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The present paper aims to propose a novel model to investigate its utility in evaluating the beneficial 

effects of tropical forest biomass. To address the multiplicity of variables, as well as the complexity and 

nonlinear relationships between them, five Machine Learning (ML) models, namely Gradient Boosting 

(GB), Extra Trees (ET), XGB, ElasticNet, and Poisson Regression, were employed to concurrently predict 

both the below-ground and above-ground tree biomass (BGB and AGB, respectively), as well as the total 

biomass (TB = BGB + AGB). Since the results of the aforementioned models were not entirely satisfactory, 

an additional model called the Stacking Ensemble (SE) was introduced. Each model can have its 

parameters optimized by Grid Search with cross-validation to make sure that there is generalization and 

consistent performance. The data collected were based on 175 trees from 27 ecoregional plots located in 

the Central Highlands ecoregion of Vietnam. The dataset was processed to investigate the proposed 

model's ability to predict tree biomass. The study's findings revealed that the proposed method 

demonstrated strong and efficient predictive capabilities for biomass estimation in forest ecoregions. The 

Stacking model showed the most significant improvements in the highest R 2 (0.968) and VAF (0.971), 

and the lowest errors, and MDAPE (23.081 percent), which means that it has a strong ability to predict 

and minimal bias. However, STD (105.763) was marginally higher; nevertheless, the error and strength 

of this variation exceeded this variance. Thus, incorporating a Stacking Ensemble (SE) model strengthens 

the ML approach in predicting forest tree biomass amounts. 

Povzetek: Študija predlaga ansambelski model za napoved tropske drevesne biomase, ki združuje pet ML-

modelov in optimizacijo z iskanjem po mreži. Stacking Ensemble doseže najboljša napovedovanja ter 

najnižje napake, kar občutno izboljša oceno nadzemne, podzemne in skupne biomase. 

 

1 Introduction 

1.1 The role of biomass 

Given that biomass plays an unquestionable role as one of 

the world’s vital sources of energy [1]. The disputing 

matter is what appropriate model would be able to 

recognize and prove its traits. Zhantao Song et al. (2024) 

in their work discussed original visions about the concept 

of the pyrolysis process of biomass. They argued the 

contribution of various factors to the challenging 

anticipation of physicochemical traits by applying 

machine learning techniques such as Random Forest, 

gradient boosting decision tree, extreme gradient 

boosting, in which R2 was higher than 0.97 for particular 

surface area biochar anticipation as well as analysis, 

involving yield as well as N content of biochar [1]. 

In another study, Jia et al. (2024) exploited machine 

learning methods to anticipate zeolite-catalyzed biomass 

pyrolysis, and as a result, the Random Forest algorithm 

performed the highest prediction with R² >0.91 for their 

suggested models. They concluded that their selected 

factors and methods based on biomass characteristics can 

be taken into account as a plausible reference [2]. 

1.2 Above-ground biomass (AGB)  

The term above-ground biomass (AGB) refers to the 

product of above-ground volume (AGV) and vegetation 

mass. It is also closely linked to the carbon cycle in global 

grassland ecosystems. Additionally, accurate estimation 

of AGB variations is essential for assessing carbon 

decomposition and its impact on climate change. It is also 

crucial to screen in situ-harvested AGB data before 

modeling [3]. Furthermore, AGB is an indispensable 

factor for evaluating ecosystem health and carbon storage. 

To estimate AGB, the above-ground volume (AGV) of 

vegetation is considered a high-priority parameter in 

research [4]. 

To estimate AGB variations of China’s grassland 

ecosystems, machine learning algorithms, among which 

the Random Forest model with R2 = 0.83 (i.e., 83 % of the 

harvesting AGB variations), and RMSE = 43.84 gm−2, 

revealed accurate performance in estimating grassland 

AGB [3]. Mao et al. (2021) in their proposed model 

proved that structural, textural, and spectral metrics 

contribute to shrub AGV models. They also suggested a 

direct reference to specify proper vegetation metrics to 

screen shrub AGV. The efficiency, accuracy, and low cost 
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are considered to be the pros of their proposed approach 

for digital terrain model (DTM) output and AGV 

estimation; thus, it can bridge the gap between ground-

based research and satellite remote sensing [4]. May et al. 

2024 obtained spatially complete predictions of biomass 

in a tropical area. They state that this sort of spatially 

coherent data about AGB supplied by their model is useful 

to validate the eco-friendly forest handling, carbon 

decomposition innovations, and climate change 

alleviation [5]. 

1.3 Below-ground biomass (BGB) 

Below-ground biomass (BGB) is a significant part of 

forest tree biomass; however, fewer studies have focused 

on BGB about forest biomass and carbon. This is largely 

because the process of measuring BGB in large trees is 

costly and time-consuming. As a result, researchers often 

use Above-Ground Biomass (AGB) to estimate BGB by 

applying a root-to-shoot ratio. For different forest types, 

researchers have also developed specific direct BGB 

equations [6].  

In a recent study, Oliveira et al. (2024) suggested that 

predicting peanut BGB using their proposed alternative 

method—i.e., the multi-output regression (MTR) 

approach—would enable both researchers and farmers to 

quantify BGB more accurately. They proposed this 

method to predict multiple peanut maturity indices at the 

field level, helping to reduce subjectivity in determining 

peanut maturity [7]. 

1.4 Ensemble approaches 

Ensemble learning is a potent machine learning technique 

that reduces overfitting, boosts robustness, and enhances 

overall performance by combining predictions from 

several models. Ensemble approaches combine the 

advantages of multiple algorithms to improve 

generalization rather than depending on a single model 

[8]. Stacking, also known as stacked generalization, is a 

versatile and successful ensemble technique. Stacking 

mixes different kinds of models, possibly with different 

architectures and learning strategies [9]. In contrast to 

bagging (e.g., Random Forest) or boosting (e.g., Gradient 

Boosting, XGBoost), which combine similar models 

(typically decision trees). Naik et al. (2022) utilized 

automated stacked ensemble modelling powered by 

machine learning for predicting aboveground biomass in 

forests using multitemporal Sentinel-2 data [10]. A 

stacking ensemble algorithm was used by Zhang et al. 

(2022) to reduce the biases in estimates of forest 

aboveground biomass derived from several remotely 

sensed datasets [11]. Besides, Jin et al. (2025) evaluated 

the impact of validation techniques and ensemble learning 

algorithms on estimating aboveground biomass in forests: 

a case study of natural secondary forests [12]. To this end, 

they developed models based on various outcomes, 

qualified to synchronously anticipate AGB, BGB, and the 

total amount of tree biomass, i.e., TB, in forest areas, 

solving the problem of carbon estimation for various 

forest sites.  

1.5 Regression models 

It is appropriate to take a brief glimpse at the regression 

models proposed in the present article: 

The Gradient Boosting (GB) model is regarded as a 

strong ML algorithm for numerical optimization 

problems. Thanks to Leo Breiman (1998) and Jerome 

Friedman (2001), GB has been developed. The former 

used GB for decreasing variance for categorization, and 

the latter improved it for regression and categorization 

models. GB algorithms carry out numerical optimization 

for the models of regression and categorization, repeatedly 

being approximately directed towards the loss function 

negative gradient. Due to some complexity, it is 

impossible to direct precisely towards a negative gradient; 

normally, a weak learner is applied by a GB model to 

estimate the extreme decline direction [13]. 

