
Informatica 39 (2015) 229–235 229

The Random Hypergraph Assignment Problem

Ralf Borndörfer
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
E-mail: borndoerfer@zib.de

Olga Heismann
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
E-mail: heismann@zib.de

Keywords: assignment, hyperassignment, random, expected value

Received: July 13, 2014

Parisi’s famous (proven) conjecture states that the expected cost of an optimal assignment in a complete
bipartite graph on n + n nodes with i. i. d. exponential edge costs with mean 1 is

∑n
i=1 1/i2, which con-

verges to an asymptotic limit of π2/6 as n tends to infinity. We consider a generalization of this question
to complete “partitioned” bipartite hypergraphs G2,n that contain edges of size two and proper hyperedges
of size four. We conjecture that for i. i. d. uniform hyperedge costs on [0, 1] and i. i. d. exponential hyper-
edge costs with mean 1, optimal assignments expectedly contain half of the maximum possible number of
proper hyperedges. We prove that under the assumption of this number of proper hyperedges the asymp-
totic expected minimum cost of a hyperassignment lies between 0.3718 and 1.8310 if hyperedge costs are
i. i. d. exponential random variables with mean 1. We also consider an application-inspired cost function
which favors proper hyperedges over edges by means of an edge penalty parameter p. We show how results
for an arbitrary p can be deduced from results for p = 0.

Povzetek: V članku je opisana analiza komplektnosti dvojno povezanih grafov na osnovi razširitve Parisi-
jevega izreka.

1 Introduction

A way to gain a better understanding of the structure of a
combinatorial optimization problem is to analyze the opti-
mal values of random instances. For the assignment prob-
lem, such results were conjectured after extensive com-
putational experiments and then proven theoretically. In
particular, the famous (proven) Conjectures of Mézard and
Parisi [Mézard and Parisi, 1985] state that the expected op-
timal cost value of an assignment problem on a complete
bipartite graph with i. i. d. uniform edge costs on [0, 1] or
i. i. d. exponential edge costs with mean 1 converges to
π2

6 = 1.6449 . . . if the number of vertices tends to infin-
ity. The limit is equal for both distributions since it can
be proven that only the density at 0 is relevant, which coin-
cides for both distributions [Aldous, 1992]. For a survey on
the random assignment problem and several of its variants,
see [Krokhmal and Pardalos, 2009].

We consider a generalization of this setting to a class
of bipartite hypergraphs in terms of what we call the ran-
dom hypergraph assignment problem (HAP). This prob-
lem is an idealized version of vehicle rotation plan-
ning problems in long-distance passenger rail trans-
port, see [Borndörfer et al., 2011] for further details and
[Maróti, 2006] for a survey on railway vehicle rotation
planning.

We will deal with HAPs in a special well-structured type

of bipartite hypergraphs G2,n, that contain on each side n
“parts” of size 2 each. In this case, the HAP is already NP-
hard [Borndörfer and Heismann, 2012] and therefore inter-
esting to analyze. The hyperedge set of such a partitioned
hypergraphG2,n consists only of edges of size 2 and proper
hyperedges of size 4, and it has a structure that makes it
easy to view a hyperassignment as a combination of two
assignments, one consisting only of edges, and the other
one consisting only of proper hyperedges (that can also be
viewed as edges). Despite this simple general idea, how-
ever, combining the two assignments involves a choice over
an exponential number of possibilities which is quite diffi-
cult to analyze. We will explain this in more detail in Sec-
tion 2 after introducing the problem.

