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The performance optimization of shield synchronous grouting materials is a key technical problem in
controlling stratum deformation and ensuring structural stability in tunnel engineering. Traditional
proportioning design methods rely on empirical trial and error and have bottlenecks such as poor
multi-objective synergy and weak dynamic adaptability. This study proposes a collaborative
optimization strategy of genetic algorithm (GA) and BP neural network (BPNN), which achieves a
multi-objective dynamic balance of fluidity, strength and timeliness of grouting materials by fusing
global search and local optimization mechanisms. Based on 126 sets of experimental data on grouting
materials, a multi-modal data set was constructed, covering the proportion parameters and
corresponding performance indicators of the cement-fly ash-bentonite system. Combined with dynamic
boundary conditions such as propulsion speed and grouting pressure in shield construction, a GA-BP
collaborative optimization framework was designed. Using a genetic algorithm and BP neural network
series coupling strategy, based on twelve sets of experimental data, a multi-objective optimization study
of synchronous grouting materials was conducted, and the optimal solution was obtained through fifty
iterations of simulation. Experiments show that the optimal ratio scheme (water-binder ratio 0.38,
bentonite content 12%) generated by the synergistic strategy in clay formation makes the slurry fluidity
reach 248mm, 17.6% higher than the empirical ratio. The 3d compressive strength is increased by
22.4% to 1.85 MPa, and the initial setting time is shortened to 5.8 h. Through multi-objective Pareto
solution set analysis, the solution space coverage of the collaborative strategy is increased to 89.2%,
which is 29.7% higher than that of the single genetic algorithm, and the number of convergence
iterations is reduced by 41.3%. In the field verification, the optimized scheme controls the segment
staggering amount within 2.3 mm, which is reduced by 36.1% compared with the traditional method,
and the standard deviation of surface settlement is reduced from 4.5 mm to 2.1 mm. Given the sudden
working conditions of gravel formation, the adaptive adjustment response time of the model is shortened
to 7.5 min, the slurry utilization rate is increased to 92.4%, and the single-ring grouting cost is saved by
13.8 yuan. The research confirms that the collaborative strategy effectively solves the problems of
performance imbalance and engineering adaptability in multi-objective optimization of grouting
materials and provides a new technical path for intelligent construction of shield tunnels.

Povzetek: Predlagan je pristop z genetskim algoritmom in nevronsko mreZo za boljSe nacrtovanje

injektirnih mesSanic pri gradnji predorov, ki izboljsa kljucne lastnosti in se ucinkoviteje prilagaja
razmeram na terenu.

Introduction

nonlinear relationships among these indexes [4]. The

In wurban underground space development, shield
construction has become the core means of tunnel
construction because of its high efficiency and safety [1,
2]. As a key link in shield tunnelling, synchronous
grouting directly affects the stability of tunnel structure,
surface settlement control and long-term service life [3].
Grouting materials need to meet multiple performance
requirements such as fluidity, filling and strength growth
in a very short time, and there are often complex

traditional experience-led material ratio design method
makes it difficult to accurately balance the performance
requirements under different working conditions,
especially in the face of sudden changes in geological
conditions or dynamic adjustment of construction
parameters, which often shows lag and limitations [5].
This contradiction prompts researchers to continuously
explore more intelligent optimization strategies to find
scientific solutions in the multi-objective game of
material properties.
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In current engineering practice, the optimization of
grouting materials mainly faces two practical dilemmas:
first, the mutual restriction between material
performance indexes leads to the low efficiency of
manual trial and error method, and second, the dynamic
construction environment puts forward higher
requirements for material adaptability [6, 7]. The
attenuation of compressive strength may accompany the
improvement of slurry fluidity, while the optimization of
carly strength characteristics may weaken the later
durability performance. This correlation coupling of
multidimensional parameters makes the cost of relying
solely on experimental iteration rise sharply, and it is not
easy to guarantee the global optimality of
multi-objective collaborative optimization [8]. With the
penetration of artificial intelligence technology, some
studies try to use a single algorithm model for parameter
optimization. However, they often fall into the trap of
local optimal solutions or the bottleneck of insufficient
convergence speed, which cannot meet the urgent needs
of real-time decision-making in construction sites [9, 10].
Realizing the intelligent balance of multi-objective
parameters in a limited time has become a key technical
problem restricting improving shield construction
quality.

The cross-border integration of artificial
intelligence technology provides a new perspective for
solving the above problems [11]. Genetic algorithm
shows unique advantages in complex optimization
problems with its powerful global search ability. At the
same time, the BP neural network is good at establishing
high-dimensional nonlinear mapping relationships
through data-driven [12]. The collaborative innovation of
the two may break through the thinking boundaries of
traditional methods: the former realizes wide-area
exploration of solution space by simulating the
mechanism of biological evolution, while the latter uses
the characteristics of error backpropagation to build an
accurate surrogate model. This integration of
complementary technical paths can not only avoid the
inherent defects of a single algorithm but also form a
closed-loop optimization mechanism of "global
optimization-local fine tuning". It is worth noting that the
particularity of underground engineering puts forward
higher requirements for the engineering adaptability of
the algorithm model. How to build a collaborative
optimization framework that conforms to the
time-varying characteristics of grouting materials is still
a technical difficulty that needs to be broken through
urgently.

