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Given a connected, undirected graph G = (V, E) on n = |V | vertices, an integer bound D ≥ 2 and non-zero
edge weights associated with each edge e ∈ E, a bounded diameter minimum spanning tree (BDMST) on G
is defined as a spanning tree T⊆ E on G of minimum edge cost w(T) =

∑
w(e), ∀ e∈ T and tree diameter no

greater than D. The Euclidean BDMST Problem aims to find the minimum cost BDMST on graphs whose
vertices are points in Euclidean space and whose edge weights are the Euclidean distances between the
corresponding vertices. The problem of computing BDMSTs is known to be NP-Hard for 4 ≤ D < n− 1,
where D the diameter bound. Furthermore, the problem is known to be hard to approximate. Heuristics
are extant in the literature which build low cost, diameter-constrained spanning trees in O(n3) time. This
paper presents some fast and effective heuristic strategies for the Euclidean BDMST Problem and compares
their performance with that of the best known existing heuristics. Two of the proposed heuristics run in
O(n2

√
n) time and another faster heuristic runs in O(n2), thereby allowing them to quickly build low cost

BDSTs on larger sized problems than have been attempted hitherto. The proposed heuristics are shown to
perform better over a wide range of benchmark instances used in the literature for the Euclidean BDMST
Problem. Further, a new test suite of much larger problem sizes than attempted hitherto in the literature is
designed and results presented.

Povzetek: Podan je hevristični postopek za hitro gradnjo minimalnega prekrivnega drevesa.

1 Introduction

Given a connected, weighted, undirected graph G and a
positive integer D, the Bounded-Diameter Minimum Span-
ning Tree (BDMST) problem seeks a low cost spanning
tree from amongst all spanning trees of G containing paths
with no more than D edges. Formally, a bounded-diameter
spanning tree (BDST) is a spanning tree T ⊆ E on G =
(V, E), whose diameter is no greater than D. The BDMST
problem aims to find a bounded diameter spanning tree of
minimum cost w(T) =

∑
w(e), ∀ e ∈ T . Restricting the

problem to Euclidean graphs (where vertices are points in
Euclidean space and edge weights are the Euclidean dis-
tances between pairs of vertices) gives rise to the Euclidean
BDMST Problem [1]. The problem finds application in
several domains, ranging from distributed mutual exclu-
sion [2] to wire-based communication network design [3]
and data compression for information retrieval [4]. An im-
portant application also occurs in reducing the source-sink
delays and total wire length in VLSI routing. Barring the
special cases of D = 2, D = 3, D = n − 1, and all edge
weights being the same, the BDMST Problem is known to
be NP-Hard [5]. Furthermore, the problem is also known

to be hard to approximate; it has been shown that no poly-
nomial time approximation algorithm can be guaranteed to
find a solution whose cost is within log (n) of the optimum
[6].

An exact algorithm for the BDMST Problem is given
by Achuthan and Caccetta in [7]. This is improved by
Achutan et al. [8], wherein a branch and bound framework
is given which utilizes different branching rules and simple
heuristics. Gouveia and Magnanti [9], give several vari-
ants of multi-commodity flow (MCF) formulations for the
BDMST problem which achieve extremely tight LP bounds
(within 1% of the optimal solution for almost all bench-
marks tested). However, this approach has been able to
solve BDMST instances of up to only 60 node graphs to
optimality. In general, the exponential time complexity of
exact algorithms allows them to solve only very small prob-
lem instances; this motivates the search for fast heuristics
and meta-heuristic techniques which can approximate low
cost BDSTs on much larger problem sizes within reason-
able time.

Several meta-heuristics are given in the literature that
evolve BDMSTs on larger problem instances, including
an ant colony algorithm [18], evolutionary algorithms
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[20],[21],[22] and a recent learning automata-based algo-
rithm [23].

Many of the best known existing heuristics for the
BDMST problem are based on a greedy, Prim’s [19]
algorithm-like strategy. Each of these heuristics works well
under certain conditions in the Euclidean BDMST case, for
instance when the range of diameter bounds is restricted to
a small range or when the diameter bound is very small.
Further, none of the existing heuristics is suitable for work-
ing on very large sized problems, as they require too much
computation time for building BDSTs on large problem in-
stances. A key goal of the research presented in this pa-
per has thus been to develop fast and robust heuristics that
would build low cost BDSTs on very large problem sizes.
The extant heuristics in the literature are briefly discussed
as follows.

