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The present paper aims to propose a novel model to investigate its utility in evaluating the beneficial
effects of tropical forest biomass. To address the multiplicity of variables, as well as the complexity and
nonlinear relationships between them, five Machine Learning (ML) models, namely Gradient Boosting
(GB), Extra Trees (ET), XGB, ElasticNet, and Poisson Regression, were employed to concurrently predict
both the below-ground and above-ground tree biomass (BGB and AGB, respectively), as well as the total
biomass (TB = BGB + AGB). Since the results of the aforementioned models were not entirely satisfactory,
an additional model called the Stacking Ensemble (SE) was introduced. Each model can have its
parameters optimized by Grid Search with cross-validation to make sure that there is generalization and
consistent performance. The data collected were based on 175 trees from 27 ecoregional plots located in
the Central Highlands ecoregion of Vietnam. The dataset was processed to investigate the proposed
model's ability to predict tree biomass. The study's findings revealed that the proposed method
demonstrated strong and efficient predictive capabilities for biomass estimation in forest ecoregions. The
Stacking model showed the most significant improvements in the highest R 2 (0.968) and VAF (0.971),
and the lowest errors, and MDAPE (23.081 percent), which means that it has a strong ability to predict
and minimal bias. However, STD (105.763) was marginally higher; nevertheless, the error and strength
of this variation exceeded this variance. Thus, incorporating a Stacking Ensemble (SE) model strengthens
the ML approach in predicting forest tree biomass amounts.

Povzetek: Studija predlaga ansambelski model za napoved tropske drevesne biomase, ki zdruzuje pet ML-
modelov in optimizacijo z iskanjem po mrezi. Stacking Ensemble doseze najboljsa napovedovanja ter

najnizje napake, kar obcutno izboljsa oceno nadzemne, podzemne in skupne biomase.

1 Introduction

1.1 The role of biomass

Given that biomass plays an unquestionable role as one of
the world’s vital sources of energy [1]. The disputing
matter is what appropriate model would be able to
recognize and prove its traits. Zhantao Song et al. (2024)
in their work discussed original visions about the concept
of the pyrolysis process of biomass. They argued the
contribution of various factors to the challenging
anticipation of physicochemical traits by applying
machine learning techniques such as Random Forest,
gradient boosting decision tree, extreme gradient
boosting, in which R? was higher than 0.97 for particular
surface area biochar anticipation as well as analysis,
involving yield as well as N content of biochar [1].

In another study, Jia et al. (2024) exploited machine
learning methods to anticipate zeolite-catalyzed biomass
pyrolysis, and as a result, the Random Forest algorithm
performed the highest prediction with R? >0.91 for their
suggested models. They concluded that their selected
factors and methods based on biomass characteristics can
be taken into account as a plausible reference [2].

1.2 Above-ground biomass (AGB)

The term above-ground biomass (AGB) refers to the
product of above-ground volume (AGV) and vegetation
mass. It is also closely linked to the carbon cycle in global
grassland ecosystems. Additionally, accurate estimation
of AGB variations is essential for assessing carbon
decomposition and its impact on climate change. It is also
crucial to screen in situ-harvested AGB data before
modeling [3]. Furthermore, AGB is an indispensable
factor for evaluating ecosystem health and carbon storage.
To estimate AGB, the above-ground volume (AGV) of
vegetation is considered a high-priority parameter in
research [4].

To estimate AGB variations of China’s grassland
ecosystems, machine learning algorithms, among which
the Random Forest model with R2 = 0.83 (i.e., 83 % of the
harvesting AGB variations), and RMSE = 43.84 gm—2,
revealed accurate performance in estimating grassland
AGB [3]. Mao et al. (2021) in their proposed model
proved that structural, textural, and spectral metrics
contribute to shrub AGV models. They also suggested a
direct reference to specify proper vegetation metrics to
screen shrub AGV. The efficiency, accuracy, and low cost
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are considered to be the pros of their proposed approach
for digital terrain model (DTM) output and AGV
estimation; thus, it can bridge the gap between ground-
based research and satellite remote sensing [4]. May et al.
2024 obtained spatially complete predictions of biomass
in a tropical area. They state that this sort of spatially
coherent data about AGB supplied by their model is useful
to validate the eco-friendly forest handling, carbon
decomposition innovations, and climate change
alleviation [5].

1.3 Below-ground biomass (BGB)

Below-ground biomass (BGB) is a significant part of
forest tree biomass; however, fewer studies have focused
on BGB about forest biomass and carbon. This is largely
because the process of measuring BGB in large trees is
costly and time-consuming. As a result, researchers often
use Above-Ground Biomass (AGB) to estimate BGB by
applying a root-to-shoot ratio. For different forest types,
researchers have also developed specific direct BGB
equations [6].

In a recent study, Oliveira et al. (2024) suggested that
predicting peanut BGB using their proposed alternative
method—i.e.,, the multi-output regression (MTR)
approach—would enable both researchers and farmers to
quantify BGB more accurately. They proposed this
method to predict multiple peanut maturity indices at the
field level, helping to reduce subjectivity in determining
peanut maturity [7].

1.4 Ensemble approaches

Ensemble learning is a potent machine learning technique
that reduces overfitting, boosts robustness, and enhances
overall performance by combining predictions from
several models. Ensemble approaches combine the
advantages of multiple algorithms to improve
generalization rather than depending on a single model
[8]. Stacking, also known as stacked generalization, is a
versatile and successful ensemble technique. Stacking
mixes different kinds of models, possibly with different
architectures and learning strategies [9]. In contrast to
bagging (e.g., Random Forest) or boosting (e.g., Gradient
Boosting, XGBoost), which combine similar models
(typically decision trees). Naik et al. (2022) utilized
automated stacked ensemble modelling powered by
machine learning for predicting aboveground biomass in
forests using multitemporal Sentinel-2 data [10]. A
stacking ensemble algorithm was used by Zhang et al.
(2022) to reduce the biases in estimates of forest
aboveground biomass derived from several remotely
sensed datasets [11]. Besides, Jin et al. (2025) evaluated
the impact of validation techniques and ensemble learning
algorithms on estimating aboveground biomass in forests:
a case study of natural secondary forests [12]. To this end,
they developed models based on various outcomes,
qualified to synchronously anticipate AGB, BGB, and the
total amount of tree biomass, i.e., TB, in forest areas,
solving the problem of carbon estimation for various
forest sites.
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1.5 Regression models

It is appropriate to take a brief glimpse at the regression
models proposed in the present article:

The Gradient Boosting (GB) model is regarded as a
strong ML algorithm for numerical optimization
problems. Thanks to Leo Breiman (1998) and Jerome
Friedman (2001), GB has been developed. The former
used GB for decreasing variance for categorization, and
the latter improved it for regression and categorization
models. GB algorithms carry out numerical optimization
for the models of regression and categorization, repeatedly
being approximately directed towards the loss function
negative gradient. Due to some complexity, it is
impossible to direct precisely towards a negative gradient;
normally, a weak learner is applied by a GB model to
estimate the extreme decline direction [13].

