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Real-time locating system (RTLS) based on UWB radio technology can be used to track people performing
every-day activities. However, the quality of obtained data is relatively low and, therefore it is difficult to
perform a reliable advanced analysis of human motion based on it. The paper analyses the noise of RTLS
measurements and suggests filtering methods that reduce the impact of the noise on the accuracy of activity
recognition. The methods are based on the statistical properties of the noise and human anatomy and
motion limitations. First, a rule based method for inserting missing measurement values is suggested and
compared with simple insertion of the last known value. Second, an adaptive low-pass filter that reduces
impulsive noise is suggested and compared with median filter. Third, a filter that ensures human motion
constraints are meet is suggested. In addition, an implementation of Kalman filter that can be used to
estimate the missing values, estimate the velocity of movement from recorded locations, and for smooth
the signal is described. The advantages and limitations of the suggested filtering approach are demonstrated
on synthetic and real data. Finally, influence of each phase of the suggested filtering chain on the accuracy
of activity recognition is analysed.

Povzetek: Z UWB redijskim sistemom za lociranje v realnem času je mogoče spremljati gibanje človeka
pri vsakdanjih opravilih. Kvaliteta tako zajetih podatkov je relativno slaba, kar otežuje natančne analize
gibanja. Prispevek analizira šum tako zajetih podatkov in predlaga postopek za zmanjšanje vpliva šuma
na točnost prepoznavanje aktivnosti. Metode so osnovane na statističnih lastnostih šuma in omejitvah, ki
izhajajo iz anatomije ter fiziologije človeškega telesa. Za vstavljanje manjkajočih vrednosti predlagamo
postopek na osnovi pravil in ga primerjamo z vstavljenjem zadnje znane vrednosti. Za odpravi impulznega
šum predlagamo prilagodljiv nizkopasovni filter in ga primerjamo z mediana filtrom. Zadnji v zaporedju
je filter, ki zagotovi, da filtrirani podatki ustrezajo omejitvam gibanja človeka. Opisan je tudi Kalmanov
filter, ki vstavi manjkajoče vrednosti, oceni hitrost gibanja in odpravi splošen šum. Sistem je ovrednoten
na podlagi vpliva vsakega predlaganega filtra na točnost prepoznavanja aktivnosti, prednosti in omejitve
filtrov pa so prikazane na sintetičnih in realnih podatkih.

1 Introduction

There is a significant amount of research in human activity
recognition, since it is important in many domains such as
ambient assisted living, security, sports, and recognition of
health problems. The goal of human activity-recognition
algorithms [7, 13] is to build a model that maps a sequence
of sensor readings (and some additionally computed fea-
tures) to an activity label, such as walking, sitting, cycling,
etc. Such algorithms require that there are no missing val-
ues and that the level of noise is low. An important sensor
technology that provides sensor measurements, which are
useful for human activity recognition, relies on real-time
location systems (RTLS) that output 3-dimensional coor-
dinates of tags attached to the human body. High-fidelity
optical RTLS such as Vicon [24] and SMART [2] provide
accurate measurements (±2 mm) but often suffer from tag

mislabelling due to problems with tracking when tag oc-
clusion happens. Furthermore, they require a line-of-sight
between the tag(s) attached to the human body and sev-
eral cameras. They are appropriate for use in controlled
environment (laboratory or animation studio), but fail in
real-world applications as they are expensive, difficult to
install, and have limitations such as line-of-sight require-
ment and confined operational area (e.g. 2×3 m). More
affordable system relay on radio technology, which makes
them less privacy-invasive and cheaper, but less accurate.
Systems based on ultra-wideband technology (UWB) such
as Ubisense [22] achieve ±15 cm accuracy in ideal setting,
which makes human activity recognition challenging. The
main problem addressed in this paper is how to denoise
human-motion trajectories captured with UWB RTLS in
order to improve human activity recognition. Methods de-
scribed in the paper can also be applied in other applica-
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tions based on UWB RTLS as well.
Denoising human-motion data captured with UWB

RTLS raises several challenges. [13, 16]. First, motion-
capture data may contain a certain percentage of missing
values due to packet loss or temporal sensor malfunction.
Second, sensor noise and environment disturbances cause a
percentage of motion-capture data to have a high error –so
called outliers – and unstable measurements, which corrupt
the reconstruction of human-body posture. The noisy data
that violates physical body constraints as well as spatial-
temporal motion constraints, which in turn causes addi-
tional problems for robust human activity recognition. Fi-
nally, some essential features used in activity-recognition
process that are computed from noisy measurements, such
as velocity and acceleration, have an integral error term,
which accumulates error over time.

