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The performance optimization of shield synchronous grouting materials is a key technical problem in 

controlling stratum deformation and ensuring structural stability in tunnel engineering. Traditional 

proportioning design methods rely on empirical trial and error and have bottlenecks such as poor 

multi-objective synergy and weak dynamic adaptability. This study proposes a collaborative 

optimization strategy of genetic algorithm (GA) and BP neural network (BPNN), which achieves a 

multi-objective dynamic balance of fluidity, strength and timeliness of grouting materials by fusing 

global search and local optimization mechanisms. Based on 126 sets of experimental data on grouting 

materials, a multi-modal data set was constructed, covering the proportion parameters and 

corresponding performance indicators of the cement-fly ash-bentonite system. Combined with dynamic 

boundary conditions such as propulsion speed and grouting pressure in shield construction, a GA-BP 

collaborative optimization framework was designed. Using a genetic algorithm and BP neural network 

series coupling strategy, based on twelve sets of experimental data, a multi-objective optimization study 

of synchronous grouting materials was conducted, and the optimal solution was obtained through fifty 

iterations of simulation. Experiments show that the optimal ratio scheme (water-binder ratio 0.38, 

bentonite content 12%) generated by the synergistic strategy in clay formation makes the slurry fluidity 

reach 248mm, 17.6% higher than the empirical ratio. The 3d compressive strength is increased by 

22.4% to 1.85 MPa, and the initial setting time is shortened to 5.8 h. Through multi-objective Pareto 

solution set analysis, the solution space coverage of the collaborative strategy is increased to 89.2%, 

which is 29.7% higher than that of the single genetic algorithm, and the number of convergence 

iterations is reduced by 41.3%. In the field verification, the optimized scheme controls the segment 

staggering amount within 2.3 mm, which is reduced by 36.1% compared with the traditional method, 

and the standard deviation of surface settlement is reduced from 4.5 mm to 2.1 mm. Given the sudden 

working conditions of gravel formation, the adaptive adjustment response time of the model is shortened 

to 7.5 min, the slurry utilization rate is increased to 92.4%, and the single-ring grouting cost is saved by 

13.8 yuan. The research confirms that the collaborative strategy effectively solves the problems of 

performance imbalance and engineering adaptability in multi-objective optimization of grouting 

materials and provides a new technical path for intelligent construction of shield tunnels. 

Povzetek: Predlagan je pristop z genetskim algoritmom in nevronsko mrežo za boljše načrtovanje 

injektirnih mešanic pri gradnji predorov, ki izboljša ključne lastnosti in se učinkoviteje prilagaja 

razmeram na terenu. 

 

1 Introduction 
In urban underground space development, shield 

construction has become the core means of tunnel 

construction because of its high efficiency and safety [1, 

2]. As a key link in shield tunnelling, synchronous 

grouting directly affects the stability of tunnel structure, 

surface settlement control and long-term service life [3]. 

Grouting materials need to meet multiple performance 

requirements such as fluidity, filling and strength growth 

in a very short time, and there are often complex  

 

nonlinear relationships among these indexes [4]. The 

traditional experience-led material ratio design method 

makes it difficult to accurately balance the performance 

requirements under different working conditions, 

especially in the face of sudden changes in geological 

conditions or dynamic adjustment of construction 

parameters, which often shows lag and limitations [5]. 

This contradiction prompts researchers to continuously 

explore more intelligent optimization strategies to find 

scientific solutions in the multi-objective game of 

material properties. 
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In current engineering practice, the optimization of 

grouting materials mainly faces two practical dilemmas: 

first, the mutual restriction between material 

performance indexes leads to the low efficiency of 

manual trial and error method, and second, the dynamic 

construction environment puts forward higher 

requirements for material adaptability [6, 7]. The 

attenuation of compressive strength may accompany the 

improvement of slurry fluidity, while the optimization of 

early strength characteristics may weaken the later 

durability performance. This correlation coupling of 

multidimensional parameters makes the cost of relying 

solely on experimental iteration rise sharply, and it is not 

easy to guarantee the global optimality of 

multi-objective collaborative optimization [8]. With the 

penetration of artificial intelligence technology, some 

studies try to use a single algorithm model for parameter 

optimization. However, they often fall into the trap of 

local optimal solutions or the bottleneck of insufficient 

convergence speed, which cannot meet the urgent needs 

of real-time decision-making in construction sites [9, 10]. 

Realizing the intelligent balance of multi-objective 

parameters in a limited time has become a key technical 

problem restricting improving shield construction 

quality. 

The cross-border integration of artificial 

intelligence technology provides a new perspective for 

solving the above problems [11]. Genetic algorithm 

shows unique advantages in complex optimization 

problems with its powerful global search ability. At the 

same time, the BP neural network is good at establishing 

high-dimensional nonlinear mapping relationships 

through data-driven [12]. The collaborative innovation of 

the two may break through the thinking boundaries of 

traditional methods: the former realizes wide-area 

exploration of solution space by simulating the 

mechanism of biological evolution, while the latter uses 

the characteristics of error backpropagation to build an 

accurate surrogate model. This integration of 

complementary technical paths can not only avoid the 

inherent defects of a single algorithm but also form a 

closed-loop optimization mechanism of "global 

optimization-local fine tuning". It is worth noting that the 

particularity of underground engineering puts forward 

higher requirements for the engineering adaptability of 

the algorithm model. How to build a collaborative 

optimization framework that conforms to the 

time-varying characteristics of grouting materials is still 

a technical difficulty that needs to be broken through 

urgently. 

The rise of digital twin technology provides a new 

paradigm of virtual-real interaction for material 

optimization [13]. The dynamic simulation and real-time 

feedback of material performance parameters can be 

realized by establishing the digital mirror image of the 

grouting process. This technical route of virtual and real 

fusion can significantly reduce the frequency of physical 

experiments and provide massive training samples and 

verification scenarios for intelligent algorithms. In shield 

tunnelling, geological parameters, mechanical state, and 

environmental variables constitute the dynamic boundary 

conditions, which pose a severe challenge to the 

environmental adaptability of the optimization algorithm. 