Extra Trees (ET), a recently developed regression 

model, is considered to be an ensemble ML algorithm 

related to decision trees. Originally, ET is the improved 

form of the Random Forest algorithm for the purpose of 

regression or categorization performance. The reason that 

makes the ET regression algorithm more competitive for 

small-sized sample ML is that it utilizes all data to 

improve the branches of nodes in decision trees effectively 

[14]. Wang et al. (2023) in their study provided an 

efficient ML model utilizing an ET regression algorithm 

for anticipating the relevant synthesis gas traits in the 

process of biomass chemical looping gasification, and 

then compared its ability in prediction between the ET 

model and traditional ones. In another study, using both 

RF along with ET al algorithm models, researchers 

developed a general model to precisely predict the co-

pyrolysis of coal and biomass, in which ET performed 

better [15]. ET is advantageous due to achieving more 

efficient performance than the Random Forest. Compared 

to RF, ET does not perform bootstrap accumulation like, 

i.e. it takes a random subset of data without replacement. 

Hence, nodes are divided randomly, but not based on the 

best divisions. Therefore, in the ET regression model, 

randomness doesn’t come from bootstrap accumulation 

but from the random divisions of the data [16]. According 

to Roy (2021), RF was introduced to overcome the 

Decision Tree problems, giving medium variance. 

Accordingly, ET was proposed when accuracy was more 

crucial than a generalized model. It also delivers low 

variance. 

Extreme Gradient Boosting (XGB) is another strong, 

multifaceted ML algorithm used for regression and 

taxonomy jobs. It is well-known for its exceptional 

capability to predict performances and deal with intricate 

datasets. GB involves a series of procedures, preparing 

models in sequence, based on which the previously 

produced errors are reformed by each new model. 

XGBoost is a type of ensemble learning technique that 

mixes the predictions of various ML models to yield an 

ultimate prediction that is more precise. Besides that, this 

algorithm also makes use of decision trees like basic 

learners during its process. To add more, XGB is intended 

to efficiently influence processors of high-capacity and 

approaches of the distribution system [17]. Ayub et al. 
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(2023) applied an XGB algorithm model on a multi-level 

factorial design outcome to predict and improve the 

gasification product, in which the XGB model depicts a 

good prediction accuracy as well as model optimization 

analysis. The key characteristics of the XGB are explained 

as an ability to handle complicated relations in data with 

regularizing techniques, effectively preventing 

overfitting; thus, it performs the calculation efficiently due 

to parallel processing. It considers the usage of decision 

trees as base learners and then makes use of regularizing 

techniques for model generalization at a higher 

dimensionality. XGB, more popularly acknowledged for 

its efficiency in computations, provides processing 

efficiency with perceptive analysis of feature significance, 

as well as deals with missing values smoothly [18]. 

ElasticNet, being a powerful linear regression 

technique highly beneficial in ML and statistical 

modeling, excels traditional linear regression models. It 

bears the ability to mix the penalties created by both Lasso 

and Ridge regressions. It is useful in particular when 

traditional linear regressions struggle with 

multicollinearity, i.e., when predictors are highly 

correlated [19]. That is to say, ElasticNet is advantageous 

due to bearing multi-dimensional datasets, selecting 

significant traits, and being a more consistent and reliable 

model where there exists collinearity. Aimed to help in 

solving problems of regression and developing models’ 

performance, ElasticNet offers effective analytical means 

for handling multi-dimensional regression. Its common 

applications include characteristics selection, analysis of 

regression, and modeling for prediction [20]. The 

significance of ElasticNet regression includes 

multicollinearity handling, automatic feature selection, 

aiding in model interpretability and reducing overfitting, 

flexible regularization, allowing researchers to control the 

balance between Lasso and Ridge penalties, robustness in 

high-dimensional data, appropriateness for a variety of 

regression problems [15]. 

Poisson is a regression analysis where its answer is 

based on the distribution called Poisson. The regression 

suffers from a limitation of the variance equaling the 

mean, called Equi dispersion. As a consequence of the 

assumption being violated, resulting in the biased standard 

error, the less exact test statistics drawn from the model, 

and consequently, the obtained conclusions will be less 

valid. The Poisson regression model, therefore, cannot be 

used under occurrences of over-dispersion or under-

dispersion. Poisson regression is one of the generalized 

linear models. It finds its main application because it 

usually happens to model occurrences of the kind that are 

rarely occurring [21]. 

The Stacking Ensemble (SE) model makes use of an 

ensemble generalizing approach through learning, despite 

the fact that it may lack instructions for appropriate non-

hyperparameterized meta-learners. The necessity of 

applying stacking is when multiple ML methods reveal 

various advantages for a certain task. In this case, the 

stacking ensemble method employs a discrete ML 

technique for specifying the efficient application of 

various algorithms [22]. For this reason, Arif et al. (2024) 

developed a model of stacking ensemble, by a non-

homogeneous mixture of fundamental models, for 

accurate yet, at the same time, interpretable prediction of 

lung cancer prognosis so as to recognize crucial risk 

factors [18]. 

The use of DL methods is unquestionably dominant 

over other traditional methods, particularly in tropical 

forests biomass research [6]. Although many studies have 

investigated tree biomass anticipation by applying various 

models [6], the applied models are well-established. But 

lack combining models as ML, ensemble, and 

optimization of hyperparameters approaches. This work 

adds value by combining them using a meticulously 

designed Stacking Ensemble specifically designed for 

predicting AGB, BGB, and TB using a small, real-world 

dataset from 27 eco-regions in Vietnam. The Fit Index 

(FI), a stability-focused evaluation metric that hasn't been 

used in biomass prediction before, is introduced in this 

study. The proposed approach provides new 

methodological insights that improve prediction accuracy 

and generalizability in tropical biomass estimation by 

combining rigorous preprocessing, multi-target modelling 

within an ecological context, and systematic 

hyperparameter tuning through Grid Search. Furthermore, 

this work differs from earlier black-box DL applications 

in that it incorporates Shapley Additive Explanations 

(SHAP) for ecological feature interpretation, which offers 

important ecological insight. Hence, this study was 

conducted to serve the purpose of bridging this gap. This 

subject is an expansion of an ongoing strategy to integrate 

remote sensing inputs acquired using a satellite or a drone 

and a source of biomass determinations as measured on 

the ground in order to develop a spatially superior, and 

rooted business-time dynamic biomass forecast model. 

