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Network analysts try to explain the structure of complex networks by the partitioning of their nodes into
groups. These groups are either required to be dense (clustering) or to contain vertices of equivalent
positions (blockmodeling). However, there is a variety of definitions and quality measures to achieve the
groupings. In surveys, only few mathematical connections between the various definitions are mentioned.
In this paper, we show that most of the definitions used in practice can be seen as certain relaxations of
four basic graph theoretical definitions. The theory holds for both clustering and blockmodeling. It can be
used as the basis of a methodological analysis of different practical approaches.
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1 Introduction

The structure of large networks is usually not comprehen-
sible to the human beholder. Especially, if the network has
not been designed by a human architect, but rather evolved
over time in a complex (natural) process. Examples for
such networks are social (friendship, mailing, scientific
collaboration, advice giving), economic (trading between
countries or companies), chemical (protein-protein reac-
tions), biological (food chain), or internet link networks.
Nevertheless, researchers in these fields use the networks
to gain insight into their structural makeup. To this end,
a first step is most often the reduction of the network’s
complexity with the help of algorithms. A common ap-
proach is to reduce the high number of nodes in the net-
work. The idea of blockmodeling approaches is to group
the nodes such that the number of groups is much lower
than the number of nodes. The grouping is done in a way
that leads to patterns in the network’s links. We distinguish
two kinds of patterns: Patterns of link density (Section 1.1)
and of link existence (Section 1.2). An example for pat-
terns of link density is given in Figure 1: On the left-hand
side, we see a random drawing of a graph G = (V, E). In
the center, we see a partition of V' into four groups A, B,
C, D, indicated by four different colors, such that a den-
sity pattern becomes apparent. Densely connected are the
group pairs AB,BD,DD,CD,CA, sparsely connected
are AA, BB,CC, AD, BC. Note that we use a merely in-
tuitive definition of density here for motivational reasons;
strict mathematical definitions will be introduced subse-
quently.

Before we explain the patterns of link density, we for-
malize a vertex grouping of a graph G with vertex set V and
edge set E' as a vertex coloring. This is possible since ev-

ery vertex coloring ¢ : V' — [c], where [c] = {1,2,...,¢c},
naturally defines a partition of V into the color classes.
W.Lo.g. we assume that ¢ is surjective, i.e., all ¢ colors are
used. In this paper, we assume that our network is given as
an undirected graph G = (V, E). More general cases, in
which there are weights (on the arcs or on group pairs) or
multiple arc types are not treated here.

1.1 Patterns of link density

The goal of the grouping which is discussed in this section
is to group the vertices in a way such that for each pair
of groups, there are either very many or very few links be-
tween the groups. In other words, we search for a pattern
of link density in the network.

Once such a pattern has been found, the network’s com-
plexity has been reduced in the following sense: One can
now shrink the groups to single vertices, and connect two
such vertices by an edge if the corresponding groups were
densely connected prior to the shrinking. The shrunk graph
for the example in Figure 1 is depicted on the right-hand
side of the figure.

Let us formalize the pattern notion. Given a coloring ¢,
the pattern specifies for each pair of color groups whether
they are interpreted to be densely or sparsely connected. A
pattern is usually notated as a binary square matrix . Its
dimension is the number of groups. An entry I4p is 1 if
groups A and B are interpreted to be densely connected,
and O if they are interpreted to be sparsely connected. The
matrix [ representing the pattern is usually called image
matrix. It is symmetric as the network graph is undirected.
The graph whose adjacency matrix is the image matrix is
called image graph. Figure 1 (right) shows the image graph
to the density pattern described in the caption text of the
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Figure 1: An exemplary density pattern.

figure. Note that the image graph can be seen as a simpli-
fication of the network structure: There is an edge in the
image graph wherever there are many edges in the original
network, and no edge wherever there are only few edges.