Ayman Abdalla and Narsing Deo describe in [10], sev-
eral construction heuristics for the BDMST problem, in-
cluding a Prim’s [19] algorithm–based heuristic called the
one-time tree construction (OTTC) heuristic that runs in
O(n4) time and produces low cost BDSTs when the diame-
ter bound D is small. Abdalla and Deo also give two itera-
tive refinement algorithms that start with an unconstrained
MST and iteratively decrease the length of long paths until
the diameter constraint is satisfied. The center-based tree
construction (CBTC) heuristic given by Julstrom in [11]
performs better than OTTC both in terms of solution qual-
ity and running time (it requires O(n) time less than OTTC)
by constructing the BDST as a height-restricted tree rooted
at a central node (or two nodes if the diameter is odd). A
randomized tree construction heuristic (RTC) is also given
in [11] wherein each next node to be appended to the BDST
is chosen at random and appended greedily.

The RTC and CBTC heuristics are improved further by
Singh and Gupta [12] and Singh and Saxena [13]. The
improved heuristics given in [12] are called RGH-I and
CBTC-I, which try to improve RTC and CBTC in terms of
both speed and solution quality. In particular, for each ver-
tex v (excluding the root and vertices adjacent to the root)
the heuristics search for tree vertices of lower depth than v
to which v can be appended at lesser cost. Singh and Sax-
ena [13] improve these heuristics further and demonstrate
their effectiveness on a standard set of problem instances
used widely in the literature.

A hierarchical clustering-based heuristic for the Eu-
clidean BDMST problem is given by Gruber and Raidl
[14], which obtains low cost BDSTs when the diameter
constraint is very small.

The Center-based Least Sum-of-Costs (CBLSoC)
heuristic given by Patvardhan et al.[15] builds a low cost
BDST by repeatedly appending the non-tree vertex with
the lowest mean cost to all the remaining non-tree vertices
in the graph. This heuristic is run starting from every graph
vertex and returns the lowest cost BDST obtained. It has a
running time of O(n3) and performs competitively vis-a-vis
the other heuristics. Parallel versions of the CBTC, RTC
and CBLSoC heuristics are given in Patvardhan et al.[16]

and their performance compared over a comprehensive set
of Euclidean and random benchmark graphs.

This paper presents some fast heuristics for the Eu-
clidean BDMST problem. The first of these is a vari-
ant of the CBLSoC heuristic [15]. This heuristic, called
CBLSoC-lite, produces BDSTs with comparable/better
(lower) costs as compared to existing heuristics on a wide
range of benchmarks. Two other “Quadrant-Centers based”
heuristics try to construct an effective backbone of a small
number of low height nodes appended to the tree via rela-
tively longer edges, and then build the rest of the BDST.
The heuristics presented in this work typically take less
time to build a low cost BDST vis-à-vis extant heuristics.
This allows them to handle much larger problem sizes than
attempted hitherto by any other heuristic. Their perfor-
mance is demonstrated on a test suite of completely con-
nected Euclidean graphs having up to 10,000 vertices.

Subsequent sections of the paper are organized as fol-
lows: section 2 discusses three well known heuristics
for the problem (OTTC, CBTC and RTC), section 3 de-
scribes CBLSoC and the proposed CBLSoC-lite heuristic,
and Section 4 presents the proposed “Quadrant centers-
based” heuristic strategy. Computational results obtained
on benchmark problem instances and other larger randomly
generated graphs are presented and summarized in section
5, and concluding remarks are made in section 6.

2 Some well known heuristics

This section presents several well known heuristics for the
BDMST Problem and summarizes their key characteristics.

2.1 One-time Tree Construction (OTTC)
Heuristic

One-Time Tree Construction (OTTC) given by Abdalla et
al. [10] is a greedy heuristic that computes the diameter of
the spanning tree at each step and ensures that the incoming
vertex does not violate the diameter constraint. In order to
obtain a low cost BDST, the OTTC algorithm is run start-
ing from every vertex of the graph. For each vertex that it
starts from, OTTC repeatedly appends to the growing MST
the lowest-cost edge that appends a new vertex to the tree
without violating the diameter bound. Adding each new
vertex also involves updating the path lengths and eccen-
tricities of the tree vertices, requiring at most O(n2) time.
This is done n-1 times in each run, so the algorithm has a
total running time of O(n3). As the algorithm is run starting
once from each graph vertex (i.e., totally n times), the total
time complexity is O(n4). Pseudo-code for this heuristic is
given in listing 1.
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Listing 1: OTTC heuristic

1 V[.] ← set of graph vertices
2 S[.] ← set of tree vertices, initially empty
3 for each v ∈ V do
4 T← {}
5 S← {}
6 S← S ∪ {v}
7 while |T | 6= (n− 1) do
8 Choose x ∈ V \ S and u ∈ S such that

cost(u, x) is minimal ∀ u ∈ S and diameter
constraint D is not violated

9 T ← T ∪ (u, x)
10 S← S ∪ {x}

11 if cost(T) < cost(bestTree) then
12 bestTree← T

13 return bestTree

2.2 Center-based tree construction (CBTC)
heuristic

In a tree with diameter D, no vertex is more than D/2
hops or edges from the root vertex of the tree [17]. This
motivates a faster Prim’s algorithm-based heuristic called
Center-Based Tree Construction (CBTC) heuristic [11],
which improves OTTC by building the BDST from the
tree’s center, keeping track of the depth of each tree node
and ensuring that no node depth exceeds bD/2c. This
heuristic avoids the task of repeatedly computing the tree
diameter before appending each node, and returns the low-
est cost BDST obtained over n runs, each starting from a
different graph vertex, thereby bringing down the total run-
ning time to O(n3). Pseudo-code for the CBTC heuristic is
given in listing 2.