Besides the otherwise plausible analytical foundation of 

the process, the model is capable of capturing some facets 

of complex nonlinear responses and enhancing the 

accuracy of predicting biomass over wider geographical 

areas and timeframes due to the use of sophisticated 

Stacking ensembles, enabled by Grid Search and cross-

validation. Besides, the climatic variables can be included 

to forecast the change in biomass distribution in the case 

of a future climate change scenario, which can provide a 

significant insight both in forest management and on 

carbon budgeting. That is to say, designing a new model 

qualified to anticipate tree BGB, AGB, as well as the total 

of tree biomass TB (i.e., TB = BGB + AGB) concurrently, 

will fulfil the requirement of estimating forest carbon. On 

this account, making use of a community of up-to-date 

regression algorithms to increase the reliability for the 

aforementioned parameters estimation, as well as that for 

the newly proposed model, will assist the progressing 

literature in the realm of forestry science. The study 

proposes that integrated ensemble models will anticipate 

tropical tree biomass better than traditional modeling 

systems; as a result, the model will be dominant over 

conventional ones. The study objectives are twofold: 

firstly, designing a model to concurrently anticipate tree 

AGB, BGB, and TB, guaranteeing additivity of tropical 

forests in Vietnam by the names of Dipterocarp and 

Evergreen Broadleaf, and secondly, cross-validating 
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errors compared to a traditional model, applying the same 

dataset as well as anticipators in the mentioned forests. 

The rest of this paper is structured as follows. That is, 

Section 2 discusses detailed methodology, including 

materials and data used in this work. Section 3 presents 

numerical analyses, graphical analyses, and experimental 

results under the heading of results and discussions. 

Lastly, section 4 summarizes the concluding points in the 

study. 

2 Methodology 
The present paper aimed to investigate the efficiency of a 

state-of-the-art model to be qualified for predicting 

tropical forest tree biomass effects. 

This study was conducted in one of Vietnam’s eight 

highest tropical forests, called the Central Highlands 

ecoregion. Two main tropical forest categories were 

selected for the focus of the research, i.e., Dipterocarp and 

Evergreen Broadleaf (See Fig. 1).

 

 

Figure 1: Sample plots, Locations for the forests Dipterocarp and Evergreen Broadleaf in the ecoregion of Central 

Highlands, Vietnam 

In this work, the dataset was exploited in a research 

study conducted by Huy et al. [6]. The collected data were 

based on 175 trees from 27 ecoregional lots located in the 

Central Highlands, Vietnam. We clearly define the dataset 

partitioning strategy to ensure reproducibility: the entire 

dataset of 175 samples was randomly divided into training 

(80%) and testing (20%) sets. Cross-validation was used 

over iterations to ensure robust evaluation and minimize 

sampling bias. To ensure compatibility across models and 

better convergence during training, feature preprocessing 

involved removing outliers and normalizing all input 

variables to a [0,1] range using Min-Max scaling. The 

hyperparameter tuning process was carried out using Grid 

Search with 5-fold internal cross-validation for each 

machine learning model: Poisson regression, ElasticNet, 

XGB, Extra Trees (ET), and Gradient Boosting (GB). This 

allowed us to systematically explore parameter 

combinations and choose those that produced the best 

performance on training data. Based on the results of 

cross-validation, the Grid Search methodically 

investigates a predetermined set of hyperparameter values 

to determine which combination produces the best model 

performance. 

A customized grid of important hyperparameters was 

built for every model. For instance, tree-based models 

such as GB, ET, and XGB had their learning rate, 

maximum depth, and number of estimators adjusted. We 

adjusted the L1 ratio and alpha (regularization strength) 

https://www.sciencedirect.com/science/article/pii/S0048969724059692#s0010
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for ElasticNet. Likewise, pertinent parameters for the 

stacking meta-learner and Poisson regression were 

adjusted. In order to maximize generalization and 

performance consistency, Grid Search was used in a cross-

validation framework to guarantee that each model was 

trained with the best parameter settings. This method 

greatly enhanced both the Stacking Ensemble's overall 

performance and the accuracy of the individual models. 

The desired targets in this dataset included the amount 

of above-ground tropical biomass (AGB), the amount of 

below-ground tropical biomass (BGB), and (TB), namely 

the total tropical tree biomass; equaling the summation of 

the below-ground and above-ground tree biomass (i.e., TB 

= BGB + AGB). Moreover, preprocessing and 

normalization operations were done on the data. 

 

To serve the purpose of the study, five ML models, as 

a base learner including GB, ET, XGBoost, ElasticNet, 

and Poisson, were employed to synchronously anticipate 

both the amount of below and above-ground tree biomass 

(BGB and AGB, respectively) as well as the total amount 

of tree biomass, i.e., TB = BGB + AGB.  

Owing to the individual models' mediocre 

performance, these five models were used as base learners 

to create a Stacking Ensemble (SE). Following that, a 

meta-learner was trained using their predictions to 

generate the final prediction for every biomass 

component. 

For the purpose of assessing as well as selecting the 

most efficient model able to concurrently anticipate 

tropical tree BGB, AGB, and TB, a powerful process of 

cross-validation was carried out. 

The Total number of the data was 175 which was 

randomly split ten times into two sections, involving 140 

(80%) for training data, and 35 (20%) for testing data, 

evaluating impartially. The reason why the data was 

altered into data testing and training data was to conduct a 

data analysis satisfying accuracy and reliability in this 

research. A wide range of assessment metrics, such as 

MSE, RMSE, MAE, R2, STD, NMSE, MDAPE, and 

VAF, were used to evaluate performance. 

the Fit Index (FI), a goodness-of-fit metric intended 

to assess the quality of predictions across several cross-

validation realizations. A higher FI value indicates a better 

fit, with values approaching 1. The formula for calculating 

the FI is presented below. 

𝐹𝐼 =  
1

𝑘
 ∑ (1 −  

∑ (𝑦𝑖 −  𝑦̂𝑖)
2𝑚

𝑖=1

∑ (𝑦𝑖 −  𝑦̅𝑖)
2𝑚

𝑖=1

𝑘

1
 (1) 

In the equation above k stands for the realizations 

number (in this study k = 10), m is the number of trees 

sampled in the validation dataset; and yi is the observed 

value. 𝑦̂i represents the predicted value, and 𝑦̅ shows the 

averaged value for BGB, AGB, and TB of the ith validated 

tree in the realization of kth. 

 The study goal was to evaluate accuracy and model 

consistency in light of the ecological context and the small 

dataset size. Metrics like R2 and VAF measure the 

percentage of variance explained by the models, while 

MSE, RMSE, and MAE quantify absolute prediction 

errors. Understanding normalization effects and error 

distribution is aided by STD and NMSE. MDAPE is a 

reliable percentage-based metric that works especially 

well with data that contains outliers or skewness, which is 

typical in biomass measurements. A new and 

comprehensible metric designed for model comparison 

across several validation folds, the Fit Index (FI) was 

introduced to reward accuracy and stability. Ultimately, 

when combined, these metrics make sure that the 

assessment covers robustness, interpretability, and 

predictive accuracy—all of which are critical components 

for ecological modelling and decision-making, 

demonstrating that the Stacking Ensemble model was 

more efficient than the other compared models. 

Evaluation methods for error metrics criteria are exhibited 

in Table 1.