For a given network graph G, one is hence interested in
a coloring ¢ of the vertices together with a density pattern.
Such a pair (¢, I) of a coloring ¢ and its interpretation, an
image matrix I of appropriate dimension, is called a block-
model. The process of computing a good blockmodel for a
given network is sometimes called blockmodeling.

1.2 Patterns of link existence

Density patterns imply that for the vertices in a group A, it
holds that either all of them have very many or all of them
have very few links to the vertices in a group B. In a pattern
of link existence, however, one demands that either many
vertices in group A have at least one link into group B or
almost no vertex in group A has a link to group B. Analo-
gously to the density pattern case, we can define an image
matrix. It encodes for each pair of groups which of the two
cases are interpreted to exist in the given coloring. The im-
age graph then visualizes a pattern of connectivity. If an
edge exists between groups A and B, then almost every
vertex in A is connected to B, and vice versa. Otherwise,
the groups are almost disconnected.

1.3 Fixing patterns

To find a suitable number of groups is generally part of the
blockmodeling process. In practical blockmodeling, how-
ever, it is sometimes set a priori to a small fixed value.
Moreover, the whole pattern is sometimes fixed a priori.
The blockmodeling then reduces to the search for a color-
ing which matches the given pattern best. This is useful to
test whether an assumed pattern actually exists in the net-
work. A prominent example of pattern fixing is the cluster-
ing problem. Here, one searches for density patterns. The
number c of groups is fixed to a small value and the image
matrix is fixed to the ¢ x ¢ identity matrix. The blockmodel-
ing hence consists of the search for a coloring with ¢ colors
such that the color groups themselves are dense, whereas

their interconnections are sparse. In case that c is not fixed,
the family of all identity matrices is considered as the set
of feasible patterns.

1.4 Outline of the paper

Literature shows a large variety in practical blockmodeling
approaches. Not only are they distinct in the way they use a
priori fixings, they also differ in the ways they measure the
quality of a given blockmodel for a given network. Usu-
ally, the search for clusters, link density and link existence
patterns are treated separately. There are separate methods
and publications for each of the three problem types.

In this paper, we present a new classification of the ap-
proaches. This classification holds for all (non-stochastic)
clustering and blockmodeling approaches which quantify
the quality of blockmodels and are reported in the fol-
lowing survey books: Social Network Analysis by Wasser-
man and Faust [16], Network Analysis by Brandes and Er-
lebach [6] (except conductance), and Community Detection
in Graphs by Fortunato [10].

The search for an ideal blockmodel can usually be for-
mulated as a graph coloring problem. By our classification,
we show that the practical approaches can be seen as meth-
ods to optimize very specific relaxations of these problems.
They are the same in clustering, link density and link exis-
tence patterns search.

Section 2 presents the graph coloring problems, which
are relaxed in practical approaches. Section 3 explains the
three types of relaxations that are used. Each type is il-
lustrated with practical examples from the survey books.
Finally, Section 4 summarizes and gives an outlook on ap-
plications of the classification.

2 Ideal blockmodels

In this section, we define ideal blockmodels of link density
and existence. In an ideal blockmodel (¢, I') for link den-
sity, all links exist in the dense parts and no links exist in
the sparse ones. In an ideal blockmodel for link existence,
either all or no vertex in A have a neighbor in B.
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Ideal colorings can be similarly defined. The reason is
that in an ideal blockmodel (¢, I'), the image matrix I can
be directly constructed from ¢: The entry I4p is 0 if and
only if there is no edge from A to B. We hence call a
coloring ¢ ideal if the blockmodel (¢, I) is ideal, where I
is constructed as explained.

There are three graph theoretical definitions of ideal col-
orings. They will be presented in the next three subsec-
tions.

