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The target visitation problem (TVP) is concerned with finding a route to visit a set of targets starting
from and returning to some base. In addition to the distance traveled a tour is evaluated by taking also
preferences into account which address the sequence in which the targets are visited. The problem thus
is a combination of two well-known combinatorial optimization problems: the traveling salesman and the
linear ordering problem. In this paper we point out some polyhedral properties and develop a branch-and-
cut algorithm for solving the TVP to optimality. Some computational results are presented.

Povzetek: Prispevek obravnava iskanje poti v grafu, kjer je potrebno obiskati več ciljev v najboljšem
vrstnem redu.

1 Introduction
Let Dn+1 = (Vn+1, An+1) be the complete digraph on
n + 1 nodes where we set Vn+1 = {0, 1, . . . , n}. Fur-
thermore let two types of arc weights be defined: weights
dij (distances) for every arc (i, j), 0 ≤ i, j ≤ n, and
weights pij (preferences) associated with every arc (i, j),
1 ≤ i, j ≤ n. The target visitation problem (TVP) consists
of finding a Hamiltonian tour starting at node 0 visiting all
remaining nodes (called targets) exactly once in some order
and returning to node 0. Every tour can be represented by
a permutation π of {1, 2, . . . , n} where π(i) = j if target j
is visited as i-th target. For convenience we also define
π(0) = 0 and π(n+ 1) = 0.

So we are essentially looking for a traveling salesman
tour, but for the TVP the profit of a tour depends on the
two weights. Namely, the value of a tour is the sum of
pairwise preferences between the targets corresponding to
their visiting sequence minus the sum of distances traveled,
i.e., it is calculated as

n−1∑
i=1

n∑
j=i+1

pπ(i)π(j) −
n∑
i=0

dπ(i)π(i+1),

and the task is to find a tour of maximum value. So we have
a multicriteria objective function.

The TVP was introduced in [4] and combines two clas-
sical combinatorial optimization problems: the asymmetric
traveling salesman problem (ATSP) asking for a shortest
Hamiltonian tour and the linear ordering problem (LOP)
which is to find an acyclic tournament of maximum weight.
(There is an obvious 1–1 correspondence between acyclic
tournaments and linear orders of the node). Computational
results of a genetic algorithm for problem instances with up
to 16 targets have been reported in [1]. The original appli-
cation of the TVP is the planning of routes for UAVs (un-

armed aerial vehicles). But there is a wide field of applica-
tions, e.g. the delivery of relief supplies or any other routing
problem where additional preferences should be considered
(town cleaning, snow-plowing service, etc.).

Obviously, the TVP is NP-hard because it contains the
traveling salesman problem (p ≡ 0) and the linear ordering
problem (d ≡ 0) as special cases.

In this paper we present first polyhedral results for the
TVP and develop an algorithm for solving it to optimality.
In section 2 we introduce an integer programming model.
Section 3 discusses some structural properties of the associ-
ated polytope. A branch-and-cut algorithm based on these
results is described in section 4. The algorithm is then ap-
plied to a set of benchmark problems and the computational
results are presented in section 5. A few remarks conclude
the paper.

2 An integer programming model
for the TVP

For convenience we first transform the problem to a Hamil-
tonian path problem and also get rid of the special base
node. This transformation is well-known for the ATSP [7]
and can be adapted for the TVP as follows.

The key idea is to exploit the fact that each tour has to
start at the base and return to it and that no preferences
are to be taken into account for the base. In the TVP-path
model we leave out this node and just search for a Hamil-
tonian path which visits all targets exactly once.
Following [7] we make the following modifications.

(i) Transform the distance matrix by setting d′ij = dij −
di0 − d0j , for all pairs i and j of nodes, 1 ≤ i, j ≤
n i 6= j.
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(ii) Change the computation of the distance part of the ob-
jective function to

n−1∑
i=1

d′π(i)π(i+1) −
n∑
i=1

di0 −
n∑
i=1

d0i.

The preferences are not affected by this change. From now
on we consider the TVP as finding a Hamiltonian path in
the complete digraph Dn = (Vn, An) with additional pref-
erence costs to be taken into account. The path is described
by a permutation π of {1, . . . , n} where π(k) is the node at
position k.

We introduce two types of variables. The sequence in
which the targets are visited is represented by binary ATSP
variables xij for 1 ≤ i, j ≤ n, i 6= j, with the interpreta-
tion

xij :=


1 if i = π(k) and j = π(k + 1)

for some 1 ≤ k ≤ n− 1,

0 otherwise.

The fact that some target i is visited before some target j
is modeled with binary LOP variables wij for 1 ≤ i, j ≤
n, i 6= j, with the definition

wij :=


1 if i = π(k) and j = π(l)

for some 1 ≤ k < l ≤ n,
0 otherwise.