Table 1: Equations for evaluation of statistical metrics criteria  

Statistics Name Equation 

MSE Mean Squared Error 𝑀𝑆𝐸(𝑦, 𝑦̂) =
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑖=0

𝑁−1

𝑁
 

RMSE Root Mean Square Error 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 

MAE Mean Absolute Error 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑖=1

𝑛

𝑛
 

R2 Determination Coefficient 𝑅2(𝑦, 𝑦̂) = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑖=1

𝑁  

∑ (𝑦𝑖 − 𝑦̅)2𝑖=1
𝑁

 

STD Standard Deviation 𝑆𝑇𝐷 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑖=1

𝑛

𝑛 − 1
 

NMSE Normalized Mean Square Error 1 −
‖𝑥 − 𝑦‖2

‖𝑥 − 𝑥̅‖
 

MDAPE Median Absolute Percentage Error 𝑚𝑒𝑑𝑖𝑎𝑛 (‖
𝑒1

𝑎𝑏𝑠 − 𝑒1
𝑝𝑟𝑒̂

𝑒1
𝑎𝑏𝑠

‖) ∗ 100% 

VAF Variance Account Factor (1 −
𝑣𝑎𝑟(𝑡𝑛 − 𝑦𝑛)

𝑣𝑎𝑟(𝑡𝑛)
) ∗ 100 
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n represents observations number, 𝑦𝑖  is ith observed 

value, 𝑦̂𝑖 shows ith predicted value, and 𝑦̅ is the 

observations average. 

Graphical analyses were also carried out to assess the 

accuracy of the recommended model performance. 

Illustrated in different plots, they give the reader 

illuminating perceptions of the suitability and accuracy of 

the models, all which have been discussed in section 3 of 

this paper. 

As an overview of the research, the general flowcharts 

of the whole study have been demonstrated below (See 

Fig. 2 and Fig. 3). Fig. 2 also illustrates a brief 

comprehension of the step-by-step research methodology. 

That is to say, the research process begins with the dataset, 

going through analyzing and normalizing them, next, 

dividing the normalized data into train and test. More 

important part is here where the proposed ML models are 

evaluated based on an array of specific metrics to opt an 

appropriate model which is appeared to be Stacking 

Ensemble. Finally, ensemble models are also assessed on 

the basis of evaluation metrics to choose the best one. 

Hence, the results are saved for future usage.

 

Figure 2: General flowchart of the whole research process for applying the proposed model 

Figure 3 shows the modeling procedure involving 

data collection process for the purpose of theory, and then 

applying six ML models to concurrently predict tropical 

forest tree biomass and specifying the best reliable model 

for such prediction by comparing the selected ML models 

with the aid of evaluation metrics.

 

Figure 3: Flowchart of modeling procedure showing the process of employing ML models concurrently 
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The flowcharts of the six regression models, including 

ElasticNet, GB, ET, XGB, Poisson, and SE have been 

illustrated respectively in the following figure. The 

optimization of hyperparameters is also utilized through 

Grid Search tuning. These models were utilized with the 

goal of synchronously predicting ABG, BGB, and TB = 

BGB + AGB. Additionally, each proposed regression will 

also be discussed briefly below.  

2.1 Base machine learning models 

ElasticNet regression is an extension of linear regression 

that integrates both regularizing penalties of Lasso 

(abbreviated as L1) and Ridge (abbreviated as L2) into the 

loss function. This combination allows ElasticNet to deal 

with circumstances where there are a large number of 

characteristics, and they are also highly correlated. Its 

mathematical formulation is shown below. 

ElasticNet = ∑ (𝑦𝑖 − 𝑦(𝑥𝑖))2 +𝑛
𝑖=1

 𝛼 ∑ |𝑤𝑗|
𝑝
𝑗=1 +  𝛼 ∑ (𝑤𝑖)

2𝑝
𝑗=1  

(2) 

In Elastic Net regression, the parameters alpha and 

l1_ratio bear significant roles in specifying the 

regularization technique used in the model. These 

parameters control the trade-off between the L1 and L2 

penalties. In the presented formula 𝛼 is the regularization 

strength parameter in ElasticNet. It supervises the whole 

strength of regularization applied to the model. For 𝛼 = 0, 

no regularization is applied, and Elastic Net equals 

Ordinary Least Squares (OLS) regression. For 𝛼 = 1, 

regularizations of both L1 and L2 are applied, blending 

their penalties. For 0<α<1, this model employs a mixture 

of L1 and L2 regularization, permitting a flexible mixture 

of penalties. L1 Ratio (l1_ratio) is the blending parameter 

that identifies the balance between L1 and L2 penalties. It 

controls the proportion of the penalty determined to the L1 

norm relative to the L2 norm. For l1_ratio=0, the model 

applies only regularization of L2 (which equals Ridge 

regression). For l1_ratio=1, it uses merely regularization 

of L1 (which equals Lasso regression). For 

0<l1_ratio<1, Elastic Net applies a mixture of both L1 and 

L2 regularization, allowing for a combination of penalties 

[23].  

As shown in Fig. 4, applying the Elastic Net model in 

this study involves several linear steps. Because of the 

multicollinearity between predictors that are specific to 

trees and sites, ElasticNet regression was used. It made 

feature selection and coefficient shrinkage possible at the 

same time by combining L1 and L2 penalties. Grid Search 

with 5-fold cross-validation was used to optimize the 

regularization parameters (l1_ratio and alpha), which 

enhanced the generalization and stability of the model.   

 

Figure 4: The steps of the ElasticNet model applied for predicting tropical tree biomass 
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Extra Trees (ET) regression is a type of ensemble ML 

strategy that accumulates the outcomes of various decision 

trees decorrelated, similar to Random Forest regression 

[24]. ET regression employs a conventional top-down 

technique to create a collection of regression trees. RF 

model applies two stages, respectively, including 

bootstrapping and bagging [25]. 

Hameed et al. (2021) have discussed the Random 

Forest model as an array of decision trees in their article, 

and used its equation as follows: 

𝑇(𝑥, 𝜃1, … , 𝜃𝑟) =
1

𝑅
∑ 𝑇

𝑅

𝑟=1

(𝑥, 𝜃𝑟) (3) 

In which T (x, θr) demonstrates the Tth tree 

prediction, in which θ presents a uniform independent 

distribution vector appointed before the tree growth. All 

these trees are blended and averaged in an ensemble of 

them (i.e., shaping forest), named T(x). 

According to Hameed et al. (2021), two main 

differences between the ET and the RF systems are cited 

as follows. Firstly, two main differences between the ET 

and the RF systems are cited as follows. Firstly, ET 

exploits all the divided nodes as well as cutting points, 

selecting randomly from the cut points. Secondly, the 

algorithm applies all the samples to help the tree grow so 

as to limit bias.  

Two parameters involved in the ET model for 

controlling the splitting process are k and nmin; 

k represents the characteristic number, chosen randomly 

in the node, while nmin refers to the minimum size of the 

sample anticipated nodes division. Moreover, respectively 

via k and nmin, the feature selection strength and the 

average strength of output noise are specified. The 

abovementioned two factors enhance the accuracy and 

decrease the ET model overfitting [19]. 

Figure 5 demonstrates the design of the ET model 

proposed in the present study. According to Fig. 6, 

training data are processed through the ET model as 

follows. N predicted outputs result from N tree decisions. 

Consequently, the obtained output predictions are 

averaged to result in the optimal output. 

 

Figure 5: The steps of Extra Trees (ET) model used for predicting tropical tree biomass 

The Gradient Boosting (GB) algorithm’s job is to find 

a function T(xi), minimizing some loss function ℒ [T 

(x1),…, T(xn)], in which xi is a vector with k dimensions 

for i=1,…, n. This algorithm begins with a primary 

prediction T0(xi) and carries on repeatedly so that Tm(xi) = 

Tm-1 (xi) + hm(xi). Supposedly, hm(xi) would experience 

extreme reduction direction in ℒ [Tm-1(x1),…,Tm-1(xn)]. 