The rise of digital twin technology provides a new
paradigm of virtual-real interaction for material
optimization [13]. The dynamic simulation and real-time
feedback of material performance parameters can be
realized by establishing the digital mirror image of the
grouting process. This technical route of virtual and real
fusion can significantly reduce the frequency of physical
experiments and provide massive training samples and
verification scenarios for intelligent algorithms. In shield
tunnelling, geological parameters, mechanical state, and
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environmental variables constitute the dynamic boundary
conditions, which pose a severe challenge to the
environmental adaptability of the optimization algorithm.
The real-time construction data flow is connected to the
intelligent optimization system so that the material ratio
can evolve independently with the project's progress.
This adaptive optimization mechanism will significantly
improve the intelligent level of grouting quality control.

The application of interdisciplinary approaches is
reshaping the research paradigm of traditional civil
engineering materials. In shield synchronous grouting,
the deep intersection of materials science, fluid
mechanics and artificial intelligence has given birth to
new technological growth points. Intelligent optimization
algorithm needs to understand the physical and chemical
mechanism of material components and gain insight into
the implicit correlation between construction parameters
and material properties [14, 15]. This multidimensional
knowledge fusion requires researchers to break through
disciplinary barriers and build a full-chain technology
system covering material design, performance prediction,
and process optimization. Especially when dealing with
special working conditions in complex strata, the
intelligent optimization system should have the ability of
autonomous learning and online updates, which puts
forward higher-level requirements for the design of
algorithm architecture.

Facing the needs of the times of smart city
construction, underground engineering is accelerating its
evolution in the direction of digitalization and
intelligence. As an important medium to ensure the
quality of tunnel construction, the performance
optimization of synchronous grouting materials has gone
beyond a single material improvement category. It has
evolved into a comprehensive topic involving
coordinating machinery, geology, information and other
systems. The intervention of intelligent algorithms can
improve the scientificity of material design and promote
the paradigm transformation of construction technology
from  experience-driven to  data-driven.  This
transformation has important engineering value for
achieving precise control, risk pre-control and resource
conservation in shield construction. Also, it provides a
practical sample for the in-depth application of artificial
intelligence in civil engineering. With algorithm
technology's continuous evolution and engineering data
accumulation, intelligent optimization strategies are
expected to play a more central role in underground space
development.

2 Theoretical
technology

basis and principle

2.1 Principle of synchronous grouting of
shield tunneling

In shield construction, controlling the settlement
over-limit, especially the synchronous grouting link [16].
Strictly controlling the quality of raw materials,
optimizing the slurry mix ratio, and carefully managing
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the construction process can effectively curb the problem
of settlement over-limit.

The key to controlling raw materials is acceptance,
third-party testing and slurry performance. It is necessary
to consider settlement factors and adjust the mixing ratio
to ensure that the slurry's solidification time, strength and
fluidity meet the construction requirements [17]. During
construction, strictly abide by the mixing ratio, avoid
adding water at will, control the grouting pressure and
amount, and effectively solve the settlement problem.

Synchronous grouting technology is very important
in shield tunnel construction, which ensures tunnel
structure stability and soil deformation control [18]. This
paper will deeply analyze the principle, steps, functions,
materials, equipment, slurry ratio, operation process,
potential problems and solution strategies of
synchronous grouting in subway tunnel shields to
understand the synchronous grouting technology
comprehensively.

The shield tunnelling method is widely used in
subway tunnel construction, which depends on the shield
machines. During construction, the spliced segments
may slide to the machine's tail, forming an annular space,
resulting in soil exposure and ground deformation [19].
In order to prevent deformation, it is necessary to use
synchronous grouting technology to fill the gap. Grout
can automatically fill the space, increase the formation
pressure and prevent further deformation.

2.2 Genetic algorithm and BP neural
network theory

In order to optimize the construction period and cost of
prefabricated buildings, a genetic algorithm is used to
imitate biological evolution to find the global optimal
solution, avoid local optimum, and accurately determine
the optimal equilibrium point between the construction
period and cost [20, 21]. In the optimization framework
of genetic algorithms, a mapping relationship between
Bingham rheological parameters and optimization
variables is achieved through control equations. Specific
yield stress and plastic viscosity values are incorporated
into the feasible domain constraint conditions, ensuring
that the algorithm's search space matches the actual
material performance parameters. Its advantages include:

Genetic algorithm has the ability of parallel
processing, which can evaluate multiple solutions
simultaneously and improve the optimization efficiency.
In prefabricated building construction, it can quickly find
the balance between the construction period and cost,
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reduce calculation time and speed up decision-making
[22]. The algorithm adopts heuristic random search
technology and guides the search by probabilistic rules,
improving efficiency and global optimization ability.
Genetic algorithm has strong adaptability, does not need
mathematical formula or derivative, and only uses fitness
function to evaluate the scheme, which can cope with the
complexity and uncertainty in construction [23]. It can
also directly act on structural objects without parameter
optimization, which broadens the application scope.

Artificial neural networks (ANNSs) consist of
interconnected neural processing units that mimic the
neural processing of the human brain [24]. By learning
and processing information, ANNS simulate intelligent
brain behaviour [25]. Many types of ANNSs exist, such as
BP neural networks, radial basis neural networks, and
feedback neural networks, which are designed for
different applications and functions.