An obvious idea for obtaining an IP model of the TVP
is to combine well-known IP formulations for the ATSP
and the LOP. This combination gives the following integer
programming model.

max

n∑
i=1

n∑
j=1
j 6=i

pijwij −
n∑
i=1

n∑
j=1
j 6=i

dijxij (1)

n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (2)

∑
i∈S

∑
j∈S
j 6=i

xij ≤ |S| − 1,

S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1, (3)
n∑
i=1
i 6=j

xij ≤ 1, 1 ≤ j ≤ n, (4)

n∑
j=1
j 6=i

xij ≤ 1, 1 ≤ i ≤ n, (5)

wij + wjk + wki ≤ 2, 1 ≤ i, j, k ≤ n, i 6= j 6= k,
(6)

wji + wij = 1, 1 ≤ i, j ≤ n, i 6= j (7)
xij − wij ≤ 0, 1 ≤ i, j ≤ n, i 6= j (8)

xij ∈ {0, 1}, 1 ≤ i, j ≤ n, i 6= j (9)
wij ∈ {0, 1}, 1 ≤ i, j ≤ n, i 6= j (10)

Constraints (2)–(5) model the directed Hamiltonian
paths where inequalities (3) are the subtour elimination
constraints. Acyclic tournaments are modelled by the 3-
dicycle inequalities (6) and the tournament equations (7).
Inequalities (8) connect the solutions of both problems. To-
gether with the integrality conditions (9) and (10) this ob-
viously constitutes a 0/1 model of the TVP.

At first want to prove the correctness of the model.

Lemma 1. The model presented in (1) - (10) is a correct
IP model for the TVP).

Proof. At first we have to prove that every feasible solution
fulfills the model. Since (2) - (5), (9) is a well known model
for the ATSP and (6) - (7), (10) is a well known model for
the LOP it is sufficient to show that the values of xij do
match with the values wij or in equal that both types of
variables describe the same TVP-path. To assure this it is
sufficient to prove the following two facts:

a) xij = 1⇒ wij = 1

b) wij = 1 ⇒ i must be visited before j in the path
describe by the x-variables

Because (8) must be fulfilled a) is obvious. To prove b)
we assume j is visited before i in the path. That means the
are existing indizees k1, . . . , kl so that j, k1, . . . , kn, i is a
part of the path. So it follows that xj,k1 = xk1,k2 = · · · =
xkl,i = 1. With a) we get that wj,k1 = wk1,k2 = · · · =
wkl,i = 1 . Because of (6) and (7) we can than iteratively
conclude that wj,k2 = 1, wj,k3 = 1, . . . , wj,i = 1. But
this is a contradiction to our assumption.

It remains to show that every feasible solution of (1) -
(10) is a correct TVP-path. It is clear that every feasible
integer solution must induce a feasible linear ordering and
a feasible TSP tour. Because of the facts we mentioned
above it is clear that the two feasible solutions must match
which each other.

As an interesting fact we note that the subtour elimina-
tion constraints are actually not needed. If (w, x) satis-
fies (2) and (4)–(10), but not all inequalities (3) then there
is some subtour on k ≥ 2 nodes. W.l.o.g. we can as-
sume that the node set is {1, 2, . . . , k} and the subtour
is given as {(1, 2), (2, 3), . . . , (k − 1, k), (k, 1)}. Hence
x12 = x23 = ... = xk−1,k = xk1 = 1, implying because
of (8) that w12 = w23 = ... = wk−1,k = wk1 = 1. This
is a contradiction to the requirement that the w-variables
represent an acyclic tournament.

So we can eliminate the exponentially many con-
straints (3) and obtain a TVP formulation with a polyno-
mial number (cubic in n) of constraints.

For our algorithm it will be useful to calculate the posi-
tion of a node i in the path. This can easily be done using
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the LOP variables. The value n−
n∑
j=1
j 6i

wij gives the position

of node i.
Note that because of the tournament equations we can

substitute an LOP variable wij , j > i, by 1−wji. Now the
3-dicycle inequalities are turned into 1 ≥ wij + wjk −
wik ≥ 0 for all 1 ≤ i < j < k ≤ n and the
part of the objective function for the LOP variables reads∑n−1
i=1

∑n
j=i+1[(pij − pji)wij + pji].

2.1 Extended formulation of the basic model
The use of extended formulations is a common technique
with is used to strengthen the LP Formulation of a com-
binatorial optimization problem. The key idea of this ap-
proach is to add new variables and constraints to a given IP
formulation so that the gap between the solution of the LP
relaxation and the optimal integral solution becomes much
smaller.

In the case of TVP we can obtain an extended formula-
tion for the TVP by adding three-indexed variables, which
are a generalization of the linear ordering variables to the
standard model. In detail this new variables wijk are than
defined as follows:

wijk :=


1 if i = π(a), j = π(b) and k = π(c)

for some 1 ≤ a < b < c ≤ n− 1 ,

0 otherwise.