Extra Trees (ET), a recently developed regression
model, is considered to be an ensemble ML algorithm
related to decision trees. Originally, ET is the improved
form of the Random Forest algorithm for the purpose of
regression or categorization performance. The reason that
makes the ET regression algorithm more competitive for
small-sized sample ML is that it utilizes all data to
improve the branches of nodes in decision trees effectively
[14]. Wang et al. (2023) in their study provided an
efficient ML model utilizing an ET regression algorithm
for anticipating the relevant synthesis gas traits in the
process of biomass chemical looping gasification, and
then compared its ability in prediction between the ET
model and traditional ones. In another study, using both
RF along with ET al algorithm models, researchers
developed a general model to precisely predict the co-
pyrolysis of coal and biomass, in which ET performed
better [15]. ET is advantageous due to achieving more
efficient performance than the Random Forest. Compared
to RF, ET does not perform bootstrap accumulation like,
i.e. it takes a random subset of data without replacement.
Hence, nodes are divided randomly, but not based on the
best divisions. Therefore, in the ET regression model,
randomness doesn’t come from bootstrap accumulation
but from the random divisions of the data [16]. According
to Roy (2021), RF was introduced to overcome the
Decision Tree problems, giving medium variance.
Accordingly, ET was proposed when accuracy was more
crucial than a generalized model. It also delivers low
variance.

Extreme Gradient Boosting (XGB) is another strong,
multifaceted ML algorithm used for regression and
taxonomy jobs. It is well-known for its exceptional
capability to predict performances and deal with intricate
datasets. GB involves a series of procedures, preparing
models in sequence, based on which the previously
produced errors are reformed by each new model.
XGBoost is a type of ensemble learning technique that
mixes the predictions of various ML models to yield an
ultimate prediction that is more precise. Besides that, this
algorithm also makes use of decision trees like basic
learners during its process. To add more, XGB is intended
to efficiently influence processors of high-capacity and
approaches of the distribution system [17]. Ayub et al.
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(2023) applied an XGB algorithm model on a multi-level
factorial design outcome to predict and improve the
gasification product, in which the XGB model depicts a
good prediction accuracy as well as model optimization
analysis. The key characteristics of the XGB are explained
as an ability to handle complicated relations in data with
regularizing  techniques,  effectively  preventing
overfitting; thus, it performs the calculation efficiently due
to parallel processing. It considers the usage of decision
trees as base learners and then makes use of regularizing
techniques for model generalization at a higher
dimensionality. XGB, more popularly acknowledged for
its efficiency in computations, provides processing
efficiency with perceptive analysis of feature significance,
as well as deals with missing values smoothly [18].

ElasticNet, being a powerful linear regression
technique highly beneficial in ML and statistical
modeling, excels traditional linear regression models. It
bears the ability to mix the penalties created by both Lasso
and Ridge regressions. It is useful in particular when
traditional linear regressions struggle  with
multicollinearity, i.e., when predictors are highly
correlated [19]. That is to say, ElasticNet is advantageous
due to bearing multi-dimensional datasets, selecting
significant traits, and being a more consistent and reliable
model where there exists collinearity. Aimed to help in
solving problems of regression and developing models’
performance, ElasticNet offers effective analytical means
for handling multi-dimensional regression. Its common
applications include characteristics selection, analysis of
regression, and modeling for prediction [20]. The
significance of  ElasticNet  regression includes
multicollinearity handling, automatic feature selection,
aiding in model interpretability and reducing overfitting,
flexible regularization, allowing researchers to control the
balance between Lasso and Ridge penalties, robustness in
high-dimensional data, appropriateness for a variety of
regression problems [15].

Poisson is a regression analysis where its answer is
based on the distribution called Poisson. The regression
suffers from a limitation of the variance equaling the
mean, called Equi dispersion. As a consequence of the
assumption being violated, resulting in the biased standard
error, the less exact test statistics drawn from the model,
and consequently, the obtained conclusions will be less
valid. The Poisson regression model, therefore, cannot be
used under occurrences of over-dispersion or under-
dispersion. Poisson regression is one of the generalized
linear models. It finds its main application because it
usually happens to model occurrences of the kind that are
rarely occurring [21].

The Stacking Ensemble (SE) model makes use of an
ensemble generalizing approach through learning, despite
the fact that it may lack instructions for appropriate non-
hyperparameterized meta-learners. The necessity of
applying stacking is when multiple ML methods reveal
various advantages for a certain task. In this case, the
stacking ensemble method employs a discrete ML
technique for specifying the efficient application of
various algorithms [22]. For this reason, Arif et al. (2024)
developed a model of stacking ensemble, by a non-
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homogeneous mixture of fundamental models, for
accurate yet, at the same time, interpretable prediction of
lung cancer prognosis so as to recognize crucial risk
factors [18].

The use of DL methods is unquestionably dominant
over other traditional methods, particularly in tropical
forests biomass research [6]. Although many studies have
investigated tree biomass anticipation by applying various
models [6], the applied models are well-established. But
lack combining models as ML, ensemble, and
optimization of hyperparameters approaches. This work
adds value by combining them using a meticulously
designed Stacking Ensemble specifically designed for
predicting AGB, BGB, and TB using a small, real-world
dataset from 27 eco-regions in Vietnam. The Fit Index
(FI), a stability-focused evaluation metric that hasn't been
used in biomass prediction before, is introduced in this
study. The proposed approach provides new
methodological insights that improve prediction accuracy
and generalizability in tropical biomass estimation by
combining rigorous preprocessing, multi-target modelling
within  an ecological context, and systematic
hyperparameter tuning through Grid Search. Furthermore,
this work differs from earlier black-box DL applications
in that it incorporates Shapley Additive Explanations
(SHAP) for ecological feature interpretation, which offers
important ecological insight. Hence, this study was
conducted to serve the purpose of bridging this gap. This
subject is an expansion of an ongoing strategy to integrate
remote sensing inputs acquired using a satellite or a drone
and a source of biomass determinations as measured on
the ground in order to develop a spatially superior, and
rooted business-time dynamic biomass forecast model.
Besides the otherwise plausible analytical foundation of
the process, the model is capable of capturing some facets
of complex nonlinear responses and enhancing the
accuracy of predicting biomass over wider geographical
areas and timeframes due to the use of sophisticated
Stacking ensembles, enabled by Grid Search and cross-
validation. Besides, the climatic variables can be included
to forecast the change in biomass distribution in the case
of a future climate change scenario, which can provide a
significant insight both in forest management and on
carbon budgeting. That is to say, designing a new model
qualified to anticipate tree BGB, AGB, as well as the total
of tree biomass TB (i.e., TB = BGB + AGB) concurrently,
will fulfil the requirement of estimating forest carbon. On
this account, making use of a community of up-to-date
regression algorithms to increase the reliability for the
aforementioned parameters estimation, as well as that for
the newly proposed model, will assist the progressing
literature in the realm of forestry science. The study
proposes that integrated ensemble models will anticipate
tropical tree biomass better than traditional modeling
systems; as a result, the model will be dominant over
conventional ones. The study objectives are twofold:
firstly, designing a model to concurrently anticipate tree
AGB, BGB, and TB, guaranteeing additivity of tropical
forests in Vietnam by the names of Dipterocarp and
Evergreen Broadleaf, and secondly, cross-validating
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errors compared to a traditional model, applying the same
dataset as well as anticipators in the mentioned forests.