In Section 3, we conjecture that the expected number of
proper hyperedges in an optimal solution of the random
HAP on partitioned hypergraphs G2,2n with i. i. d. uniform
random edge costs on [0, 1] or i. i. d. exponential random
edge costs with mean 1 is n. This conjecture is based on
extensive computational results. Assuming that this con-
jecture holds, we can prove a lower bound of 0.3718 and
an upper bound of 1.8310 for the expected value of a min-
imum cost hyperassignment in G2,2n for the exponential
edge cost distribution and for vertex numbers tending to
infinity. To achieve this, we first use a combinatorial argu-
ment to represent the bounds in terms of bounds for random
assignments. Then, we compute these bounds using results
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for the random assignment problem.
In hypergraph assignment problems that arise from prac-

tical applications, proper hyperedges represent unions of
edges. Such hyperedges have costs that are smaller than the
sum of the costs of the edges that they contain; these edges
are considered to be similar and a solution with much sim-
ilarity is desirable [Borndörfer et al., 2011]. We consider a
setting with regularity-rewarding cost functions, in which
the number of proper hyperedges in a solution and the op-
timal value of a random HAP in G2,n do not only depend
on the number of vertices n but also on an edge penalty
parameter p. We will show how the number of proper hy-
peredges and the value of an optimal solution for every p
can be deduced from results for p = 0 in Section 4.

The paper ends in Section 5 with a discussion of the re-
sults.

A short conference version of this paper has already been
published as [Heismann and Borndörfer, 2013].

2 The hypergraph assignment
problem

We consider in this paper hypergraph assignment problems
on a special type of bipartite hypergraphs.

Definition 2.1. Let G2,n = (U, V,E) be the bipartite hy-
pergraph with vertex sets

U =

n⋃
i=1

Ui, V =

n⋃
i=1

Vi

with

Ui = {ui, u′i}, Vi = {vi, v′i}

and hyperedge set E = E1 ∪ E2 where

E1 = {{u, v} : u ∈ U, v ∈ V }

are the edges and

E2 = {Ui ∪ Vj : i, j ∈ {1, . . . , n}}

are the proper hyperedges of size 4. The sets Ui and Vi,
i ∈ {1, . . . , n} are called the parts on the U - and V -side,
respectively.

For a visualization of such a hypergraph, see Figure 1.
Note that every hyperedge in G2,n connects a part on

the U - and a part on the V -side. We remark that the HAP
can be formulated in the same way for more general bipar-
tite hypergraphs, with less structure and possibly contain-
ing hyperedges which contain more than four vertices, see
[Borndörfer and Heismann, 2012].

Figure 1: Visualization of the bipartite hypergraph G2,3.
The thick hyperedge is the proper hyperedge U1 ∪ V2 =
{u1, u

′
1, v2, v

′
2}.

Definition 2.2. For a vertex subset W ⊆ U ∪ V we define
the incident hyperedges

δ(W ) := {e ∈ E : e ∩W 6= ∅, e \W 6= ∅}

to be the set of all hyperedges having at least one vertex in
both W and (U ∪ V ) \W .

A hyperassignment in G2,n is a subset H ⊆ E of pair-
wise disjoint hyperedges that cover U and V , i. e., for all
e1, e2 ∈ H , e1 ∩ e2 = ∅, and

⋃
H = U ∪ V . Given a

cost function cE : E → R, the cost of a hyperassignment
is
∑
e∈H cE(e). The hypergraph assignment problem with

input (G2,n, cE) consists of finding a hyperassignment in
G2,n of minimum cost w. r. t. cE .

For bipartite hypergraphs G2,n, the hypergraph assign-
ment problem can be seen as a combination of two assign-
ment problems. Namely, observe that for every hyperas-
signment H and every part Ui and Vi, i ∈ {1, . . . , n}, the
set of incident hyperedges δ(Ui) ∩H and δ(Vi) ∩H con-
sists either of one proper hyperedge or of two edges. If we
decide for every part Ui and Vi whether the hyperassign-
ment to be constructed is incident to one proper hyperedge
or to two edges, we can restrict the hyperedge set of G2,n

to

– the set of edges connecting pairs of vertices from the
parts Ui, Vi that will be incident to edges—this is the
first assignment problem, and

– the proper hyperedges {Ui ∪ Vj} for Ui and Vj that
will be incident to proper hyperedges—viewing Ui
and Vj as composite vertices and the hyperedges as
edges connecting them—this is the second assignment
problem.

Solving these two assignment problems independently pro-
duces the minimum cost hyperassignment subject to the
fixed edge and hyperedge incidences.

