducing
bandwidth usage compared to transmitting raw
measurements.

4.4 Evaluation and performance metrics

Finally, the productivity of the recommended tactic can be
measured based on various criteria, including accuracy,
latency, and computational efficiency. It can be evaluated
as follows:
e Accuracy: Measured as the deviation between
the predicted fault location d,,.4 and the actual
fault location d,. :

/dpred - dtrue /

Accuracy =1 — —a_ (11)

true

e Latency: Time from fault occurrence to fault
location prediction. This would include data
transmission, pre-processing, CNN inference,
and results output.

e Computational Efficiency: Assessed in terms of
edge device resource use and processing time.

A solution for the proposed CNN-based method in an

edge computing framework looks very promising for
achieving great performance improvements in both fault
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location precision and speed, especially in complex
distribution networks. Fault management in power
systems would become far more reliable and timely using
advanced ML techniques, together with the computational
advantages provided by the concept of edge computing.

The model performance was evaluated using
classification accuracy, precision, recall, F1-score, and
localization error (km). In addition, latency from fault
occurrence to final prediction was measured, including
data preprocessing and CNN inference time.

The dataset was partitioned into training (70%),
validation (15%), and testing (15%) subsets, ensuring
balanced representation of all fault types and locations. To
confirm generalizability, we implemented 5-fold cross-
validation, where the model was trained on 80% and
validated on 20% of the data in each fold. The averaged
accuracy, precision, recall, and F1-scores across folds are
reported. In addition, unseen test scenarios with fault
resistances and load conditions not present in the training
data were reserved for final evaluation. On these unseen
scenarios, the CNN achieved 100% fault-type
classification accuracy and an average localization error
of 0.18 km.

5 Case study and detailed analysis

The findings of an extensive case study confirming the
suggested fault identification technique utilizing CNN and
edge computing are shown in this section. The case study
was conducted on a real distribution network, with results
illustrated through figures and detailed tables.

5.1 Case study overview

In a semi-urban area, a 33 kV distribution network with
five feeders supplying a mix of customer sectors
(residential, commercial, and industrial) underwent the
case study. The network is about 120 km long, with
multiple PMUs installed at appropriate locations within
substations and critical junctions of the network. The case
study aimed to analyze performances from the CNN-based
fault location method under real operational conditions,
including different fault types, changes in load, and delays
in communication.

5.2 Simulation scenarios and data collection

The network was modeled using MATLAB/Simulink,
with faults introduced at random locations and times to
simulate real operational conditions. Various fault
scenarios, including symmetrical and unsymmetrical
faults, were simulated with diverse fault resistances,
locations, and load conditions are provided in Table 1.

Table 1: Fault scenarios and network conditions.

Scenario Fault Type Location (km) Fault Resistance (Ohms) Load Condition (Cnc:;r;mumcanon Delay
1 Single Line-to-Ground 10.5 5 Low 10
2 Double Line-to-Ground | 45.0 3 High 50
3 Three-Phase 75.0 2 Medium 20
4 Line-to-Line 60.0 10 High 30
5 Three phase-to-Ground 105.0 1 Low 15
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Figure 4: Network topology, PMU placement, and functional mapping of the edge-cloud architecture showing the
division of tasks between local edge devices (data processing and CNN inference) and cloud servers (retraining and

storage).

Fig. 4 shows the topology of the dispersion network 5.3 Results and analysis

used in the case study, along with the placement of PMUs.
The network is divided into several feeders, each serving
a specific area with different load characteristics.

error metrics and delay.

Table 2: Fault location prediction results.

The situations listed in Table 1 were subjected to the
CNN-based fault location technique. Table 2 provide a
summary of the fault site prediction results, including

Scenario Actual Location(km) | Predicted Location(km) | Error (km) | Error (%) Latency (ms)
1 10.5 10.4 0.1 0.95 45
2 45.0 44.8 0.2 0.44 60
3 75.0 74.9 0.1 0.13 50
4 60.0 59.7 0.3 0.50 55
5 105.0 104.8 0.2 0.19 40

The majority of predictions have an error margin of
less than 0.5%, highlighting the precision of the CNN

model (Table 3).

Table 3: Fault type categorization precision.
Scenario Fault Type Classification Accuracy (%)
1 Single Line-to-Ground 98.5
2 Double Line-to-Ground 97.2
3 Three-Phase 98.7
4 Line-to-Line 96.14
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Fault Type Classification Confusion Matrix
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Figure 5: Fault type categorization confusion matrix

Fig. 5 presents the confusion matrix for fault type
classification, showing that the CNN model accurately
classified the fault types across all scenarios with 100%
classification accuracy.