The rest of this paper is structured as follows. That is,
Section 2 discusses detailed methodology, including
materials and data used in this work. Section 3 presents
numerical analyses, graphical analyses, and experimental
results under the heading of results and discussions.
Lastly, section 4 summarizes the concluding points in the
study.

Legend

lam dong | dak nong ¥ kon tum
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2 Methodology

The present paper aimed to investigate the efficiency of a
state-of-the-art model to be qualified for predicting
tropical forest tree biomass effects.

This study was conducted in one of Vietnam’s eight
highest tropical forests, called the Central Highlands
ecoregion. Two main tropical forest categories were
selected for the focus of the research, i.e., Dipterocarp and
Evergreen Broadleaf (See Fig. 1).

gia lai dak lak [ ] vietnam

Figure 1: Sample plots, Locations for the forests Dipterocarp and Evergreen Broadleaf in the ecoregion of Central
Highlands, Vietnam

In this work, the dataset was exploited in a research
study conducted by Huy et al. [6]. The collected data were
based on 175 trees from 27 ecoregional lots located in the
Central Highlands, Vietnam. We clearly define the dataset
partitioning strategy to ensure reproducibility: the entire
dataset of 175 samples was randomly divided into training
(80%) and testing (20%) sets. Cross-validation was used
over iterations to ensure robust evaluation and minimize
sampling bias. To ensure compatibility across models and
better convergence during training, feature preprocessing
involved removing outliers and normalizing all input
variables to a [0,1] range using Min-Max scaling. The
hyperparameter tuning process was carried out using Grid
Search with 5-fold internal cross-validation for each

machine learning model: Poisson regression, ElasticNet,
XGB, Extra Trees (ET), and Gradient Boosting (GB). This
allowed us to systematically explore parameter
combinations and choose those that produced the best
performance on training data. Based on the results of
cross-validation, the Grid Search  methodically
investigates a predetermined set of hyperparameter values
to determine which combination produces the best model
performance.

A customized grid of important hyperparameters was
built for every model. For instance, tree-based models
such as GB, ET, and XGB had their learning rate,
maximum depth, and number of estimators adjusted. We
adjusted the L1 ratio and alpha (regularization strength)
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for ElasticNet. Likewise, pertinent parameters for the
stacking meta-learner and Poisson regression were
adjusted. In order to maximize generalization and
performance consistency, Grid Search was used in a cross-
validation framework to guarantee that each model was
trained with the best parameter settings. This method
greatly enhanced both the Stacking Ensemble's overall
performance and the accuracy of the individual models.
The desired targets in this dataset included the amount
of above-ground tropical biomass (AGB), the amount of
below-ground tropical biomass (BGB), and (TB), namely
the total tropical tree biomass; equaling the summation of
the below-ground and above-ground tree biomass (i.e., TB
= BGB + AGB). Moreover, preprocessing and
normalization operations were done on the data.

To serve the purpose of the study, five ML models, as
a base learner including GB, ET, XGBoost, ElasticNet,
and Poisson, were employed to synchronously anticipate
both the amount of below and above-ground tree biomass
(BGB and AGB, respectively) as well as the total amount
of tree biomass, i.e., TB = BGB + AGB.

Owing to the individual models' mediocre
performance, these five models were used as base learners
to create a Stacking Ensemble (SE). Following that, a
meta-learner was trained using their predictions to
generate the final prediction for every biomass
component.

For the purpose of assessing as well as selecting the
most efficient model able to concurrently anticipate
tropical tree BGB, AGB, and TB, a powerful process of
cross-validation was carried out.

The Total number of the data was 175 which was
randomly split ten times into two sections, involving 140
(80%) for training data, and 35 (20%) for testing data,
evaluating impartially. The reason why the data was
altered into data testing and training data was to conduct a
data analysis satisfying accuracy and reliability in this
research. A wide range of assessment metrics, such as

Informatica 49 (2025) 373-396 377

MSE, RMSE, MAE, R2, STD, NMSE, MDAPE, and
VAF, were used to evaluate performance.

the Fit Index (FI), a goodness-of-fit metric intended
to assess the quality of predictions across several cross-
validation realizations. A higher FI value indicates a better
fit, with values approaching 1. The formula for calculating
the FI1 is presented below.

Zl 1(yl yl)z
k Z ( 1(y1 - yz)z (1)

In the equation above k stands for the realizations

number (in this study k = 10), m is the number of trees
sampled in the validation dataset; and yi is the observed
value. pi represents the predicted value, and y shows the
averaged value for BGB, AGB, and TB of the ith validated
tree in the realization of kth.
The study goal was to evaluate accuracy and model
consistency in light of the ecological context and the small
dataset size. Metrics like R2 and VAF measure the
percentage of variance explained by the models, while
MSE, RMSE, and MAE quantify absolute prediction
errors. Understanding normalization effects and error
distribution is aided by STD and NMSE. MDAPE is a
reliable percentage-based metric that works especially
well with data that contains outliers or skewness, which is
typical in biomass measurements. A new and
comprehensible metric designed for model comparison
across several validation folds, the Fit Index (FI) was
introduced to reward accuracy and stability. Ultimately,
when combined, these metrics make sure that the
assessment covers robustness, interpretability, and
predictive accuracy—all of which are critical components
for ecological modelling and decision-making,
demonstrating that the Stacking Ensemble model was
more efficient than the other compared models.
Evaluation methods for error metrics criteria are exhibited
in Table 1.

Table 1: Equations for evaluation of statistical metrics criteria

Statistics Name Equation
5\2
MSE Mean Squared Error MSE(y,9) = ZNl%
n . — 0.2
RMSE Root Mean Square Error RMSE = M
n
Sy = 9l
MAE Mean Absolute Error MAE == -t ~Y
n
i=1(,, _ 5.2
R? Determination Coefficient R2(y,9) =1- ,\zzl(y,—y:)z
2y (i—5)
10 o
STD Standard Deviation STD = Ln (=)
n-—1
NMSE Normalized Mean Square Error 1- M
X—X
eabs ePT‘-’
MDAPE Median Absolute Percentage Error median 1751 * 100%
€1
var(t, —
VAF Variance Account Factor 1-— var(ts = ) | 100
var(t,)
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n represents observations number, y; is ith observed
value, ¥; shows ith predicted value, and y is the
observations average.