So as one see this new type of variables is a straight for-
ward extension of the wij-variables. In the objective func-
tion we assign zero coefficients to the new variables. In
order to extend our standard model we also need to intro-
duce two new classes of constraints to make sure that the
solution of the new variables match with the old xij and
wij variables. In detail the extended formulation looks a
follows:

max

n∑
i=1

n∑
j=1
j 6=i

pijwij −
n∑
i=1

n∑
j=1
j 6=i

dijxij (11)

s.t.
n∑
i=1

n∑
j=1
j 6=i

xij = n− 1, (12)

n∑
i=1

xij ≤ 1, 1 ≤ j ≤ n, (13)

n∑
j=1

xij ≤ 1, 1 ≤ i ≤ n, (14)

∑
i∈S

∑
j∈S
j 6=i

xij ≤ |S| − 1,

S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1, (15)
wij + wjk + wki ≤ 2,

1 ≤ i, j, k ≤ n, i < j, i < kj 6= k, (16)
wij + wjik + wjki + wkji = 1

1 ≤ i, j, k ≤ n, i < j (17)
xij − wijk − wkij ≤ 0 1 ≤ i, j, k ≤ n, i < j (18)

xij − wij ≤ 0, 1 ≤ i, j ≤ n, (19)
xij ∈ {0, 1}, 1 ≤ i, j ≤ n, (20)
wij ∈ {0, 1}, 1 ≤ i, j ≤ n. (21)

wijk ∈ {0, 1}, 1 ≤ i, j, k ≤ n. (22)

3 The edge-node-formulation
The key idea of the next model is to combine the w and x
variables of the -Model to new three index variables which
states the relation between a node n and an fixed edge (i, j).
More precisely we define:

wkij :=


1 if k = π(a), i = π(b) and j = π(b+ 1)

for some 1 ≤ a < b ≤ n− 1 ,

0 otherwise.

and analogously :

wijk :=


1 if i = π(a), j = π(a+ 1) and k = π(b)

for some 1 ≤ a < b ≤ ,
0 otherwise.

A first IP-Model can then be develop out of the ba-
sic model by transforming the inequalities/equations to in-
equalities/equations with the new variables:

max

n∑
i=1

n∑
j=1,i6=j

pij(

n∑
m=1,m 6=j

wimj) +
n∑
i=1

n∑
j=1

dij(w
Ω
ij + wijΩ )

(23)

s.t.
n∑
i=1

n∑
j=1

(wΩ
ij + wijΩ ) = n− 1 (24)

n∑
i=1

(wΩ
ij + wijΩ ) ≤ 1 j ∈ V (25)

n∑
j=1

(wΩ
ij + wijΩ ) ≤ 1 i ∈ V (26)

n∑
l=1

wilj +

n∑
l=1

wjlk +

n∑
l=1

wkli + (wΩ
ik + wikΩ ) ≤ 2 i, j, k ∈ V

(27)

(28)

Please note that that Ω ∈ V and it could be chosen arbi-
trarily for each summand in (23) -(26) but 6= j and 6= i. It
is the same in (27) but here Ω must not be equal i or k
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4 Three distance model
Another idea for constructing an IP-model for the TVP has
been made by Prof. E. Fernandez from the UPC Barcelona.
The key idea of this approach is the use of distance vari-
ables. In Detail we define Variables ztij which describe the
fact whether there is as path of length t between i an j or
not. More formally we state:

ztij =


1 if i the solution contains a path with t arcs

from i to j,
0 otherwise.

The advantage of this model is that we only have to deal
here with one type of variables. Since we are not longer dis-
tinguish between distance and ordering variables we have
to adjust the coefficients in the following way:

wtij =

{
cij − dij if t = 1,
cij otherwise.

With are now able to formulated a TVP model with dis-
tance variables:

The formulation is:

max
∑
i∈N

∑
j∈N\{i}

∑
t∈N\{n}

wtijz
t
ij −

∑
i∈N

(di0 + d0i) (29)

n∑
i=1

z1
ij ≤ 1 j ∈ N, (30)

n∑
j=1

z1
ij ≤ 1 i ∈ N, (31)

n∑
i=1

n∑
j=1

zkij = n− k k ∈ V (32)

zt1ij + zt2jk ≤ zt1+t2
ik + 1,

i, j, k ∈ N, t1, t2 ∈ N \ {n},
i 6= j, j 6= k, i 6= k, t1 + t2 < n, (33)

n−1∑
t=1

ztij + ztji = 1 i, j ∈ N, i 6= j, (34)

ztij ∈ {0, 1} i, j ∈ N, i 6= j, t ∈ N \ {n}. (35)