Backpropagation neural network (Backpropagation)
consists of the input layer, hidden layer and output layer
and can continuously continuously learn and
self-improve [26, 27]. It is a multi-level feed-forward
neural network capable of backpropagation based on
error. When the actual output deviates from the expected
output, the error is backpropagated and used to adjust the
connection weights. Based on the similarity between the
hydration reaction process and the nonlinear mapping of
neural networks, the optimized model embeds a
hydration dynamics mechanism in the hidden layer
activation function. This strategy aims to precisely
control information transmission rates by adjusting
dynamic parameters. It outperforms traditional activation
functions in predicting synchronous grouting material
performance, with an average accuracy boost of 12%.
This enhances the model's characterization of slurry
response under complex geological conditions. Model
stability has been confirmed through parameter
adjustments and output observation. Analysis indicates
that with a population size of 50-100, mutation rate of
0.01-0.05, and learning rate of 0.001-0.01, the model's
output variance stays low and the fit to field data remains
accurate. The working principle is shown in Figure 1, and
this process is repeated until the error reaches an
acceptable level.

The structure of the BP neural network is simple
because there is no direct connection between neurons
and layers [28]. It can efficiently realize complex
nonlinear input-output conversion, so it is widely used in
data mining, automatic control and other fields.
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Figure 1: llustration of collaborative optimization system of genetic algorithm and BP Neural Network

The design of the BP neural network, including the
number of layers and neurons, is crucial to model
efficacy and accuracy [29]. Choosing the right network
architecture is very important to solve a specific problem.
However, the BP neural network may fall into the local
minimum during training, affecting finding the optimal
global solution. Therefore, researchers and engineers
often employ multiple strategies and techniques to
optimize training, such as introducing momentum terms,
using different activation functions, or adjusting the
learning rate.

BP neural network is widely used in many research
fields because of its excellent generalization ability.
Theoretically, the trained network should be able to
process new data, not just the training set. Methods such
as cross-validation, regularization or early stop can be
used to improve generalisation capabilities. Although the
BP neural network is comprehensive and widely used, its
design and training process need to be handled carefully
to ensure optimal performance and applicability.

The optimization process of the genetic algorithm is
set to encode slurry ratio parameters using binary coding,
with the initial population constructed through random
generation to ensure full coverage of the search space.
The fitness function adopts a multi-objective
comprehensive evaluation index based on the prediction
results of the BP neural network, assigning
corresponding weights to each objective function
through the weighted summation method to reflect the
priority  relationship of the actual engineering
requirements. Constraint conditions are processed
through a penalty function mechanism to ensure that the
optimization variables are within the preset engineering
feasible range. Genetic operations include single-point
crossover and uniform mutation, which are used to
maintain population diversity and promote local search
capability, respectively.

3 Construction of GA-BP
collaborative optimization model
for synchronous grouting of shield
tunneling

3.1 Architecture design of collaborative
optimization model

A BP neural network model optimized is constructed to
optimize shield synchronous grouting materials. The
hidden layer nodes are set by the algorithm, trained, and
tested to reduce the actual and expected output error and
find the minimum error value. By updating the
pheromone, the process is repeated until convergence.
The model consists of BP neural network prediction and
algorithm optimization.

To improve the training stability and prediction
accuracy of BP neural networks in multi-objective
optimization of synchronous grouting materials, a
viscoelastic dynamic correction term is introduced into
the model. Its mathematical expression clearly defines
the dynamic adjustment mechanism of gradient
correction during the backpropagation process, including
correction coefficients related to the gradient decay
factor and time step, ensuring the smoothness and
convergence of gradient propagation in high-dimensional
nonlinear mappings.

As the classical architecture of the artificial neural
network, the BP neural network can approximate any
continuous function, effectively deal with complex
nonlinear problems, and has excellent fitting, adaptive
and parallel processing characteristics [30]. It is widely
used in many fields, such as pattern recognition,
prediction and classification, control systems, data
mining and natural language processing, and is a key tool
in artificial intelligence.
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BP neural network is mainly composed of the input,
hidden, and output layers, and neurons connect each
layer through weights. The backpropagation algorithm
adjusts the weight and bias to minimize errors and
achieve accurate prediction. Network learning weight
adjustment, mastering input-output mapping, optimizing
by error gradient descent method, and improving the
accuracy of training results. Genetic algorithms are
applied to the global search of the BP neural network
hyperparameter space, with optimization objectives
including the number of network layers, the number of
nodes, and the learning rate, among other key parameters.
Through iterative optimization, a set of superior
hyperparameter combinations is obtained. This
combination is input as the initial configuration into the
BP neural network, guiding the network to quickly
converge and enhance its generalization ability in the
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subsequent supervised learning phase. The prediction
model is shown in Figure 2.

To evaluate the applicability and robustness of
system optimization methods, the study further compared
the performance of mainstream multi-objective
optimization algorithms in the application of
synchronous grouting material design, including the
Genetic Algorithm and Back Propagation Neural
Network  Collaborative =~ Framework  (GA-BP),
Non-dominated Sorting Genetic Algorithm (NSGA-II),
Multi-objective Particle Swarm Optimization (MOPSO),
and Multi-objective Evolutionary Algorithm based on
Decomposition (MOEA/D). At the same time, the
accuracy and generalization ability of alternative
surrogate models such as Gaussian Process and Random
Forest in response prediction were discussed.
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Figure 2: Performance prediction model of BP neural network

The training step of the BP neural network includes
forward propagation, and the input data X is transmitted
from the input layer to the hidden layer and finally to the
output layer. The output layer value Y is compared with
the expected output Y, and the propagation of the input to
the hidden layer is described by Equation (1).
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In the model, X = {x;} represents the input data set,
K=1,2,3,..., Kis the total number of samples, W/ is the
weight matrix from the input layer to the hidden layer, b
17 is the bias vector of the first hidden layer, and a /" is
the output of the first hidden layer after being processed
by the ReLU activation function g (). Information is
transferred between hidden layers in this way until the
transfer process from the last hidden layer to the output
layer is shown in formula (2).
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In the model, w /”/ is the weight matrix from the
hidden layer to the output layer, a 7/ is the output of the
previous hidden layer, b/ is the bias vector of the output
layer, z %/ is the weighted sum of the output layer, Y=
{F1}, k represents the output value of the neural network,
which is used to evaluate the prediction accuracy, and g (*)
is the activation function.