2.1 The subgraph definition

In ideal blockmodels for density patterns, certain sub-
graphs are either complete or empty. These subgraphs can
be defined as follows. Given a coloring ¢, there is one such
subgraph G4 4 p for every pair (A, B) of colors. It is ob-
tained from G by deleting all vertices but the ones colored
with A or B and deleting all edges but those connecting
an A-colored with a B-colored vertex. Gy 4 p is hence
bipartite for A # B. Note that all of these subgraphs are
edge disjoint. A similar observation can be made for ideal
link existence blockmodels: That all vertices in A have at
least one neighbor in B, and vice versa, is equivalent to the
statement that G4 4, p contains no isolated vertices.

We have seen that clustering is a special case of link den-
sity, where the image matrix is a priori fixed. However,
there is a common variant of clustering. It only requires
the color groups to be dense, but does not require their in-
terconnections to be sparse. In other words, only the diag-
onal image matrix entries are given. We include this vari-
ant into our classification scheme as it is widely used. It
corresponds to Part (i) of the following definition of ideal
colorings. Part (ii) defines ideal link density and Part (iii)
ideal link existence colorings. See Figure 2 for examples.

Definition 1. Given a graph G, a c-coloring ¢ : V. — []
of its vertex set is

(i) anideal clique c-coloring, if for all A € [c], the graph
Gy, A,4 is complete.

(ii) an ideal structural c-coloring, if for all color pairs
A,B € [c], the graph Gy a g is either empty or a
complete (complete bipartite for A # B) graph.

(iii) an ideal regular c-coloring, if for all color pairs
A, B € [c], the graph Gy, 4. g is either empty or con-
tains no isolated vertices.

2.2 The node pair definition

We have seen that ideal colorings can be defined by sub-
graph characterizations. Alternatively, they can be de-
fined by properties of same-colored vertices. In a clique
c-coloring, every two vertices with the same color are con-
nected by an edge. In a structural c-coloring, two vertices
with the same color have exactly the same neighboring ver-
tices in G. In a regular c-coloring, two vertices with the
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same color have exactly the same colors in their neighbor-
hoods. Let N (u) denote the set of vertices that are adjacent
to vertex u. The following definition is hence equivalent to
the subgraph definition above. See Lorrain and White [12]
for details.

Definition 2. Given a graph G, a c-coloring ¢ : V. — [c]
of its vertex set is an

(i) ideal clique c-coloring, if for all u,v € V with ¢(u) =
p(v): uv € E.

(ii) ideal structural c-coloring, if for all u,v € V with
¢(u) = ¢(v): N(u) \ {v} = N(v) \ {u}.
(iii) ideal regular c-coloring, if for all uw,v € V with

¢(u) = ¢(v): {p(w) | w € V,uw € E} = {¢(w) |
w e V,ow € E}.

2.3 The single node definition

A definition from the perspective of single vertex is only
possible with respect to a fixed image matrix /. In this
case, the following single node definition is equivalent to
the two definitions above.

Definition 3. Given a graph G and a ¢ X c image matrix I,
a c-coloring ¢ : V. — [c] of G’s vertex set is

(i) anideal clique c-coloring, if for all u € V: w is adja-
centto allv € V with ¢p(v) = ¢(u).

(ii) an ideal structural c-coloring w. r. t. I, if forallu € V
and all C € [c]: w is adjacent to all v € V with
() = Ciflyyc = 1, andtonov € V with p(v) =
Ciflyyec =0.

(iii) an ideal regular c-coloring w. r. t. I, if forallu € V
and all C' € [c]: w is adjacent to at least one v € V
with ¢(v) = C if Iyyc = 1, and to no v € V with
o(v) = C if Iyyc = 0.

3 Relaxations

For a given graph G, one can theoretically compute a col-
oring from Definition 1 or 2 to obtain an ideal coloring
(and thus ideal blockmodel). However, this is usually not
done in practice. In Section 3.1, we list some common rea-
sons for this decision. In Section 3.2, we show that the ap-
proaches used in practice can be interpreted as the solution
of an optimization problem on a relaxed problem defini-
tion.

3.1 Reasons for relaxations

There are several reasons for the use of relaxations instead
of directly searching for ideal blockmodels. We list four of
them.