2.3 Randomized tree construction (RTC)
heuristic

In the Randomized Tree Construction Heuristic (RTC), the
center of the spanning tree is chosen at the outset as one
vertex (if D is even) or two connected vertices (if D is odd)
randomly selected from the set of graph nodes. Each next
vertex is then chosen at random and connected to the tree
greedily such that the inclusion does not yield a tree of
diameter greater than the diameter bound D. Building the
BDST requires repeating this process through n − 1 iter-
ations. As before, this process is repeated n times, and the
lowest cost BDST is returned. Hence the total running time
of this heuristic is O(n3). Pseudo-code for this heuristic is
given in listing 3.

2.4 Some Other Heuristics
Singh and Gupta [12] improve the CBTC and RTC heuris-
tics in two ways. Firstly, after building a BDST using either
construction heuristic, it is checked for each vertex v∈V in

Listing 2: CBTC heuristic

1 U[.] ← set of unconnected graph vertices
2 C[.] ← set of tree nodes with depth < bD/2c for each

vertex v0 ∈ V do
3 Set v0 as root
4 U← U \ {v0}
5 C← {v0}
6 depth[v0] = 0
7 if D is odd then
8 Choose vertex v1 ∈ U such that cost(v0, v1) is

minimal
9 U← U \ {v1}

10 C← {v1}
11 depth[v1] = 0
12 T← T ∪ (v0, v1)

13 while U 6= {} do
14 Find u ∈ C and v ∈ U such that cost(u,v) is

minimal
15 T← T ∪ (u, v)
16 U← U \ {v}
17 depth[v]← depth[u] + 1
18 if (depth[v]<bD/2c) then
19 C← C ∪ {v}

20 return the tree with lowest cost out of all trees
generated above

the BDST whose depth is greater than 1 (essentially cov-
ering all vertices that are not either the root(s) or the ver-
tices immediately connected to the root(s)) whether it can
be reattached to a BDST vertex of depth less than depth[v]
via a lower cost edge. Secondly, the heuristics maintain a
sorted cost matrix and searching for a low cost edge to ap-
pend a vertex v to the BDST in the n/10 elements of the
cost matrix row entry for the vertex v. These two heuris-
tics are further improved in Singh and Saxena [13], where
they are called RGH+HT and CBTC+HT respectively, by
allowing a sub-tree rooted at v to be connected to any ver-
tex of the tree irrespective of its depth, provided the cost
is reduced and the feasibility of the resulting BDST is re-
tained. Gruber and Raidl [14] use agglomerative hierar-
chical clustering to guide the creation of an effective BDST
backbone and transform the resulting dendogram structure
into a height-restricted clustering that satisfies the diameter
constraint. The heuristic then uses either a greedy heuris-
tic or one of two dynamic programming (DP) approaches
to identify a good root node within each cluster. The first
DP approach restricts the search space of root nodes of a
cluster to the root nodes of sub-clusters, while the second
approximates optimal cluster roots using a correction value
for estimating the cost of connecting each graph vertex as
a leaf node of the BDST. The dynamic programming ap-
proaches take O(H.|V |2) and O(|V |.|E| + H.|V |2) time,
when D is even and odd respectively, for computing the
roots of clusters, where H − 1 is the tree height. The re-
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Listing 3: RTC heuristic

1 U[.] ← set of unconnected graph vertices
2 C[.] ← set of tree nodes with depth < bD/2c for n

times do
3 Set as root, a random vertex v0 ∈ U
4 U← U \ {v0}
5 C← {v0}
6 depth[v0] = 0
7 if D is odd then
8 Choose another random vertex v1 ∈ U
9 U← U \ {v1}

10 C← C ∪ {v1}
11 depth[v1] = 0
12 T← T ∪ (v0, v1)

13 while U 6= {} do
14 Choose a random vertex v ∈ U
15 Find u ∈ C such that cost(u,v) is minimal
16 T← T ∪ (u, v)
17 U← U \ {v}
18 depth[v]← depth[u] + 1
19 if (depth[v]<bD/2c) then
20 C← C ∪ {v}

21 return the tree with lowest cost out of all trees
generated above

sults of the heuristic are further improved using a variable
neighborhood descent (VND) given in [18].