5.4 Latency analysis

Latency is a critical factor in fault detection and
localization, especially in real-time power system
operations. The edge-cloud framework implemented in
this study significantly reduced the overall latency
compared to a traditional cloud-only approach (Table 4).

Table 4: Comparative latency analysis

Scenario Edge-Cloud Latency (ms) Cloud-Only Latency (ms) Improvement (%)
1 45 90 50
2 60 120 50
3 50 100 50
4 55 110 50
5 40 80 50

Table 4 shows the reduction in latency achieved by
the edge-cloud framework. The results show a consistent
50% reduction in latency across all scenarios,
demonstrating the efficiency of the proposed approach in
real-time fault management.

5.5 Comparative analysis with traditional
methods

The CNN-based technique was compared with the

conventional impedance-oriented method of fault location

to evaluate its efficiency further. Table 5 summarize the
results of this comparison.

Table 5: Comparative analysis with impedance-based method.

Metric CNN-Based Method | Impedance-Based Method
Average Error (km) 0.18 + 0.05 1.25

Average Error (%) 0.21 +0.07 1.39

Average Latency (ms) 50 120

Fault Type Accuracy (%) 100 85

Precision (%) 99.6 +0.3 83.4

Recall (%) 99.8+0.2 84.1

F1-Score (%) 99.7+0.3 83.7

Cross-Validation Accuracy (%) | 99.9 (5-fold average) | —

Unseen Test Set Accuracy (%) | 100 -

Table 5 displays the comparison of the fault location
errors between the CNN- and traditional impedance-based

tactics. Thus, the CNN-based method is more reliable for
fault location in modern power system fault localization,
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with more precision and speed compared to the traditional
impedance-based methods.

5.6 Impact of network conditions

Another test of the robustness of the recommended tactic
under diverse network conditions, including various load
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profiles and communication delays, shows that even under
unfavorable conditions, the CNN-based method still
manages to maintain high accuracy. Table 6 lists the
performance comparisons.

Table 6: Impact of network conditions on fault location accuracy.

Scenario Load Condition Communication Delay (ms) Prediction Error (km) Error (%)
1 Low 10 0.1 0.95
2 High 50 0.2 0.44
3 Medium 20 0.1 0.13
4 High 30 0.3 0.50
5 Low 15 0.2 0.19

Table 6 illustrates how varying network conditions
affect the precision of the fault location predictions. The
results validate the robustness and reliability of the
recommended tactic across various operational scenarios.
The case study's results demonstrate the CNN-based fault
location method's high accuracy and low latency within an
edge-cloud framework. The comparative analysis with
traditional methods indicates that the methodology
performs satisfactorily even in poor network conditions,
making it a competitive solution for use in modern power
systems.

While the proposed CNN-based edge—cloud
framework demonstrates excellent performance on a 33
kV distribution test system, certain limitations remain.
First, the accuracy of the CNN is dependent on the
diversity of training data; although multiple fault types,
resistances, and load conditions were included, extending
the dataset with field data will be critical for broader
applicability. Second, the computational efficiency of
edge devices imposes constraints on model complexity,
requiring careful design of lightweight architectures.
Third, scalability to larger distribution systems or meshed
topologies may involve increased data synchronization
demands between edge nodes and the cloud. Nonetheless,
the modular nature of the framework enables deployment
across multiple feeders, and edge devices can operate
independently while periodically updating from the cloud.
Future work will focus on testing the framework under
higher renewable penetration, cyber attack resilience, and
across larger IEEE benchmark networks to further validate
scalability.

6 Conclusion

This study introduces a novel strategy for fault detection
and localization in distribution networks by integrating
convolutional neural networks (CNNs) with a hybrid
edge—cloud computing framework. The proposed
approach leverages the low-latency advantages of edge
computing together with the predictive power of deep
learning models, while overcoming the limitations of
conventional impedance-based methods. Extensive
simulations and case studies on a 33 kV distribution
network validated the framework, demonstrating superior
accuracy, reduced latency, and robustness under diverse

operating conditions. The CNN-based method not only
achieved faster response times but also correctly identified
a wider range of fault types compared to traditional
approaches. The edge—cloud architecture further
minimized communication delays, enabling efficient
decentralized processing. Results across different load
scenarios and communication settings confirmed the
adaptability and reliability of the framework for modern
smart grids. Ultimately, combining CNNs with edge—
cloud computing provides a powerful solution for real-
time fault management, enhancing both the resilience and
efficiency of distribution networks. Future work will
extend this methodology to larger and more complex
topologies and investigate the integration of additional
data sources, such as weather and load forecasts, to
improve predictive capability. These outcomes point
toward the development of the next generation of
intelligent, adaptive fault management systems in smart
power grids.
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