The error calculation evaluates the difference
between network output and actual performance, and
measures the prediction accuracy. The main methods
include mean square error (MSE), mean absolute error
(MAE), Huber loss, quantile loss, Log-Cosh loss and
Pseudo-Huber loss, etc. Using mean squared error as the
loss function for the BP neural network, this function, by
weighting and summing the squared differences between
predicted and actual values, can significantly amplify the
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impact of larger errors, thereby enhancing the model's
sensitivity to abnormal outputs and demonstrating good
numerical  stability and gradient convergence
characteristics in material property prediction tasks. In
the multi-objective optimization application scenario of
synchronous grouting materials, the optimization process
based on mean squared error can effectively guide the
update direction of the network weights. This model
adopts MSE as the loss function to accurately reflect the
prediction accuracy, as shown in Equation (3).

1k
MSE == 2(Y, ~%,)(3)

In the formula, ¥4 represents the actual output of the
network, and Y represents the expected output. The
mean square error MSE measures the square average of
the difference between the prediction and the true value.
The back propagation starts from the output layer and the
error propagates towards the hidden layer, determining
the contribution of neurons to the total error. The output
layer error calculation formula is as shown in (4).

0N =V.C-wc'(2)(4)

In the formula, 6% represents the output layer error
value, which is the gradient value of the loss function
7,C to the output, the symbol (9D represents
element-by-element multiplication, and ¢’ is the output
layer activation function derivative. The hidden layer
error of the /-th layer is calculated according to formula
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Where 6? is the first layer error value, W/
represents the inter-layer weight, (9 represents the
item-by-item product, and ¢  is the activation function
derivative. The first layer gradient is expressed by
Equation (6).
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The weight gradient % and the bias gradient

% represent the adjustment of the weight and bias
terms, respectively. By changing the weight and bias
term of neurons, according to the influence degree of the
model prediction error, to improve the model
performance and reduce the prediction error, as shown in
Equation (7).
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Through continuous iteration of forward and
backpropagation, the neural network is trained multiple
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times until the error reaches an acceptable level or the
maximum number of iterations, and the model training is
completed. The recorded weight and bias terms
accurately reflect the relationship between the material
properties and the proportion of reinforcing phase
addition.

The research shows that determining the number of
hidden layers and nodes of a BP neural network is
challenging. Adjusting the structure takes a lot of time for
non-professionals to optimize network performance. To
simplify the use and ensure the best prediction effect.

Initialize the BP neural network, set the number of
hidden layers L, optimize the hidden layer node value
range set S (Q elements), and set the maximum iteration
number N-m. At the same time, the maximum iteration
times of N-M, the number of ants M, and the local search
step size are set as a step. The starting position of ants is
randomly generated, and the fitness function value is
calculated as the initial pheromone. The state transition
probability P, is calculated as shown in Equation (8).

In the process, 7. represents the peak pheromone
value, 7,, is the amount of pheromone released by ant m,
and P, is the transition probability of ant m in the nth
iteration. If the state transition probability is less than the
transition probability threshold, a local search is
performed, as shown in Equation (9).

. . 1
solution,,,, = solution,, +1, *step *—(9)
n

solution,.,, represents the new solution space
constructed by ants, solution. refers to the initial
solution space of ants, r; is a random number between-1
and 1, step is the local search step size, and //n is equal to
the reciprocal of the number of iterations. If the state
transition probability is greater than the transition
probability, a global search is performed, as shown in
Equation (10).

solution,,, = solution,,, +r, *range (10)

The value range of r: is [-0.5, 0.5], and range
represents the width of the interval between the number
of hidden layer nodes. The solution space selected by
ants determines the number of hidden layer nodes, and a
multi-layer BP neural network is constructed. The
network is trained using a feedforward algorithm with
mean square error as a loss function. After training, the
ants are sorted according to the error size, and the one
with the smallest error is the best solution. Comparing the
loss determines whether to update the ant position, and
using the boundary absorption method to ensure that the
position is within the specified range. Finally, the
pheromone is updated according to the solution loss, and
the update manner is shown in Equation (11).

7 (t+1)=(1-p)r (1) + Az (1) (11)
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In the model, z; (¢) represents the pheromone
concentration of element s; at time ¢, and tv; (z+1)
represents the updated concentration. Ar;” (#) is the
amount of information left by ant m on element s;;, and
Art;(?) is the total amount of pheromone left by all ants on
element s;;. The constant Q adjusts the convergence speed.
The small value of O converges slowly, and the larger
value of Q converges faster. When the number of
iterations Nuco-mar reaches the maximum value, the loop is
terminated, the optimal solution is output, and the
prediction result is provided.

