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Barrier Resilience of Visibility Polygons

Alexander Gilbers
Institute of Computer Science, University of Bonn 53113 Bonn, Germany
E-mail: agilbers@gmx.de

Keywords: computational geometry, barrier resilience, visibility

Received: June 21, 2014

We consider the problem of computing the Barrier Resilience of a set of Visibility Polygons inside a
Polygon. We show that in simple polygons the problem is solvable in time linear in the number of edges.
In polygons with holes the problem is APX-hard, so only for special cases can we provide polynomial time
algorithms.

Povzetek: Prispevek analizira problematičnost prehoda poligona.

1 Introduction
Put yourself in a smuggler’s shoes. You want to deliver
some goods to a fixed destination but you do not want to be
seen by many witnesses. Unfortunately, there is no way to
your destination that is completely unobserved, nor can you
conceal your goods. Perhaps you just want to minimize the
number of witnesses or perhaps there is some number k of
witnesses that still is acceptable.

It is not important to you, how often or how long the
witnesses see you on your way. You only care for their
number.

You are given a map of your city, in which your starting
and your target point are marked as well as the positions of
all the possible witnesses, see Figure 1. Can you compute
the path that is seen by the minimum number of witnesses?
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Figure 1: Path π from s to t is seen by two witnesses (black
points).

This turns out to be a special case of the BARRIER RE-
SILIENCE problem. Given a start point s and a target point
t as well as the positions and ranges of n sensors that are
designed to detect intruders, we want to find a path from
s to t that minimizes the number of its witnesses (i.e. the

sensors that detect the agent traveling on this path, see Fig-
ure 2 for an instance of the BARRIER RESILIENCE problem
for disk sensors). We call an optimal path in this respect a
minimum witness path.

This problem can be seen from two sides: On the one
hand, it is a path planning problem. On the other hand, the
minimum possible number of sensors that detect a path of
the agent is an important parameter of the sensor network.
It is called the barrier resilience of the network. sensor
networks with a low barrier resilience are more error-prone
than those with high barrier resilience. In the analysis of
a sensor network that is designed to detect an intruder, the
minimum witness path points to the network’s weak spot.
Therefore, to optimize sensor networks it would be very
helpful to have an efficient method at hand to compute the
barrier resilience of the network or, even better, a minimum
witness path.

There are many different types of sensor networks con-
ceivable. We here restrict our attention to the very natural
case where the sensor regions are visibility domains.

In the following sections, we will show that we can find
minimum witness paths in polynomial time in simple poly-
gons and in polygons with one hole. On the other hand
we prove that the BARRIER RESILIENCE problem for vis-
ibility polygons in polygons with holes is APX-hard. In
particular, we get a stronger inapproximability factor than
the hardness results known for line segments.

The results in this paper have also been presented in my
thesis [9].

2 Related work

Finding minimum witness paths is related to several other
tasks. Algorithms that are concerned with the search for
shortest paths in polygons (see for example [10]) or min-
imum cost paths in graphs, where weights are assigned to
the edges of the graph [6] are among the best-researched
topics in the field of algorithms.
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Figure 2: An instance of the BARRIER RESILIENCE problem for
disks

While this paper is about getting somewhere without be-
ing seen by too many people, there are many works con-
cerning itself with deploying guards or cameras so that ev-
erything of interest is seen at least once or at least a certain
number of times. In this category fall the many variations
of the art gallery problem, see for example [14].

Also problems that combine path planning questions
with guarding problems have been examined. In the
WATCHMAN ROUTE problem, introduced by Chin and
Ntafos [5] the task is to find a shortest closed path π from
a given starting point through a polygon P such that every
point of P can be seen from some point of π. Since then,
various versions of the WATCHMAN ROUTE problem have
been defined. The one most strongly related to our problem
is the ROBBER problem that was defined by Ntafos in 1990
[13]. Given a set of edges S and a set of threats T , a robber
in a simple polygon P wants to find a shortest cycle from
which he can see all of S, while not being seen by any of
the threats. In this setting, the problem has got a solution
only if there exists such a path outside the visibility poly-
gons of the threats. Ntafos gives an algorithm that solves
the problem in time O(n4 log log n).