Graphical analyses were also carried out to assess the
accuracy of the recommended model performance.
Illustrated in different plots, they give the reader
illuminating perceptions of the suitability and accuracy of
the models, all which have been discussed in section 3 of
this paper.

As an overview of the research, the general flowcharts

Q. Dang

comprehension of the step-by-step research methodology.
That is to say, the research process begins with the dataset,
going through analyzing and normalizing them, next,
dividing the normalized data into train and test. More
important part is here where the proposed ML models are
evaluated based on an array of specific metrics to opt an
appropriate model which is appeared to be Stacking
Ensemble. Finally, ensemble models are also assessed on
the basis of evaluation metrics to choose the best one.
Hence, the results are saved for future usage.

of the whole study have been demonstrated below (See
Fig. 2 and Fig. 3). Fig. 2 also illustrates a brief

Normalize

Dataset —»  Dataset analysis 5 )
test train split

E—

Train and test

del.
Save the results mocels

Evaluation
X . metrics
Evalution metrics

|

Ensemble models

Figure 2: General flowchart of the whole research process for applying the proposed model

Figure 3 shows the modeling procedure involving  forest tree biomass and specifying the best reliable model

data collection process for the purpose of theory, and then  for such prediction by comparing the selected ML models
applying six ML models to concurrently predict tropical ~ with the aid of evaluation metrics.
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Figure 3: Flowchart of modeling procedure showing the process of employing ML models concurrently
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The flowcharts of the six regression models, including
ElasticNet, GB, ET, XGB, Poisson, and SE have been
illustrated respectively in the following figure. The
optimization of hyperparameters is also utilized through
Grid Search tuning. These models were utilized with the
goal of synchronously predicting ABG, BGB, and TB =
BGB + AGB. Additionally, each proposed regression will
also be discussed briefly below.

2.1 Base machine learning models

ElasticNet regression is an extension of linear regression
that integrates both regularizing penalties of Lasso
(abbreviated as L1) and Ridge (abbreviated as L2) into the
loss function. This combination allows ElasticNet to deal
with circumstances where there are a large number of
characteristics, and they are also highly correlated. Its
mathematical formulation is shown below.

ElasticNet = Y™, (y; — v(x;))? +
P P 2 )
(XZ]-=1|W]-| + aZj=1(Wi)

In Elastic Net regression, the parameters alpha and
I1_ratio bear significant roles in specifying the
regularization technique used in the model. These
parameters control the trade-off between the L1 and L2
penalties. In the presented formula « is the regularization

Informatica 49 (2025) 373-396 379

strength parameter in ElasticNet. It supervises the whole
strength of regularization applied to the model. For ¢ = 0,
no regularization is applied, and Elastic Net equals
Ordinary Least Squares (OLS) regression. Fora =1,
regularizations of both L1 and L2 are applied, blending
their penalties. For 0<a<1, this model employs a mixture
of L1 and L2 regularization, permitting a flexible mixture
of penalties. L1 Ratio (I1_ratio) is the blending parameter
that identifies the balance between L1 and L2 penalties. It
controls the proportion of the penalty determined to the L1
norm relative to the L2 norm. For I1_ratio=0, the model
applies only regularization of L2 (which equals Ridge
regression). For 11_ratio=1, it uses merely regularization
of L1 (which equals Lasso regression). For
0<I1_ratio<1, Elastic Net applies a mixture of both L1 and
L2 regularization, allowing for a combination of penalties
[23].

As shown in Fig. 4, applying the Elastic Net model in
this study involves several linear steps. Because of the
multicollinearity between predictors that are specific to
trees and sites, ElasticNet regression was used. It made
feature selection and coefficient shrinkage possible at the
same time by combining L1 and L2 penalties. Grid Search
with 5-fold cross-validation was used to optimize the
regularization parameters (I1_ratio and alpha), which
enhanced the generalization and stability of the model.

Start

W

Set hyperparameters for Elastic- net

O

Optimize coefficents using training

data

&

Apply Regularization :

Use both L1 and L2 penalties

&

Fine-tune hyperparameters

4

Make prediction

Sexz?
Output

Figure 4: The steps of the ElasticNet model applied for predicting tropical tree biomass
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Extra Trees (ET) regression is a type of ensemble ML
strategy that accumulates the outcomes of various decision
trees decorrelated, similar to Random Forest regression
[24]. ET regression employs a conventional top-down
technique to create a collection of regression trees. RF
model applies two stages, respectively, including
bootstrapping and bagging [25].

Hameed et al. (2021) have discussed the Random
Forest model as an array of decision trees in their article,
and used its equation as follows:

1 R
6= ) T (6 ©

In whichT (x, 6r) demonstrates the Tth tree
prediction, in which 0 presents a uniform independent
distribution vector appointed before the tree growth. All
these trees are blended and averaged in an ensemble of
them (i.e., shaping forest), named T(X).

According to Hameed et al. (2021), two main
differences between the ET and the RF systems are cited

T(x,0,, ..

Decision Tree 1

|
L1} L 4

| wl
ﬂ—l\!\ﬂ
w/e/uwiuwl

Predicted output 1

Decision Tree 2
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as follows. Firstly, two main differences between the ET
and the RF systems are cited as follows. Firstly, ET
exploits all the divided nodes as well as cutting points,
selecting randomly from the cut points. Secondly, the
algorithm applies all the samples to help the tree grow so
as to limit bias.

Two parameters involved in the ET model for
controlling the splitting process are kandnmin;
k represents the characteristic number, chosen randomly
in the node, while nmin refers to the minimum size of the
sample anticipated nodes division. Moreover, respectively
via kandnmin, the feature selection strength and the
average strength of output noise are specified. The
abovementioned two factors enhance the accuracy and
decrease the ET model overfitting [19].

Figure 5 demonstrates the design of the ET model
proposed in the present study. According to Fig. 6,
training data are processed through the ET model as
follows. N predicted outputs result from N tree decisions.
Consequently, the obtained output predictions are
averaged to result in the optimal output.

<{> l Averaging predicted outputs\.