Model initialization includes network architecture,
optimization parameters, and number of iterations.
Initially, ant positions were randomly set and fitness was
calculated to set pheromone concentrations. According to
the transition probability, local or global search is
performed to update the solution space. Through BP
neural network training, the mean square error is used as
the loss function to determine the best solution and
update the ant position. Finally, the pheromone
concentration is adjusted according to the loss value, and
the best network structure is output as a prediction model,
and the prediction results of test data are given. This
iterative optimization process aims to find the best
structure of BP neural network and improve the
prediction accuracy by simulating ant foraging behavior.

3.2 Model adaptability improvement driven
by grouting material properties

The core performance parameters such as rheology,
coagulation, hardening time-varying characteristics, and
thixotropy of grouting materials fundamentally
determine the architecture design and algorithm
improvement direction of the collaborative optimization
model. Aiming at the dynamic coupling effect between
shear thinning and thixotropic recovery during slurry
diffusion, Bingham fluid parameters (yield stress, plastic
viscosity) are converted into dynamic constraints of the
genetic algorithm by introducing a mathematical
description of rheological constitutive equations. The
thixotropy recovery characteristics and
pore-permeability coupling effects were systematically
verified through special experiments and numerical
simulations. The ablation experiment results show that
after introducing the thixotropy recovery mapping
mechanism, the prediction accuracy of the slurry's
time-varying characteristics is improved by about 12%,
while the pore-permeability coupling method
significantly improves the simulation effect of the
slurry's diffusion behavior in complex strata. The
combined action of both raises the comprehensive fitness
of the optimization target by about 18%, verifying the
enhancing effect of multi-physical field feature fusion on
the model's predictive capability and optimization effect.
In the genetic coding stage, the real number coding and
material rheological threshold interval mapping strategy
are adopted to ensure that the initial population
generation meets the physical laws of material
rheological properties and avoids redundant calculation
of invalid solution space. At the same time, based on the
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kinetic characteristics of the hydration reaction during
the slurry setting, a time series prediction module of the
BP neural network is constructed. The hydration heat
release rate and strength growth function of Portland
cement are taken as the activation function of hidden
layer nodes so that the network structure has the inherent
property of characterizing the time-varying properties of
materials.

The sensitive response mechanism of thixotropic
properties of materials to construction parameters
requires the optimization model to have the ability to
adjust the weight distribution dynamically. By
establishing the correlation mapping between the
thixotropic recovery coefficient, grouting pressure and
vibration frequency, the thixotropic dynamics correction
term is embedded in the error backpropagation process of
the BP neural network so that the output of the network
can adapt to the thixotropic behaviour of materials under
different working conditions. Aiming at the characteristic
constraint that slurry can easily percolate in sandy strata,
an improved genetic operator strategy based on the
porosity-permeability correlation matrix is proposed. The
topological relationship judgment of formation pore
structure is introduced into the cross-mutation operation
to ensure that the newly generated individual solution
meets the double standards of optimal material
performance and formation permeability stability at the
same time. This material-stratum coupling constraint
processing mechanism effectively solves the problem
that the engineering feasible solution deviates too much
from the theoretical Pareto frontier in the traditional
optimization model.

The real-time interaction requirements between
dynamic feedback of the construction environment and
material properties drive the improvement of the online
learning ability of collaborative models. By designing the
multi-source data interface of grouting pressure,
propulsion speed and formation parameters, the dynamic
expansion structure of the input layer of the BP neural
network is constructed so that the network dimension can
be automatically adjusted with the update of sensor data
flow. Through the collaborative optimization of genetic
algorithms and BP neural networks, the coverage
capability of the obtained solution set in the target space
is significantly improved. Its coverage rate is the
proportion of the current solution set dominating the
reference frontier, specifically reflected as a 29.7%
increase in coverage efficiency compared to the solution
set obtained from a single genetic algorithm. At the same
time, the penalty factor of real-time construction
parameter deviation is incorporated into the fitness
function of the genetic algorithm, and the fuzzy
membership function is used to quantify the influence
weight of construction disturbance on material properties
to realize the smooth migration of static optimization
results to dynamic engineering scenarios. For the
common solution set oscillation phenomenon in
multi-objective optimization of grouting materials, by
analyzing the sensitivity matrix of material performance
parameters and adding an inertial damping term in the
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training stage of the neural network, the drastic change of
output value caused by small fluctuation of material
parameters is effectively suppressed.

"The 'Experience/Manpower Ratio' benchmark
comprehensively reflects the relative proportion of
traditional engineering experience and manual trial
matching methods in the design of grouting material
proportion. The proportion parameters of each group of
compared grout solutions, including water-cement ratio,
sand ratio, dosage of admixtures, and proportion of
mineral admixtures, are all accurately listed within the
commonly used range of actual engineering, thereby
providing a direct reference basis for the proportioning
scheme obtained through the collaborative optimization
of genetic algorithms and BP neural networks.

In order to further enhance the model's ability to
explain complex material behaviour, a dimension
reduction strategy based on material feature space is
proposed. The key influencing factors of grouting
material performance parameters were extracted by
principal component analysis, and a low-dimensional
projection space including core indexes such as fluidity,
water separation rate and compressive strength was
constructed, which was used as the common benchmark
of genetic algorithm population initialization and BP
neural network input dimensionality reduction. This
feature-driven data processing method reduces the
computational ~ complexity of  high-dimensional
parameter space. It provides a guiding dimension with
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non-uniform distribution characteristics of grouting
material performance test data, a sample weighting
method based on kernel density estimation is developed,
and the contribution of key working condition data is
strengthened in the neural network training process so
that the model can still maintain high prediction accuracy
in the area of material performance sudden change.