Such direction is delivered via ℒ with a negative gradient 

assessed in [Tm-1(x1)…, Tm-1(xn)]. Despite being very 

demanding or sometimes impossible for a function 

detection of h(xi) to approximate ℒ assessed in [Tm-

1(x1),…, Tm-1(xn)], when h(xi) approximation is estimated, 

GB algorithm progresses through Tm(xi) = Tm-1 (xn) + 

αhm(xi) for α>0 which is a supposed learning rate [9]. 

As the GB model is represented in Fig. 6, the data first 

goes through a bootstrap sampling to be split into T data 

subsets for which there would be hT tree decisions. 

Thereafter, there is a one-to-one result for each tree 

decision; altogether, hT(x) results. Ultimately, the attained 

results’ average is calculated to produce the final result, 

namely H(x). The ability of Extra Trees (ET) and Gradient 

Boosting (GB) to model intricate non-linear 

relationships—which are common in ecological 

systems—led to their selection. With a small dataset size 

(n=175), ET's randomized split selection was especially 

helpful in reducing overfitting. To attain the best bias-

variance tradeoffs, we employed Grid Search to adjust 

variables like the number of estimators, tree depth, and 

leaf size. 
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Figure 6: The stages of Gradient Boosting (GB) model employed for tropical tree biomass predictions 

Given that the Poisson distribution is the basis for 

Poisson regression, it identifies the probability of the 

occurrence of any number of events in a steady interval of 

time or space, with the assumption that the events occur at 

a constant rate and are independent of each other. The 

formula for the Poisson distribution is given by: 

The Poisson distribution could be calculated from the 

formula below: 

𝑃(𝑋 = 𝑘) = (
𝜆𝑘𝑒−𝜆

𝑘!
) (4) 

In the above equation, X is the number of random 

occurrences, and λ represents the average or mean of the 

events. Poisson regression exploits its distribution to 

provide a comprehension of the predictor variables’ 

relationships along with that of the count data in the 

dataset. In this regression, the expected value (mean) of 

the count variable (namely Y) is designed as a model of a 

linear mixture of predictor variables (namely X): 

λ = exp (β0 + β1X1 + β2X2 + … + βnXn) (5) 

in which: λ is the expected count, which represents the 

occurrence proportion, β0 is the intercept term, β1, β2, …, 

βn represent coefficients related to each predictor variable. 

The link function in Poisson regression is the natural 

logarithm (log-link), ensuring the predicted values are not 

negative. This model is evaluated via maximum likelihood 

estimation, and the coefficients (β) are specified to 

maximize the probability of observing the actual count 

data in the model [26]. 

The approach for the application of the Poisson model 

is well-illustrated in Fig. 7, which experiences various 

stages in a linear pattern. To begin with, a point cloud is 

taken as an input; second, the surface normal of all the 

points is detected by computing the eigenvector over the 

k-nearest neighbors of each point. Third, an octree with a 

predefined depth d is selected for categorizing the 

reconstructed surface. Then, the Gradient of the indicator 

function (Vx) equated to the vector V is defined by the 

point cloud. The next stage involves defining an indicator 

function X with the value of 1 inside and 0 outside the 

surface. Thus, Vx=V and the divergence operator is 

applied to either side; i.e. ∆𝑥 ≡  ∇. ∇𝑥 = ∇. 𝑉. On the next 

stage, the indicator function x is solved as a standard 

Poisson problem. The marching cube algorithm is used to 

extract the surface from the solved indicator function x. 

Eventually, the reconstructed surface is stored in the 

octree of depth d. Since AGB, BGB, and TB are skewed 

and non-negative, Poisson regression was employed. 

Although it was initially created for count data, its 

formulation fits biomass distributions quite nicely. To 

make sure the Poisson model's assumptions held true in 

this situation, diagnostic tests were conducted. 
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Figure 7: The stages of the Poisson model employed for tropical tree biomass predictions 

2.2. Hyperparameter tuning 
Grid Search was applied in a 5-fold cross-validation 

framework to find optimal hyperparameters for all the 

models. For tree-based models like Gradient Boosting, 

Extra Trees, and XGB, the number of estimators, learning 

rate, and max tree depth were systematically changed to 

optimize model complexity and predictability. In the 

ElasticNet scenario, the regularization parameter (alpha) 

and L1 fraction were tuned to prevent overfitting and 

cause sparsity. In Poisson regression, tuning was for the 

regularization parameters and the number of iterations to 

achieve better convergence. After separately tuning each 

of the base models, their outputs were fed into a meta-

learner in the Stacking Ensemble, whose parameters also 

were tuned via Grid Search. This broad tuning process 

ensured that all models, including the ensemble, reached 

optimal generalization and performance [27]. 

The Stacking Ensemble was selected due to the meta-

learner included, as it blends heterogeneous base learners 

with varying predictive ability and error behaviors, as well 

as generalizes well. Due to its nature of broad application 

in addressing multicollinearity on regression prediction of 

the base models and capturing of non-linear relationships, 

a tree-based learner was applied as the meta-model in this 

research. Stacking model showing an RMSE of 18.298, 

MAE of 12.422, and R2 of 0.968 performed significantly 

better compared to any of the base models on the test data, 

meaning that the ensemble was able to selectively 

leverage the strengths of each of the related models to 

generate more stable and accurate predictions of biomass. 

In the Stacking model, presented in Fig. 8, training 

data are processed on the basis of three level 0 models 

separately. Each model’s prediction results are gathered as 

other processed training data in the study. All of the base 

learners' predictions (GB, ET, XGB, ElasticNet, and 

Poisson) were aggregated by the Stacking Ensemble. To 

avoid overfitting and information leakage, the meta-

learner, a Ridge regression model, was trained on out-of-

fold predictions. We were able to improve overall 

predictive performance by combining the complementary 

strengths of all models—capturing distribution-specific, 

linear, and non-linear trends—into this ensemble. Table 2 

provides the hyperparameters chosen by the stacking meta 

learner for the models. 

 

 

Figure 8: Stacking model procedures used for tropical tree biomass 
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Last but not least, XGB is one of the common 

algorithms in ML. It is based on the ensemble learning 

framework, following the gradient boosting algorithm. 

Thus, it is applicable for the tasks of supervised learning, 

i.e., regression, ranking, and categorization. XGB is a 

predictive model that combines multiple individual 

models’ predictions iteratively. It works by adding weak 

learners into the ensemble one after another, such that at 

every step, a new learner tries to correct the errors of the 

prior ones. It also minimizes a prespecified loss function 

during training data using some sort of gradient descent 

optimization [13]. 

In summary, the XGB is developed in three stages 

straightforwardly: First, a primary model, namely F0, was 

used to predict, i.e. the aimed variable. The XGB model is 

related to a residual (y–F0). Second, the residuals obtained 

in the prior stage are adapted to a new model called h1. 

Third, the combination of F0 and h1 delivers F1, which is 

the promoted form of F0. Consequently, the MSE metric 

system from F1 will be lower than that from F0. 