1. Non-existence of solutions. An ideal coloring might
only exist if a large number of colors is used.
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Figure 2: Ideal clique (a), structural (b), and regular (c) 3-colorings. In b) and c), the corresponding image graph is depicted.

2. Real-world modeling reasons. The definition might
be too restrictive for the application at hand. For ex-
ample, the graph theoretical definition of clique might
be too strict to describe friendship cliques in social
networks, where some edges can be missing.

3. Involvement of statistics. The relaxations allow to de-
fine statistically profound criteria for the quality of
colorings, instead of the purely graph theoretical ones.

4. Robustness against measuring errors. The extrac-
tion of graphs from complex networks can be erro-
neous, especially in biological or chemical networks.
However, a regular coloring on a graph can turn non-
regular by the deletion or addition of one single edge.
Relaxations are hence useful to limit the influence of
these errors on the colorings.

3.2 General relaxation

In this section, we show how ideal blockmodels are re-
laxed in practice. Denote by CC/(c, G) the set of all clique
c-colorings of the vertices of G. Analogously, we de-
fine SC(c, G) and RC(c, G) for structural and regular c-
colorings. As a shorthand, we simply write X (G) in a
statement which holds for any fixed type (CC, SC, RC)
and any fixed number c of colors. Practitioners, often im-
plicitly, enlarge the set X (G) of feasible colorings to a set
X1(G) 2 X(G) and assign a penalty value p(¢) > 0 to
each member ¢ of the enlarged set X (G). Afterwards,
they solve the optimization problem of finding a color-
ing ¢* in X (G) with the minimum penalty value p(¢*).
We now show that this is usually done in the following way:
The set X (G) of feasible colorings is enlarged by dropping
some of the requirements in the definition of X. Further-
more, the penalty function p is not arbitrary, but measures
the degree of violation against the dropped requirements.
The optimization problem to be solved is thus:

(MIN-P) Given the set X1,(G) and the penalty function
p: Xr(G) — R{, finda ¢* € X1(G) which minimizes p.

That is, among the colorings satisfying the non-dropped
requirements, find the one which violates the dropped re-
quirements to the least possible extent. As a convention, a
penalty value of 0 is assigned to the colorings in X (G), as

they do not violate any dropped requirements (compatibil-
ity requirement, see Doreian et. al. [9]). Hence, a coloring
satisfying the original definition X is always an optimum
solution to (MIN-P).

We will now classify literature by the type of relaxation
used. As we are considering the relaxation of ideal col-
orings, three types of relaxations come to mind: The re-
laxation of the coloring definition, of the node pair ideal-
ity definition and the subgraph ideality definition. Indeed,
these possibilities are widely used. In Section 3.3, we will
look at the cases where the general definition of coloring
is relaxed. Sections 3.4 and 3.5 treat the ideality definition
relaxations respectively.

3.3 Coloring relaxations

In Definition 1 and 2 for ideal colorings, the definition of
“coloring” itself can be relaxed. If we use the binary vari-
ables x, 4 to express whether vertex v is colored with A
(xya = 1) or not (x,4 = 0), the requirement “to be a
c-coloring” can be decomposed into the following sub re-
quirements:

Y wpa=1 forallveV, (1)

A=1

> wya>1 forall A€ ], )

veV

0<zy,a<1 forallveV,Ae]ld, 3)
xya €Z forallv eV, A€ [d]. )]

Example (Fuzzy Colorings.) In some applications, it is
meaningful for a vertex to get several colors at the same
time. E.g., a person might be a member of several clubs.
In this case, requirement (1) is dropped. Alternatively, a
vertex might be allowed to consist of color fractions that
sum up to 1, such as 50% red, 30% green and 20% blue. In
this case, requirement (4) is dropped. One speaks of fuzzy
colorings or partitions in both of these cases of relaxation.
Usually, there is no penalty for a vertex to have more than
one color at the same time. That is, the penalty function p is
usually constant with respect to the coloring requirements.