The real-time construction data flow is connected to the 

intelligent optimization system so that the material ratio 

can evolve independently with the project's progress. 

This adaptive optimization mechanism will significantly 

improve the intelligent level of grouting quality control. 

The application of interdisciplinary approaches is 

reshaping the research paradigm of traditional civil 

engineering materials. In shield synchronous grouting, 

the deep intersection of materials science, fluid 

mechanics and artificial intelligence has given birth to 

new technological growth points. Intelligent optimization 

algorithm needs to understand the physical and chemical 

mechanism of material components and gain insight into 

the implicit correlation between construction parameters 

and material properties [14, 15]. This multidimensional 

knowledge fusion requires researchers to break through 

disciplinary barriers and build a full-chain technology 

system covering material design, performance prediction, 

and process optimization. Especially when dealing with 

special working conditions in complex strata, the 

intelligent optimization system should have the ability of 

autonomous learning and online updates, which puts 

forward higher-level requirements for the design of 

algorithm architecture. 

Facing the needs of the times of smart city 

construction, underground engineering is accelerating its 

evolution in the direction of digitalization and 

intelligence. As an important medium to ensure the 

quality of tunnel construction, the performance 

optimization of synchronous grouting materials has gone 

beyond a single material improvement category. It has 

evolved into a comprehensive topic involving 

coordinating machinery, geology, information and other 

systems. The intervention of intelligent algorithms can 

improve the scientificity of material design and promote 

the paradigm transformation of construction technology 

from experience-driven to data-driven. This 

transformation has important engineering value for 

achieving precise control, risk pre-control and resource 

conservation in shield construction. Also, it provides a 

practical sample for the in-depth application of artificial 

intelligence in civil engineering. With algorithm 

technology's continuous evolution and engineering data 

accumulation, intelligent optimization strategies are 

expected to play a more central role in underground space 

development. 

2 Theoretical basis and principle 

technology 

2.1 Principle of synchronous grouting of 

shield tunneling 

In shield construction, controlling the settlement 

over-limit, especially the synchronous grouting link [16]. 

Strictly controlling the quality of raw materials, 

optimizing the slurry mix ratio, and carefully managing 
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the construction process can effectively curb the problem 

of settlement over-limit. 

The key to controlling raw materials is acceptance, 

third-party testing and slurry performance. It is necessary 

to consider settlement factors and adjust the mixing ratio 

to ensure that the slurry's solidification time, strength and 

fluidity meet the construction requirements [17]. During 

construction, strictly abide by the mixing ratio, avoid 

adding water at will, control the grouting pressure and 

amount, and effectively solve the settlement problem. 

Synchronous grouting technology is very important 

in shield tunnel construction, which ensures tunnel 

structure stability and soil deformation control [18]. This 

paper will deeply analyze the principle, steps, functions, 

materials, equipment, slurry ratio, operation process, 

potential problems and solution strategies of 

synchronous grouting in subway tunnel shields to 

understand the synchronous grouting technology 

comprehensively. 

The shield tunnelling method is widely used in 

subway tunnel construction, which depends on the shield 

machines. During construction, the spliced segments 

may slide to the machine's tail, forming an annular space, 

resulting in soil exposure and ground deformation [19]. 

In order to prevent deformation, it is necessary to use 

synchronous grouting technology to fill the gap. Grout 

can automatically fill the space, increase the formation 

pressure and prevent further deformation. 

2.2 Genetic algorithm and BP neural 

network theory 

In order to optimize the construction period and cost of 

prefabricated buildings, a genetic algorithm is used to 

imitate biological evolution to find the global optimal 

solution, avoid local optimum, and accurately determine 

the optimal equilibrium point between the construction 

period and cost [20, 21]. In the optimization framework 

of genetic algorithms, a mapping relationship between 

Bingham rheological parameters and optimization 

variables is achieved through control equations. Specific 

yield stress and plastic viscosity values are incorporated 

into the feasible domain constraint conditions, ensuring 

that the algorithm's search space matches the actual 

material performance parameters. Its advantages include: 

Genetic algorithm has the ability of parallel 

processing, which can evaluate multiple solutions 

simultaneously and improve the optimization efficiency. 

In prefabricated building construction, it can quickly find 

the balance between the construction period and cost, 

reduce calculation time and speed up decision-making 

[22]. The algorithm adopts heuristic random search 

technology and guides the search by probabilistic rules, 

improving efficiency and global optimization ability. 

Genetic algorithm has strong adaptability, does not need 

mathematical formula or derivative, and only uses fitness 

function to evaluate the scheme, which can cope with the 

complexity and uncertainty in construction [23]. It can 

also directly act on structural objects without parameter 

optimization, which broadens the application scope. 

Artificial neural networks (ANNs) consist of 

interconnected neural processing units that mimic the 

neural processing of the human brain [24]. By learning 

and processing information, ANNS simulate intelligent 

brain behaviour [25]. Many types of ANNs exist, such as 

BP neural networks, radial basis neural networks, and 

feedback neural networks, which are designed for 

different applications and functions. 

Backpropagation neural network (Backpropagation) 

consists of the input layer, hidden layer and output layer 

and can continuously continuously learn and 

self-improve [26, 27]. It is a multi-level feed-forward 

neural network capable of backpropagation based on 

error. When the actual output deviates from the expected 

output, the error is backpropagated and used to adjust the 

connection weights. Based on the similarity between the 

hydration reaction process and the nonlinear mapping of 

neural networks, the optimized model embeds a 

hydration dynamics mechanism in the hidden layer 

activation function. This strategy aims to precisely 

control information transmission rates by adjusting 

dynamic parameters. It outperforms traditional activation 

functions in predicting synchronous grouting material 

performance, with an average accuracy boost of 12%. 