The HAP in G2,n can thus be solved in two steps. The
first step decides which parts Ui and Vi will be incident to
proper hyperedges. Of course, we must chose the same
number of parts on the U - and the V -side, equal to the
number of proper hyperedges in the hyperassignment to be
constructed; the other parts will be incident to edges. The
second steps consists of solving the resulting two assign-
ment problems stated above.
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3 Expected optimal values for the
random HAP with exponential or
uniform costs

Predicting the optimal value of a random hypergraph as-
signment problem inG2,n involves a prediction of the num-
ber of proper hyperedges in an optimal solution. This num-
ber depends on how advantageous it is to choose a proper
hyperedge instead of two edges (so that one has just one
number adding to the cost instead of two) compared to the
disadvantage of having less freedom (there are fewer pos-
sibilities to cover a single vertex with a proper hyperedge
than with an edge) when searching for a hyperassignment
with the least possible cost. We conjecture that one can
expect that an optimal hypergraph assignment in G2,n con-
tains half of the possible number of proper hyperedges.

Conjecture 3.1. The expected number of proper hyper-
edges in a minimum cost hyperassignment in G2,2n with
cost function cE such that all cE(e), e ∈ E are i. i. d. ex-
ponential random variables with mean 1 or i. i. d. uniform
random variables on [0, 1] is n.

Table 1 backs this conjecture. It gives computational re-
sults for the random hypergraph assignment problem in the
bipartite hypergraph G2,n with i. i. d. uniform random vari-
ables on [0, 1] and i. i. d. exponential random variables with
mean 1 as hyperedge costs. For every n, we report the
mean value and the standard deviation of the optimal cost
value and the number of proper hyperedges in the optimal
solution for 1000 computations. The HAPs were solved as
integer programs using CPLEX 12.5.

The first column (n) of Table 1 shows the number of
parts on the U - and V -side. Columns 2 and 6 (opt. val.)
give the mean optimal values. Their standard deviations
can be seen in columns 3 and 7 (s. d.) for the two cost func-
tion distributions, respectively. Columns 4 and 8 (# pr. hy.)
show the number of proper hyperedges in the optimal so-
lutions found, columns 5 and 9 (s. d.) show their standard
deviations. The important finding w. r. t. Conjecture 3.1 is
that the values in columns 4 and 8 are about half the values
in column 1 in each row.

The computational results also suggest that the expected
optimal cost converges to a value around 1.05 for both dis-
tributions. Although for larger n more hyperedges are con-
tained in a hyperassignment, the optimal value does not in-
crease much. This can be intuitively explained by noting
that for larger n there are also more possible hyperassign-
ments to select from, and the chances to find a hyperassign-
ment that has a low cost are therefore still good even if it
will contain more hyperedges.

We will now compute a lower and upper bound on the
expected value of a minimum cost hyperassignment in
G2,2n with n proper hyperedges for the exponential dis-
tribution. To this end, we will use the following result: For
a complete bipartite graph with vertex sets of size m and n
and with i. i. d. exponential random variables with mean 1

as edge costs, the expected minimum value of the sum of k
pairwise disjoint edges (this is called a partial assignment)
is

E(m,n, k) :=
∑
i,j≥0

i+j≤k−1

1

(n− i)(m− j) .

This result was conjectured in
[Coppersmith and Sorkin, 1999] and first proved in
[Linusson and Wästlund, 2004]. The latter paper also
shows that for m = n = k this term can be written as

E(n, n, n) =

n∑
i=1

1

i2
.

That this formula gives the expected value of a random as-
signment is Parisi’s Conjecture.

Theorem 3.2. Let E be the expected value of the minimum
cost of a hyperassignment in G2,2n = (U, V,E) with ex-
actly n proper hyperedges and cost function cE with i. i. d.
exponential random variables cE(e) with mean 1 for all
e ∈ E. The following holds for n→∞:

0.3718 < E < 1.8310.

Proof. By definition,

E(n) := E(2n, 2n, n) =
∑
i,j≥0

i+j≤n−1

1

(2n− i)(2n− j) .