Also we only have one Type of variable now the z1
i,j vari-

ables still play a special role, for example in the objective
function. On the other hand we again have a cubic number
of variables

5 Conclusions
The target visitation problem turned out to be a very dif-
ficult and therefore challenging problem. The present pa-
per gives some first results. More research is needed. An

improvement of the simple heuristic used here can be ac-
complished along well-known lines. It is more interest-
ing to find ways for improving the upper bound. The IP
model already seems to be at its limits for fairly small
problem instances unless some additional insight into the
polyhedral structure can be obtained. Alternate optimiza-
tion approaches like branch-and-bound with combinatorial
bounds, dynamic or semidefinite programming should be
devised and their limits should be explored. Furthermore
it should be investigated further how the balance between
the distance and the preference part of the object function
influences the difficulty of problem instances.
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Standard applicators for cervix cancer brachytherapy (BT) do not always enable a sufficient radiation
dose coverage of the target structure (HR-CTV). The aim of this study was to develop methodology for
building models of the BT target from a cohort of cervix cancer patients, which would enable BT applicator
testing. In this paper we propose two model types, a spatial distribution model and a principal component
model. Each of them can be built from data of several patients that includes medical images of arbitrary
resolution and modality supplemented with delineations of HR-CTV structure, reconstructed applicator
structure and eventual organs at risk (OAR) structures. The spatial distribution model is a static model
providing probability distribution of the target in the applicator coordinate system, and as such provides
information of the target region that applicators must be able to cover. The principal component model
provides information of the target spatial variability described by only a few parameters. It can be used to
predict specific extreme situations in the scope of sufficient applicator radiation dose coverage in the target
structure as well as radiation dose avoidance in OARs. The results are generated 3D images that can be
imported into existent BT planning systems for further BT applicator analysis and eventual improvements.

Povzetek: Razvita sta dva modela za izboljšanje brahoterapije.

1 Introduction

Applicators for cervix cancer brachytherapy (BT) enable
cancer treatment that in comparison with external beam ra-
diotherapy (EBRT) provides better radiation coverage of
the high risk clinical target volume (HR-CTV) and better
avoidance of organs at risk [1]. During the last decade
remarkable progress has been made in radiotherapy, in-
cluding cervix cancer BT [2]. Standard BT applicators for
cervix cancer, as shown in Fig. 1, however still do not al-
ways enable a sufficient radiation dose coverage of the tar-
get, especially in cases of locally advanced cervical can-
cer. Improvements are searched in the direction of incor-
porating additional application needles. A development of
new applicators that would enable better target dose cov-
erage requires knowledge of cervix cancer spatial distribu-
tion and variation. Furthermore, as the applicators should
be able to avoid organs at risk, the information of their vari-
ability should also be taken into account. In this work we
aimed to develop methodology to obtain this information
statistically using available data of past and present cervix
cancer patients. The information required from each pa-
tient includes BT planning medical image, delineated HR-
CTV structure, reconstructed BT applicator structure, and

organs at risk (OAR) structures. HR-CTV and OAR struc-
tures are in each 3D image delineated on each image slice,
wherever the specific structure is present and, thus, avail-
able as a set of closed planar contours. BT applicators are
reconstructed such that an applicator model is positioned in
the 3D image inside the BT planning system. The applica-
tor models consist of a ring, applicator tandem and needles,
which are reconstructed independently. The actual position
of the applicator is evident from the position of the applica-
tor ring. Because the applicator must be positioned directly
to the cervix and because the purpose of the models is ap-
plicator analysis, the spatial distribution and variation must
be defined in the applicator coordinate system.

The significance of tumor distribution depend on the tu-
mor type. It can help in development of tumor treatment
and biopsy strategies and techniques [3, 4]. In the case of
the cervical cancer it is also important due to BT applicator
design.

Representation of 3D structures by sets of closed pla-
nar contours is not convenient for further spatial analysis.
Other representations can be used instead, e.g., by tensors
[5], Gaussian random spheres [6], signed distance maps [7]
and others. However, due to eventual high complexity of
BT target structures, we have selected the most common
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IO Ljubljana

ring

tandem

needle

Figure 1: An image of a standard BT cervix cancer applicator
with indicated parts: tandem, ring and optional needles.

representation of structures by binary images.
In the following sections our approach to model the spa-

tial configuration of cervix cancer is described first. We de-
scribe the proposed methods of constructing the spatial dis-
tribution model and the principal component model. Then
we show some test results; for the spatial distribution model
based on real patient data, while the principal component
model is illustrated using synthetic data. We conclude with
discussion that includes the analysis of provided benefits
and limitations.

2 Methods
Our approach to build spatial models of cervix cancer con-
sists of the following processing steps that are described
below: data input, applicator coordinate system definition,
structure processing, modelling and data export.