Example (Number of Colors.) For many applications, a
good choice for the number of colors is not a priori known
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and hence not fixed to a certain value c. That is, the require-
ment that ¢ colors must be used is dropped. As small num-
bers are usually more suitable for interpretation, the penalty
function p might be defined to assign each coloring ¢ the
number of colors used by ¢. The lower the number of col-
ors, the less the amount of penalty. As an example, the
algorithm CATREGE [4] solves (MIN-P) for such a p and
X=RC.I.e., given a graph, it finds a regular c-coloring with
the smallest possible c.

3.4 Single node and node pair relaxations

In single node relaxations, the properties for a single vertex
to contribute to an ideal coloring are relaxed. As we have
seen in Definition 3, single node definitions are only possi-
ble if the image matrix [ is fixed. An example are the nodal
degree relaxations for clusterings, i.e., for Part (i).

Example (Nodal Degree Relaxations.) Seidman and Fos-
ter [15] relax the requirement that every vertex must be
adjacent to all other vertices of the same color by the re-
quirement that every vertex can be non-adjacent to at most
k other vertices of the same color. In an ideal coloring, the
resulting subgraphs are hence not cliques, but so-called k-
plexes. Usually, the relaxation is not penalized. That is, p
is constant, say p = 0 . The search for an ideal blockmodel
is hence simply the search for a partition of the vertices
into k-plexes. Instead of k-plexes, the similar k-cores are
sometimes used.

We now turn to the more common node pair relaxations.
Here, the properties for same-colored vertex pairs in Def-
inition 2 are relaxed. Two forms of p are most commonly
used, which will be explained by the following two exam-
ples: p is either constant or decomposable over the set of
all vertex pairs.

Example (Sociometric Cliques.) Alba [1] finds the graph
theoretical definition of clique to be not perfectly appro-
priate to describe friendship (or sociometric) cliques in so-
cial networks. He thus relaxes its definition to so-called
n-cliques. Here, two same-colored vertices do not need to
be connected by an edge. They need to be connected by a
path of length at most n, which relaxes the edge connec-
tion requirement. If no penalties are introduced, the prob-
lem (MIN-P) merely consists in the search for any partition
into n-cliques. Similar to the n-clique are the n-clan and
n-club relaxations [13].

We now treat a second common type of node pair relax-
ation: The vertex similarity approaches. The idea is to con-
sider for each vertex pair separately, whether it should be
same-colored or not. In this special case of (MIN-P), the
penalty function p can thus be decomposed over all ver-
tex pairs, i.e., p(@) = >, cy Puvd(B(u), d(v)). Here,
Puv > 0 are real numbers and § denotes the Kronecker
function. It is 1 if ¢(u) = ¢(v) and O otherwise. In liter-
ature, the numbers p,,,, are often called (dis)similarity val-
ues. The relaxation technique of using such a decompos-
able function is called indirect blockmodeling approach by
Doreian et al. [9].
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Example (Structural Equivalence.) For X=SC, several
functions p of the above form have been proposed. This
propositions were made indirectly by a specification of the
values p,,. They quantify how much a coloring violates
this dropped requirement, that is, to quantify how similar
two vertices are with respect to common neighbors. See
Leicht, Holme, and Newman [11] for an overview on these
functions.

3.5 Subgraph relaxations

In subgraph relaxations, the requirements of Definition 1
for ideal blockmodels are relaxed.

Assume a practitioner is interested in regular 4-colorings
on a given graph G = (V, E). However, such a color-
ing does not exist on G. It is then reasonable to consider
a 4-coloring ¢ to be a good solution, if it is not regular
on G, but turns regular if G is changed by a very small
amount. Following this idea, the best 4-coloring is the one
that requires the lowest amount of changes in G in order to
become regular. Possible changes are usually the deletion
and addition of edges. That is, requirements of the forms
“uv € E” and “uv ¢ E” are dropped. If they are penalized
by the function p, then the coloring ¢* which requires the
lowest amount of edge changes in G will be the optimal
solution to (MIN-P).