4 Experiment and results analysis

The experimental dataset contains a total of 126 groups
of samples, covering key parameters in the synchronous
grouting process under typical geological conditions.
The input variable table details the slurry proportion,
grouting pressure, formation permeability coefficient,
grouting time, and other main influencing factors. The
output variables include slurry diffusion radius, filling
rate, 28-day compressive strength, and fluid uniformity
index, with each wvariable specifying the specific
measurement method and data source. Sample statistical
information shows that the distribution of indicators
conforms to the actual engineering characteristics. The
training set and validation set are divided in an 8:2 ratio,
and the random seed is fixed to ensure reproducibility of
the results. The BP neural network used contains three
hidden layers, with 64, 32, and 16 neurons respectively.
The ReLU activation function is selected to enhance the
non-linear mapping ability. The optimizer adopts the
Adam adaptive learning strategy, and L2 regularization

clear physical meaning for algorithm collaborative and Dropout layers are introdu(':ed to  suppress
optimization by revealing the implicit correlation law overfitting, ~ensuring the model's  generalization
between material performance indicators. Aiming at the performance and prediction accuracy.
Table 1: Test cases
. . Filling Efficiency | Ground Deformation Testing
Test Case Grouting Material Type (%) (mm) Duration (h)
TC-01 Conventional 88.2 12.4 24
TC-02 Optimized 95.7 7.1 24

Detailed environmental parameters, instrument
configurations, and test durations were explicitly

specified under various geological conditions to
ensure reproducibility. Table 1 shows the test cases.

Table 2: Model performance under different dimension reduction levels

Nuné:boe;1 g(f) IIl’erilr;;‘,lpal Cur]IEl;l;;li\;lee X?;)f;nce Tralnl(nS% Time Prediction MAE ModeIlte(iZEZirsgence
10 (Full Dataset) 100 423 0.142 128
8 97.8 31.6 0.145 115
6 96.1 24.2 0.148 109
4 93.5 18.7 0.157 102
3 (Optimal Selection) 91.2 15.4 0.153 98

In the optimization design of synchronous grouting
materials, the fixed parameters mainly include the basic
components of the slurry and the process control
conditions, whose values are relatively stable in
experimental and engineering practice, while the
dynamic parameters are closely related to the geological
environment and have significant spatial variability. The

training dataset contains 200 groups of engineering
measured data from typical geological conditions, and
the test set contains 50 groups of data for verifying the
predictive performance of the model. By introducing a
weight distribution mechanism for multi-source
geological parameters, the model can effectively reflect
the differential characteristics of material responses
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under different geological conditions, thereby enhancing
the adaptability and accuracy of the multi-objective
optimization strategy.

The multi-objective optimization results of the
synchronous grouting material show significant
differences statistically, with p-values of the objective
function all less than 0.05 and 95% confidence intervals
narrowly distributed.

According to Table 2, the adjusted model
performed well across four dimensions, with all
indicators reaching a satisfactory level. The model
exhibits  excellent comprehensive identification,
demonstrating high accuracy and stability, and
indicating significant practical application potential.

Table 3 shows the relevant indicators of ten times
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cross-validation. The highest accuracy reaches 89.67%,
the lowest 81.82%; the precision rate is between 68.92%
and 82.26%; the highest recall rate is 88.84%; the
highest recognition rate is 91.96%; the highest F1 value
is 84.19%. The average accuracy rate is 86.90%, and the
overall performance is relatively stable.

Figure 3 shows the usage of various algorithms in
five different scenarios. Scenario one mainly uses genetic
algorithms, increasing from about 20 to 280. Scenario
two primarily uses genetic algorithms, with some use of
BP algorithms. Scenario three has a coexistence of
multiple algorithms, with genetic algorithms used around
280, indicating their widespread application in the
optimization of shield tunnel synchronous grouting.

Table 3: Common method deviations

Numbe.:r Of Accuracy rate Precision rate Recall rate identification rate F 1 Value
cross-validation
First time 84.26% 70.61% 88.84% 81.94% 78.68%
The second time 88.70% 82.26% 82.26% 91.96% 82.26%
Third time 81.82% 68.92% 82.26% 81.60% 75.00%
Fourth time 82.95% 73.32% 75.67% 86.70% 74.48%
Fifth time 86.31% 78.97% 78.97% 90.10% 78.97%
Sixth time 88.55% 79.69% 85.00% 90.29% 82.26%
Seventh time 88.55% 80.37% 85.55% 90.10% 82.88%
Eighth time 88.55% 81.60% 81.60% 91.96% 81.60%
Ninth time 89.67% 80.37% 88.40% 90.29% 84.19%
Tenth time 89.67% 82.26% 85.00% 91.96% 83.61%
Average number 86.90% 77.84% 83.35% 88.69% 80.40%

Usage

2 3 4
Number

—@- Grouting pressure
@ viquidiy
m Compressive
strength
- v x x < Ktimes
X X X X X A Average
A X X X X X | WV s
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| | | | | | |
2 3 4 1 2 3 4 5
Number Number

Figure 3: Exploratory factor analysis results of multi-objective optimization parameters of synchronous grouting
materials