. _
- /O l_
st AR AR ([ output
| ul | 4l \ \ T

Training Dataset é(...) Predicted output 2

N

\
N
\
@ed icted output_Nj

(...) Decisiorl Tree

_ W

o | 4
e 5]
= — 1 I
51 LSl

Figure 5: The steps of Extra Trees (ET) model used for predicting tropical tree biomass

The Gradient Boosting (GB) algorithm’s job is to find
a function T(xj), minimizing some loss function & [T
(X1),..., T(xn)], in which x; is a vector with k dimensions
for i=1,..., n. This algorithm begins with a primary
prediction To(x;) and carries on repeatedly so that Tm(X;) =
Tma (Xi) + hm(Xi). Supposedly, hm(xi) would experience
extreme reduction direction in & [Tm-a(X1),...,Tm-1(Xn)].
Such direction is delivered via & with a negative gradient
assessed in [Tm.1(X1)..., Tm-1(Xn)]. Despite being very
demanding or sometimes impossible for a function
detection of h(x;) to approximate % assessed in [Tm-
1(X1),. .., Tm-1(Xn)], when h(x;) approximation is estimated,
GB algorithm progresses through Tm(Xi) = Tma (Xn) +
ahm(Xi) for 0>0 which is a supposed learning rate [9].

As the GB model is represented in Fig. 6, the data first
goes through a bootstrap sampling to be split into T data

subsets for which there would be hT tree decisions.
Thereafter, there is a one-to-one result for each tree
decision; altogether, hT(x) results. Ultimately, the attained
results’ average is calculated to produce the final result,
namely H(x). The ability of Extra Trees (ET) and Gradient
Boosting (GB) to model intricate non-linear
relationships—which are  common in ecological
systems—Ied to their selection. With a small dataset size
(n=175), ET's randomized split selection was especially
helpful in reducing overfitting. To attain the best bias-
variance tradeoffs, we employed Grid Search to adjust
variables like the number of estimators, tree depth, and
leaf size.


https://onlinelibrary.wiley.com/authored-by/Hameed/Mohammed+Majeed
https://onlinelibrary.wiley.com/authored-by/Hameed/Mohammed+Majeed
https://onlinelibrary.wiley.com/doi/10.1155/2021/7001710#fig-0004
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Figure 6: The stages of Gradient Boosting (GB) model employed for tropical tree biomass predictions

Given that the Poisson distribution is the basis for
Poisson regression, it identifies the probability of the
occurrence of any number of events in a steady interval of
time or space, with the assumption that the events occur at
a constant rate and are independent of each other. The
formula for the Poisson distribution is given by:

The Poisson distribution could be calculated from the
formula below:

ke—/1>

PX=k) = ( o 4)

In the above equation, X is the number of random
occurrences, and A represents the average or mean of the
events. Poisson regression exploits its distribution to
provide a comprehension of the predictor variables’
relationships along with that of the count data in the
dataset. In this regression, the expected value (mean) of
the count variable (namely Y) is designed as a model of a
linear mixture of predictor variables (namely X):

()

A=exp (PO + B1X1 + p2X2 + ... + pfnXn)

in which: A is the expected count, which represents the
occurrence proportion, B0 is the intercept term, 1, B2, ...,
Bn represent coefficients related to each predictor variable.
The link function in Poisson regression is the natural
logarithm (log-link), ensuring the predicted values are not
negative. This model is evaluated via maximum likelihood

estimation, and the coefficients (B) are specified to
maximize the probability of observing the actual count
data in the model [26].

The approach for the application of the Poisson model
is well-illustrated in Fig. 7, which experiences various
stages in a linear pattern. To begin with, a point cloud is
taken as an input; second, the surface normal of all the
points is detected by computing the eigenvector over the
k-nearest neighbors of each point. Third, an octree with a
predefined depth d is selected for categorizing the
reconstructed surface. Then, the Gradient of the indicator
function (Vx) equated to the vector V is defined by the
point cloud. The next stage involves defining an indicator
function X with the value of 1 inside and 0 outside the
surface. Thus, Vx=V and the divergence operator is
applied to either side; i.e. Ax = V.Vx = V.V. On the next
stage, the indicator function x is solved as a standard
Poisson problem. The marching cube algorithm is used to
extract the surface from the solved indicator function x.
Eventually, the reconstructed surface is stored in the
octree of depth d. Since AGB, BGB, and TB are skewed
and non-negative, Poisson regression was employed.
Although it was initially created for count data, its
formulation fits biomass distributions quite nicely. To
make sure the Poisson model's assumptions held true in
this situation, diagnostic tests were conducted.
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Figure 7: The stages of the Poisson model employed for tropical tree biomass predictions

2.2. Hyperparameter tuning

Grid Search was applied in a 5-fold cross-validation
framework to find optimal hyperparameters for all the
models. For tree-based models like Gradient Boosting,
Extra Trees, and XGB, the number of estimators, learning
rate, and max tree depth were systematically changed to
optimize model complexity and predictability. In the
ElasticNet scenario, the regularization parameter (alpha)
and L1 fraction were tuned to prevent overfitting and
cause sparsity. In Poisson regression, tuning was for the
regularization parameters and the number of iterations to
achieve better convergence. After separately tuning each
of the base models, their outputs were fed into a meta-
learner in the Stacking Ensemble, whose parameters also
were tuned via Grid Search. This broad tuning process
ensured that all models, including the ensemble, reached
optimal generalization and performance [27].

The Stacking Ensemble was selected due to the meta-
learner included, as it blends heterogeneous base learners
with varying predictive ability and error behaviors, as well
as generalizes well. Due to its nature of broad application
in addressing multicollinearity on regression prediction of

LevelO
Model
3

Training

Data

the base models and capturing of non-linear relationships,
a tree-based learner was applied as the meta-model in this
research. Stacking model showing an RMSE of 18.298,
MAE of 12.422, and R2 of 0.968 performed significantly
better compared to any of the base models on the test data,
meaning that the ensemble was able to selectively
leverage the strengths of each of the related models to
generate more stable and accurate predictions of biomass.

In the Stacking model, presented in Fig. 8, training
data are processed on the basis of three level 0 models
separately. Each model’s prediction results are gathered as
other processed training data in the study. All of the base
learners' predictions (GB, ET, XGB, ElasticNet, and
Poisson) were aggregated by the Stacking Ensemble. To
avoid overfitting and information leakage, the meta-
learner, a Ridge regression model, was trained on out-of-
fold predictions. We were able to improve overall
predictive performance by combining the complementary
strengths of all models—capturing distribution-specific,
linear, and non-linear trends—into this ensemble. Table 2
provides the hyperparameters chosen by the stacking meta
learner for the models.

Level0
Model
1

Level0

Predictions

Predictions

Model
2

Predictions

Training

Data

Figure 8: Stacking model procedures used for tropical tree biomass
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Last but not least, XGB is one of the common
algorithms in ML. It is based on the ensemble learning
framework, following the gradient boosting algorithm.
Thus, it is applicable for the tasks of supervised learning,
i.e., regression, ranking, and categorization. XGB is a
predictive model that combines multiple individual
models’ predictions iteratively. It works by adding weak
learners into the ensemble one after another, such that at
every step, a new learner tries to correct the errors of the
prior ones. It also minimizes a prespecified loss function
during training data using some sort of gradient descent
optimization [13].