This enhances the model's characterization of slurry 

response under complex geological conditions. Model 

stability has been confirmed through parameter 

adjustments and output observation. Analysis indicates 

that with a population size of 50-100, mutation rate of 

0.01-0.05, and learning rate of 0.001-0.01, the model's 

output variance stays low and the fit to field data remains 

accurate. The working principle is shown in Figure 1, and 

this process is repeated until the error reaches an 

acceptable level. 

The structure of the BP neural network is simple 

because there is no direct connection between neurons 

and layers [28]. It can efficiently realize complex 

nonlinear input-output conversion, so it is widely used in 

data mining, automatic control and other fields. 
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Figure 1: Illustration of collaborative optimization system of genetic algorithm and BP Neural Network 

 

The design of the BP neural network, including the 

number of layers and neurons, is crucial to model 

efficacy and accuracy [29]. Choosing the right network 

architecture is very important to solve a specific problem. 

However, the BP neural network may fall into the local 

minimum during training, affecting finding the optimal 

global solution. Therefore, researchers and engineers 

often employ multiple strategies and techniques to 

optimize training, such as introducing momentum terms, 

using different activation functions, or adjusting the 

learning rate. 

BP neural network is widely used in many research 

fields because of its excellent generalization ability. 

Theoretically, the trained network should be able to 

process new data, not just the training set. Methods such 

as cross-validation, regularization or early stop can be 

used to improve generalisation capabilities. Although the 

BP neural network is comprehensive and widely used, its 

design and training process need to be handled carefully 

to ensure optimal performance and applicability. 

The optimization process of the genetic algorithm is 

set to encode slurry ratio parameters using binary coding, 

with the initial population constructed through random 

generation to ensure full coverage of the search space. 

The fitness function adopts a multi-objective 

comprehensive evaluation index based on the prediction 

results of the BP neural network, assigning 

corresponding weights to each objective function 

through the weighted summation method to reflect the 

priority relationship of the actual engineering 

requirements. Constraint conditions are processed 

through a penalty function mechanism to ensure that the 

optimization variables are within the preset engineering 

feasible range. Genetic operations include single-point 

crossover and uniform mutation, which are used to 

maintain population diversity and promote local search 

capability, respectively. 

3 Construction of GA-BP 

collaborative optimization model 

for synchronous grouting of shield 

tunneling 

3.1 Architecture design of collaborative 

optimization model 

A BP neural network model optimized is constructed to 

optimize shield synchronous grouting materials. The 

hidden layer nodes are set by the algorithm, trained, and 

tested to reduce the actual and expected output error and 

find the minimum error value. By updating the 

pheromone, the process is repeated until convergence. 

The model consists of BP neural network prediction and 

algorithm optimization. 

To improve the training stability and prediction 

accuracy of BP neural networks in multi-objective 

optimization of synchronous grouting materials, a 

viscoelastic dynamic correction term is introduced into 

the model. Its mathematical expression clearly defines 

the dynamic adjustment mechanism of gradient 

correction during the backpropagation process, including 

correction coefficients related to the gradient decay 

factor and time step, ensuring the smoothness and 

convergence of gradient propagation in high-dimensional 

nonlinear mappings. 

As the classical architecture of the artificial neural 

network, the BP neural network can approximate any 

continuous function, effectively deal with complex 

nonlinear problems, and has excellent fitting, adaptive 

and parallel processing characteristics [30]. It is widely 

used in many fields, such as pattern recognition, 

prediction and classification, control systems, data 

mining and natural language processing, and is a key tool 

in artificial intelligence. 
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BP neural network is mainly composed of the input, 

hidden, and output layers, and neurons connect each 

layer through weights. The backpropagation algorithm 

adjusts the weight and bias to minimize errors and 

achieve accurate prediction. Network learning weight 

adjustment, mastering input-output mapping, optimizing 

by error gradient descent method, and improving the 

accuracy of training results. Genetic algorithms are 

applied to the global search of the BP neural network 

hyperparameter space, with optimization objectives 

including the number of network layers, the number of 

nodes, and the learning rate, among other key parameters. 

Through iterative optimization, a set of superior 

hyperparameter combinations is obtained. This 

combination is input as the initial configuration into the 

BP neural network, guiding the network to quickly 

converge and enhance its generalization ability in the 

subsequent supervised learning phase. The prediction 

model is shown in Figure 2. 

To evaluate the applicability and robustness of 

system optimization methods, the study further compared 

the performance of mainstream multi-objective 

optimization algorithms in the application of 

synchronous grouting material design, including the 

Genetic Algorithm and Back Propagation Neural 

Network Collaborative Framework (GA-BP), 

Non-dominated Sorting Genetic Algorithm (NSGA-II), 

Multi-objective Particle Swarm Optimization (MOPSO), 

and Multi-objective Evolutionary Algorithm based on 

Decomposition (MOEA/D). At the same time, the 

accuracy and generalization ability of alternative 

surrogate models such as Gaussian Process and Random 

Forest in response prediction were discussed. 

 

 

 

Figure 2: Performance prediction model of BP neural network 

 

The training step of the BP neural network includes 

forward propagation, and the input data X is transmitted 

from the input layer to the hidden layer and finally to the 

output layer. The output layer value Y is compared with 

the expected output Y, and the propagation of the input to 

the hidden layer is described by Equation (1). 

1 1 1

1 1

( ) ( ) ( )

( ) ( )

z W X b

a g( z )

= +

=
(1) 

In the model, X = {xk} represents the input data set, 

K = 1, 2, 3,..., K is the total number of samples, W [1] is the 

weight matrix from the input layer to the hidden layer, b 
[1] is the bias vector of the first hidden layer, and a [1] is 

the output of the first hidden layer after being processed 

by the ReLU activation function g (·). Information is 

transferred between hidden layers in this way until the 

transfer process from the last hidden layer to the output 

layer is shown in formula (2). 