In [7] Gewali et al. define a special case of the
WEIGHTED REGIONS problem [12] and apply it to the fol-
lowing problem. Given a polygon with holes, a starting
point s, a target point t and a set of k threats. Find the
least risk path from s to t. The authors give an algorithm
that computes a least risk path in time O(k4n4). The risk
is measured by the total length of the subpaths that are in-
side the visibility polygon of some threat. Here lies the
main difference to our model in which the cost of using a
witnesses visibility region is fixed, no matter how often or
how long the path traverses this region.

In 2005, in the environment of sensor networks Kumar
et al. [11] introduce the notion of a k-barrier coverage. In
their setting, somebody wants to cross a belt region over
which a sensor network is deployed. The belt region is
called k-barrier covered if every path that crosses the belt

is detected by at least k sensors.
Bereg and Kirkpatrick [2] introduce the notion of bar-

rier resilience: Given a collection of geometric objects that
model the ranges of sensors and two points s, t in the plane,
find the minimum number of objects one has to remove
such that s and t are in the same component of the com-
plement of the remaining objects. I.e. the barrier resilience
is the maximum k such that the region is k-covered. They
give an approximation algorithm for this problem when the
sensor ranges are unit disks. Until today it is unknown if
this original problem is NP -hard. In [1] Alt et al. show
that the BARRIER RESILIENCE problem for line segments
is APX-hard and they also define related problems. In [15]
Tseng and Kirkpatrick strengthen the result to unit line seg-
ments. Gibson et al. [8] give an approximation algorithm
for a path that visits multiple points and tries to avoid as
many unit disks as possible. Chan and Kirkpatrick [4] give
a 2-approximation algorithm for the case of Non-identical
Disk Sensors.

One can also view the barrier resilience problem in a
very abstract graph-theoretic setting where an agent wants
to travel from some start vertex of a graph G to some tar-
get vertex. In this setting the barriers are arbitrary subsets
of the edge set of G. The barriers can also be interpreted
as colors that are assigned to the edges. This problem is
then called the MINIMUM COLOR PATH problem. Carr et
al. [3] show that unless P = NP, the optimal solution can-
not be approximated to within a factor O(2log1−δ(|C|) |C|),
where |C| is the number of colors and δ(|C|) = 1

log loga |C| ,
for any constant a < 1/2. In [16], Yuan et al. use the
Minimum Color Path model to analyze reliability in mesh
networks.

3 Minimum witness paths in simple
polygons

In our first setting the starting point s and the target point t
lie inside a simple polygon P , and we are given a finite set
of witness points W ⊂ P . We want to find a path from s to
t that is seen by as few as possible witnesses. Let us restate
this formally.

Definition 1. Let a polygon P , two points s, t ∈ P and
a set of so-called witness points W = {w1, . . . , wn} ⊂
P be given. The barrier resilience of W is the minimum
cardinality of a subset V of W such that there is an s − t-
path in P that does not touch any visibility polygon of a
point in W \ V . A path that attains this minimum is called
a minimum witness path.

We use the usual notion of visibility inside simple poly-
gons that is also illustrated in Figure 3.

Definition 2. Let P be a simple polygon. We say that p1 ∈
P sees p2 ∈ P iff the line segment p1p2 is a subset of P .
We say that a witness point w ∈ P sees the path π iff there
is a point p on π that is seen by w.
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Figure 3: Path π is seen by witness v but not by witness w.

It turns out that in this setting one can find an optimal
path very efficiently. The key insight is the following struc-
tural lemma.

Lemma 1. Let P a simple polygon, points s, t ∈ P and a
witness point w ∈ P . If there is a path π in P from s to t
that is not seen by w, then the shortest path from s to t in
P is not seen by w.

Before we prove the lemma, we draw the following con-
clusions that settle the problem for simple polygons.

Theorem 1. Given a simple polygon P with n edges, two
points s, t ∈ P and a set of witness points W ⊂ P , the
shortest path between s and t is an optimal solution to the
minimum witness path problem.

Proof. Let π′ denote the shortest path from s to t. By
Lemma 1, for every path π between s and t the set W ′ =
{w ∈ W | w sees π′} is a subset of W (π) = {w ∈ W |
w sees π} and consequently |W ′| ≤ |W (π)|.

Corollary 1. Given a simple polygon P with n edges, two
points s, t ∈ P and a set of witness points W ⊂ P , we can
determine a minimum-witness path in time O(n).