In summary, the XGB is developed in three stages
straightforwardly: First, a primary model, namely FO, was
used to predict, i.e. the aimed variable. The XGB model is
related to a residual (y—F0). Second, the residuals obtained
in the prior stage are adapted to a new model called h1.
Third, the combination of Fo and h; delivers F1, which is
the promoted form of Fo. Consequently, the MSE metric
system from F1 will be lower than that from Fo.

Fy(X) < —Fo(x) + hy (x) ©)
For improving F1's performance, a residuals model of
F1 can be designed, and an original model called F2 is
presented.
Fy(X) < —F,(x) + hy(x) (7
This process would be iterated for a number of 'n’
stages up until potentially minimizing residuals as much
as probable, i.e.
Fn(X) < _Fn—l(x) + hn(x) (8)
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It is worth mentioning that additive learners would not
mess with the functions developed in prior iterations but
add information of their own in order to bring down the
error values. First, the model begins with some function
FO(x). This FO(x) needs to minimize the loss function or
MSE, hence:

Fo(x) = argminy Y1, L(y;, Y)
argminy ¥i—, Ly, Y) = )
argminy 5L, (v; — Y)?
Regarding the prime differential of this equation with
v, it is observed the function is minimized at the mean i=1,
..., n. Thus, the promoting model can proceed with:

n .
Fo(x) — ZL=1 Vi
n

FO(x) presents the first step of predictions in this
model. Next, for each instance, the residual error is
expressed as: (yi — FO(x) [28].

In Fig. 9, the XGB model employs a multifaceted
approach to make predictions about input data.
Afterwards, the average of predictions is calculated and an
ultimate XGB prediction is thus generated .Because of its
exceptional performance with structured tabular data and
its integrated regularization, which helps avoid
overfitting, XGB was included. It was well-suited for this
task because of its efficient handling of non-linearities,
support for missing values, and robustness to noise, even
with the small sample size. Grid Search was used to
optimize important hyperparameters, such as learning
rate, maximum depth, and gamma.

(10)

Predictions

Figure 9: The procedure used in the XGB model for predicting tropical tree biomass
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3 Results and discussion

3.1 Exploratory data analysis

To display how closely related the multiple variables
of the study data are, a Pearson correlation heatmap is
exploited as an effective color-coded visual matrix (See
Fig. 10). Variables are demonstrated with rows and
columns, and the cells define the relationship between
variables two by two. The color shading for each cell
indicates the correlations’ direction and their strength: the

Q. Dang

darker the color of a cell, the stronger the correlation of
the related variables. As it is obvious from this tabulated
heatmap, the colors are darker for stronger correlations
and lighter for weaker ones. Additionally, the green colors
represent the positive correlations; that is, when one
variable increases, the other variable tends to go up,
whereas in the case of negative correlations, when one
variable increases, the other variable tends to drop. Purple
colors have been used.

Correlation Heatmap
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Figure 10: Pearson Correlation Heatmap for detecting the relationship between studied variables.

In Fig. 11, a pair plot visualization for the distribution
of dataset parameters is shown for exploring the analysis
of the data. In a pair plot, the data is visualized to find the
relation between them, where variables are continuous as
well as categorical, or form the most divided clusters.
Dispersions of the parameters indicate the fact that most
features are not evenly distributed. CA, WT, and P are
skewed or clustered, and the values of these variables are
focused on particular ranges. Scatter plot graphs such as
CA versus WT or HA versus CA show positive
relationships, which hold good, indicating potential
multicollinearity that could be important to model. As a
contrast, the variable types like forest type code and soil
type code arrive in horizontal bands or discrete groups, as
they are categorical. These trends suggest that the

explanatory power of the data set is in part due to a mixture
of continuous gradations in combination with categorical
differences. The distributions in classes are depicted by
the colors, and it can be observed that there is clearly a
grouping in the plots, either of altitude, or of CA, or of
WT. Following is a pair plot providing a high interface
level to derive enlightening statistical information about
the dataset; i.e., the variations in each plot can be
observed, and the crucial diagonal secondary plots show
each variable distribution. This pair plot for the
relationship between variables of total amount of biomass,
namely TB, is also demonstrated in Fig. 12, which more
explicitly explores how the CTB classes are distinguished
in terms of predictors. In this instance, the scatter plots
show that for most variable pairs, the CTB categories are
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predominantly overlapping, indicating that no set of
variables can completely separate the CTB classes.
However, there are regions, particularly in pairings like
CA vs. WT or CA vs. P, where some CTB groups are
grouped more closely together or are bunched into more
constricted value ranges. The histograms on the diagonal
also emphasize the bunched character of observations
within given intervals, further underscoring that the
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dataset is skewed in variable distribution. This class
grouping within specific regions suggests that individual
variables may not always be able to differentiate CTB, but
groups of predictors likely have predictive value. Further,
the mixture of continuous and discrete variables
introduces difficulty, as seen in the scatter plots, where
some categories of CTB extend across different bands,
with others overlapping.

The diswibuaticn of dataset paramebsrs
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Figure 11: Pair plot for specifying the distribution of dataset parameters as well as their relationship
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Figure 12: Pair plot for showing the relationship between the variables of total tropical tree biomass (TB) and their
distributions

3.2. Machine learning results

In the present investigation, six methods were employed
in two forest locations, i.e., Dipterocarp and Evergreen
Broadleaf, to concurrently anticipate BGB, AGB, and TB
= BGB + AGB. To assess the base models’ performance,
Table 3 presents the findings of the error metrics criteria
for each recommended models considering the train and
test data. By comparing these error metrics along with FI,
it was detected that the Stacking Ensemble model was
optimal than other models. The very large R 2 values close
to 0.999 on the training dataset is an indicator of
overfitting or data leaks. To prevent this we made sure to
have rigorous separation of the training and test data and
we optimized our hyperparameters using the Grid Search
with cross-validation to prevent overfitting. The rock-
bottom R2 values on the testing data (such as 0.962) are
indicative of a lack of overfitting, so the overfitting
appears to be contained. Further improvements with

regard to regularization and data augmentation will be
necessary in future computations to minimize the chances
of overfitting. The test results indicate that the Stacking
model outperforms the others in nearly all metrics,
demonstrating higher predictive accuracy and reliability.
Its mean squared error (MSE) is considerably low at
334.82, indicating lower average squared discrepancies
between the predicted value and actual value compared to
other models like ElasticNet (2378.17) and Extra Trees
(1216.54). In the same vein, root mean squared error
(RMSE) for Stacking is 18.30, a far cry from those of
ElasticNet (48.77) and Gradient Boosting (41.75),
meaning they were more precise in their predictions. Mean
absolute error (MAE) performs the same, at 12.42 for
Stacking, a far better performance than for models such as
Poisson regression (19.32) and XGB (21.18).