2.5 Discussion

A major drawback of the OTTC and CBTC heuristics is
that they always use low cost edges to build the tree, thus
necessitating the later vertices to be appended to the tree
through higher cost edges. This often results in BDSTs
with larger costs, especially when the diameter bound is
small. One way to overcome this is to select each node
randomly and then append it to the tree greedily, as is done
by the RTC heuristic. Possibly due to the random nature
of node selection, the initial “backbone” of the BDST of-
ten turns out better in RTC than in the OTTC and CBTC
heuristics, leading to lower cost BDSTs when the diameter
bounds are small. However, the performance of the RTC
heuristic rapidly deteriorates as the diameter bound is in-
creased, as discussed in section 5. The heuristics of Singh
and Saxena [13] produce lower cost BDSTs than CBTC
and RTC. The Hierarchical Clustering-based heuristic pro-
duces very low cost BDSTs, but is seen to be effective only
when diameter bounds are small.

3 The CBLSoC-lite and CBLSoC
Heuristics

The Center-based Least Sum-of-Costs Lite (CBLSoC-lite)
heuristic starts by selecting as root the vertex (or two ver-
tices, in case of odd diameter) with lowest mean cost to all
other graph vertices. Thereafter, each new graph vertex se-
lected has the lowest sum of costs to all the remaining graph
vertices. This vertex is then appended to the tree greedily
via the lowest cost edge that does not violate the diam-
eter bound. The heuristic uses a center-based approach,
building the BDST from the tree’s center, keeping track
of the depth of each tree node and ensuring that no node
depth exceeds bD/2c. This preempts the need for dynam-
ically computing the spanning tree’s diameter at each step
and results in a total computational time of O(n2) for the
heuristic. Pseudo-code for the heuristic is given in listing
4. The CBLSoC heuristic iteratively builds BDSTs start-

Listing 4: CBLSOC-LITE heuristic

1 U[.] ← Adjacency matrix containing edge weights of
the graph G

2 C[.] ← Set of unconnected graph vertices
3 Choose u∈V such that sum of entries in row u of adj.

matrix A is minimal
4 U← U \ {u}
5 if D is odd then
6 choose v ∈ V \ {u} such that sum of entries in row

v of A is minimal
7 T← T ∪ (u,v) U← U\{v}
8 while U 6= {} do
9 Choose x∈V \ T such that

∑
cost(x,y) is minimal

∀ y∈V\T,y 6=x and diameter constraint is not
violated

10 Choose u such that cost (u, x) is minimal, ∀ u ∈ T
11 T← T ∪ (u, x)
12 U← U \ {x}

13 return T

ing once from each graph vertex and returns the lowest cost
BDST thus obtained. This results in further improvements
in BDST costs, but incurs an additional overhead of O(n),
and hence a total running time of O(n3) for the heuristic.

The CBLoC-lite and CBLSoC heuristics produce better
(lower) cost BDSTs in comparison to the OTTC, CBTC
and RTC heuristics, as shown in section 5 on a large num-
ber of benchmark problems.

4 Quadrant Centers-based Heuristics
As discussed in section 2, the greediness inherent in the
OTTC and CBTC heuristics causes the backbone of the
growing BDST to be typically constituted of short edges,
thus forcing several nodes to be appended using long edges
and thereby increasing the total cost. The relatively less
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greedy, center-based LSoC heuristics discussed in section
3 mitigate this problem to some extent, as shown in the ex-
perimental results presented in section 5.

Another group of heuristics is proposed which start by
empirically fixing the tree center and adding a few graph
vertices to the tree, thereby building a backbone compris-
ing of a small number of nodes connected to the tree via
relatively longer edges. The remaining nodes are then
appended to the BDST either greedily or by using the
CBLSoC heuristic.

Listing 5: QCH-GREEDY heuristic

1 Choose v0 ∈ V | {∑ cost(v0, x) is minimal ∀ x ∈ V, x
6= v0 }

2 U← {v0}
3 if D is odd then
4 Choose v1 ∈ U | {cost(v0, v1) is minimal, ∀ v1 ∈

U }
5 T← T ∪ (v0, v1)
6 U← U ∪ {v1}

7 for qsize = 2 to
√
n do

8 for i = 1 to qsize do
9 Choose p ∈ quadrant i|{∑ cost(p,j) is

minimal, where p, j ∈ U, j ∈ quadrant i and j
6= p }

10 T← T ∪ (k, p), where cost(k, p) is minimal of
all tree vertices k

11 U← U \ {p}

12 Append each remaining node x∈U to T greedily
via the lowest cost edge such that depth[x] ≤ b
D/2 c

13 for each vertex i ∈ T do
14 ∀ j ∈ T such that depth[j] < b D/2 c, if

cost(i,j) < cost (i, parent[i]), replace
(i,parent[i]) with (i,j) in the BDST

15 bestT← lowest cost BDST found so far

16 return bestT

The Euclidean problem domain is widely modeled in the
literature as a set of real points normally distributed in the
unit square. Using this model, the proposed heuristics build
a tree “backbone” by first choosing the root node of the
BDST using the CBLSoC heuristic. Specifically, the node
with the lowest mean cost to all other graph nodes is added
to the BDST and chosen as the central, or root vertex. If
(the diameter) D is even, then this single node serves as the
root of the BDST. If D is odd, then the non-tree node with
the lowest mean cost to the remaining graph vertices is also
selected and added to the tree via the lowest cost edge; the
sub-graph comprising these two nodes and the edge joining
them is now considered as the center of the BDST. The re-
maining graph vertices are segregated into the “quadrants”
of a uniform MxM matrix in the unit square, 2≤M≤