UsingE(n), we can bound the expected value of a hyperas-
signment inG2,2n with i. i. d. exponential random variables
with mean 1 as hyperedge costs restricted to the hyperas-
signments with n proper hyperedges as follows.

For the lower bound, observe that in the best possible
hyperassignment the selected n proper hyperedges can be
only as good as the n pairwise disjoint proper hyperedges
with the least possible cost sum in G2,2n. Also, the se-
lected 2n edges can be only as good as the 2n pairwise
disjoint edges with the least possible cost sum in G2,2n.
Thus, E(n) + E(2n) is a lower bound for E.

On the other hand, choosing the n pairwise disjoint
proper hyperedges with the least possible cost sum in
G2,2n and finding the best possible edges for the remain-
ing “unused” vertices leads to an upper bound of E(n) +
E(2n, 2n, 2n) for E.

To transform the two-indexed sum describing E(n) to
a sum with only one index, we calculate the difference
D(n) := E(n+ 1)− E(n) and use the recursive formula

E(n) = E(1) +

n−1∑
i=1

D(i) =
1

4
+

n−1∑
i=1

D(i). (1)

We get

D(n) = E(n+ 1)− E(n)

= E(2n+ 2, 2n+ 2, n+ 1)− E(2n, 2n, n)
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Table 1: Computational results for random hypergraph assignment problems in G2,n for i. i. d. uniform random variables on [0, 1] or
i. i. d. exponential random variables with mean 1 as hyperedge costs. The mean optimal values (column 2 and 6) and their standard
deviations (column 3 and 7) are rounded to the third decimal place. The number of proper hyperedges in the optimal hyperassignments
(column 4 and 8) and their standard deviations (column 5 and 9) are rounded to one decimal place. 1000 computations were done for
each value of n and each distribution. The values in columns 4 and 8 are about half the value of column 1 in each row. This supports
Conjecture 3.1.

uniform on [0, 1] exponential with mean 1
n opt. val. s. d. # pr. hy. s. d. opt. val. s. d. # pr. hy. s. d.

10 0.943 0.177 5.5 2.0 1.019 0.206 5.3 2.0
20 1.006 0.136 10.4 2.8 1.039 0.141 10.4 2.8
30 1.018 0.109 15.5 3.4 1.049 0.117 15.3 3.4
40 1.037 0.096 20.7 4.0 1.045 0.097 20.5 3.9
50 1.036 0.085 25.8 4.4 1.054 0.085 25.4 4.3
60 1.044 0.078 31.0 4.8 1.050 0.080 30.6 4.7
70 1.041 0.074 35.8 4.9 1.053 0.079 35.6 5.1
80 1.044 0.070 40.9 5.4 1.054 0.069 40.6 5.4
90 1.044 0.066 45.9 5.8 1.053 0.066 45.9 5.8

100 1.047 0.061 50.9 6.3 1.057 0.063 50.6 6.3
110 1.047 0.058 56.3 6.3 1.054 0.060 56.1 6.4
120 1.048 0.057 61.1 6.6 1.052 0.056 61.1 6.7
130 1.051 0.055 66.4 7.1 1.054 0.053 66.3 6.9
140 1.053 0.054 71.6 7.4 1.053 0.051 71.3 7.1
150 1.051 0.053 76.0 7.7 1.051 0.050 76.2 7.5
160 1.048 0.049 81.6 7.4 1.054 0.048 81.2 7.6

=
∑
i,j≥0
i+j≤n

1

(2n+ 2− i)(2n+ 2− j)

−
∑
i,j≥0

i+j≤n−1

1

(2n− i)(2n− j) .

Shifting the index of the first sum to get the same summand
type in both sums yields

=
∑

i,j≥−2
i+j≤n−4

1

(2n− i)(2n− j)

−
∑
i,j≥0

i+j≤n−1

1

(2n− i)(2n− j) .