2.1 Data input
The input data for building the models consists of patient
medical data sets that comprise all the required informa-
tion of each patient, i.e., a 3D medical image, delineated
HR-CTV structure, OAR structures and a reconstructed ap-
plicator structure. This data is typically provided in the DI-
COM file format, which can be imported using DICOM li-
braries, e.g., the GDCM library [8], or by Matlab using Im-
age processing toolbox. Medical images are needed only to
obtain the image configuration, i.e., transformation of im-
age coordinate system according to the patient coordinate
system and image slice positions, which are required to cor-
rectly interpret the structures. Structures are given in a form
of structure sets that include all the structure data required
for BT treatment. The target structure (HR-CTV), OAR
structures and the applicator ring structure can be identi-
fied from all the structures according to their names that
must be known in advance for each individual data set; the
structure naming is not standardized. The target and OAR
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Figure 2: The applicator coordinate system is defined according
to the applicator ring structure contour, with origin in the applica-
tor ring center defined by the last point of the contour A(N), xy
plane in the ring plane with x axis pointing towards the contour
starting point A(1) and z axis in the direction of the tandem.

structures are defined as sets of closed planar contours, i.e.,
each contour is positioned on one slice of the correspond-
ing 3D image. The applicator ring structures are described
with a single open nonplanar contour. All contours are de-
fined in the patient coordinate system.

2.2 Applicator coordinate system definition

Because the spatial configuration of cervix cancer needs to
be defined according to the applicator perspective, an appli-
cator coordinate system needs to be defined. The applicator
reconstruction [9, 10] is performed on radiotherapy plan-
ning systems by importing predefined geometry structures.
The applicator consists of tandem, ring and eventual ad-
ditional needles, see Figure 1, which are all reconstructed
independently. The ring structure, when inserted, tightly
fits to the cervix anatomy, and provides a good base for
defining the applicator coordinate system. Different appli-
cator types may have different ring diameter, may be de-
scribed with different number of contour points, however
in practice the point ordering is always the same. For the
illustration see Fig. 2. We propose that the applicator coor-
dinate system is defined with origin in the ring center (the
last point of the contour), xy plane in the ring plane, x axis
in the direction towards ring contour starting point and z
axis in the direction of the tandem.

The transformation that defines the applicator coordinate
system according to the patient coordinate system can be
for each applicator type computed from its ring contour co-
ordinates. Actually, only three noncollinear contour points
are required to compute the applicator coordinate system
transformation TA, i.e., the last point, A(N) that is posi-
tioned at the ring center as the coordinate system origin,
A(1) that defines the applicator coordinate system x axis,
and any other point in the applicator contour circumfer-
ence, A(M) for defining the xy plane. The procedure is
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the following:

OA = A(N) (1)
V1 = A(1)−OA (2)
V2 = A(M)−OA (3)

Vz =
V1 × V2

‖V1 × V2‖
(4)

Vy =
Vz × V1

‖Vz × V1‖
(5)

Vx =
Vy × Vz
‖Vy × Vz‖

(6)

TA =


Vx(x) Vy(x) Vz(x) OA(x)
Vx(y) Vy(y) Vz(y) OA(y)
Vx(z) Vy(z) Vz(z) OA(z)

0 0 0 1

 (7)

where, V and O are three dimensional vectors with com-
ponents x, y, and z, such that OA represents applicator co-
ordinate system origin while Vx, Vy , and Vz are applicator
coordinate system axes. Vector (cross) products assured
coordinate axis perpendicularity, defining a Cartesian co-
ordinate system.

The obtained transformation matrix TA is needed for
transforming BT structures to the applicator coordinate
system in which the cervix cancer needs to be modelled.

2.3 Structure processing
For each image the corresponding BT target structure and
OAR structures must be mapped into the applicator coordi-
nate system. These structures are created by drawing con-
tours on individual image slices and are provided as point
sequences in the patient coordinate system. Such vector
definition of structures is difficult to process statistically in
coordinate system that is not parallel to the coordinate sys-
tem of the originating image. Our solution is to present
the structures in bitmap instead of vector format and pro-
cess them as 3D (binary) images with voxel values 1 rep-
resenting regions inside structures and 0 representing the
surrounding. The approach is illustrated in Figure 3. The
binary images cover the same region as the original medi-
cal image, except that, they may have different resolution
in x and y image direction to control discretization error
and data size. The resolution in z image direction must re-
main unchanged in order to preserve location of slices on
which contours are defined.