√
N

(each element of this matrix is termed a quadrant, for want
of a more suitable expression). Within each quadrant, the

node with lowest mean cost to all other nodes within the
same quadrant is set as a tree backbone node of depth 1.
The remaining vertices are then appended to the tree ei-
ther greedily (this is called the QCH-Greedy heuristic) or
using the CBLSoC heuristic in selecting each next vertex
to append to the tree (this is called QCH-LSoC heuristic),
while ensuring that the diameter constraint is not violated.

Listing 6: QCH-LSOC heuristic

1 Choose v0 ∈ V | {∑ cost(v0, x) is minimal ∀ x ∈ V, x
6= v0 }

2 U← {v0}
3 if D is odd then
4 Choose v1 ∈ U | {cost(v0, v1) is minimal, ∀ v1 ∈

U}
5 T← T ∪ (v0, v1)
6 U← U ∪ {v1}

7 for qsize = 2 to
√
n do

8 for i = 1 to qsize do
9 Choose p ∈ quadrant i|{∑ cost(p,j) is

minimal, where p, j ∈ U, j ∈ quadrant i and j
6= p }

10 T← T ∪ (k, p), where cost(k, p) is minimal of
all tree vertices k

11 U← U \ {p}

12 for remaining vertices in U do
13 Choose k ∈ U | {∑ cost(k,j) ∀ j∈U, j 6=k} is

minimal
14 T← T ∪ (k,x), where (k,x) is the lowest cost

edge s.t. depth[k] ≤ b D/2 c
15 U← U \ {p}

16 for each vertex i ∈ T do
17 ∀ j ∈ T such that depth[j] < b D/2 c, if

cost(i,j) < cost (i, parent[i]), replace
(i,parent[i]) with (i,j) in the BDST

18 bestT← lowest cost BDST found so far

19 return bestT

Pseudo-code for these two heuristics is given in listings 5
and 6 respectively.

Both the heuristics attempt to find an effective backbone
by varying the number of quadrants up to n (where n is
the input size) and building the backbone accordingly. The
heuristics return the lowest cost BDST obtained by this pro-
cedure.

Setting up the backbone of the BDST requires O(n) time
in the greedy QCH heuristic (QCH-Greedy) and O(n2)
time in the CBLSoC-based variant (QCH-LSoC). In the
greedy variant, the process of greedily appending each
node to the BDST requires O(n) time, resulting in a to-
tal running time of O(n2). Running the heuristic up to√
n times in the worst case gives a total running time of

O(n2
√
n).

In the LSoC-based variant, identifying the non-tree node
with the lowest mean cost to all other non-tree nodes can



286 Informatica 39 (2015) 281–292 C. Patvardhan et al.

be achieved in O(n) time when we keep track of the mean
costs from each such node to all other such nodes and up-
date in linear time, and appending it greedily to the BDST
would also require linear time. Thus the total running time
for the LSoC-based QCH heuristic is also O(n2

√
n). In

practice, the heuristics terminate when there is no further
improvement in cost as compared to the previous itera-
tion. Both heuristics attempt to reattach each node of the
BDST (excepting the root nodes) at a lower cost, if pos-
sible, in a simple post-processing step that requires O(n2)
time, which does not result in any change in the overall
time complexity, and slightly improves the tree cost in sev-
eral cases.

5 Comparison of performance on
benchmarks

The Euclidean Steiner Problem data sets given in Beasley’s
OR-Library1 have been used extensively in the litera-
ture for benchmarking heuristics and algorithms for the
BDMST Problem. These instances comprise of vertices
placed at random in the unit square, fifteen instances of
each size for graphs of up to 1000 vertices. Julstrom [9]
uses an enhanced test suite of Euclidean problem instances
that augments the OR-Library instances with randomly
generated Euclidean graphs, fifteen each of 100, 250, 500
and 1000 vertices, whose edge weights are, as before, the
Euclidean distances between (randomly generated) points
in the unit square. Another test suite of larger Euclidean
problem instances comprising of thirty randomly generated
Euclidean graphs of 1500, 2500, 5000 and 10,000 vertices
was developed by the authors for comparing the perfor-
mance of the heuristics presented in this work on larger
problem instances. These problems are referred to in this
paper as large problem instances, to differentiate from the
enhanced test suite of standard sized problems given by Jul-
strom [9].