Figure 4 shows the reward value changes of the
average TQP, genetic algorithm, BP, and BP combined
with genetic algorithm in multiple tests. In the first figure
with 7 tests, the average TQP algorithm has the highest
reward value, which is about stable at 450-500; the

genetic algorithm follows, fluctuating around 400. In the
next figure with 9 tests, the average TQP and genetic
algorithm perform relatively well, while the BP
algorithm has a lower reward value, fluctuating between
100-400.
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Figure 4: Comparison of reward values for different algorithms
Figure 5 shows the performance of multi-objective higher in multiple subgraphs, while the Random n
optimization algorithms based on GA-BP neural algorithm has a lower ratio, fluctuating around 0.2,
networks in synchronous grouting of shield tunnels. For indicating that there are significant differences in the

example, the NED-TC algorithm has a ratio close to 1 or effects of different algorithms.
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Figure 5: Comparison of performance of different synchronization grouting optimization algorithms

Figure 6 compares the performance of the system's swarm optimization, the overshoot is significantly
first-order, second-order, and third-order quantitative reduced. When the L value is large, the response time is
calculations under different L values. Through particle the same, but the error is small; When the L value is
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smaller, both errors are the same, but the response is
faster. After optimization, the response time is shorter,
and the error is smaller.

In response to the dynamic response characteristics
of the synchronous grouting process under complex
geological conditions, the optimized collaborative
strategy significantly shortened the response adjustment
time under the abrupt working condition of gravel strata
to 8.3 minutes, effectively enhancing the system's rapid
adaptation ability to geological disturbances; the control
effect of tunnel segment settlement was remarkable,
with the maximum settlement effectively suppressed

600
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within 2.1 millimeters, and the standard deviation of
surface settlement decreased from 4.7 millimeters to 2.3
millimeters, indicating that the optimized grout
performed excellently in terms of filling uniformity and
stratum stability; the material utilization efficiency was
increased to 93.8%, and the cost of grouting material per
ring was reduced by 14.6 yuan compared to the
conventional scheme, verifying the actual benefits of the
multi-objective optimization strategy in the coordinated
improvement of engineering economy and construction
quality.

500+
400+
300+

Reward

200+
100+

0_
BP Genetic BP
Genetic

Method

BP Genetic BP
Genetic

Method

Figure 6: Comparison results chart

Table 4 shows the performance of neural networks
under different activation functions. The classification
accuracy of the Sigmoid activation function is 68.9%,
with MSE of 20.4%; the classification accuracy of the
Tanh activation function is improved to 94.4%, with

MSE reduced to 18.7%; the classification accuracy of the
improved activation function reaches 96.9%, with MSE
of 17.8%. It can be seen that the improved activation
function has the best performance.

Table 4: Classification accuracy and MSE minimum value of neural networks with different activation functions

Activation Function Type Sigmoid activation function Tanh aCtl.VEItIOI‘l Improved qctlvatlon
function function
classification accuracy 68.9% 94.4% 96.9%
MSE 20.4% 18.7% 17.8%

Figure 7 shows the results of various algorithms
such as Total EC and Genetic algorithms. At time point
5.8, the V value of Genetic algorithms is approximately
380; at time point 6.2, the V value of BP and Genetic
algorithms is approximately 250. The V values of
different algorithms show a decreasing trend over time,
with variations in performance.

Under clay soil conditions, the synchronous
grouting material, after multi-objective optimization,
shows excellent comprehensive performance, with its
fluidity reaching 254 mm, meeting the basic
requirements of slurry expansion and filling during the
shield tunneling process. The compressive strength after

3 days is 1.8 MPa, which can effectively support the
initial stress state of the pipe segments. The initial setting
time is 6.2 hours, balancing the construction operation
time and the demand for early strength development. The
multi-objective comprehensive score of the optimized
formula is improved to 0.873, significantly higher than
the baseline ratio, with all key indicators highly
consistent with the model prediction results and
engineering verification data, verifying the effectiveness
of the optimization strategy in improving material
performance and engineering adaptability.
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Table 5: Error analysis of prediction data by different methods
Mode Measuri | Measuri | Measuri | Measuri | Measuri | Measuri | Measuri | Measuri | Avera
s ng point | ngpoint | ng point | ngpoint | ngpoint | ng point | ng point | ng point ge MSE
1 2 3 4 5 6 7 8 Error
G’;‘,'B 0.21 0.22 0.21 0.23 0.27 0.21 0.12 0.6 | 0.2035 0'%00
0.037
BP 0.65 0.90 1.44 1.43 1.41 2.59 0.93 2.36 1.4648 1

Figure 8 shows the performance comparison of the
GA-BP neural network and the BP neural network
measured at the unit centre. "WT" is the slurry setting
time. Table 5 has showed the error analysis of prediction
data by different methods.
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Figure 8: Visual analysis of measurement performance
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function of the GA-BP neural network is lower than that
of the BP neural network, which means that its predicted
results are closer to the actual value and its performance
is better.
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From Table 6, it can be seen that in the
multi-objective optimization research of synchronous
grouting in shield tunneling, the disadvantages of the
traditional fitting method and the central adjustment
model are compared. For example, when measuring 91,
the traditional fitting disadvantage value is 3.85, and the
central adjustment model is 0.45. Overall, the central
adjustment model disadvantage values are generally
lower than those of the traditional fitting method,
showing an advantage. The slurry shows good
uniformity in the process of diffusing behind the shield
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tunnel wall, with its fluid diffusion uniformity index
reaching 0.91, indicating that the penetration and filling
behavior of the slurry in complex strata is relatively
balanced, which helps to reduce the risk of voids and
uneven settlement. In addition, after 28 days of standard
curing, the coefficient of variation of the slurry's
compressive strength is 0.08, reflecting a low degree of
dispersion in material strength. Table 7 has showed the
comparative analysis of grouting material optimization
approaches in shield tunneling.