We now split the sums to sums with index range i, j ≥ 0,
i+ j ≤ n− 4 so that they can cancel. The remainder is as
follows. For the first sum, it is used that it is symmetric in
i and j. The term (4n+3)2

4(n+1)2(2n+1)2 is the sum of the values
where −2 ≤ i, j ≤ −1. This has to be subtracted from
the first term as otherwise these values would be counted
twice.

D(n) = 2 ·
∑

−2≤i≤−1,j≥−2
i+j≤n−4

1

(2n− i)(2n− j)

− (4n+ 3)2

4(n+ 1)2(2n+ 1)2

−
∑
i,j≥0

i+j=n−1

1

(2n− i)(2n− j)

−
∑
i,j≥0

i+j=n−2

1

(2n− i)(2n− j)

−
∑
i,j≥0

i+j=n−3

1

(2n− i)(2n− j) .

Splitting the first sum into two parts with i = −1 and i =
−2 and substituting j by a− i where i+ j = a yields

D(n) =

n−3∑
j=−2

2

(2n+ 1)(2n− j)

+

n−2∑
j=−2

2

(2n+ 2)(2n− j)

− (4n+ 3)2

4(n+ 1)2(2n+ 1)2

−
n−1∑
i=0

1

(2n− i)(n+ 1 + i)

−
n−2∑
i=0

1

(2n− i)(n+ 2 + i)

−
n−3∑
i=0

1

(2n− i)(n+ 3 + i)
.
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Using the notation Hn =
∑n
i=1

1
i for the n-th harmonic

number and partial fraction decomposition to get denomi-
nators linear in n for the last two summations, we get

D(n) =
2H2n+2 − 2Hn+2

2n+ 1
+

2H2n+2 − 2Hn+1

2n+ 2

− (4n+ 3)2

4(n+ 1)2(2n+ 1)2
− 2H2n − 2Hn

3n+ 1

− 2H2n − 2Hn+1

3n+ 2
− 2H2n − 2Hn+2

3n+ 3

=
2H2n + 2

2n+1 + 2
2n+2 − 2Hn − 2

n+1 − 2
n+2

2n+ 1

+
2H2n + 2

2n+1 + 2
2n+2 − 2Hn − 2

n+1

2n+ 2

− (4n+ 3)2

4(n+ 1)2(2n+ 1)2
− 2H2n − 2Hn

3n+ 1

−
2H2n − 2Hn − 2

n+1

3n+ 2

−
2H2n − 2Hn − 2

n+1 − 2
n+2

3n+ 3
.

Finally, simplification yields

D(n) = −(H2n −Hn)·
9n2 + 11n+ 4

3(n+ 1)(2n+ 1)(3n+ 1)(3n+ 2)

+
8n2 + 13n+ 6

12(n+ 1)2(2n+ 1)2(3n+ 2)
.

To get bounds on E(n) using Equation (1), we first use
that

∞∑
n=1

8n2 + 13n+ 6

12(n+ 1)2(2n+ 1)2(3n+ 2)

= −1

4
− π√

3
+
π2

9
− 10 ln(2)

3
+ ln(27). (2)

Then, observe that H2n −Hn is a non-negative number
monotonically increasing with n. Also, this is an alternat-
ing harmonic number that for n → ∞ converges to ln(2).
For n = 80, H2n − Hn can be calculated and results in a
fraction, which is > 0.69. Therefore, for n ≥ 80,

0.69 < H2n −Hn < ln(2) (3)

Now, computing the partial sum

79∑
n=1

−(H2n −Hn)
9n2 + 11n+ 4

3(n+ 1)(2n+ 1)(3n+ 1)(3n+ 2)

exactly and the limes

∞∑
n=80

−(H2n −Hn)
9n2 + 11n+ 4

3(n+ 1)(2n+ 1)(3n+ 1)(3n+ 2)

after substituting forH2n−Hn the lower and upper bounds
given by (3), Equations (1) and (2) yield

0.1859 < lim
n→∞

E(n) < 0.1860.