This paper proposes an efficient approach for denois-
ing human-motion trajectories that filters corrupted motion
data and enforces spatial-temporal constrains of human
body, which enables a more accurate computation of fea-
tures used by activity-recognition model. The key idea is
to apply a series of filters that address the above-mentioned
challenges: (i) inserting missing values, (ii) filtering values
with high error, (iii) enforcing spatial-temporal constrains
of human body, (iv) smoothing the noise, and (v) estimat-
ing derived features such as velocity.

The next section presents related work and compares it
with the methods suggested in this paper. Section 3 in-
troduces the real-time locating system used in the experi-
ments, describes how it was used to track human motion
and gives detailed analysis of the sensor noise. Section 4
gives an overview of the suggested sequence of filters and
explains each of them: filters for dealing with missing val-
ues are given in Section 4.1, outlier filters are discussed in
Section 4.2, filter that enforces spatial-temporal body con-
straints is proposed in Section 4.3, and filter for smoothing
and estimating velocities is given in Section 4.4. Section 5
evaluates the proposed filters. Evaluation on synthetic data
is given in Section 5.1, on real data in Section 5.2 and on
human activity recognition in Section 5.3. Two applica-
tions using the proposed filters are shortly described in Sec-
tion 6. The paper conclusion is in Section 7.

2 Related Work

Related work from the field of signal processing provides
numerous signal denoising methods. This section provides
a quick overview of methods for filtering extreme values,
enforcing constraints and estimating values from noisy sig-
nals.

Qui et al. [19] reviewed and evaluated various impulsive
noise filtering techniques for aircraft engine sensor data.
Kernel smoothing and local regression method performed
best on slowly changing signals such as ramp signal with
white noise and outliers. Cascaded recursive median filter
performed best on the step change signals with standard de-

viation of the Gaussian noise lower than half of the change
in the signal value.

Verma et al. [23] reached similar conclusions and con-
firmed that median filter successfully removes outliers
while preserving signal features in jet engine gas path mea-
surements.

Sul et al. [21] presented a Kalman filter framework that
handles the following problems related to motion capture
sensor noise: satisfaction of physical constraints inherent
to human body, user-specified kinematic constraints, and
noise reduction. The constraints are added to the Kalman
filter as an error function that needs to be minimised. The
filter also guaranties seamless motion transition between
concatenated motion segments and can be used for motion
generation.

Musić et al. [14] presented an Extended Kalman filter for
filtering sit-to-stand-motion using low cost inertial sensors.
They define dynamic human body model and fused it with
sensor measurement into an Extended Kalman filter. This
approach successfully estimates and filters angles between
body segments, angular velocities, angular accelerations,
and joint moments.

This paper focuses on measurements captured with
UWB RTLS, which are known to have low accuracy. As
analysed in Section 3.3, the measurements contain differ-
ent types of noise, which requires combination of multiple
filters. The main contribution of the paper is the complete
analysis of a comprehensive set of filters that enable ef-
fective sensor readings denoising. This work is based on
thfindings presented in our previous papers [4, 5, 6, 15].

3 Location Trajectories of UWB
System

This section first introduces the ultra-wide band (UWB)
real-time location system (RTLS) used in the experiments.
Second, placement of RTLS tags on human body is de-
scribed according to the needs of activity-recognition – the
domain used for evaluation of the proposed denoising ap-
proach. Finally, a detailed analysis of UWB RTLS mea-
surement noise is given as it defines the denoising algo-
rithm requirements and points out the essential evaluation
tests.

3.1 Ubisense Location System
A commercially available localization system
Ubisense [22] was selected as the sensing compo-
nent. It allows locating by tracking a set of small tags (40
× 40 × 16 mm, 25 g), which are attached to a person’s
body, within an area of up to 30 × 30 m. A sampling
frequency of around 9 Hz can be achieved with no more
than four tags simultaneously. Each tag communicates
using ultra-wideband radio signal [25] with four to six
stationary sensors, for example, mounted on the wall. To
calculate the x, y and z position of a tag, both the time
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difference of arrival and the angle of arrival of radio signal
are used. Location accuracy of about ±15 cm in each
of the three axes can be achieved across approximately
95% of the readings in a typical open environment [22].
However, in a real-life scenarios the absolute measurement
error is higher than 100 cm in 1% of measurements, which
represents a significant challenge for preprocessing and
filtering.

3.2 Tag placement
The effect of body tag placement on classification accuracy
was studied in [12], where it turned out that in general more
tags enable more accurate classification. However, given
large enough noise, even an increased number of tags does
not necessarily improve the results. For example, the accu-
racy of the activity-recognition is comparable when using
eight or four tags. Nevertheless, using only one or two tags
significantly impacts the classification accuracy. Based on
these results and the fact that the Ubisense sampling rate
for four tags is limited to 9 Hz, the tags were positioned at
the following locations on the body: chest, waist, left and
right ankles.