𝐹1(𝑋) < −𝐹0(𝑥) + ℎ1(𝑥) (6) 

For improving F1's performance, a residuals model of 

F1 can be designed, and an original model called F2 is 

presented. 

𝐹2(𝑋) < −𝐹1(𝑥) + ℎ2(𝑥) (7) 

This process would be iterated for a number of 'n' 

stages up until potentially minimizing residuals as much 

as probable, i.e. 

𝐹𝑛(𝑋) < −𝐹𝑛−1(𝑥) + ℎ𝑛(𝑥) (8) 

It is worth mentioning that additive learners would not 

mess with the functions developed in prior iterations but 

add information of their own in order to bring down the 

error values. First, the model begins with some function 

F0(x). This F0(x) needs to minimize the loss function or 

MSE, hence: 

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛ϒ ∑ 𝐿(𝑦𝑖 , ϒ)𝑛
𝑖=1   

𝑎𝑟𝑔𝑚𝑖𝑛ϒ ∑ 𝐿(𝑦𝑖 , ϒ)𝑛
𝑖=1 =

 𝑎𝑟𝑔𝑚𝑖𝑛ϒ ∑ (𝑦𝑖 − ϒ)2𝑛
𝑖=1   

(9) 

Regarding the prime differential of this equation with 

γ, it is observed the function is minimized at the mean i=1, 

…, n. Thus, the promoting model can proceed with: 

𝐹0(𝑥) =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 (10) 

F0(x) presents the first step of predictions in this 

model. Next, for each instance, the residual error is 

expressed as: (yi – F0(x) [28]. 

In Fig. 9, the XGB model employs a multifaceted 

approach to make predictions about input data. 

Afterwards, the average of predictions is calculated and an 

ultimate XGB prediction is thus generated  .Because of its 

exceptional performance with structured tabular data and 

its integrated regularization, which helps avoid 

overfitting, XGB was included. It was well-suited for this 

task because of its efficient handling of non-linearities, 

support for missing values, and robustness to noise, even 

with the small sample size. Grid Search was used to 

optimize important hyperparameters, such as learning 

rate, maximum depth, and gamma.  

 

Figure 9: The procedure used in the XGB model for predicting tropical tree biomass 
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3 Results and discussion 

3.1  Exploratory data analysis 
To display how closely related the multiple variables 

of the study data are, a Pearson correlation heatmap is 

exploited as an effective color-coded visual matrix (See 

Fig. 10). Variables are demonstrated with rows and 

columns, and the cells define the relationship between 

variables two by two. The color shading for each cell 

indicates the correlations’ direction and their strength: the 

darker the color of a cell, the stronger the correlation of 

the related variables. As it is obvious from this tabulated 

heatmap, the colors are darker for stronger correlations 

and lighter for weaker ones. Additionally, the green colors 

represent the positive correlations; that is, when one 

variable increases, the other variable tends to go up, 

whereas in the case of negative correlations, when one 

variable increases, the other variable tends to drop. Purple 

colors have been used.

 

Figure 10: Pearson Correlation Heatmap for detecting the relationship between studied variables. 

In Fig. 11, a pair plot visualization for the distribution 

of dataset parameters is shown for exploring the analysis 

of the data. In a pair plot, the data is visualized to find the 

relation between them, where variables are continuous as 

well as categorical, or form the most divided clusters. 

Dispersions of the parameters indicate the fact that most 

features are not evenly distributed. CA, WT, and P are 

skewed or clustered, and the values of these variables are 

focused on particular ranges. Scatter plot graphs such as 

CA versus WT or HA versus CA show positive 

relationships, which hold good, indicating potential 

multicollinearity that could be important to model. As a 

contrast, the variable types like forest type code and soil 

type code arrive in horizontal bands or discrete groups, as 

they are categorical. These trends suggest that the 

explanatory power of the data set is in part due to a mixture 

of continuous gradations in combination with categorical 

differences. The distributions in classes are depicted by 

the colors, and it can be observed that there is clearly a 

grouping in the plots, either of altitude, or of CA, or of 

WT. Following is a pair plot providing a high interface 

level to derive enlightening statistical information about 

the dataset; i.e., the variations in each plot can be 

observed, and the crucial diagonal secondary plots show 

each variable distribution. This pair plot for the 

relationship between variables of total amount of biomass, 

namely TB, is also demonstrated in Fig. 12, which more 

explicitly explores how the CTB classes are distinguished 

in terms of predictors. In this instance, the scatter plots 

show that for most variable pairs, the CTB categories are 
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predominantly overlapping, indicating that no set of 

variables can completely separate the CTB classes. 

However, there are regions, particularly in pairings like 

CA vs. WT or CA vs. P, where some CTB groups are 

grouped more closely together or are bunched into more 

constricted value ranges. The histograms on the diagonal 

also emphasize the bunched character of observations 

within given intervals, further underscoring that the 

dataset is skewed in variable distribution. This class 

grouping within specific regions suggests that individual 

variables may not always be able to differentiate CTB, but 

groups of predictors likely have predictive value. Further, 

the mixture of continuous and discrete variables 

introduces difficulty, as seen in the scatter plots, where 

some categories of CTB extend across different bands, 

with others overlapping.

 

Figure 11: Pair plot for specifying the distribution of dataset parameters as well as their relationship 
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Figure 12: Pair plot for showing the relationship between the variables of total tropical tree biomass (TB) and their 

distributions 

3.2. Machine learning results 
In the present investigation, six methods were employed 

in two forest locations, i.e., Dipterocarp and Evergreen 

Broadleaf, to concurrently anticipate BGB, AGB, and TB 

= BGB + AGB. To assess the base models’ performance, 

Table 3 presents the findings of the error metrics criteria 

for each recommended models considering the train and 

test data. By comparing these error metrics along with FI, 

it was detected that the Stacking Ensemble model was 

optimal than other models. The very large R 2 values close 

to 0.999 on the training dataset is an indicator of 

overfitting or data leaks. To prevent this we made sure to 

have rigorous separation of the training and test data and 

we optimized our hyperparameters using the Grid Search 

with cross-validation to prevent overfitting. The rock-

bottom R2 values on the testing data (such as 0.962) are 

indicative of a lack of overfitting, so the overfitting 

appears to be contained. Further improvements with 

regard to regularization and data augmentation will be 

necessary in future computations to minimize the chances 

of overfitting. The test results indicate that the Stacking 

model outperforms the others in nearly all metrics, 

demonstrating higher predictive accuracy and reliability. 

Its mean squared error (MSE) is considerably low at 

334.82, indicating lower average squared discrepancies 

between the predicted value and actual value compared to 

other models like ElasticNet (2378.17) and Extra Trees 

(1216.54). In the same vein, root mean squared error 

(RMSE) for Stacking is 18.30, a far cry from those of 

ElasticNet (48.77) and Gradient Boosting (41.75), 

meaning they were more precise in their predictions. Mean 

absolute error (MAE) performs the same, at 12.42 for 

Stacking, a far better performance than for models such as 

Poisson regression (19.32) and XGB (21.18). 