1[ o ] [ o ] [ o ] [ o ]

[ o ]

z W a b

Y g( z )ˆ

−=  +

=
(2) 

In the model, w [o] is the weight matrix from the 

hidden layer to the output layer, a [o-1] is the output of the 

previous hidden layer, b [o] is the bias vector of the output 

layer, z [o] is the weighted sum of the output layer, Ŷ= 

{𝑦̂k}, k represents the output value of the neural network, 

which is used to evaluate the prediction accuracy, and g (·) 

is the activation function. 

The error calculation evaluates the difference 

between network output and actual performance, and 

measures the prediction accuracy. The main methods 

include mean square error (MSE), mean absolute error 

(MAE), Huber loss, quantile loss, Log-Cosh loss and 

Pseudo-Huber loss, etc. Using mean squared error as the 

loss function for the BP neural network, this function, by 

weighting and summing the squared differences between 

predicted and actual values, can significantly amplify the 
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impact of larger errors, thereby enhancing the model's 

sensitivity to abnormal outputs and demonstrating good 

numerical stability and gradient convergence 

characteristics in material property prediction tasks. In 

the multi-objective optimization application scenario of 

synchronous grouting materials, the optimization process 

based on mean squared error can effectively guide the 

update direction of the network weights. This model 

adopts MSE as the loss function to accurately reflect the 

prediction accuracy, as shown in Equation (3). 

1

1
MSE

K

k k
k

(Y Y )ˆ
K =

=  − (3) 

In the formula, 𝑌̂k represents the actual output of the 

network, and Yk represents the expected output. The 

mean square error MSE measures the square average of 

the difference between the prediction and the true value. 

The back propagation starts from the output layer and the 

error propagates towards the hidden layer, determining 

the contribution of neurons to the total error. The output 

layer error calculation formula is as shown in (4). 

( L ) ( o )

aC ( z )   =  (4) 

In the formula, δ(L) represents the output layer error 

value, which is the gradient value of the loss function 

𝛻𝑎𝐶  to the output, the symbol ⊙ represents 

element-by-element multiplication, and σ' is the output 

layer activation function derivative. The hidden layer 

error of the l-th layer is calculated according to formula 

(5). 

1 1( l ) ( l ) T ( l ) ( l )((W ) ) ( z )  + + = e (5) 

Where δ(l) is the first layer error value, W(l+1) 

represents the inter-layer weight, ⊙ represents the 

item-by-item product, and σ' is the activation function 

derivative. The first layer gradient is expressed by 

Equation (6). 

( l ) ( l ) T

( l )

( l )

( l )

C
( a )

W

C

b











=

=

(6) 

The weight gradient 
𝜕𝐶

𝜕𝑊(𝑙)
 and the bias gradient 

𝜕𝐶

𝜕𝑏(𝑙)
 represent the adjustment of the weight and bias 

terms, respectively. By changing the weight and bias 

term of neurons, according to the influence degree of the 

model prediction error, to improve the model 

performance and reduce the prediction error, as shown in 

Equation (7). 

( l ) ( l )

( l )

( l ) ( l )

( l )

C
W W

W

C
b b

b









→ −

→ −

(7) 

Through continuous iteration of forward and 

backpropagation, the neural network is trained multiple 

times until the error reaches an acceptable level or the 

maximum number of iterations, and the model training is 

completed. The recorded weight and bias terms 

accurately reflect the relationship between the material 

properties and the proportion of reinforcing phase 

addition. 

The research shows that determining the number of 

hidden layers and nodes of a BP neural network is 

challenging. Adjusting the structure takes a lot of time for 

non-professionals to optimize network performance. To 

simplify the use and ensure the best prediction effect. 

Initialize the BP neural network, set the number of 

hidden layers L, optimize the hidden layer node value 

range set S (Q elements), and set the maximum iteration 

number N-m. At the same time, the maximum iteration 

times of N-M, the number of ants M, and the local search 

step size are set as a step. The starting position of ants is 

randomly generated, and the fitness function value is 

calculated as the initial pheromone. The state transition 

probability Pn is calculated as shown in Equation (8). 

max m

n

max

P
 



−
= (8) 

In the process, τmax represents the peak pheromone 

value, τm is the amount of pheromone released by ant m, 

and Pn is the transition probability of ant m in the nth 

iteration. If the state transition probability is less than the 

transition probability threshold, a local search is 

performed, as shown in Equation (9). 

new old 1

1
solution solution r step

n
= +   (9) 

solutionnew represents the new solution space 

constructed by ants, solutionold refers to the initial 

solution space of ants, r1 is a random number between-1 

and 1, step is the local search step size, and 1/n is equal to 

the reciprocal of the number of iterations. If the state 

transition probability is greater than the transition 

probability, a global search is performed, as shown in 

Equation (10). 

2new oldsolution solution r range= +  (10) 

The value range of r₂ is [-0.5, 0.5], and range 

represents the width of the interval between the number 

of hidden layer nodes. The solution space selected by 

ants determines the number of hidden layer nodes, and a 

multi-layer BP neural network is constructed. The 

network is trained using a feedforward algorithm with 

mean square error as a loss function. After training, the 

ants are sorted according to the error size, and the one 

with the smallest error is the best solution. Comparing the 

loss determines whether to update the ant position, and 

using the boundary absorption method to ensure that the 

position is within the specified range. Finally, the 

pheromone is updated according to the solution loss, and 

the update manner is shown in Equation (11). 