In regard to explained variance and fit, Stacking had the
best R? value of 0.968 across all models, which means it
accounts for nearly 97% of the test data variance. This is
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significantly better than ElasticNet's R2 score of 0.77 and
Extra Trees' R2 score of 0.88. The Stacking model's
normalized mean squared error (NMSE) is 0.032, the
minimum, with no significant normalized error against
data variance. Likewise, its variance accounted for (VAF)
is 0.971, indicating impeccable consistency of predicted
and actual values. The median absolute percentage error
(MDAPE) of 23.08 and the standard deviation (STD_dev)
of residuals of 105.76 also illustrate the consistency of the
model in its performance.

On the other hand, the other models show higher error
measures and lower variance explanation, with the
Stacking model remaining the most accurate and
consistent for the test set in this comparison. This claim
was on the basis of the higher R? value of the Stacking
model for both train and test data. According to this table,
the higher R2 and VAF for each model make them worthy
of a better model; in this case SE model. On the other
hand, the lower the other metrics such as MSE, RMSE,
MAE, NMSE, MDAPE, and STD, the more the model
would have the merit of being an efficient predictor.
Therefore, the Stacking model is deemed the most
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efficient and performs better than the other models for
both training and testing data. In contrast, ElasticNet
shows weaker performance in predicting the variables.
Furthermore, the results of the employed evaluation
metrics are presented and thoroughly discussed using
relevant figures at the end of this section. Improved
accuracy and stability on both forest types were indicated
by the lower MSE, RMSE, and MDAPE, but higher R2
and VAF of the Stacking Ensemble, which consistently
outperformed the other algorithms. ElasticNet performed
poorly because of its linear framework, which failed to
properly capture the intricate, nonlinear patterns in
biomass data. Because Stacking possessed the ability to
combine the powers of tree-based models like GB, ET,
and XGB, it outperformed them despite the fact that they
were moderate.

Figure 13 below is an illustration of the data values
obtained via the ML parameters; i.e., ElasticNet, Extra
Trees, GB, Poisson, Stacking, XGB; and accordingly, a
comparison of these parameters in detail, along with their
distance from the target value data, is presented.

Table 3: Error metrics criteria result for the proposed ML models considering the train and test datasets.

Models | ElasticNet Extra Trees GB Poisson Stacking XGB
Metrics
Train
MSE 4026.476 4.933E-26 5.800 1725.207 | 1153.269 1.72544E-05
RMSE 63.455 2.221E-13 2.408 41.536 33.960 0.004
MAE 32.550 7.82E-14 1.821 16.042 11.562 0.003
R? 0.788 0.999 0.999 0.909 0.939 0.999
NMSE 0.212 2.601E-30 0.000 0.091 0.061 9.09812E-10
MDAPE 67.280 1.651E-13 5.016 29.535 8.722 0.008
STD_dev 100.279 137.713 137.491 150.171 134.774 137.713
VAF 0.788 0.999 0.999 0.909 0.939 0.999
Test
MSE 2378.167 1216.538 1743.162 | 1051.301 | 334.820 2090.796
RMSE 48.766 34.879 41.751 32.424 18.298 45.725
MAE 36.818 18.068 21.948 19.320 12.422 21.178
R? 0.770 0.882 0.831 0.898 0.968 0.797
NMSE 0.230 0.118 0.169 0.102 0.032 0.203
MDAPE 68.390 32.640 34.406 31.075 23.081 30.099
STD_dev 100.272 85.241 76.508 78.865 105.763 75.760
VAF 0.777 0.894 0.853 0.924 0.971 0.817
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Figure 13: Value plot of comparing ML parameter values with the target value.

Figure 14 shows the results for R? as a significant  norm line (when R%= 1) is considered to be a superior as
error metric criterion, suggesting how well the employed  well as more accurate model. This result is in line with a
ML models’ predictions fit the real data. Shown in the  higher R? value (approximately 0.939) for the test data and
figure, the model’s prediction values align closely to the  0.968 for the training data in the proposed Stacking model.
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Figure 14: Comparing the coefficient of determination (R2) for each ML model.

The frequency of each error value for each ML  accuracy. As a result, the error in the ML models’
method’s predictions is represented in Fig. 15. The error  prediction performance ought to be almost zero to be an
analysis was conducted for both train and test parameters,  adequate model for the aim of the study.
and the ML models were assessed to examine their
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Figure 15: Comparing error values for ML models

Moreover, according to Fig. 16, the error values for
the proposed ML models have been illustrated from the
least error value to the most errors for both train and test
data of each model, moving from left to right. A model
with the least error values (i.e., approximately zero) would
be the best predictor among the employed ML models.
This visualization highlights that the data has intense
recurrent peaks—suggesting non-uniform distributions
with dominating clusters—and that these patterns persist
but evolve subtly across different sections of the dataset.
When one of the groups describes a stacking model, its
activity can be visually compared with the other groups by
looking at how close the mean is to zero and how much
and steady the standard deviation is.

Based on the plot, we see that stacking seems to be
more accurate than individual models, but by a very small
margin. Compared to its predictions, it has fewer errors
and reduced variance, indicating that it has a stronger
generalization and stability. On the contrary, although
other models have also performed adequately, they exhibit
some spread or deviations that are a bit higher than the
mean.

Overall, it appears that stacking should produce a
more consistent and less erratic result than single models,
thus making a superior comparison to the single models in
terms of performance.



390 Informatica 49 (2025) 373-396

Q. Dang

T Mean+1SD
600 — @ Mean
¢ Data
400
200
(5]
(=]
c
[l
hd L g » »
0+ - o -
> (o 4
-200
-400
T T T T T T T T T T T T
= g £ ¥ £ ¥ =T ¥ =T ¥ = 3
g e £ £ E £ g £ E £ E E
z &8 ¥ 8 5 =2 £ § 5 2 7 B
2 2 & &g =2 @ s g 2 3 8 8
S = = = o (7] 'S X < = m
s B2 £ s O s o g £ & 9
< w s 2 o o @ < x
w = )
w
Figure 16: Boxplot of ML models’ error values for both train and test data

The following figure (Fig. 17) illustrates a
comparison of proposed models in terms of two important
statistical evaluation metrics, namely R? and VAF,
estimated for both the test and train datasets. As the values
of these metrics show, all the models perform efficiently
in the prediction except the ElasticNet model, which
performs weaker than others, having lower VAF and R?.
Stacking and XGB model performances are stronger than
the rest of the models, bearing higher VAF and R?. Based
on the plot, we see that stacking seems to be more accurate
than individual models, but by a very small margin.

Compared to its predictions, it has fewer errors and
reduced variance, indicating that it has a stronger
generalization and stability. On the contrary, although
other models have also performed adequately, they exhibit
some spread or deviations that are a bit higher than the
mean.