Thus, we get for the lower bound

lim
n→∞

(E(n) + E(2n)) = 2 · lim
n→∞

E(n)

> 2 · 0.1859

= 0.3718

and for the upper bound

lim
n→∞

(E(n) + E(2n, 2n, 2n)) = lim
n→∞

E(n)

+ lim
n→∞

E(2n, 2n, 2n)

< 0.1860 +
π2

6
< 1.8310.

We remark that the upper bound computed in Theo-
rem 3.2 is greater than the expected optimal value of the
random assignment problem π2

6 = 1.6449 . . . . We believe
that it must be possible to reduce it, because moving from
an assignment problem in a complete bipartite graph with
4n vertices on each side to a HAP in G2,2n adds more pos-
sibilities (still all assignments are feasible solutions but us-
ing hyperassignments with proper hyperedges gives addi-
tional ones). Indeed, it is clear that if we do not prescribe
the number of proper hyperedges in an optimal solution,
the expected optimal value of a hyperassignment in G2,2n

will tend to some number ≤ π2

6 . As already discussed,
the computational results shown in Table 1 suggest that the
correct number is some value around 1.05, much smaller
than π2

6 .

4 Regularity rewarding costs
Hypergraph assignment problems arising from practical
applications feature costs for proper hyperedges that de-
pend on the costs of the edges that they contain. Indeed,
proper hyperedges model a “reward” for choosing combi-
nations of edges; in this way, one can model a so-called
regularity of the solution [Borndörfer et al., 2011]. More
precisely, one considers partitioned bipartite hypergraphs
and wants to favor the simultaneous choice of a set of edges
that connects all nodes in a certain part inU to all nodes in a
certain part in V . To this purpose, one introduces a proper
hyperedge that represents the union of such pairwise dis-
joint edges and that has a cost that is smaller than the sum
of the edge costs. If different edge combinations result in
the same hyperedge, the cost is inferred from the edge set
with the minimum cost sum. Here is a more formal state-
ment.
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Definition 4.1. Let G = (U, V,E) be a partitioned hyper-
graph. For e ∈ E, let

E(e) := {E′ ⊆ E1 : e1 ∩ e2 = ∅ ∀e1, e2 ∈ E′

with e1 6= e2,
⋃
E′ = e}

be the set of all pairwise disjoint edge sets with union e.
For some penalty p ≥ 0, we call a cost function cpE :

E → R regularity-rewarding if for all proper hyperedges
e ∈ E2,

cE(e) = min
E′∈E(e)

(∑
e′∈E′

cE(e′)− p · |E′|
)
.

The greater p, the more irregularity is punished and
regularity rewarded. We remark that the cost of a hy-
peredge in a vehicle rotation planning model depends on
several other parameters such as an additional irregularity
penalty for hyperedges that are not inclusion-wise maximal
[Borndörfer et al., 2011]. This is the reason why we call p
a penalty and not a bonus or a reward.

A way to define a regularity-rewarding random cost
function cpE is to draw a random basic cost re for each
edge e ∈ E1, e. g., from a uniform distribution on [0, 1]
or an exponential distribution with mean 1, and then to set

cpE(e) :=


re + p if e is an edge,
minE′∈E(e)

∑
e′∈E′ re′ if e is a proper

hyperedge.

In the following, we will assume that cpE is structured in
this way with arbitrary re.

For a given bipartite hypergraph G2,n = (U, V,E) and
random basic costs re for the edges e ∈ E1, we denote by
z(h, p) the minimal cost value of a hyperassignment with
penalty p that contains exactly 0 ≤ h ≤ n proper hyper-
edges.

Obviously, the number of proper hyperedges and the
value of an optimal solution will depend on p. If p = 0,
there is no reward for choosing a proper hyperedge. For
every solution using proper hyperedges, we can find a solu-
tion with the same value that contains only edges by replac-
ing each proper hyperedge {ui, u′i, vj , v′j} by either the two
edges {ui, vj}, {u′i, v′j} or the two edges {ui, v′j}, {u′i, vj}
depending on which two edges have the lower cost sum.
On the other hand, if p is very large, choosing edges for
a solution becomes so disadvantageous that the number of
proper hyperedges in an optimal solution will become very
high.