1 1 Δij ij ij( t ) ( ) ( t ) ( t )   + = − + (11) 
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In the model, τij (t) represents the pheromone 

concentration of element sij at time t, and τij (t+1) 

represents the updated concentration. △τij
m (t) is the 

amount of information left by ant m on element sij, and 

△τij(t) is the total amount of pheromone left by all ants on 

element sij. The constant Q adjusts the convergence speed. 

The small value of Q converges slowly, and the larger 

value of Q converges faster. When the number of 

iterations Naco-max reaches the maximum value, the loop is 

terminated, the optimal solution is output, and the 

prediction result is provided. 

Model initialization includes network architecture, 

optimization parameters, and number of iterations. 

Initially, ant positions were randomly set and fitness was 

calculated to set pheromone concentrations. According to 

the transition probability, local or global search is 

performed to update the solution space. Through BP 

neural network training, the mean square error is used as 

the loss function to determine the best solution and 

update the ant position. Finally, the pheromone 

concentration is adjusted according to the loss value, and 

the best network structure is output as a prediction model, 

and the prediction results of test data are given. This 

iterative optimization process aims to find the best 

structure of BP neural network and improve the 

prediction accuracy by simulating ant foraging behavior. 

3.2 Model adaptability improvement driven 

by grouting material properties 

The core performance parameters such as rheology, 

coagulation, hardening time-varying characteristics, and 

thixotropy of grouting materials fundamentally 

determine the architecture design and algorithm 

improvement direction of the collaborative optimization 

model. Aiming at the dynamic coupling effect between 

shear thinning and thixotropic recovery during slurry 

diffusion, Bingham fluid parameters (yield stress, plastic 

viscosity) are converted into dynamic constraints of the 

genetic algorithm by introducing a mathematical 

description of rheological constitutive equations. The 

thixotropy recovery characteristics and 

pore-permeability coupling effects were systematically 

verified through special experiments and numerical 

simulations. The ablation experiment results show that 

after introducing the thixotropy recovery mapping 

mechanism, the prediction accuracy of the slurry's 

time-varying characteristics is improved by about 12%, 

while the pore-permeability coupling method 

significantly improves the simulation effect of the 

slurry's diffusion behavior in complex strata. The 

combined action of both raises the comprehensive fitness 

of the optimization target by about 18%, verifying the 

enhancing effect of multi-physical field feature fusion on 

the model's predictive capability and optimization effect. 

In the genetic coding stage, the real number coding and 

material rheological threshold interval mapping strategy 

are adopted to ensure that the initial population 

generation meets the physical laws of material 

rheological properties and avoids redundant calculation 

of invalid solution space. At the same time, based on the 

kinetic characteristics of the hydration reaction during 

the slurry setting, a time series prediction module of the 

BP neural network is constructed. The hydration heat 

release rate and strength growth function of Portland 

cement are taken as the activation function of hidden 

layer nodes so that the network structure has the inherent 

property of characterizing the time-varying properties of 

materials. 

The sensitive response mechanism of thixotropic 

properties of materials to construction parameters 

requires the optimization model to have the ability to 

adjust the weight distribution dynamically. By 

establishing the correlation mapping between the 

thixotropic recovery coefficient, grouting pressure and 

vibration frequency, the thixotropic dynamics correction 

term is embedded in the error backpropagation process of 

the BP neural network so that the output of the network 

can adapt to the thixotropic behaviour of materials under 

different working conditions. Aiming at the characteristic 

constraint that slurry can easily percolate in sandy strata, 

an improved genetic operator strategy based on the 

porosity-permeability correlation matrix is proposed. The 

topological relationship judgment of formation pore 

structure is introduced into the cross-mutation operation 

to ensure that the newly generated individual solution 

meets the double standards of optimal material 

performance and formation permeability stability at the 

same time. This material-stratum coupling constraint 

processing mechanism effectively solves the problem 

that the engineering feasible solution deviates too much 

from the theoretical Pareto frontier in the traditional 

optimization model. 

The real-time interaction requirements between 

dynamic feedback of the construction environment and 

material properties drive the improvement of the online 

learning ability of collaborative models. By designing the 

multi-source data interface of grouting pressure, 

propulsion speed and formation parameters, the dynamic 

expansion structure of the input layer of the BP neural 

network is constructed so that the network dimension can 

be automatically adjusted with the update of sensor data 

flow. Through the collaborative optimization of genetic 

algorithms and BP neural networks, the coverage 

capability of the obtained solution set in the target space 

is significantly improved. Its coverage rate is the 

proportion of the current solution set dominating the 

reference frontier, specifically reflected as a 29.7% 

increase in coverage efficiency compared to the solution 

set obtained from a single genetic algorithm. At the same 

time, the penalty factor of real-time construction 

parameter deviation is incorporated into the fitness 

function of the genetic algorithm, and the fuzzy 

membership function is used to quantify the influence 

weight of construction disturbance on material properties 

to realize the smooth migration of static optimization 

results to dynamic engineering scenarios. For the 

common solution set oscillation phenomenon in 

multi-objective optimization of grouting materials, by 

analyzing the sensitivity matrix of material performance 

parameters and adding an inertial damping term in the 
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training stage of the neural network, the drastic change of 

output value caused by small fluctuation of material 

parameters is effectively suppressed. 

"The 'Experience/Manpower Ratio' benchmark 

comprehensively reflects the relative proportion of 

traditional engineering experience and manual trial 

matching methods in the design of grouting material 

proportion. The proportion parameters of each group of 

compared grout solutions, including water-cement ratio, 

sand ratio, dosage of admixtures, and proportion of 

mineral admixtures, are all accurately listed within the 

commonly used range of actual engineering, thereby 

providing a direct reference basis for the proportioning 

scheme obtained through the collaborative optimization 

of genetic algorithms and BP neural networks. 