The heuristics presented in this paper were tested on
the thirty “standard” problem instances of 100, 250, 500
and 1000 vertex graphs provided in the enhanced bench-
mark suite of [9], totaling 120 completely connected Eu-
clidean graphs, and the mean (X) and standard deviation
(SD) of tree costs, and mean CPU times (tavg) were ob-
tained for each node size. The results obtained on the en-
hanced benchmark suite of standard problem instances for
the OTTC, CBTC, RTC, CBLSoC-lite, CBLSoC and pro-
posed QCH heuristics are given in table 1.

The heuristics were also tested on the thirty “large”
problem instances of 1500, 2500, 5000 and 10000 vertex
graphs; the mean and standard deviation of tree costs and
mean CPU times obtained for all the heuristics are given
in table 2. Results for the OTTC heuristic were not com-
puted for larger sized problems because it takes too much
computational time, as is obvious from the times given in

1Maintained by J.E. Beasley, Department of Mathematical Sciences,
Brunel University, UK. (http://people.brunel.ac.uk/ mastjjb/orlib/files)

table 1 for 1000 vertex graphs. In any case OTTC always
performs worse than the CBTC heuristic.

The values used for D (the diameter bound) in all the
tests were always less than the smallest diameter of an un-
constrained MST on each set of graphs. The mean CPU
times quoted in table 1 for the OTTC heuristic were ob-
tained in [9] on a Pentium IV, 2.53 GHz processor with 1
GB memory. All the other heuristics were implemented
in C on a Dell Precision T-5500 Workstation with 12 In-
tel Xeon 2.4-Gigahertz processor cores and 11 GB RAM
running Red Hat Enterprise Linux 6.

The proposed heuristics were compared in terms of low-
est and mean BDST costs obtained and computation time
vis-a-vis the improved heuristics of Singh et al. [13] on
Euclidean problem instances in table 3 and the hierarchical
clustering-based heuristics of Gruber and Raidl [1] in table
4.

The mean BDST costs for the CBTC, RTC, CBLSOC-
lite and CBLSoC heuristics given in table 1 show that the
CBLSoC-lite and CBLSoC heuristics outperform OTTC on
all problem instances and produce lower mean costs vis-à-
vis the CBTC heuristic on most instances.

The RTC heuristic produces relatively lower cost trees,
but this is only when the diameter bound is very small; as
the diameter bound is increased the lowest cost BDSTs are
the ones produced by CBLSoC-lite and CBLSoC. In order
to understand this behavior, we observe that the OTTC and
CBTC heuristics always greedily append to the tree, the
node with the lowest cost to the tree. As a result the tree
backbone ends up comprising of a small number of rel-
atively short edges, forcing many of the remaining graph
vertices to be appended via longer edges in order to main-
tain the diameter bound, resulting in higher tree costs. In
a sense, the inherent greediness of the heuristic adversely
affects its performance.

The RTC heuristic, possibly due to its randomized node
selection approach, has a much better chance of building a
tree backbone close to clusters of nodes, several of which
might then be appended to the backbone using short edges.
When D is small, it usually returns trees with lower costs
than any of the other heuristics (OTTC, CBTC or CBLSoC-
lite). However, as the diameter bound is increased, the RTC
policy of always choosing the next node to append in a
random manner leads to several poor choices, thereby con-
tributing adversely to the overall BDST cost. The heuristic
fails to produce any improvements in BDST costs with as
the diameter bound is relaxed and is eventually surpassed
in performance by the other heuristics.

The CBLSoC-lite heuristic is relatively less greedy in
the sense that the next node chosen to be appended to the
tree is always the one with the lowest mean cost to all re-
maining nodes in the tree; this node need not necessarily be
the node with the lowest cost to the tree. The performance
of this heuristic, especially in terms of speedup, is signifi-
cant. For instance, table 1 shows that while the OTTC and
RTC average about 173 seconds and 15 seconds respec-
tively for computing BDMSTs on the 1000 node instances,
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the CBLSoC-lite heuristic takes about 0.03 seconds on av-
erage for problems of the same size, and computes BDM-
STs with mean costs that are usually better. The CBLSoC
heuristic takes O(n3) time but produces lower cost BDSTs
than CBLSoC-lite.

The QCH heuristics start by trying to fix up a “good”
backbone for the BDST. The greedy variant, QCH-greedy
incorporates the greedy selection strategy used by OTTC,
CBTC and RTC; the other proposed variant use the node
selection strategy followed by the CBLSoC heuristic. The
QCH heuristics produce low cost BDSTs in general, as can
be seen from the mean tree costs given in table 1.