In order to define a suitable penalty function p, we first
need to define a function d to measure the amount of edge
changes. More precisely, d measures the distance of two
graphs G = (V,E) and H = (V, F) on the same vertex
set V. A simple but common exemplary form of such a d
is given by

dGH) = Y [AG)uw — A(H)unl, 5

u, €V, u#v

where A denotes the adjacency matrix of the graph. The
function counts the number of different entries in the adja-
cency matrices of G and H. More complex distance func-
tions are discussed below. The function d measures the dis-
tance of G to a single graph H. We can also measure its dis-
tance to a set of graphs H, by defining the distance d(G, H)
as the distance of G to its closest element in H. That is,

d(G,H) := min d(G, H).
HeH

To measure how much G has to be changed, it is compared
to sets of ideal graphs H(¢), on which ¢ perfectly satisfies
the requirements. In our example, H(¢) is defined such
that ¢ is 4-regular on all H € H(¢). The penalty function
for (MIN-P) is hence p(¢) = d(G, H(9)).
We now give more details on this procedure. First, we will
see how ideal graphs H(¢) can be defined. Then, we give
an overview on the distance functions d(G, H) which are
used in practice. Afterwards, a common variant of this pro-
cedure is discussed, which does not relax G, but several
subgraphs of G simultaneously. We close by some exam-
ples on how graph relaxation is used in literature.
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Ideal, Worst and Average Graphs

Given an ideal coloring definition X (for example CC, SC,
RC), a graph G = (V, F) and a coloring ¢ of its vertices,
the set H(¢) of ideal graphs can be naturally defined. It
is the set of all graphs H with the same vertex set as G,
such that ¢ is an X-coloring on H. Definition 1 gives a
characterization of these graphs. In the case of clustering,
i.e., X = CC, the ideal graphs are those in which vertices
of the same color induce complete graphs. Note that for
every ¢ : V' — [c], the set H(¢) is non-empty.
Alternatively, one can define 7(¢) to be the set of worst
graphs instead of ideal ones. Worst graphs can be easily
defined for CC and SC. This is because their subgraph char-
acterization in Definition 1 use empty and complete graphs
only. As “being empty” and “being complete” are opposite
extremes, one can define worst graphs by interchanging the
words “empty” and “complete” in the definition. E. g., in
a worst graph for clustering (CC) no cluster contains any
edges. If worst graphs are used, the distance of the closest
graph to G needs to be maximized instead of minimized.
A third alternative has been used for CC and SC: G is
compared to average graphs. For clustering, the subgraphs
are hence neither empty nor complete, but have an average
density. The distance of G to the average graphs H(¢) can
then be positive or negative, depending on whether G is
worse (sparser) or better (denser) than average. The same
holds hence for the penalty function. It is usually used as
a reward function p: The farther G is from average in the
positive direction, the larger p is, and the better ¢ is.

Overview on Distance Functions

We already stated the most simple distance function to
measure the distance between two graphs on the same ver-
tex set:

d(Gv H) = Z |A(G)u,v - A(H)u,v|a

u,vEV,u#v

It counts the number of edges to be added or deleted
(changed) in G to obtain the ideal graph H. See Figure 3
for an example for structural 3-colorings (X = SC). The dis-
tance d(G, H(¢)) of the depicted coloring ¢ of the drawn
graph G is 3. The reason is that 3 changes are at least neces-
sary to obtain a structural 3-coloring: Add two edges from
gray to black and delete one edge within white. Hence, the
penalty value for this coloring is p(¢) = 3.

If G is compared to average graphs, the absolute value
function is a problem. Here, we want to distinguish
whether G is worse or better than average. Hence, the fol-
lowing function is more suitable in this case.

S (AG)uw — A(H)un).  (6)

u,veEV,u#v

d(G, H) =

The adjacency matrix of H is possibly weighted, as average
graphs usually do not have binary edge weights.