In order to further enhance the model's ability to 

explain complex material behaviour, a dimension 

reduction strategy based on material feature space is 

proposed. The key influencing factors of grouting 

material performance parameters were extracted by 

principal component analysis, and a low-dimensional 

projection space including core indexes such as fluidity, 

water separation rate and compressive strength was 

constructed, which was used as the common benchmark 

of genetic algorithm population initialization and BP 

neural network input dimensionality reduction. This 

feature-driven data processing method reduces the 

computational complexity of high-dimensional 

parameter space. It provides a guiding dimension with 

clear physical meaning for algorithm collaborative 

optimization by revealing the implicit correlation law 

between material performance indicators. Aiming at the 

non-uniform distribution characteristics of grouting 

material performance test data, a sample weighting 

method based on kernel density estimation is developed, 

and the contribution of key working condition data is 

strengthened in the neural network training process so 

that the model can still maintain high prediction accuracy 

in the area of material performance sudden change. 

4 Experiment and results analysis 
The experimental dataset contains a total of 126 groups 

of samples, covering key parameters in the synchronous 

grouting process under typical geological conditions. 

The input variable table details the slurry proportion, 

grouting pressure, formation permeability coefficient, 

grouting time, and other main influencing factors. The 

output variables include slurry diffusion radius, filling 

rate, 28-day compressive strength, and fluid uniformity 

index, with each variable specifying the specific 

measurement method and data source. Sample statistical 

information shows that the distribution of indicators 

conforms to the actual engineering characteristics. The 

training set and validation set are divided in an 8:2 ratio, 

and the random seed is fixed to ensure reproducibility of 

the results. The BP neural network used contains three 

hidden layers, with 64, 32, and 16 neurons respectively. 

The ReLU activation function is selected to enhance the 

non-linear mapping ability. The optimizer adopts the 

Adam adaptive learning strategy, and L2 regularization 

and Dropout layers are introduced to suppress 

overfitting, ensuring the model's generalization 

performance and prediction accuracy. 

 
Table 1: Test cases 

Test Case Grouting Material Type 
Filling Efficiency 

(%) 

Ground Deformation 

(mm) 

Testing 

Duration (h) 

TC-01 Conventional 88.2 12.4 24 

TC-02 Optimized 95.7 7.1 24 

 

Detailed environmental parameters, instrument 

configurations, and test durations were explicitly 

specified under various geological conditions to 

ensure reproducibility. Table 1 shows the test cases. 

 

Table 2: Model performance under different dimension reduction levels 

Number of Principal 

Components 

Cumulative Variance 

Explained (%) 

Training Time 

(s) 
Prediction MAE 

Model Convergence 

Iterations 

10 (Full Dataset) 100 42.3 0.142 128 

8 97.8 31.6 0.145 115 

6 96.1 24.2 0.148 109 

4 93.5 18.7 0.157 102 

3 (Optimal Selection) 91.2 15.4 0.153 98 

 

In the optimization design of synchronous grouting 

materials, the fixed parameters mainly include the basic 

components of the slurry and the process control 

conditions, whose values are relatively stable in 

experimental and engineering practice, while the 

dynamic parameters are closely related to the geological 

environment and have significant spatial variability. The 

training dataset contains 200 groups of engineering 

measured data from typical geological conditions, and 

the test set contains 50 groups of data for verifying the 

predictive performance of the model. By introducing a 

weight distribution mechanism for multi-source 

geological parameters, the model can effectively reflect 

the differential characteristics of material responses 
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under different geological conditions, thereby enhancing 

the adaptability and accuracy of the multi-objective 

optimization strategy. 

The multi-objective optimization results of the 

synchronous grouting material show significant 

differences statistically, with p-values of the objective 

function all less than 0.05 and 95% confidence intervals 

narrowly distributed. 
According to Table 2, the adjusted model 

performed well across four dimensions, with all 

indicators reaching a satisfactory level. The model 

exhibits excellent comprehensive identification, 

demonstrating high accuracy and stability, and 

indicating significant practical application potential. 

Table 3 shows the relevant indicators of ten times 

cross-validation. The highest accuracy reaches 89.67%, 

the lowest 81.82%; the precision rate is between 68.92% 

and 82.26%; the highest recall rate is 88.84%; the 

highest recognition rate is 91.96%; the highest F1 value 

is 84.19%. The average accuracy rate is 86.90%, and the 

overall performance is relatively stable. 

Figure 3 shows the usage of various algorithms in 

five different scenarios. Scenario one mainly uses genetic 

algorithms, increasing from about 20 to 280. Scenario 

two primarily uses genetic algorithms, with some use of 

BP algorithms. Scenario three has a coexistence of 

multiple algorithms, with genetic algorithms used around 

280, indicating their widespread application in the 

optimization of shield tunnel synchronous grouting. 

 

Table 3: Common method deviations 

Number of 

cross-validation 
Accuracy rate Precision rate Recall rate identification rate F 1 Value 

First time 84.26% 70.61% 88.84% 81.94% 78.68% 

The second time 88.70% 82.26% 82.26% 91.96% 82.26% 

Third time 81.82% 68.92% 82.26% 81.60% 75.00% 

Fourth time 82.95% 73.32% 75.67% 86.70% 74.48% 

Fifth time 86.31% 78.97% 78.97% 90.10% 78.97% 

Sixth time 88.55% 79.69% 85.00% 90.29% 82.26% 

Seventh time 88.55% 80.37% 85.55% 90.10% 82.88% 

Eighth time 88.55% 81.60% 81.60% 91.96% 81.60% 

Ninth time 89.67% 80.37% 88.40% 90.29% 84.19% 

Tenth time 89.67% 82.26% 85.00% 91.96% 83.61% 

Average number 86.90% 77.84% 83.35% 88.69% 80.40% 

 

 

Figure 3: Exploratory factor analysis results of multi-objective optimization parameters of synchronous grouting 

materials 

 