In regard to explained variance and fit, Stacking had the 

best R² value of 0.968 across all models, which means it 

accounts for nearly 97% of the test data variance. This is 
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significantly better than ElasticNet's R² score of 0.77 and 

Extra Trees' R² score of 0.88. The Stacking model's 

normalized mean squared error (NMSE) is 0.032, the 

minimum, with no significant normalized error against 

data variance. Likewise, its variance accounted for (VAF) 

is 0.971, indicating impeccable consistency of predicted 

and actual values. The median absolute percentage error 

(MDAPE) of 23.08 and the standard deviation (STD_dev) 

of residuals of 105.76 also illustrate the consistency of the 

model in its performance. 

On the other hand, the other models show higher error 

measures and lower variance explanation, with the 

Stacking model remaining the most accurate and 

consistent for the test set in this comparison. This claim 

was on the basis of the higher R2 value of the Stacking 

model for both train and test data. According to this table, 

the higher R2 and VAF for each model make them worthy 

of a better model; in this case SE model. On the other 

hand, the lower the other metrics such as MSE, RMSE, 

MAE, NMSE, MDAPE, and STD, the more the model 

would have the merit of being an efficient predictor. 

Therefore, the Stacking model is deemed the most 

efficient and performs better than the other models for 

both training and testing data. In contrast, ElasticNet 

shows weaker performance in predicting the variables. 

Furthermore, the results of the employed evaluation 

metrics are presented and thoroughly discussed using 

relevant figures at the end of this section. Improved 

accuracy and stability on both forest types were indicated 

by the lower MSE, RMSE, and MDAPE, but higher R2 

and VAF of the Stacking Ensemble, which consistently 

outperformed the other algorithms. ElasticNet performed 

poorly because of its linear framework, which failed to 

properly capture the intricate, nonlinear patterns in 

biomass data. Because Stacking possessed the ability to 

combine the powers of tree-based models like GB, ET, 

and XGB, it outperformed them despite the fact that they 

were moderate. 

Figure 13 below is an illustration of the data values 

obtained via the ML parameters; i.e., ElasticNet, Extra 

Trees, GB, Poisson, Stacking, XGB; and accordingly, a 

comparison of these parameters in detail, along with their 

distance from the target value data, is presented. 

 

Table 3: Error metrics criteria result for the proposed ML models considering the train and test datasets. 

                    Models 

Metrics   

ElasticNet Extra Trees GB Poisson Stacking XGB 

Train 

MSE 4026.476 4.933E-26 5.800 1725.207 1153.269 1.72544E-05 

RMSE 63.455 2.221E-13 2.408 41.536 33.960 0.004 

MAE 32.550 7.82E-14 1.821 16.042 11.562 0.003 

R2 0.788 0.999 0.999 0.909 0.939 0.999 

NMSE 0.212 2.601E-30 0.000 0.091 0.061 9.09812E-10 

MDAPE 67.280 1.651E-13 5.016 29.535 8.722 0.008 

STD_dev 100.279 137.713 137.491 150.171 134.774 137.713 

VAF 0.788 0.999 0.999 0.909 0.939 0.999 

Test 

MSE 2378.167 1216.538 1743.162 1051.301 334.820 2090.796 

RMSE 48.766 34.879 41.751 32.424 18.298 45.725 

MAE 36.818 18.068 21.948 19.320 12.422 21.178 

R2 0.770 0.882 0.831 0.898 0.968 0.797 

NMSE 0.230 0.118 0.169 0.102 0.032 0.203 

MDAPE 68.390 32.640 34.406 31.075 23.081 30.099 

STD_dev 100.272 85.241 76.508 78.865 105.763 75.760 

VAF 0.777 0.894 0.853 0.924 0.971 0.817 
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Figure 13: Value plot of comparing ML parameter values with the target value. 

Figure 14 shows the results for R2 as a significant 

error metric criterion, suggesting how well the employed 

ML models’ predictions fit the real data. Shown in the 

figure, the model’s prediction values align closely to the 

norm line (when R2 = 1) is considered to be a superior as 

well as more accurate model. This result is in line with a 

higher R2 value (approximately 0.939) for the test data and 

0.968 for the training data in the proposed Stacking model.

 

Figure 14: Comparing the coefficient of determination (R2) for each ML model. 

 

The frequency of each error value for each ML 

method’s predictions is represented in Fig. 15. The error 

analysis was conducted for both train and test parameters, 

and the ML models were assessed to examine their 

accuracy. As a result, the error in the ML models’ 

prediction performance ought to be almost zero to be an 

adequate model for the aim of the study.
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Figure 15: Comparing error values for ML models 

Moreover, according to Fig. 16, the error values for 

the proposed ML models have been illustrated from the 

least error value to the most errors for both train and test 

data of each model, moving from left to right. A model 

with the least error values (i.e., approximately zero) would 

be the best predictor among the employed ML models. 

This visualization highlights that the data has intense 

recurrent peaks—suggesting non-uniform distributions 

with dominating clusters—and that these patterns persist 

but evolve subtly across different sections of the dataset. 

When one of the groups describes a stacking model, its 

activity can be visually compared with the other groups by 

looking at how close the mean is to zero and how much 

and steady the standard deviation is. 

Based on the plot, we see that stacking seems to be 

more accurate than individual models, but by a very small 

margin. Compared to its predictions, it has fewer errors 

and reduced variance, indicating that it has a stronger 

generalization and stability. On the contrary, although 

other models have also performed adequately, they exhibit 

some spread or deviations that are a bit higher than the 

mean. 

Overall, it appears that stacking should produce a 

more consistent and less erratic result than single models, 

thus making a superior comparison to the single models in 

terms of performance.
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Figure 16: Boxplot of ML models’ error values for both train and test data 

The following figure (Fig. 17) illustrates a 

comparison of proposed models in terms of two important 

statistical evaluation metrics, namely R2 and VAF, 

estimated for both the test and train datasets. As the values 

of these metrics show, all the models perform efficiently 

in the prediction except the ElasticNet model, which 

performs weaker than others, having lower VAF and R2. 

Stacking and XGB model performances are stronger than 

the rest of the models, bearing higher VAF and R2. Based 

on the plot, we see that stacking seems to be more accurate 

than individual models, but by a very small margin. 

Compared to its predictions, it has fewer errors and 

reduced variance, indicating that it has a stronger 

generalization and stability. On the contrary, although 

other models have also performed adequately, they exhibit 

some spread or deviations that are a bit higher than the 

mean. 

Overall, it appears that stacking should produce a 

more consistent and less erratic result than single models, 

thus making a superior comparison to the single models in 

terms of performance.

 

Figure 17: Comparison of Models based on VAF and R2 metrics. 
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The other evaluation metrics, including MSE, NMSE, 

MAE, RMSE, STD, and MDAPE, are applied for 

comparison among the models, supposing that the lowest 

value of these metrics for each model allows that model to 

be the best predictor. In this case, the stacking model for 

both the train and test datasets is the lowest compared to 

the other models (See Fig. 18).