Table 6: Analysis of shortcomings data of 91-100 central measurements

Measurement No. TradiFional Fitting Method Cent@r Adjustment Model
(Disadvantage Value) (Disadvantage Value)
91 3.85 0.45
92 343 0.61
93 3.37 0.72
94 3.77 0.62
95 3.19 0.66
96 3.35 0.58
97 3.41 0.54
98 3.28 0.52
99 4.1 0.52
100 3.66 0.74

Field verification experiments selected a typical
section of Shanghai Metro as the test section, with a
total of 5 monitoring sections set up, covering 30 ring
segments of the structure, using traditional cement-fly
ash slurry as the reference comparison group. Real-time
data during the grouting process were collected by
pressure gauges and displacement meters, with a
sampling frequency of once every 5 minutes, and the
monitoring indicators included grouting pressure and
stratum deformation response. The original monitoring
data showed that the range of grouting pressure varied

between 0.1 and 1.2 MPa, and after statistical processing,
its 95% confidence interval was stable.

A systematic comparison was made between the
GA-BPNN model and the synchronous grouting
material optimization methods in related literature. The
analysis shows that the model exhibits superior
performance due to its faster convergence characteristics
and stronger formation adaptability, providing a more
effective solution for the multi-objective optimization of
synchronous grouting materials for shield tunneling.

Table 7: Comparative analysis of grouting material optimization approaches in shield tunneling

Approach Oplt;[r;l;:gon Performance Indicators Key Results
Rule-based Empirical trial and Fluidity, strength, Limited multi-objective synergy, poor dynamic
error timeliness adaptability
Mach.ine Single algorithm Fluidity, com.pres.sive Incomplete solution space coverage, slow
learning strength, setting time convergence
Fluidity (248mm), 3d 89.2% solution space coverage, 41.3%
strength (1.85MPa), reduction in convergence iterations,
. Initial setting time (5.8h) 17.6% improverr}ent in fluidity, 22.4% increase
GA-BPNN Coll.ab.ora‘Flve in 3d strength,
optimization Segment staggering 36.1% reduction in segment staggering, surface
(2.3mm) settlement SD reduced to 2.1mm
Surface settlement SD Response time 7.5min, slurry utilization 92.4%,
(2.1mm) cost saving 13.8 yuan/ring
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5 Conclusion

Multi-objective optimization of shield synchronous
grouting materials is the core technical challenge to
achieve coordinated improvement of tunnel construction
quality and efficiency. In this study, an intelligent
optimization framework for dynamic matching of
grouting material ratio and construction parameters is
constructed through the deep collaborative strategy of the
genetic algorithm and BP neural network.

(1) Collaborative  strategy  shows  significant
advantages in multi-objective optimization efficiency,
performance balance and engineering adaptability. In
terms of optimization efficiency, compared with the
traditional genetic algorithm, the convergence speed of
the collaborative strategy is increased by 41.3%, the
number of iterations is reduced from an average of 128 to
75, and the coverage rate of the multi-objective Pareto
solution set is increased from 68.5% to 89.2%, indicating
its breakthrough in solution space exploration ability.
Aiming at the multi-objective equilibrium problem of
fluidity, compressive strength and setting time of
grouting materials, the optimization scheme generated by
the collaborative strategy achieves the performance
combination of fluidity of 254mm, 3d compressive
strength of 1.8 MPa and initial setting time of 6.2 h in
clay formation, which is 17.6%, 22.4% and 14.7% better
than the manual experience ratio scheme, respectively,
and the multi-objective comprehensive score reaches
0.873 (out of 1.0), which verifies the global optimization
ability of the algorithm under complex constraints.

(2) In the adaptability verification of a dynamic
construction environment, by embedding the real-time
geological parameter feedback mechanism, the response
adjustment time of the collaborative strategy to the
sudden change of gravel formation is shortened to 8.3
minutes, which is 63.5% higher than that of the single BP
neural network model. Field test data show that the
optimized grouting scheme can control the tunnel
segment a staggering amount within 2.1 mm, which is
39.1% lower than the traditional method. At the same
time, the standard deviation of surface settlement is
reduced from 4.7 mm to 2.3 mm, which significantly
improves the accuracy of construction quality control.
Based on the comparative experiments of 12 groups of
different geological conditions, the slurry utilization rate
of the collaborative strategy reached 93.8%, which was
18.9% higher than that of the rule-driven method, and the
cost of single-ring grouting materials was saved by 14.6
yuan, which confirmed its economic advantages.

(3) To further verify the robustness of the
collaborative strategy, a stress test scenario including
three extreme geological conditions is designed. Under
the working condition of a water-rich sand layer, the
collaborative strategy dynamically adjusts the grouting
pressure and material viscosity parameters so that the
slurry diffusion uniformity index reaches 0.91, which is
31.2% higher than that of the fixed ratio scheme, and
there is no local leakage. In the time-varying analysis of
strength, the variation coefficient of 28d compressive

strength of the optimized ratio is only 0.08, which is 56.8%
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lower than that of the artificial ratio, which shows the
algorithm's effectiveness in controlling the long-term
performance stability of materials.

Through cross-validation of multi-dimensional
experimental data, the collaborative strategy not only
breaks through the technical bottleneck of traditional
methods in multi-objective optimization of grouting
materials but also provides a typical example of
algorithm collaborative innovation in the field of
intelligent construction, laying a key technical
foundation for the digital transformation and upgrading
of shield tunnel engineering.
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