3.3 Noise Analysis
In order to successfully denoise the RTLS measurements,
the analysis of noise was conducted first. The Ubisense
RTLS was installed and calibrated in a 7 × 4 m room used
for measuring the noise of the RTLS readings. The tags
were placed on the following positions (black circles in
Figure 1): left ankle, right ankle, waist, and chest. To anal-
yse the noise, static measurements were collected on a grid
with 0.5 m density while the person wearing the tags was
faced in one of the four directions (north, east, south, west).
Over 150 measurements (lasting at least 15 s) were taken
at each grid location. As a result, approximately 100,000
measurements were collected at the known locations and
orientations. The data was analysed with statistical meth-
ods as described bellow.

Figure 1: Positions of the RTLS tags on the body.

Figure 2 shows the observed measurement error. The

black dots represent the distance from the true position in
3D while the grey crosses represent the 2D projections.
Figure 2 illustrates that the noise level makes applications
such as activity recognition challenging.
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Figure 2: RTLS measurement error in 3D (black circles) with 2D
projections (grey crosses).

The noise was further analysed by RTLS error his-
tograms shown in Figure 3 for each of the three directions
as well as the combined absolute error. Figure 3 show that
the error is the highest in z direction (up-down), and the
smallest in x direction. The Shapiro-Wilk test for normal-
ity [20] was performed for all three directions and all four
tags confirming that the measurement noise is not normally
distributed. This was also confirmed by Q-Q plots analysis.
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Figure 3: Histograms of RTLS measurement error in all three
directions (x, y, z) and the total absolute error.

The standard deviation of measurement error in each di-
rection is between 10.6 and 17.6 cm. Measurement error
in single directions is below 10.4 to 29.9 cm (depending
on the tag position and direction of error) for 95% of the
measurements. The average absolute error is between 9.8
and 14.4 cm depending on the tag placement. The median
of the absolute error is between 3.2 and 6.9 cm. The abso-
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lute measurement error is below 22.3 to 53.7 cm (depend-
ing on tag position) for 95% of the measurements. Only
one percent of measurements has absolute error higher than
1.389 m. The tags that are placed higher, for instance,
chest, have lower noise level as illustrated by Figure 4.
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Figure 4: Boxplots (without outliers) of RTLS absolute measure-
ment error for each tag placement. Diamonds represent mean val-
ues.

The maximal Spearman rank-order correlation coeffi-
cient between error in two directions for any of the four
tags is 0.135. This shows that the error in various directions
is not correlated. The maximal observed error in single di-
rection is 3.97 m which is more than half of the longest side
of the room in which the measurement noise was analysed.
Additional noise analysis using auto-correlation confirmed
that the noise is random, that is, there is no external process
that influences the measurement error.

Up to 0.84% of the RTLS measurements are missing.
However, in most cases (0.57%) only one consecutive value
is missing, while more than 3 consecutive values (corre-
sponding to 1/3 s or more) between two consecutive mea-
surements, are missing in 0.07% of measurements.

4 Denoisinig Human Motion
This section propose an efficient approach for denois-
ing human-motion trajectories that filters corrupted motion
data and enforces the human-body spatio-temporal con-
straints thus enabling more accurate feature computation.

The key idea is to apply a series of filters as shown in
Figure 5 that mitigate the identified measurement errors.
First, the missing values are inserted by either inserting the
last known value or by using rule-based insertion. Sec-
ond, the raw RTLS signal of each tag is filtered to remove
the impulse noise, using either a median filter or an adap-
tive low-pass filter. Third, measurements are corrected by a
constraint propagation procedure in order to satisfy the fol-
lowing constraints: human anatomic constraints enforcing
expected distances between joints and human motion con-
straints enforcing acceleration and velocity limits. Finally,

a Kalman filter is applied in order to smooth the signal and
obtain an estimation of velocity, which is an important fea-
ture for activity recognition.

Raw RTLS data
Insert missing

values

Filter extreme

noise

Enforce body

constraints

Smooth signal &

estimate velocities

Compute ML

features & classify

Figure 5: A series of filters for denoising the raw UWB RTLS
measurement – preprocessing step for activity recognition.

4.1 Dealing with Missing Values

In most applications, the algorithms for RTLS signal analy-
sis can be simplified if no values are missing and a constant
sampling rate is used. However, data from UWB RTLS
contains missing values due to packet loss, delay during
transmission, sensor failure, or corrupted packets. There-
fore, the first step in RTLS denoising is to insert the missing
values. This paper compares two approaches described bel-
low. Other methods, such as Kalman filter (see Section 4.4)
or retrospective interpolation, could be used as well.

4.1.1 Insert the Previous Value

A simple method for dealing with the missing values re-
places the missing value xt at time t with the last known
value xt−1 according to Equation 1.

x′t = xt−1 (1)

This approach is simple to implement, has a constant
time complexity, and can be executed online. The error
of the locations inserted using this approach is reasonable
if only one or a few consecutive measurements are miss-
ing and sampling frequency is high. Nevertheless, if the
tag with missing value is moving, applying this method re-
sults in a signal with discontinuous derivation – velocity
suddenly changes to zero, which is not desirable.