 

 

 

Figure 18: Comparison of Models based on MSE, NMSE, MAE, RMSE, STD, and MDAPE metrics. 
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performance is indicated by points closer to the reference 

point [29]. Taylor diagrams for predicting tropical tree 

biomass are shown in Fig. 19. As seen in these diagrams, 

the RMSE of the Stacking model is lower than that of the 

other models, and its correlation coefficient exceeds 0.9, 

outperforming the other models in this regard. In contrast, 

the RMSE of the ElasticNet model is higher than that of 

the other machine learning (ML) models, and its 

correlation coefficient is lower. These findings, based on 

the correlation coefficient, STD, and RMSE, confirm that 

the Stacking model outperforms the other models.

  
Taylor Diagram_ (R2, train) Taylor Diagram_ (R2, test) 

  
Taylor Diagram_ (RMSE, train) Taylor Diagram_ (RMSE, test) 

Figure 19: Taylor diagrams for models’ comparison based on RMSE, STD, and R metrics 

The last plot to be discussed for model comparison is 

the Williams plot. This plot is used to compare a specific 

group of compounds in terms of leverage values and 

standardized residuals [30].  William’s plot shows the 

standardized residuals on the y-axis and leverages on the 

x-axis of the training and testing datasets. From this plot, 

the applicability domain is implemented within a squared 

area inside ±2 standard deviations and a threshold h* in 

leverage (h* = 3p´/n, being p´ model parameters and n 

compounds number). The majority of data ought to be 

located within this area, conceptualizing that they have to 

be inliers and influential in the model. The Williams plots 

of the Stacking model on both training and test sets are 

indicators of good model performance and generalization. 

Most of the observations in the test plot lie comfortably 

within the satisfactory limits for leverage and standardized 

residuals (±2), which is an indicator that the model 

predictions are not biased and stable and possess minimal 

outliers. Only a minimal number of observations being out 

of the ±2 boundary and leverage constraint signifies that 

there are very few influential or problematic points. 

Similarly, the training plot shows tightly clumped 

residuals around zero with the majority of data points 

having little leverage, which would mean that the model 

has not over-fit the training data. Even some of the 

residuals fall outside ±3 or do possess relatively higher 

leverage, those are scattered and do not invalidate the 

model. The similar trend in both plots confirms that the 
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Stacking model works well on unseen data, learning the 

inherent pattern significantly without being overfit and 

robust. To be an efficient model predictor, the data must 

lie within this domain (See Fig. 20) [23]. 

  

Elastic Net Williams Plot [TB, Test] Elastic Net Williams Plot [TB, Train] 

  
Extra Trees Williams Plot [TB, Test] Extra Trees Williams Plot [TB, Train] 

  
GBM Williams Plot [TB, Test] GBM Williams Plot [TB, Train] 

 
 

Poisson Williams Plot [TB, Test] Poisson Williams Plot [TB, Train] 
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Stacking Williams Plot [TB, Test] Stacking Williams Plot [TB, Train] 

 
 

XGBoost Williams Plot [TB, Test] XGBoost Williams Plot [TB, Train] 

 

Figure 20: Williams plots for models’ comparison based on standard residuals and leverage. 

 

3.3. Comparison with foundation models and 

LLMs 
Large Language Models, or LLMs, are sophisticated AI 

systems that have been trained on enormous text datasets 

to comprehend and produce human language. Google 

created BERT, which is perfect for tasks like classification 

and question answering because it can analyze words in 

both directions and understand context. With its emphasis 

on producing relevant and coherent text, OpenAI's GPT is 

effective for tasks like content creation, dialogue, and 

summarization. Both use Transformer architecture, but 

GPT is more focused on generation and BERT on 

comprehension. The proposed SE model adds domain-

specific efficiency, whereas models such as BERT and 

GPT are effective for general-purpose NLP tasks. We 

specifically highlighted how, in contrast to the extensive, 

data-intensive training of LLMs, SE makes use of 

structured, domain-relevant features. This study also 

indicates SE's improved interpretability and reduced 

computational cost, both of which are important for 

ecological modelling. 

4 conclusions 
The study was implemented on eight tropical forests in 

Vietnam, using the forestry variables, i.e., AGB, BGB, 

and TB. In an attempt to solve the problem of predicting 

the mentioned variables, the study used an MGDL 

regression strategy, which later proved to be an efficient 

model to bear a strong ability to predict tropical forest 

biomass. To this, five models were selected as major 

algorithms to unravel the issue of biomass prediction. 

These models included Gradient Boosting (GB), Extra 

Trees (ET), XGB, ElasticNet, and Poisson, all of which 

were employed to synchronously anticipate both the 

amount of AGB, BGB, as well as TB = BGB + AGB. Then 

optimized by Grid Search. Additionally, the SE model was 

joined to the aforementioned models so as to allow the 

results to become satisfactory, i.e., mainly for the cross-

validation purpose. Therefore, the recommended method's 

performance was investigated in terms of two sets of 

actual data, namely training and testing data.   

The outcome of this study presented that the 

recommended method had a vigorous efficacy to estimate 

the amount of forest biomass. That is to say, employing a 

simultaneous group of ML models resulted in a significant 

impact on predicting forestry above- and below ground, as 

well as the sum of the biomass. The very high R² values 

of near 0.999 in the training set are definitely cause for 

alarm for overfitting or data leakage. We dealt with this by 

ensuring strict separation of training and test datasets such 

that there was no information leakage. We also employed 

Grid Search with cross-validation during hyperparameter 

tuning to allow maximum model complexity without over-

fitting. The test set results, with R² scores considerably 

lower (e.g., 0.968 for the best model), are a sign of good 

generalization and suggest that while there may be some 

overfitting, it is controlled. More regularization and more 
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data will be tried in future research to reduce the 

possibility of overfitting even more. Based on the 

provided metrics, the Stacking ensemble model performed 

clearly superior to each of the standalone models on the 

test set. That is because it is capable of leveraging the 

prediction power of various base learners—ElasticNet, 

Extra Trees, Gradient Boosting, Poisson Regression, and 

XGB—and minimizing their respective errors through a 

meta-learner. Stacking takes into consideration the stand-

alone strengths of linear as well as nonlinear models and 

results in improved generalization and less overfitting. 

Quantitatively, the Stacking model achieved the 

highest coefficient of determination (R² = 0.968) and 

variance accounted for (VAF = 0.971) on the test set, 

indicating that its predictions were most highly correlated 

with actual biomass values. It generated the lowest mean 

squared error (MSE = 334.820), root mean square error 

(RMSE = 18.298), and mean absolute error (MAE = 

12.422), indicating high accuracy and low prediction bias. 

In terms of normalized error, it also had an NMSE of just 

0.032, and the mean directional accuracy percentage error 

(MDAPE) decreased to 23.081%, significantly better than 

other models. Although its test standard deviation (STD = 

105.763) was slightly greater, this is the natural result with 

better prediction accuracy and range coverage for both 

train and test data, where the results showed R2 equals 

0.939 for the testing data and 0.968 for the training data in 

this study data analysis. Therefore, adding the SE model 

to the proposed models is recommended for predicting 

forest biomass effects. As a result, this is evidence of the 

poor performance of this model. The William plots 

residuals display that its majority corresponds to the 

tolerant parameters, and very limited outliers or high-

leverage points are there in the test and train subsets. This 

implies that the Stacking model produces reliable, 

unbiased, and non-overfit predictions, and there is indeed 

powerful generalization and performance. 
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