Fortunately, knowledge about the case p = 0 gives in-
formation about all other penalties as the following theo-
rem shows. Thus, we do not need to analyze random HAPs
for regularity-rewarding cost functions separately for each
penalty p.

For some random basic cost distribution, we denote by
Z(h) the expected value of z(h, 0) with respect to this dis-
tribution. Although z(h, 0) is defined only for integral h,

we will view Z(h) as a continuous, monotonically increas-
ing, differentiable function on [0, n]. This will allow us
to formulate our result in a much easier way than if we
would have to replace the derivative by its discretization.
We can require Z(h) to be monotonically increasing, be-
cause z(h, 0) is monotonically increasing with increasing
h. The reason is that, as described above, using proper
hyperedges in the solution cannot lead to smaller optimal
values than using only edges in the case p = 0.

Theorem 4.2. Consider the complete bipartite hypergraph
G2,n = (U, V,E) and let re, e ∈ E1 be random basic
costs chosen from some random distribution. Denote by
h1
d, . . . h

k
d the solutions to the equation Z ′(h) = 2p and let

h∗ = arg min
h∈{0,h1

d,...,h
k
d,n}

(Z(h)− (2n− 2h)p)

Then the expected number of proper hyperedges in an op-
timal solution to the HAP in G2,n w. r. t. cpE with basic ran-
dom costs re is h∗ and the expected optimal value of the
random HAP is

Z(h∗)− (2n− 2h∗)p.

Proof. First, observe that

z(h, p) = z(h, 0) + (2n− 2h)p

holds since the cost of each hyperassignment H w. r. t. cpE
is

cpE(H) =
∑
e∈E

cpE(e)

=
∑
e∈E1

cpE(e) +
∑
e∈E2

cpE(e)

=
∑
e∈E1

(re + p) +
∑
e∈E2

min
E′∈E(e)

∑
e′∈E′

re′

=
∑
e∈E1

re + |E1 ∩H|p

+
∑
e∈E2

min
E′∈E(e)

∑
e′∈E′

re′

=
∑
e∈E1

re + (2n− 2|E2 ∩H|) p

+
∑
e∈E2

min
E′∈E(e)

∑
e′∈E′

re′

=
∑
e∈E

c0E(e) + (2n− 2|E2 ∩H|) p

= c0E(H) + (2n− 2|E2 ∩H|) p.

Since this holds for all random basic costs, it also holds for
the expected value of all random basic cost distributions
and we get

E(z(h, p)) = Z(h) + (2n− 2h)p.

Its derivative is Z ′(h) − 2p. A minimum of a differen-
tiable function is attained either at the bounds or where the
derivative is equal to zero, which proves the theorem.
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5 Discussion
In this paper, we have presented results on the expected
minimum cost of the random hypergraph assignment prob-
lem for two types of cost functions.

For the first type, i. i. d. exponential random variables
with mean 1 or i. i. d. uniform random variables on [0, 1],
we conjectured that the number of proper hyperedges in
an optimal solution is expected to be n for the hypergraph
G2,2n, and showed computational results supporting this
conjecture. Assuming this number of proper hyperedges in
an optimal solution, we proved bounds on the expected op-
timal value for a vertex number tending to infinity. A proof
of our conjecture as well as convergence results and either
sharper bounds or an exact limit would be a natural contin-
uation of our work towards a generalization of Mézard and
Parisi’s Conjecture. A first step is to extend the proof of
our bounds to fixed numbers of hyperedges other than n by
altering the computation.

For the second type of regularity-rewarding cost func-
tions, we established a connection between results for dif-
ferent penalty values. This result could be extended by an
analysis similar to that for the first cost function type in
future.

All our results hold for complete partitioned hypergraphs
G2,n. A further line of research could try to extend these
results to bipartite hypergraphs with larger part sizes or
even bipartite hypergraphs that are not partitioned or/and
not complete.

Our results show how to approach the random HAP
using results for the random assignment problem. Prob-
ably approaches using more sophisticated probability-
theoretical results are needed to understand more about the
problem.
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