4.1.2 Rule-based Insertion

Rule-based insertion uses height of the person (height) and
values of the non-missing tag measurements to estimate the
values of the missing tag measurements. The locations of
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the tags are denoted as follows: c for chest, w for waist, aR
for right ankle, and aL for left ankle tag.

This approach uses a simple rule to first identify the ac-
tivity of the user and then estimate the positions of the miss-
ing tags based on the activity, which is treated as the con-
text.

The identification of the activity is done according to the
height of the chest tag. If the tag is below 0.65 m the as-
sumed activity is lying, otherwise the activity is upright. If
the identified activity is lying, the values of the missing tags
are estimated using one of the rules presented in Algorithm
2.

Algorithm 1: Rule-based insertion if the identified ac-
tivity is lying.

1 if w and aR and aL are missing then
2 w(x, y, z) = (cx − height/3, cy, cz) aR(x, y, z) =

(cx − height, cy − 0.2, cz) aL(x, y, z) =
(cx − height, cy + 0.2, cz)

3 else if w and aR are missing then
4 w(x, y, z) = (1/2(cx + aLx), cy, cz) aR(x, y, z) =

(aLx, 2 ∗ cy − aLy, aLz)
5 else if w and aL are missing then
6 w(x, y, z) = (cx, 1/2(cy + aRy), cz) aL(x, y, z) =

(aRx, 2 ∗ cy − aRy, aRz)
7 else if w is missing then
8 w(x, y, z) = (cx, cy, 2/3cz)
9 else if aR is missing then

10 aR(x, y, z) = (aLx, 2 ∗ wy − aLy, aLz)
11 else if aL is missing then
12 aL(x, y, z) = (aRx, 2 ∗ wy − aRy, aRz)

If the identified activity is upright, the values of the miss-
ing tags are estimated using one of the rules presented in
Algorithm 3.

Algorithm 2: Rule-based insertion if the identified ac-
tivity is upright.

1 if w and aR and aL are missing then
2 w(x, y, z) = (cx, cy, 2/3cz)
3 aR(x, y, z) = (cx − height, cy − 0.2, 0)

aL(x, y, z) = (cx − height, cy + 0.2, 0)
4 else if w and aR are missing then
5 w(x, y, z) = (cx, cy, 2/3(cz + aLz)) aR(x, y, z) =

(2 ∗ wx − aLx, 2 ∗ wy − aLy, aLz)
6 else if w and aL are missing then
7 w(x, y, z) = (cx, cy, 2/3(cz + aRz)) aL(x, y, z) =

(2 ∗ wx − aRx, 2 ∗ wy − aRy, aRz)
8 else if w is missing then
9 w(x, y, z) = (cx, cy, 2/3cz)

10 else if aR is missing then
11 aR(x, y, z) = (2 ∗ wx − aLx, 2 ∗ wy − aLy, aLz)
12 else if aL is missing then
13 aL(x, y, z) = (2 ∗ wx − aRx, 2 ∗ wy − aRy, aRz)

This approach is constrained by the mandatory availabil-
ity of the chest tag location upon which the activity is iden-
tified.

4.2 Dealing with Outliers

The second filter used in the suggested denoising approach
deals with the impulse noise (outliers). As explained in
Section 3.3, a few percent of the RTLS measurements are
outliers, which should be filtered before other data process-
ing is executed. This paper compares two approaches for
outlier filtering explained in the following subsections: the
median filter and an adaptive low-pass filter.

4.2.1 Median Filter

Median filter is a non-linear filter that can suppress impul-
sive, isolated noise without blurring sharp changes in the
signal [26]. The filter uses a window of sequential samples
with odd length w = 2n + 1. At each time step t the filter
returns the median of the elements in the window:

x′t = median(xt−n, ..., xt, ..., xt+n) (2)

The only parameter of the median filter is the window
length w, which introduces a delay of length bw/2c. Too
long window may smooth the signal too much, while too
short window does not remove the high density noise. A
common approach is to choose a window length that pre-
serves the desired signal features and attenuates the im-
pulse noise well.

The majority of computational time for the median filter
is spent on calculating the median value of each window,
hence an efficient median calculation is crucial for the filter
run-time. While a naive approach sorts samples in each
window, a histogram-based algorithms implemented with
binary search trees are more efficient.

In the case of RTLS data, the median filter is applied at
each tag, separately for each dimension. The filter is able
to remove isolated spikes in the signal, while parts of the
signal with high oscillation remain unsuppressed. However
as demonstrated in Section 3.3, the Ubisense RTLS data
does not contain long periods with many outliers, which
makes the median filter suitable for dealing with outliers.