There is a third function for the case that vertices are
relaxed instead of edges. More precisely, if requirements

S. Wiesberg et al.

Figure 3: Example for the distance function (5) when applied to
a structural 3-coloring problem.

of the form “v € V" are relaxed. Note that the opposite
requirement “v ¢ V” is never relaxed, as the addition of
vertices cannot contribute to the transformation of G into
an ideal graph. For every coloring ¢ of the vertices in G =
(V,E), G is compared to a set of ideal graphs H(¢). Ev-
ery such graph H = (Vir, Ey) in H(¢) has a vertex sub-
set Vi C V and the edge set Fy = E(Vy). That is, H
can be obtained from G by deleting vertices together with
their incident edges. A distance function needs to measure
the amount of vertices to be deleted to transform G into H.

d(G, H) = [V(G)| = [V(H)]. ©)

Beside these linear functions, several non-polynomial
functions have been proposed. Being derived from general
statistical matrix correlation measures, they can be used to
compare the adjacency matrices of G and H. See Wasser-
man and Faust [16] or Arabie et al. [2] for an overview.

Combining Subgraph Penalties

In Definition 1, the ideal coloring conditions are formu-
lated as requirements for the subgraphs G4 4,5 of G. In
the widely used direct blockmodeling approach, these sub-
graphs are relaxed separately. That is, there is a separate
penalty value for each subgraph. However, the same dis-
tance function d is used for each subgraph. Whether the
separate relaxations of the subgraphs is equivalent to the
relaxation of G itself depends on the choice of d. In direct
blockmodeling, we have single penalty values pap(¢$) =
d(Gg,a,8,Hyg 4 p) for the subgraphs. They need to be
combined to a total penalty value p(¢). In most cases, the
pap are simply summed up:

p(¢)= > pan(9). ®)

A,BE|]

For clustering (X=CC), the sum runs clearly only over
those (A, B) with A = B. If scaling is used, the factor
is usually 1/map, where m4p is the number of possible
edges in the subgraph Gy 4 . More precisely, map =
Al [B|if A # B.mas — |A] - (|A| - 1), and

NOEEY ml -paB(). )
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In some approaches, the squares of the penalties are
summed up instead. This mostly occurs in so-called x?
approaches.

p(¢) = (10)

S (pan(®)?.

A,BE|c]

Besides the above scaling factor, a second one can be used
here. The distance of G4 4,p to Hy 4 p can be seen in
relation to the maximum distance dg)l_"‘ﬁ" p of any graph, on
the same vertex set, to Hy 4 B.

p@) = 3 man- (P2OY
A,Beg|c] $,A,B
Examples

We now give some examples on how this kind of relaxation
is used in literature, either for coloring type CC, SC, or
RC. For each example, we need to specify the following
modeling choices:

— Whether ideal, worst, or average graphs are used (and
how average is defined).

— Whether edges or vertices are relaxed.
— How p(¢) is combined from the pag(¢).

Example (Cluster Performance). The performance of a
clustering counts the number of missing edges within the
clusters and adds the number of existing edges between the
clusters. It is hence a measure for the clustering special
case of X = SC. According to our classification, ideal
graphs are used, edges are relaxed, and p(¢) is simply the
sum of the pap(9).

Example (Maximal Cluster Density.) A basic measure
for the quality of a clustering (X=CC) on G = (V, E) is the
sum over all intra-cluster densities 0;,:(V;). They give the
proportion of actual edges to theoretically possible edges
within the i-th cluster:

# internal edges of V;
5in Vi) =
)= Twi- /2

The search for a coloring ¢* with maximum total intra-
cluster density is a (MIN-P) problem. Ideal graphs are
used, edges are relaxed, and the penalty values p 45 (¢) are
linearly combined by Formula (9).