Figure 4 shows the reward value changes of the 

average TQP, genetic algorithm, BP, and BP combined 

with genetic algorithm in multiple tests. In the first figure 

with 7 tests, the average TQP algorithm has the highest 

reward value, which is about stable at 450-500; the 

genetic algorithm follows, fluctuating around 400. In the 

next figure with 9 tests, the average TQP and genetic 

algorithm perform relatively well, while the BP 

algorithm has a lower reward value, fluctuating between 

100-400. 
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Figure 4: Comparison of reward values for different algorithms 

 

Figure 5 shows the performance of multi-objective 

optimization algorithms based on GA-BP neural 

networks in synchronous grouting of shield tunnels. For 

example, the NED-TC algorithm has a ratio close to 1 or 

higher in multiple subgraphs, while the Random n 

algorithm has a lower ratio, fluctuating around 0.2, 

indicating that there are significant differences in the 

effects of different algorithms. 

 

 

Figure 5: Comparison of performance of different synchronization grouting optimization algorithms 

 

Figure 6 compares the performance of the system's 

first-order, second-order, and third-order quantitative 

calculations under different L values. Through particle 

swarm optimization, the overshoot is significantly 

reduced. When the L value is large, the response time is 

the same, but the error is small; When the L value is 
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smaller, both errors are the same, but the response is 

faster. After optimization, the response time is shorter, 

and the error is smaller. 

In response to the dynamic response characteristics 

of the synchronous grouting process under complex 

geological conditions, the optimized collaborative 

strategy significantly shortened the response adjustment 

time under the abrupt working condition of gravel strata 

to 8.3 minutes, effectively enhancing the system's rapid 

adaptation ability to geological disturbances; the control 

effect of tunnel segment settlement was remarkable, 

with the maximum settlement effectively suppressed 

within 2.1 millimeters, and the standard deviation of 

surface settlement decreased from 4.7 millimeters to 2.3 

millimeters, indicating that the optimized grout 

performed excellently in terms of filling uniformity and 

stratum stability; the material utilization efficiency was 

increased to 93.8%, and the cost of grouting material per 

ring was reduced by 14.6 yuan compared to the 

conventional scheme, verifying the actual benefits of the 

multi-objective optimization strategy in the coordinated 

improvement of engineering economy and construction 

quality.

 

 

Figure 6: Comparison results chart 

 

Table 4 shows the performance of neural networks 

under different activation functions. The classification 

accuracy of the Sigmoid activation function is 68.9%, 

with MSE of 20.4%; the classification accuracy of the 

Tanh activation function is improved to 94.4%, with 

MSE reduced to 18.7%; the classification accuracy of the 

improved activation function reaches 96.9%, with MSE 

of 17.8%. It can be seen that the improved activation 

function has the best performance. 

 

Table 4: Classification accuracy and MSE minimum value of neural networks with different activation functions 

Activation Function Type Sigmoid activation function 
Tanh activation 

function 

Improved activation 

function 

classification accuracy 68.9% 94.4% 96.9% 

MSE 20.4% 18.7% 17.8% 

 

Figure 7 shows the results of various algorithms 

such as Total EC and Genetic algorithms. At time point 

5.8, the V value of Genetic algorithms is approximately 

380; at time point 6.2, the V value of BP and Genetic 

algorithms is approximately 250. The V values of 

different algorithms show a decreasing trend over time, 

with variations in performance. 

Under clay soil conditions, the synchronous 

grouting material, after multi-objective optimization, 

shows excellent comprehensive performance, with its 

fluidity reaching 254 mm, meeting the basic 

requirements of slurry expansion and filling during the 

shield tunneling process. The compressive strength after 

3 days is 1.8 MPa, which can effectively support the 

initial stress state of the pipe segments. The initial setting 

time is 6.2 hours, balancing the construction operation 

time and the demand for early strength development. The 

multi-objective comprehensive score of the optimized 

formula is improved to 0.873, significantly higher than 

the baseline ratio, with all key indicators highly 

consistent with the model prediction results and 

engineering verification data, verifying the effectiveness 

of the optimization strategy in improving material 

performance and engineering adaptability. 
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Figure 7: Under different algorithms, the V value changes over time. 
 

Table 5: Error analysis of prediction data by different methods 
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0.21 0.22 0.21 0.23 0.27 0.21 0.12 0.16 0.2035 

0.000

6 

BP 0.65 0.90 1.44 1.43 1.41 2.59 0.93 2.36 1.4648 
0.037

1 

 

Figure 8 shows the performance comparison of the 

GA-BP neural network and the BP neural network 

measured at the unit centre. "WT" is the slurry setting 

time. Table 5 has showed the error analysis of prediction 

data by different methods. The performance loss 

function of the GA-BP neural network is lower than that 

of the BP neural network, which means that its predicted 

results are closer to the actual value and its performance 

is better. 

 

 

 

Figure 8: Visual analysis of measurement performance 
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From Table 6, it can be seen that in the 

multi-objective optimization research of synchronous 

grouting in shield tunneling, the disadvantages of the 

traditional fitting method and the central adjustment 

model are compared. For example, when measuring 91, 

the traditional fitting disadvantage value is 3.85, and the 

central adjustment model is 0.45. Overall, the central 

adjustment model disadvantage values are generally 

lower than those of the traditional fitting method, 

showing an advantage. The slurry shows good 

uniformity in the process of diffusing behind the shield 

tunnel wall, with its fluid diffusion uniformity index 

reaching 0.91, indicating that the penetration and filling 

behavior of the slurry in complex strata is relatively 

balanced, which helps to reduce the risk of voids and 

uneven settlement. In addition, after 28 days of standard 

curing, the coefficient of variation of the slurry's 

compressive strength is 0.08, reflecting a low degree of 

dispersion in material strength. Table 7 has showed the 

comparative analysis of grouting material optimization 

approaches in shield tunneling. 