4.2.2 Adaptive Low-Pass Filter

Another method that filters outliers is the low-pass filter,
also termed high-cut filter. It passes signals with a fre-
quency lower than a certain cut-off frequency and atten-
uates signals with frequencies higher than the cut-off fre-
quency. It provides a smoother form of a signal by remov-
ing the short-term fluctuations (outliers) and preserving the
longer-term trend. The output x′t of a discrete low-pass fil-
ter is a weighted sum of the input xt and the preceding out-
put x′t−1 for a given constant smoothing factor 0 ≤ α ≤ 1
that defines the cut-off frequency:
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x′t = αxt + (1− α)x′t−1 (3)

The main idea of the adaptive low-pass filter is to set the
smoothing factor α dynamically. If the tag is stationary the
cut-off frequency should be lower compared to the cut-off
frequency used when the tag is moving. The key challenge
is how to detect whether or not the tag is moving.

This is done using movement detection algorithm de-
scribed in [15]. The algorithm computes a set of attributes
from time windows of RTLS data and uses them as the
input to the movement detection classifier trained using a
machine-learning algorithm. The attributes of the classifier
are: average velocity, standard deviation of velocity, aver-
age difference between two consecutive velocities, approx-
imate length of travelled path, standard deviation of veloc-
ity direction, and average change of direction within the
time window. The accuracy of the classifier is above 96%.
The miss-classification happens mainly in time windows
that include a transition from a stationary state to motion
and vice versa. The classifier achieves even higher accu-
racy during long periods without transitions: when the tag
is stationary or when it moves.

The advantage of the adaptive low-pass filter is that the
smoothing is dynamically adjusted. Therefore, sequences
of stationary locations are smoothed more while the fea-
tures of the signal during motion are preserved.

4.3 Spatial-Temporal Body Constraints
After the missing values are inserted and the outliers are
filtered, more advanced filtering methods are applied. So
far each tag was considered as a separated measurement.
In reality, however, the tags are attached to a human body,
which implies a set of constraints regarding relative tag po-
sitions and motion dynamics. In activity-recognition pro-
cess as well as in other applications using RTLS data, it is
usually expected that a set of measurements resembles hu-
man body proportions as well as spatial-temporal patterns
in natural human motion. Therefore, we developed a fil-
ter based on iterative constraint relaxation that: (i) projects
measured values in a valid domain; (ii) applies human body
proportion constraints to the measured positions; and (iii)
constraints spatial-temporal motion patterns.

4.3.1 Mapping Measurements to a Valid Domain

In the first step, an assumption about a valid domain of
measurements is made. For example, it is expected that all
the measurements are within a cuboid bounded with two
extreme points pA and pB (assuming the coordinate sys-
tem is aligned with the room) as shown in Figure 6. To keep
the measurement pt within the expected bounds, it has to
be translated to an edge (in case it is not already within the
cuboid) as shown in Figure 6. The update step is:

p′t = min(max(pt,pA),pB). (4)

pA

pB

p't pt

x

y
z

Figure 6: All the measurements are bounded with a cuboid.

4.3.2 Body Constraints

The human body is modelled using rigid-body components,
which assume that there is no deformation. Rigid-body
components are connected to each other with joints and
form an articulated rigid body that approximates the human
body as shown with dotted lines in Figure 1. The distance
between any two connected joints is constant regardless of
external forces exerted on it. Note that at this point on joint
constraints are posed.

In our case, the four RTLS tags provide the positions of
the joints (ankles, waist and chest), but do not allow the
reconstruction of the skeleton displayed in Figure 1 since
locations of knees and abdomen are missing. They are re-
constructed as follows. Suppose there are two pointsA and
C with known position and a joint B, which interconnects
A and C, with an unknown position. Since the distances
rA = d(A,B) (between A and B) and rc = d(C,B) are
known, the point B then lies at the intersection of the two
spheres centred at A with radius rA and at C with radius
rC .

In general, there are three cases to consider: (i) rA +
rB = d, that is, the intersection is a single point; (ii) rA +
rB > d, that is, there is no solution; and (iii) rA + rB <
d, that is, the intersection lies on a circle. In the second
case, the point B is positioned on the line between points
A and C so that the distances between points is in the same
proportion as the lengths of rA and rB . In the third case, a
new coordinate system is used.to calculate the position of
the point B. In the new coordinate system the first sphere
is centred at the origin and the second sphere is centred at a
point on the positive x-axis, at distance d from the origin, as
shown in Figure 7. Subtracting the sphere equations gives
a set of points representing a circular intersection of the
spheres:

x =
d2 − rC2 + rA

2

2d
(5)

y2 + z2 = rA
2 − (

d2 − rC2 + rA
2

2d
)2 (6)

The exact position of the point B is not important, hence
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an arbitrary point on the circle is picked and transformed
to the original coordinate system. As explained below, the
distance between joints is enforced with Equations (8) and
(9).