The process of converting certain structure into a binary
image starts with mapping the structure to the coordinate
system of the original image. The transformation TI , form
patient to image coordinate system can be obtained from
image meta information, i.e., from DICOM tags Image Po-
sition Patient (0020,0032) and Image Orientation Patient
(0020,0037). Thus, each contour C of structure S gets de-
fined in its image coordinate system as CI :

CI = T−1
I C. (8)

All points of the the same contour gets equal image coordi-
nate zI that is equivalent to the position of the image slice
on which the contour was defined. The obtained structure
can, as such, be drawn to the binary image, contour by con-
tour. The process initiates by initializing all voxel values of
the binary structure image to 0, followed by drawing the
contours by checking each slice voxel if it is positioned in-
side of a polygon of contour points. Voxels inside the poly-
gon gets negated to correctly interpret even complex struc-
ture shapes, e.g., shapes that include holes. Binary struc-
ture images enable further data integration towards spatial
cervix cancer models.

To integrate the structure binary images of all patients
into a spatial model, they all need to be mapped into the
common applicator coordinate system (A), because patient
coordinate systems (P) and image coordinate systems (I)
are specific for each study/patient. Transformation between
the coordinate systems are illustrated in Fig. 4. The data
defined in image coordinate system (I) can be transformed
to the applicator coordinate system (A) through the patient
coordinate system (P) using transformation TIA:

TIA = T−1
A TI . (9)

Structure binary images do not differ only according to
their coordinate systems, but also according to image size
and voxel size (resolution). For further analysis they need
to be unified. The target region of interest and required pre-
cision define configuration of the resulting model (image)
size and voxel size. All binary images must be resampled
into this common spatial configuration. We recommend re-
sampling by linear interpolation in reverse direction such
that intensity corresponding to each voxel in the model
configuration is interpolated from voxel intensities in the
binary image. Note, that linear interpolation transforms a
binary image into an image with real voxel values in inter-
val [0, 1]. The result of structure processing is, therefore,
a set of structure images SA in a common applicator coor-
dinate system and with common size and voxel size, i.e.,
each structure of each patient results in one structure image
with common applicator (ring) position:

SA = interp(T−1
IAS), (10)

Where S denotes a structure binary image in the coordi-
mate system of the original image, interp a linear image
interpolation, and SA a structure image in the applicator
coordinate system.

2.4 Spatial distribution model
The purpose of the spatial distribution model is to provide
an overview of BT target spatial extent. It is given in a
form of a spatial distribution image D, i.e., an image of the
region of interest whose voxel values denote probability of
voxel being inside the BT target region. It is obtained from
images of the HR-CTV structure by averaging:

D =
1

n

P∑
p=1

SA,p,HR−CTV , (11)
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Figure 3: Illustration of structure processing: first, contours provided in the patient coordinate system (left) are transformed to the
image coordinate system (center). Then, contours are drawn on image slices in 2D, which resulted in a 3D binary image of the structure
(right).
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where SA,p,HR−CTV represents HR-CTV structure data of
p-th patient resampled into an applicator coordinate sys-
tem, and P is a total number of patients included in the
analysis.

2.5 Principal component model
The principal component model provides information of
the BT target spatial variability expressed by only a small
number of parameters. The general idea is to be able to re-
construct any target configuration, i.e., position and extent
of HR-CTV as well as OAR structures, by correctly setting
the model parameters. As such the principal component
model can be used to predict various target configurations,
e.g., extreme situations in the scope of sufficient applica-
tor radiation dose coverage in the target structure as well
as radiation dose avoidance in OARs. Such situations may
be crucial for testing real applicator efficiency. The prin-
cipal component model tends to extract a minimal set of
orthogonal components of spatial variations in the region
of interest using the principal component analysis (PCA).
PCA projects the data into a lower dimensional linear space
such that the variance of the projected data is maximized,

or equivalently, it is the linear projection that minimizes the
mean squared distance between the data points and their
projections. PCA provides a full set of components that
enable perfect data reconstruction, however, it also orders
the components according to their importance, i.e., accord-
ing to their contribution to the data description. It turns out
that majority of the components have low importance and
only a small error is made when only a few most impor-
tant components are used. In this case the important com-
ponents can be computed more efficiently using singular
value docomposition (SVD) [11].

Our input data for the PCA analysis of the BT target are
the HR-CTV structure images in the applicator coordinate
system SA,p,HR−CTV . The data of each image is reordered
into a row vector and joined for all the patients into a ma-
trix XP×L, with L being the number of pixels in the im-
age. Then the mean vector X is computed and subtracted
from each data row to obtain the matrix X0 representing
the zero-mean data variation. Here, the mean vector X
corresponds to the reordered data of the spatial distribu-
tion model D. SVD decomposes X0 into three matrices;
matrix V with orthogonal columns that represent princi-
pal components, diagonal matrix S with singular values
that represent importance of the components, and matrix U
providing component weights for reconstructing the input
data:

X0 = USVT (12)

The efficient SVD implementations, e.g., Matlab svds func-
tion, enable computation of only a given number of princi-
pal components R, and as such provide approximate solu-
tions:

X0P×L ≈ UP×RSR×RV
T
L×R (13)