Overall, it appears that stacking should produce a
more consistent and less erratic result than single models,
thus making a superior comparison to the single models in
terms of performance.
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Figure 17: Comparison of Models based on VAF and R2 metrics.
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The other evaluation metrics, including MSE, NMSE,  be the best predictor. In this case, the stacking model for
MAE, RMSE, STD, and MDAPE, are applied for both the train and test datasets is the lowest compared to
comparison among the models, supposing that the lowest  the other models (See Fig. 18).
value of these metrics for each model allows that model to
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Figure 18: Comparison of Models based on MSE, NMSE, MAE, RMSE, STD, and MDAPE metrics.

Poisson

Another graphical tool used to compare the models’ such as the correlation coefficient, standard deviation
performance is the Taylor diagram. This diagram (STD), and RMSE. In the diagram, the models'
evaluates models based on their accuracy, using metrics  performance is represented by circles, where better
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performance is indicated by points closer to the reference
point [29]. Taylor diagrams for predicting tropical tree
biomass are shown in Fig. 19. As seen in these diagrams,
the RMSE of the Stacking model is lower than that of the
other models, and its correlation coefficient exceeds 0.9,
outperforming the other models in this regard. In contrast,
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the RMSE of the ElasticNet model is higher than that of
the other machine learning (ML) models, and its
correlation coefficient is lower. These findings, based on
the correlation coefficient, STD, and RMSE, confirm that
the Stacking model outperforms the other models.
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Figure 19: Taylor diagrams for models’ comparison based on RMSE, STD, and R metrics

The last plot to be discussed for model comparison is
the Williams plot. This plot is used to compare a specific
group of compounds in terms of leverage values and
standardized residuals [30]. William’s plot shows the
standardized residuals on the y-axis and leverages on the
x-axis of the training and testing datasets. From this plot,
the applicability domain is implemented within a squared
area inside +2 standard deviations and a threshold h* in
leverage (h* = 3p’/n, being p° model parameters and n
compounds number). The majority of data ought to be
located within this area, conceptualizing that they have to
be inliers and influential in the model. The Williams plots
of the Stacking model on both training and test sets are
indicators of good model performance and generalization.

Most of the observations in the test plot lie comfortably
within the satisfactory limits for leverage and standardized
residuals (x2), which is an indicator that the model
predictions are not biased and stable and possess minimal
outliers. Only a minimal number of observations being out
of the £2 boundary and leverage constraint signifies that
there are very few influential or problematic points.
Similarly, the training plot shows tightly clumped
residuals around zero with the majority of data points
having little leverage, which would mean that the model
has not over-fit the training data. Even some of the
residuals fall outside £3 or do possess relatively higher
leverage, those are scattered and do not invalidate the
model. The similar trend in both plots confirms that the
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Stacking model works well on unseen data, learning the  robust. To be an efficient model predictor, the data must
inherent pattern significantly without being overfit and  lie within this domain (See Fig. 20) [23].
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Figure 20: Williams plots for models’ comparison based on standard residuals and leverage.

3.3. Comparison with foundation models and

LLMs

Large Language Models, or LLMs, are sophisticated Al
systems that have been trained on enormous text datasets
to comprehend and produce human language. Google
created BERT, which is perfect for tasks like classification
and question answering because it can analyze words in
both directions and understand context. With its emphasis
on producing relevant and coherent text, OpenAl's GPT is
effective for tasks like content creation, dialogue, and

4 conclusions

The study was implemented on eight tropical forests in
Vietnam, using the forestry variables, i.e., AGB, BGB,
and TB. In an attempt to solve the problem of predicting
the mentioned variables, the study used an MGDL
regression strategy, which later proved to be an efficient
model to bear a strong ability to predict tropical forest
biomass. To this, five models were selected as major
algorithms to unravel the issue of biomass prediction.
These models included Gradient Boosting (GB), Extra
Trees (ET), XGB, ElasticNet, and Poisson, all of which
were employed to synchronously anticipate both the
amount of AGB, BGB, aswell as TB =BGB + AGB. Then
optimized by Grid Search. Additionally, the SE model was
joined to the aforementioned models so as to allow the
results to become satisfactory, i.e., mainly for the cross-
validation purpose. Therefore, the recommended method's

summarization. Both use Transformer architecture, but
GPT is more focused on generation and BERT on
comprehension. The proposed SE model adds domain-
specific efficiency, whereas models such as BERT and
GPT are effective for general-purpose NLP tasks. We
specifically highlighted how, in contrast to the extensive,
data-intensive training of LLMs, SE makes use of
structured, domain-relevant features. This study also
indicates SE's improved interpretability and reduced
computational cost, both of which are important for
ecological modelling.

performance was investigated in terms of two sets of
actual data, namely training and testing data.

The outcome of this study presented that the
recommended method had a vigorous efficacy to estimate
the amount of forest biomass. That is to say, employing a
simultaneous group of ML models resulted in a significant
impact on predicting forestry above- and below ground, as
well as the sum of the biomass. The very high R? values
of near 0.999 in the training set are definitely cause for
alarm for overfitting or data leakage. We dealt with this by
ensuring strict separation of training and test datasets such
that there was no information leakage. We also employed
Grid Search with cross-validation during hyperparameter
tuning to allow maximum model complexity without over-
fitting. The test set results, with R2 scores considerably
lower (e.g., 0.968 for the best model), are a sign of good
generalization and suggest that while there may be some
overfitting, it is controlled. More regularization and more
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data will be tried in future research to reduce the
possibility of overfitting even more. Based on the
provided metrics, the Stacking ensemble model performed
clearly superior to each of the standalone models on the
test set. That is because it is capable of leveraging the
prediction power of various base learners—ElasticNet,
Extra Trees, Gradient Boosting, Poisson Regression, and
XGB—and minimizing their respective errors through a
meta-learner. Stacking takes into consideration the stand-
alone strengths of linear as well as nonlinear models and
results in improved generalization and less overfitting.

Quantitatively, the Stacking model achieved the
highest coefficient of determination (R2 = 0.968) and
variance accounted for (VAF = 0.971) on the test set,
indicating that its predictions were most highly correlated
with actual biomass values. It generated the lowest mean
squared error (MSE = 334.820), root mean square error
(RMSE = 18.298), and mean absolute error (MAE =
12.422), indicating high accuracy and low prediction bias.
In terms of normalized error, it also had an NMSE of just
0.032, and the mean directional accuracy percentage error
(MDAPE) decreased to 23.081%, significantly better than
other models. Although its test standard deviation (STD =
105.763) was slightly greater, this is the natural result with
better prediction accuracy and range coverage for both
train and test data, where the results showed R2 equals
0.939 for the testing data and 0.968 for the training data in
this study data analysis. Therefore, adding the SE model
to the proposed models is recommended for predicting
forest biomass effects. As a result, this is evidence of the
poor performance of this model. The William plots
residuals display that its majority corresponds to the
tolerant parameters, and very limited outliers or high-
leverage points are there in the test and train subsets. This
implies that the Stacking model produces reliable,
unbiased, and non-overfit predictions, and there is indeed
powerful generalization and performance.
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