Figure 7: The result of sphere-sphere intersection is a circle.

After all the joint positions are known, constraints be-
tween the connected pairs of points can be introduced. For
example, suppose the true distance between joints A and B
is rA, that is

‖pA − pB‖ = rA. (7)

If measurements pA and pB violate the constraint given
by the Equation (7), the position of both points is adjusted.
Each point is translated along the line connecting the points
for half of the error defined as the difference between the
measured and the true distance as shown in Figure 8. The
update is:

p′A = pA +
‖pB − pA‖ − rA

2‖pB − pA‖
(pB − pA) (8)

p′B = pB −
‖pB − pA‖ − rA

2‖pB − pA‖
(pB − pA) (9)

p'A

p'B p'B

p'A

rA

pA

pB

pA

pB

Figure 8: Move the points pA and pB to match the constraint
given by Equation (7).

4.3.3 Spatial-Temporal Motion Patterns

In addition to the constraints introduced by human body
proportions, physical motion constraints of limbs (such
as velocity and acceleration) are also considered. Sup-
pose that a [m/s2] is the greatest possible acceleration
of a body joint. This implies that it can travel at most
lmax = (vt−1 + a∆t/2)∆t [m] in time interval ∆t, where
1/∆t is the sampling frequency. Hence the next position of
the joint pt is limited with a sphere with radius lmax, that
is

‖pt − pt−1‖ ≤ lmax = (vt−1 + a∆t/2)∆t (10)

In the case the new position pt is outside the sphere,
the position is translated onto the edge of the sphere in the
direction of the previous position as shown in Figure 9. The
update step is:

p′t = pt +
lmax(pt − pt−1)

‖pt − pt−1‖
(11)

In order to speed up the computations, the sphere can be
approximated with a cube with edge length lmax. In this
case, the new position is limited using Equation 4 where:

pA = pt−1 − (lmax, lmax, lmax) (12)
pB = pt−1 + (lmax, lmax, lmax) (13)

pt-1

p't

pt

lmax

Figure 9: Constrain the maximal distance according to Equa-
tion (11).

4.3.4 Iterative Constraint Relaxation

Finally, the three types of constraints are put together. Con-
sider C = {Φi} as a set of constraints, where Φ(p) applies
the update step on point p first using Equation (11) and then
using Equation (4); that is, p′ ← Φ(p), while Φ(pA,pB)
applies the update step on both pointsA andB using Equa-
tions (8) and (9); that is, p′A,p

′
B ← Φ(pA,pB). If a

constrained between points A and B is not present, then
Φ(pA,pB) does not alter the corresponding points. The
algorithm 4 takes the set of constraints C and set of points
points P as an input and iteratively updates the values until
the convergence threshold τc or maximal number of itera-
tions k is reached [1].
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Algorithm 3: Iterative constraint relaxation.
Data: set of constraints C, set of points P, maximal

number of iterations k, convergence threshold
τc

Result: filtered set of points P
1 while k > 0 and ∆ > τc do
2 ∆ = 0;
3 for p ∈ P do
4 for q ∈ P do
5 p′,q′ ← Φ(p,q);
6 ∆← ∆ + |q− q′|;
7 q← q′;

8 p′ ← Φ(p);
9 ∆← ∆ + |p− p′|;

10 p← p′;

11 k ← k − 1;

4.4 Smoothing and Velocity Estimation

The final step of RTLS denoising smooths the signal and
estimates additional quantities such as velocity, which are
used as attributes in activity-recognition process. For this
task, Kalman filter [3] is used. It is a recursive linear filter
for determining the best estimation of the system’s state.
The main assumption of the Kalman filter is that the un-
derlying system is a linear dynamical system and that all
measurement errors have a multivariate Gaussian distribu-
tion. In our case the system is a single RTLS tag moving in
3D space.

The Kalman filter performs the following three tasks:
smooths the UWB measurements, estimates the velocities
of tags, and predicts the missing measurements. In our
case, the Kalman filter state is a six dimensional vector xt
that includes positions and velocities in each of the three di-
mensions at time t, xt = [px,t, py,t, pz,t, vx,t, vy,t, vz,t]

T .
The next state is estimated from the previous state using the
following equation:

xt+1 = Fxt + But + wt, (14)

where matrix F encodes the linear dynamical system, B
is a control matrix and wt is noise covariance matrix. In our
case, the Kalman update is simplified to Equation 15. The
next state is calculated as a sum of the previous position and
a product between the previous velocity and the sampling
interval ∆t for each direction separately. The velocities re-
main constant. The measurement noise covariance matrix
is set based on UWB RTLS specification, while the process
noise covariance matrix is fine-tuned experimentally.


px,t+1

py,t+1

pz,t+1

vx,t+1

vy,t+1

vz,t+1

 =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




px,t
py,t
pz,t
vx,t
vy,t
vz,t

+ wt

(15)

5 Results
The proposed denoising method was tested on synthetic
data, real data, and in an activity-recognition application.
The evaluation is based on the insights obtained by the
noise analysis and shows that the proposed method suc-
cessfully deals with missing values, outliers and general
noise while preserving the original signal features.