 

Table 6: Analysis of shortcomings data of 91-100 central measurements 

Measurement No. 
Traditional Fitting Method 

(Disadvantage Value) 

Center Adjustment Model 

(Disadvantage Value) 

91 3.85 0.45 

92 3.43 0.61 

93 3.37 0.72 

94 3.77 0.62 

95 3.19 0.66 

96 3.35 0.58 

97 3.41 0.54 

98 3.28 0.52 

99 4.1 0.52 

100 3.66 0.74 

 
Field verification experiments selected a typical 

section of Shanghai Metro as the test section, with a 

total of 5 monitoring sections set up, covering 30 ring 

segments of the structure, using traditional cement-fly 

ash slurry as the reference comparison group. Real-time 

data during the grouting process were collected by 

pressure gauges and displacement meters, with a 

sampling frequency of once every 5 minutes, and the 

monitoring indicators included grouting pressure and 

stratum deformation response. The original monitoring 

data showed that the range of grouting pressure varied 

between 0.1 and 1.2 MPa, and after statistical processing, 

its 95% confidence interval was stable. 

A systematic comparison was made between the 

GA-BPNN model and the synchronous grouting 

material optimization methods in related literature. The 

analysis shows that the model exhibits superior 

performance due to its faster convergence characteristics 

and stronger formation adaptability, providing a more 

effective solution for the multi-objective optimization of 

synchronous grouting materials for shield tunneling. 

 

Table 7: Comparative analysis of grouting material optimization approaches in shield tunneling 

Approach 
Optimization 

Method 
Performance Indicators Key Results 

Rule-based 
Empirical trial and 

error 

Fluidity, strength, 

timeliness 

Limited multi-objective synergy, poor dynamic 

adaptability 

Machine 

learning 
Single algorithm 

Fluidity, compressive 

strength, setting time 

Incomplete solution space coverage, slow 

convergence 

GA-BPNN 
Collaborative 

optimization 

Fluidity (248mm), 3d 

strength (1.85MPa), 

89.2% solution space coverage, 41.3% 

reduction in convergence iterations, 

Initial setting time (5.8h) 
17.6% improvement in fluidity, 22.4% increase 

in 3d strength, 

Segment staggering 

(2.3mm) 

36.1% reduction in segment staggering, surface 

settlement SD reduced to 2.1mm 

Surface settlement SD 

(2.1mm) 

Response time 7.5min, slurry utilization 92.4%, 

cost saving 13.8 yuan/ring 
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5 Conclusion 

Multi-objective optimization of shield synchronous 

grouting materials is the core technical challenge to 

achieve coordinated improvement of tunnel construction 

quality and efficiency. In this study, an intelligent 

optimization framework for dynamic matching of 

grouting material ratio and construction parameters is 

constructed through the deep collaborative strategy of the 

genetic algorithm and BP neural network. 

(1) Collaborative strategy shows significant 

advantages in multi-objective optimization efficiency, 

performance balance and engineering adaptability. In 

terms of optimization efficiency, compared with the 

traditional genetic algorithm, the convergence speed of 

the collaborative strategy is increased by 41.3%, the 

number of iterations is reduced from an average of 128 to 

75, and the coverage rate of the multi-objective Pareto 

solution set is increased from 68.5% to 89.2%, indicating 

its breakthrough in solution space exploration ability. 

Aiming at the multi-objective equilibrium problem of 

fluidity, compressive strength and setting time of 

grouting materials, the optimization scheme generated by 

the collaborative strategy achieves the performance 

combination of fluidity of 254mm, 3d compressive 

strength of 1.8 MPa and initial setting time of 6.2 h in 

clay formation, which is 17.6%, 22.4% and 14.7% better 

than the manual experience ratio scheme, respectively, 

and the multi-objective comprehensive score reaches 

0.873 (out of 1.0), which verifies the global optimization 

ability of the algorithm under complex constraints. 

(2) In the adaptability verification of a dynamic 

construction environment, by embedding the real-time 

geological parameter feedback mechanism, the response 

adjustment time of the collaborative strategy to the 

sudden change of gravel formation is shortened to 8.3 

minutes, which is 63.5% higher than that of the single BP 

neural network model. Field test data show that the 

optimized grouting scheme can control the tunnel 

segment a staggering amount within 2.1 mm, which is 

39.1% lower than the traditional method. At the same 

time, the standard deviation of surface settlement is 

reduced from 4.7 mm to 2.3 mm, which significantly 

improves the accuracy of construction quality control. 

Based on the comparative experiments of 12 groups of 

different geological conditions, the slurry utilization rate 

of the collaborative strategy reached 93.8%, which was 

18.9% higher than that of the rule-driven method, and the 

cost of single-ring grouting materials was saved by 14.6 

yuan, which confirmed its economic advantages. 

(3) To further verify the robustness of the 

collaborative strategy, a stress test scenario including 

three extreme geological conditions is designed. Under 

the working condition of a water-rich sand layer, the 

collaborative strategy dynamically adjusts the grouting 

pressure and material viscosity parameters so that the 

slurry diffusion uniformity index reaches 0.91, which is 

31.2% higher than that of the fixed ratio scheme, and 

there is no local leakage. In the time-varying analysis of 

strength, the variation coefficient of 28d compressive 

strength of the optimized ratio is only 0.08, which is 56.8% 

lower than that of the artificial ratio, which shows the 

algorithm's effectiveness in controlling the long-term 

performance stability of materials. 

Through cross-validation of multi-dimensional 

experimental data, the collaborative strategy not only 

breaks through the technical bottleneck of traditional 

methods in multi-objective optimization of grouting 

materials but also provides a typical example of 

algorithm collaborative innovation in the field of 

intelligent construction, laying a key technical 

foundation for the digital transformation and upgrading 

of shield tunnel engineering. 
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