The obtained matrices S and V represent a principal com-
ponent model of the HR-CTV structure, such that HR-CTV
structure of any patient can be represented with the R com-
ponents, i.e., the columns of V, with weights:

U′ = X′0VS−1 (14)

where X′0 = X′ −X represents deviation of the data from
the average. Similarly, BT target data can also be simulated
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by manual setting of component weights in U, following
equation (13) and adding the mean vector X. Component
weights form a low dimensional linear space with a certain
region around the origin that corresponds to realistic data
variation. The limits of this realistic subspace can be esti-
mated by analyzing large amount of data, i.e., large number
of patients. Values at the border of the realistic subspace
can be used in U to simulate specific extreme situations
suitable for BT applicator analysis.

Testing of BT applicators on their ability to radiate the
HR-CTV regions may be biased, as applicators should also
be able to avoid radiation of OAR structures. It is impor-
tant that HR-CTV and OAR structures cannot overlap. This
property can be used to simultaneously model both struc-
ture types , i.e., HR-CTV as well as OAR structures, with-
out increasing the amount of data in the PCA analysis. For
this purpose the input vector X must be constructed from
all the structure images, such that positive values represent
target regions and negative values represent OAR regions:

X = XHR-CTV˘
∑

XOAR (15)

Here, XHR-CTV and XOAR are constructed from structure
images with reordering into row vectors as described ear-
lier, using HR-CTV and available OAR structures. Typi-
cally, OAR structures include bladder, rectum and sigmoid
colon.

The simulated or reconstructed data that results from the
principal component model, as well as principal compo-
nents themselves, can be reordered back into 3D images.
Due to interpolations and approximations the reconstructed
structures are not presented only with values 1, -1 and 0 for
target structures, OAR structures and surrounding respec-
tively. Consequently, we recommend completing the re-
construction procedure with thresholding using thresholds
-0.5 and 0.5.

2.6 Data export
The resulting images, i.e., an image of the spatial dis-
tribution model and simulated or reconstructed BT target
configurations can be used in BT planning systems, e.g.,
Brachyvision c©, for further analysis. BT planning systems
include functionalities that enable radiation simulations us-
ing different radiation plans and can be used to test the effi-
ciency of different applicators. To enable this procedures
the images shall be exported to DICOM image format,
which can be done using DICOM libraries, e.g. GDCM
library [8], or Matlab image processing toolbox.

3 Results
We have tested the proposed methods on real and simulated
data. First a spatial distribution model has been created
from real data of 264 consecutive cervix cancer patients.
Due to relatively large number of patients, the obtained es-
timate of spatial cervix cancer distribution was named a

Figure 5: Illustration of the cervix cancer spatial distribution
representing a virtual patient, the central coronal slice.

virtual patient (VP). Imported to the BT planning system
isosurfaces that connect voxels with the same values were
created and labeled as percentage of encompassed voxels.
VPn was defined as VP subvolume, encompassed by the
n% isosurface, see the illustration in Figure 5. The obtained
VP data was used for analysis and development of BT ap-
plicators for cervix cancer [12]. It was found out, that stan-
dard tandem and ring (T&R) applicator enables adequate
treatment of VP60 subvolume, additional needles parallel
to tandem extend adequate treatment to VP95 and addi-
tional oblique needles, inserted at points, angles and depths
extend adequate treatment to VP99 subvolume. The prin-
cipal component model was not built for this dataset, such
that applicators were tested only for their general capability
of radiating the HR-CTV, not considering the capability of
avoiding the radiation of OAR structures.

The principal component model was tested using a sim-
ulated dataset that we have created for this purpose. Note
that the simulated structure images presented here do not
realistically simulate the BT target configuration, however
enable illustration of the concept and testing of its suitabil-
ity for creating a realistic model.

The simulated data was generated using four random pa-
rameters where three of them were used to simulate vari-
ability of the HR-CTV structure and the additional one for
the variability of one OAR structure. The HR-CTV struc-
ture was simulated as an ellipsoid with the three parameters
representing the semi-axes lengths while its center was al-
ways in the applicator coordinate system origin. The OAR
region was simulated as a sphere with the given parameter
representing its radius, while its center was defined such
that the distance between the edges of BT target and the
OAR structure was constant. For the illustration see Fig-
ure 6.