5.1 Evaluation on Synthetic Data
The proposed denoising method was first evaluated on syn-
thetic data. The locations of the four tags (ankles, waist and
chest) were simulated as follows. The time-series starts
with a period of normal positions of the four tags during
standing – simulating a period with no noise. In the sec-
ond phase, the signal is corrupted by moving the chest tag
into outlier position – simulating a long series of outliers.
Finally the position of the chest tag returns to normal.

Figure 10 shows x, y, and z coordinates of two tags.
The blue line represents the synthetic signal, the green line
represents the output of the median filter, the red line rep-
resents the output of the Spatio-temporal body constraints
filter, and the pink line represents the output of the Kalman
filter, that is, the final denoising result.

Figure 10 shows that the output of median filter follows
the noisy signal due to a long period of outliers. Short pe-
riods of outlier values are successfully filtered by the me-
dian filter as explained in the next section. On the other
hand, the filter that enforces the human-body proportion
and motion constraints follows the noisy signal conserva-
tively. This significantly reduces the error of the chest tag,
however it introduces a relatively small error of the waist
tag while the ankle tags are not affected. The Kalman filter
smooths the transition. This example illustrates the benefits
of the Spatio-temporal body constraints filter on the noisy
data that can not be filtered appropriately using median fil-
ter alone.

5.2 Evaluation on Real Data
An example of filter response is shown in Figure 11, which
shows x (top) and y (bottom) coordinates for a tag attached
to the waist for T = 600 time steps (approximately 67 s).
The vertical axis corresponds to the position of the tag
in meters. The blue line represents the original location
measurements, the green line represents the median filter
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Figure 10: Response of filters on synthetic data with a long period of outliers: measurements of chest tag have a high error for extended
period of time.

Figure 11: Filtered coordinates x (top) and y (bottom) of a tag attached to the waist.
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output, and the red line represents the output of Spatio-
temporal body constraints filter followed by the Kalman
filter.

Figure 11 illustrates that the median filter successfully
filters sparse outliers while it fails when it encounters a
long sequence of outliers. In addition it shows that Spatio-
temporal body constraints filter successfully correct such
errors using the information about positions of the other
tags.

5.3 Impact on Human Activity Recognition
In order to quantitatively evaluate the proposed denoising
method, combinations of suggested filters were used as
the preprocessing step that filtered the raw RTLS data for
activity-recognition [6, 9, 10]. The effect on the activity-
recognition classification accuracy is analysed in order to
evaluate the effect of each suggested filter. The test dataset
includes 32,000 to 55,000 instances for each of the ten per-
sons, amounting to over 400,000 instances in total. Leave-
one-person-out method was performed to estimate the clas-
sification accuracy using each subset of filters (used for
raw-data preprocessing). The results are shown in Table 1.
One-tailed paired t-test was performed to calculate the sta-
tistical significance of differences in classification accuracy
(shown in Figure 12) between using various subsets of de-
noising filters in pre-processing step.

ID p r r+m r+l r+m r+m
+b +b+K

A 62.5 65.6 65.4 62.8 76.1 76.8
B 61.2 61.5 60.6 58.9 72.6 73.0
C 55.2 58.0 62.6 59.7 73.7 74.4
D 65.3 67.8 68.7 65.6 74.8 76.6
E 60.4 64.4 68.4 63.4 67.7 68.1
F 64.2 64.1 62.0 61.1 74.2 74.5
G 59.0 59.0 59.2 58.2 71.9 72.2
H 56.5 59.8 65.8 61.5 69.2 72.2
I 61.9 62.1 64.6 63.3 76.3 76.5
J 63.5 64.0 64.0 63.0 75.4 75.4
x̄ 61.0 62.6 64.1 61.7 73.2 74.0
σ 3.1 3.0 3.0 2.2 2.7 2.6

Table 1: Accuracy of activity recognition (in %) using subsets of
filters for preprocessing.

First, the two methods for inserting the missing values
are compared. Classification accuracy using rule-based
insertion (x̄ = 62.6%, σ = 3.0) is significantly higher
(p = 0.005) compared to inserting the last known value
(x̄ = 61.0%, σ = 3.1).