The two QCH variants obtain competitive mean tree
costs, with the QCH-greedy heuristic producing slightly
better BDSTs on larger diameter bounds. The BDST costs
obtained by the QCH heuristics are lower than that ob-
tained by the RTC heuristic on all problem instances, more
so when the diameter bounds are small. Both heuristics
produce significantly lower cost BDSTs vis-à-vis CBLSoC
and CBLSoC-lite when the diameter is small, and give
competitive results on larger diameter bounds; the QCH
variants perform better than OTTC and CBTC on all prob-
lem instances and for almost all diameter constraints.

On the large Euclidean problem instances, the com-
putational time requirements of OTTC, CBTC, RTC and
CBLSoC heuristics rapidly become prohibitively high (ta-
ble 2), whereas the CBLSoC-lite and QCH heuristics are
still able to quickly compute low cost BDSTs.

On 2500 vertex graphs for example, CBLSoC-lite com-
putes lower cost BDSTs than CBTC on all except the small-
est diameter bound, in less than 1/1000th of the time taken
by CBTC (0.22 seconds for CBLSoC-lite versus 257.29
seconds for CBTC on the third 2500 vertex instance in table
2). On the same instance, the QCH-greedy heuristic com-
putes the lowest cost BDST of all the heuristics in about
0.42 seconds.

RTC produces the lowest cost BDST of all the heuristics
in instance each of 1500 and 2500 vertex graphs, and that
too only on the smallest diameter bound. Furthermore it
fails to improve tree costs as the diameter constraint is pro-
gressively increased. By contrast, CBLSoC-lite takes less
than one second to build low cost BDSTs on benchmark
graphs of the same size and outperforms CBTC and RTC
as D is increased. Even on completely connected graphs of
10,000 vertices, the heuristic computes BDSTs in less than
5 seconds on average (the tavg column in table 2).

As already observed with the standard sized Euclidean
problems, the QCH heuristics obtain the lowest cost among
the heuristics being compared. In particular, the QCH-
LSoC heuristics almost always produce the lowest cost
trees on smaller diameter bounds, with the QCH-greedy
heuristic obtaining the lowest costs BDSTs on larger di-
ameter constraints for most of the large problem instances.
It is worth noting that the CBLSoC-lite and the two QCH
heuristics compute low cost BDSTs in a fraction of the
computation time taken by the other heuristics. This is il-
lustrated in figure 1.

Figure 1: Comparison of computational time taken by the heuris-
tics

The proposed heuristics are also compared with the im-
proved heuristics of Singh and Saxena [13] in table 3
and with Gruber and Raidl’s hierarchical clustering-based
heuristic strategy in table 4. Both works provide compu-
tational results for small diameter bounds only on problem
instances of up to 1000 vertex graphs.

Singh and Saxena [13] give the results obtained by their
improved heuristics on the first five instances of the Beasley
Euclidean Steiner Problem data sets for 50, 100, 250, 500
and 1000 vertex graphs, with diameter bounds of 5, 10, 15,
20 and 25 respectively.

Table 3 gives the lowest, mean and standard devia-
tion (as applicable) of BDST costs obtained by these
two heuristics in [13] vis-à-vis the proposed heuristics on
Beasley’s Euclidean problems. As the table shows, the
faster CBLSoC-lite heuristic outperforms the CBTC+HT
heuristic on smaller sized problems (50 and 100 node
instances), and running this heuristic starting from each
graph vertex (the CBLSoC heuristic) produces much bet-
ter BDSTs than the CBTC+HT heuristic on all problem in-
stances. When the diameter bound is very small, the lowest
cost BDSTs are returned by the RGH+HT heuristic, which
improves the results obtained by the RTC heuristic on these
problem instances by about 8.26% on average. However,
no further results on larger diameter bounds or on larger
problem sizes are given in the literature for these heuristics.
Further, the RGH+HT builds on the RTC heuristic, which
has already been shown to perform poorly upon increasing
the diameter bound on a wide range of benchmarks (ta-
bles 1 and 2). On the other hand, the CBLSoC and QCH
heuristics are quite effective on larger diameter bounds and
problem instances, as already demonstrated on Julstrom’s
enhanced test suite and the large problem instances.
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The QCH heuristics produce low cost BDSTs when the
diameter bound is small, giving results that are competitive
with RTC+HT. For example, on the results obtained for up
to 1000 vertex graphs in table 3, the lower cost BDST of
the two QCH Heuristics is no worse than 3.25% on aver-
age, with the QCH-Greedy and QCH-LSoC heuristics pro-
ducing slightly lower cost BDSTs than RGH+HT on three
instances. The QCH heuristics also do well when D is in-
creased, cf. tables 1 and 2.

Gruber and Raidl [1] present the results obtained for
their hierarchical clustering based heuristic on very small
diameter bounds, averaged over all fifteen instances of
1000 vertex graphs from Beasley’s Euclidean Steiner data
set. Table 4 gives the results obtained by the proposed
heuristics for the same set of diameter bounds and prob-
lem instances.