A principal component model was generated from a



266 Informatica 39 (2015) 261–269 P. Rogelj et al.

ab

c

r

d

Figure 6: Illustration of the simulated dataset configuration. The
HR-CTV was simulated with an ellipsoid and one additional OAR
structure as a sphere with a constant distance d from the HR-CTV.

dataset of 400 simulated 3D images with 100 × 100 × 50
voxels. The simulation parameters were selected randomly
in the following ranges: a ∈ [40, 73], b ∈ [35, 59], c ∈
[35, 49], r ∈ [15, 20] and d = 5. The computation of the
principal component model was restricted to 11 principal
components. The mean image X and the components are
illustrated in Figure 7. The singular values that represent
the distribution of the dataset’s energy among the princi-
pal components indicate that the component energy grad-
ually decreases with the component number, see Figure 8.
However, although not all of the energy was considered, the
reconstructed images did not differ considerably from the
images from the training set as shown in Figure 9, where a
randomly selected input structure image is compared with
its reconstructed approximations obtained using three and
eleven principal components. We can notice minor dif-
ferences even when reconstructing from three components
only.

If we observe the component weights (the values of ma-
trix U), we can see that they are spread over a limited PCA
subspace, see Figure 10, which corresponds to valid struc-
ture images. According to the shape of the subspace, we
can conclude that component weights of valid images are
not fully independent, although the components are orthog-
onal. By selecting weights manually, additional structure
images can be simulated. If the selected weights are from
the subspace of valid structure images, the simulated im-
ages follow the concepts of the input dataset, else the re-
sults may include major deviations as demonstrated in Fig-
ure 11.

The possibility to simulate structure images and have
control over its validity offers good opportunity to gener-
ate specific synthetic images of the BT target region that
represent extreme situations for BT applicator testing. In
that case the principal component model should be created
from real patient data and the test cases selected at the bor-
der of the populated PCA subregion.

The realistic model has not been created, yet, however
we are looking forward to create it in collaboration with
medical institutions that maintain large databases of their

cervix cancer patients.

4 Discussion and conclusion

Cancer spatial distributions must be considered whenever
cancer treatment tools and procedures are being developed.
Unfortunately, statistical analysis of spatial distributions
related to specific organs is in general tedious due to dif-
ficulties defining the reference coordinate systems because
of their complex shapes and their high variability. In the
specific case of cervix cancer the organ geometry enables
unambiguous coordinate system definition that agrees with
the applicator ring structure. Analysis of other cancer types
would require definition of analysis coordinate system ac-
cording to organ geometry and data integration performed
by image registration with a reference or atlas [13]. Simi-
larly, image registration has already been used for analyz-
ing interfraction variation of high dose regions of OARs
[14], and could be extended to intersubject analysis of can-
cer distributions.

The spatial distribution model provides useful informa-
tion about target region that needs to be radiated, and
has already been used for development of novel applicator
types [12]. However, this model does not consider OARs
and difficulties of restricting radiation dose in these struc-
tures. If a distribution model would be made for OARs as
well, it would most probably overlap with the cancer distri-
bution model due to closeness of some OAR structures to
HR-CTV and due to anatomical variability. Better applica-
tor testing must, therefore, take into account the BT target
variability, e.g., by testing on diverse specific target config-
urations, which can correspond to real patients or obtained
by modelling. The proposed principal component model
has advantages over using the real patients’ data, because
of the established control over the specificity of the cases,
a possibility to simulate the non-existent cases and deper-
sonalization.

The limitation of the principal model is in its high com-
putational cost. Computation of all the PCA components
would require enormous amount of memory, only the V
matrix would have the size of 500k × 500k elements (as-
suming 2 × 2 × 2 mm voxel size), which in float data for-
mat requires 1TB of memory. Using the SVD approach
with computation of the most important components only,
drastically reduces the memory requirements; in our simu-
lated case matrix V occupied only 22MB. Such reduction
of components is possible due to final thresholding, which
is applicable due to binary nature of the structures. When
the computational cost remains a problem, high efficient
PCA solutions [15] or alternative structure representations
could be used.

A principal component model of real cervix cancer has
not been made, yet. A large number of patient datasets is
required and in contrast to the spatial distribution model the
OAR structures must be included. The preparation of such
data is tedious due to non-standardized structure naming.
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Figure 7: Components of the simulated dataset (central slices only). The mean image X is presented in a scale from -1 (black) to +1
(white) and components with a scale from -0.01 (black) to +0.01 (white).
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Figure 8: Singular values corresponding to the first 11 compo-
nents; singular values represent the distribution of the dataset’s
energy.

Figure 9: The central slice of an input structure image (top) and
its reconstruction using 3 and 11 components (bottom left and
right respectively).
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Figure 10: Weights for the first three components of the simu-
lated structure images. The small dots correspond to images from
the input dataset, squares and large dots represent selected values
inside and outside the populated subspace for further simulations.

However the benefits of such dataset are not only in the
support of applicator development, but also in outcomes of
further statistical analysis that could support clinical pro-
cess, e.g., structure delineation or radiation planing, as well
as making of clinical decisions.

To conclude, it may be widely accepted that reducing
dose at organs of risk is difficult without reducing dose
at large tumors [16], we believe that applicator improve-
ments based on spatial modelling could provide better al-
ternatives.
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