Second, the two methods for filtering impulse noise are
compared. They are applied after the rule-based insertion
of missing values. Classification accuracy using median
filter (x̄ = 64.1%, σ = 3.0) is higher compared to us-
ing the adaptive low-pass filter (x̄ = 61.7%, σ = 2.2).
However fine-tuning the parameters of the adaptive low-
pass filter could improve its influence on the classification

Figure 12: Comparison of activity-recognition accuracy using
various subsets of filters for raw-data pre-processing.

accuracy. Furthermore, the observed difference in classi-
fication accuracy means that the adaptive low-pass filter is
worse than the median filter in this application, however it
does not mean that this is so in general. We argue that the
adaptive low-pass filter is preferred to median filter for sta-
tionary RTLS tag positions since the accuracy of detecting
stationary sequences is high (>96%). Adding median fil-
ter after rule based insertion of missing values significantly
improves classification accuracy (p = 0.054) compared to
only inserting the missing values.

Third, adding the body filter after the rule-based inser-
tion and median filter significantly (p ≈ 0) increases clas-
sification accuracy to x̄ = 73.2% (σ = 2.7). Finally,
adding Kalman filter at the end of the filter chain signif-
icantly (p = 0.013) increases classification accuracy to
x̄ = 74.0% (σ = 2.6).

6 Applications

The proposed set of filters was successfully used in two
applications. The first is an intelligent system for surveil-
lance of personnel and equipment movement that triggers
an alarm when unusual or forbidden activities are detected.
The second one is a care system that detects abnormal
events (such as falls) or unexpected behaviour that may be
related to a health problem in elderly people. Each of the
two application and the importance of denoising for robust
operation of the application is briefly described below.

The first application is Commander’s Right Hand [16,
17, 18]. It is an intelligent system for surveillance of move-
ment of personnel and equipment in high security indoor
environment. It uses a RTLS system to monitor move-
ment of personnel and important equipment. It learns a
model of the usual behaviour and compares it with the cur-
rently observed movement in order to detect abnormalities.
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The goal is to alarm the commander about unusual and for-
bidden activities and enable centralized overview of moni-
tored environment and analysis of past events. Comparison
of motion detected by the RTLS and the motion detected
by intelligent video surveillance detects motion that is not
monitored by the RTLS, which triggers an alarm. Further-
more, the expert system module enables a simple way of
specifying prohibited behavior in terms of forbidden mo-
tion patterns.

The system uses the filters for inserting the missing val-
ues, filtering the outliers, detecting motion, identifying ba-
sic activities (lying, sitting, and standing), smoothing the
motion trajectories and estimating movement velocities.
Only one RTLS tag per person is used is the system, there-
fore the Spatio-temporal body constraints filter can not be
applied.

The second application is the Confidence system [6, 8,
10, 11]. It collects RTLS information about movement of
an elderly that lives home alone and wears four tags po-
sitioned as described in this paper. The short term motion
analysis detects unusual events such as a fall or an accident.
The system triggers a rapid actuation of the health services,
which decreases the negative consequences of the accident
(worsening of injuries, psychological impact of being alone
and injured, etc.). The long term motion analysis detects
deviations in motion patterns and elderly habits which of-
ten correspond to changes in persons health. For instance,
when the person’s health status is worsening, there is usu-
ally less activity. It reflects in longer periods of lying and
sitting, less walking and slower speed of walking and gen-
eral movement. In addition, frequency of visits to the toiled
often increases. When such deviation from normal be-
haviour is detected, the system notifies the caretaker in or-
der to check on the elderly.

The Confidence system [6] uses the denoising method
described in this paper as a preprocessing step for motion
analysis described above. The denoising provided by the
proposed filters significantly improves performance of ac-
tivity recognition and modelling of the usual behaviour as
well as simplifies motion analysis software.

7 Conclusion

The paper analyses the noise of commercially available
real-time location system (RTLS) based on ultra-wide band
radio technology. The results of the analysis are used to
design a series of efficient denoising filters integrated into
a denoising method consisting of four steps. The effect
of suggested filters on the accuracy of activity recognition
(based on RTLS data) is analysed to evaluate the filters.
The first step inserts the missing values. A rule-based inser-
tion method is suggested and shown to enable significantly
higher accuracy compared to insertion of the last known
value. The second step filters the measurements with high
error – so called outliers. A low-pass filter with dynami-
cally adapted parameters based on the motion detection is

suggested and compared with median filter. It is empiri-
cally shown that the suggested motion detection algorithm
achieves accuracy of 96%, which enables adaptive filter-
ing. The third step enforces spatial-temporal constraints
of human-body proportions and motion, which additionally
reduces the noise by exploiting information about location
of the other tags attached to the same person. The filter
significantly improves the accuracy of activity-recognition.
The fourth and final step smooths the signal and estimates
motion velocities, which are used as attributes for activ-
ity recognition. If the filter parameters are set correctly,
the sequence of filters successfully attenuates RTLS noise
while preserving the features of the observed motion. This
simplifies the software for intelligent motion analysis and
improves its accuracy. Furthermore, the advantages and
limitations of suggested filters and their interaction are il-
lustrated on synthetic and real data.
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