The maximum running times mentioned in the table for
Gruber et al.’s heuristic are given in [1] and are as such
not directly comparable with the mean computational time
quoted for the proposed heuristics, as they were obtained
on systems with different configurations.

The mean BDST costs given for CBTC, RTC and the two
variants of the Hierarchical Clustering heuristic (CdA and
CdB) were obtained over thirty independent runs on the
fifteen 1000 vertex Euclidean graph instances. The param-
eters tmax and [s] represent the average and corresponding
standard deviation (SD) over all instances, of the maximum
running time of CdA and CdB .

The mean BDST costs and SD given for the two QCH
heuristics represent the mean and SD obtained from a sin-
gle run of the heuristics on each instance. Gruber et al. [1]
also use a variable neighborhood descent strategy to further
improve the results obtained by the hierarchical clustering-
based heuristic; this is shown to work well only on low val-
ues of D (for instance when D is less than 14 on the 1000
vertex graphs).

The Hierarchical Clustering heuristic outperforms the
CBTC and RTC heuristics by a wide margin; with increas-
ing D, this margin is seen to narrow down. The CBLSoC
heuristic returns higher cost BDSTs as compared to the
RTC heuristic on small diameter bounds (tables 1 and 2),
and is hence not tested in this case. The QCH heuristics,
on the other hand, still give good results, performing much
better than CBTC and RTC, and, as the value of D is in-
creased further, outperforming CdB on the last five diam-
eter bounds considered in the tests (table 4). Even on very
tight diameter bounds, the QCH heuristics perform well:
for example, the gap in solution quality for the smallest
diameter bound considered in the test (D=4) is less than
0.5%.

6 Conclusions

The Euclidean Bounded Diameter Minimum Spanning
Tree problem is to find a minimum spanning tree whose
diameter does not exceed a specified number of edges,

in the domain of graphs whose vertices are points in two
dimensional space and edges are the Euclidean distances
between vertices. The problem is known to be NP-hard,
and hard to approximate, which motivates the search for
effective heuristic strategies that are able to quickly find
low cost BDSTs. This paper presents some simple fast
and effective heuristic strategies and compares their perfor-
mance with that of several extant heuristics for this prob-
lem over a wide range of benchmark problems, including a
test suite of very large Euclidean dense graphs. One of the
proposed heuristic approaches, called CBLSoC-lite, uses a
less greedy node selection policy as compared to the OTTC
and CBTC heuristics and builds low cost BDSTs in time
that is atleast O(n) faster than any of the extant heuris-
tics. Running this heuristic starting from each graph node
and returning the lowest cost BDST so obtained requires
O(n3) time but leads to better BDSTs. The other heuristic
strategy starts with an empirically fixed tree “backbone”
and appends the remaining nodes using either a greedy or
CBLSoC-based node selection policy.

The heuristics presented in this work are classified in fig-
ure 2 into two categories, those that work on “standard”
sized problems and those that are also able to solve large
problem instances in reasonable time, and then ranked in
increasing order of mean tree costs obtained as the diame-
ter bounds go from small/tight to large/relaxed. Heuristics
that perform competitively in a particular range share the
same rank.

Figure 2: Performance-based ranking of the heuristics

The OTTC heuristic produces spanning trees with larger
costs, because it always uses low cost edges to build the
tree, thus necessitating the later vertices to be appended to
the tree through higher cost edges. As computational re-
sults show, this drawback is especially obvious when the
diameter bound is small. The CBTC heuristic is faster and
obtains lower cost BDSTs, but it also uses the same greedy
premise as OTTC and hence suffers from the same draw-
backs.

The CBLSoC heuristic is shown to perform better than
the OTTC and CBTC heuristics on all of the benchmark in-
stances used in this work. The CBLSoC-lite variant, which
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has a running time of O(n2), outperforms OTTC on ev-
ery instance and produces lower mean costs vis-à-vis the
CBTC heuristic on several instances. On problem instances
with small diameter bounds, the randomized heuristic RTC
outperforms the other extant heuristics, but this does not
hold true when the diameter bound is increased. The im-
proved RGH+HT and CBTC+HT heuristics are able to im-
prove the solution quality as compared to RTC and CBTC,
but they retain the drawbacks inherent in both these heuris-
tics, thus rendering the RTC variant unsuitable for larger
diameter bounds, and the CBTC variant unsuitable for low
diameter bounds. The hierarchical clustering-based heuris-
tic returns the lowest cost BDSTs on standard problems for
very small diameter bounds, but its performance worsens
with increasing diameter bound.

The proposed QCH heuristics compare favorably with
RTC on low diameter bounds, and generally do better than
all the other heuristics as the diameter constraint is relaxed.
Furthermore, the lower running time requirements of the
CBLSoC-lite heuristic and the QCH heuristics means that
they can be used effectively for solving much larger prob-
lems than have been hitherto attempted.
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