Example (Maximal Structural Density.) Wasserman and
Faust explain a simple measure for structural colorings in
their survey [16]. It is a generalization of the preced-
ing example from clique to structural colorings. For each
pair A, B of colors, they sum up the values |[Iap — Aag|.
Here, I denotes the image matrix and A4 denotes the
density. The density is defined as the number of edges from
A-colored to B-colored vertices, divided by the maximum
possible number m 4 5 of such edges. Hence, ideal graphs
are used, edges are relaxed, and the penalties p 45 (¢) are
linearly combined by formula (9).
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Example (Newman-Girvan-Modularity.) Newman and
Girvan [14] present a well-known relaxation for clustering.
They choose H(¢) to contain average graphs. More pre-
cisely, H(¢) consists of exactly one graph H = (V, F).
The edge weight of uv € F is deg(u)deg(v)/2|E|. This
is precisely the probability of the edge to exist in a ran-
dom graph with the same degree distribution as G. For this
reason, H can be interpreted as the average graph w.r.t. to
the degree distribution of G. Hence, average graphs are
used, edges are relaxed, and the penalties p 45 (¢) are sim-
ply summed up (Formula (8)).

Note that p(¢)/2|E| is called the modularity of ¢. The
factor 1/2|E| is however constant and can thus be ignored
in the solution of (MIN-P). Other so-called Newman-like
modularities can be modeled analogously.

Example (Berkowitz-Carrington-Heil Index.) The in-
dex [8] is designed for structural colorings (X=SC). It com-
pares G to an average graph H. The user is asked to spec-
ify an average density o from the interval between 0 and 1.
H is then the complete graph with edge weights all «, let-
ting its density equal «. The distance function d is (5),
hence the most simple one. It is applied on subgraphs.
Since the index is a x? approach, the function p(¢) is com-
posed as in (11).

Example (Vertex Relaxation.) Batagelj et. al. [3] re-
lax vertices for regular colorings (X=RE). They use ideal
graphs, relax vertices, and simply sum up the penal-
ties pap(¢). However, they restrict the natural set H(¢) of
ideal graphs by allowing only those H € H(¢) for which
it holds that whenever there is an edge uv € E and u is
not in V7, then v cannot be in Vg either. An optimization
heuristic for this function is implemented in UCINET [5].
Brusco and Steinley [7] present an exact optimization algo-
rithm based on an integer programming model.

4 Summary and conclusions

We present a classification for clustering and blockmodel-
ing approaches used in practice. We show that these ap-
proaches are based on relaxations of graph theoretical col-
oring definitions. Basically, there are only three types of re-
laxations. The classification unifies link density pattern (in-
cluding clustering) and link existence pattern approaches
and shows the connections between them.

An obvious drawback of such a theory about used ap-
proaches is clearly its invalidity as soon as new kinds of
approaches are invented. Furthermore, it does not yet cover
approaches which penalize blockmodels in which the col-
ors groups do not have similar sizes. An example is the
conductance approach for clusterings. On the one hand,
the function p minimizes the number of edges for [ 45 = 0,
which is a classical subgraph relaxation approach. On the
other hand, p also minimizes size differences between the
vertex groups. To classify this approach, the requirement
for same group sizes needs to be added to the ideality defi-
nitions, such that a deviation can be penalized. We did not
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include it as most approaches deal with this requirement in-
directly: They exclude blockmodels with largely differing
group sizes from the set X, (G) of feasible blockmodels.

However, we also see two kinds of practical benefits.
First, the classification can be used to think about the
“missing” approaches. For example, approaches which
use average graphs usually compare G to a single aver-
age graph H, whose edge weights are fractional. This
choice seems to be arbitrary, as one could also use a whole
set H(¢) of unweighted average graphs for the comparison
to G. The latter idea is standard if ideal instead of aver-
age graphs are used. Second, the question which approach
is the most suitable one for a given network can now be
answered stepwise: Are ideal or average graphs more suit-
able, should edges or vertices be relaxed, should node pairs
or subgraphs be relaxed, how should subgraph penalties be
combined, etc.?
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