Proof. The shortest path between two points inside a sim-
ple polygon with n edges can be computed in time O(n)
[10].

The proof of the lemma uses the simple topological
structure of the polygon.

Proof of Lemma 1. Let π′ be the shortest path between s
and t and w ∈ P a point that sees the point p on π′. If w
sees s or t it obviously sees every path from s to t. Other-
wise consider the line L(w, p) through w and p.

The points w and p lie in the same connected compo-
nent C of L(w, p) ∩ P . Now P \ C splits into at least two
connected components. As π′ is the shortest path, s and
t lie in different components (otherwise π′ could be short-
ened to a path that is completely contained in the common
component of s and t).

It follows that every path from s to t must pass C and is
therefore seen by w.

t
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Figure 4: The connected component C of L(w, p) ∩ P that con-
tains w and p splits P into two connected components, one con-
taining s, the other containing t.

4 Polygons with holes

The next step is looking at polygons with holes. So now
we have a simple polygon P ′ and a collection of sim-
ple polygons H1, . . . ,Hm, called the holes, where every
hole lies in the interior of P ′ and Hi ∩ Hj = ∅ for all
1 ≤ i < j ≤ m. The polygon with holes P then is
defined to be P = P ′ \ ⋃mi=1 H̊i, where H̊i denotes the
topological interior of Hi. Let |P | denote the total number
of edges of P . Two points p1, p2 ∈ P see each other if and
only if the line segment p1p2 is completely contained in P .

Again we are given two points s, t ∈ P and witnesses
w1, . . . , wn ∈ P in general position, and we want to find
a path π inside P from s to t minimizing the number of
witnesses who can see π.

First we show that the problem is APX-hard by a reduc-
tion from Vertex Cover that provides a stronger factor than
other hardness proofs in the context of barrier resilience.

Theorem 2. Estimating the barrier resilience of a set of
visibility polygons inside polygons with holes is APX-hard.
In particular, unless P = NP , the barrier resilience of vis-
ibility polygons with holes cannot be approximated within
a factor of 1.3606. If the Unique Games Conjecture is true,
then the barrier resilience cannot be approximated within
any constant factor better than 2.

Proof. We show this by an approximation factor preserving
reduction from MINIMUM VERTEX COVER.

Let G = (V,E) be an instance of vertex cover. Let
e1, e2, . . . , em an enumeration of the edges, v1, v2, . . . vn
an enumeration of the vertices.

We now construct a polygon with holes P in the plane
that contains a start point s, a target point t and n witness
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Figure 5: On the left side of the polygon there are only narrow
slits between the holes through which the witnesses (which corre-
spond to the vertices) can peek.

points w1, . . . wn such that every path from s to t in P cor-
responds to a vertex cover of G.

To this end we build a big surrounding rectangle P ′ =
[−2(m+ n+ 1),m+ 2]× [−m− n− 1,m+ n+ 1]. We
place the start point at the origin, s = (0, 0) and the target
point at t = (m+ 1, 0).
For every edge ej in E, we add a thin rectangular hole
Rj = [j, j + 0.5]× [−j, j].
Then we place the witness points at wi = (−2(m +
n), i − dn2 e). If vk and vl (with k ≤ l) are the vertices
incident to edge ej we define L(j) = wk, H(j) = wl
to be the witnesses corresponding to the vertices with
lower and with higher index, respectively. We also define
f : {w1, . . . , wn} −→ {v1, . . . , vn} to be the bijection that
maps every wi to vi.

To construct the holes that model the vertex-edge inci-
dences we proceed as follows:
We start with one rectangle
Z = [−2(m+n)+0.5,−2(m+n)+1]× [−m−n,m+n]
and split it into 2m+ 1 pieces.
For every edge ej we define the two triangles

THj = ∆(H(j), (j, j − 0.25), (j, j − 0.5))

and

TLj = ∆(L(j), (j, 0.25− j), (j, 0.5− j)).

Now we construct the 2m+ 1 holes by simultaneously cut-
ting the interiors of all these triangles out of Z. We set

Z ′ = Z \
m⋃
j=1

( ˚THj ∪ ˚LHj)

We add the connected components of Z ′ as holes to our
scene.
By this construction every witness wi sees a rectangle Rj
iff the vertex vi is incident to ej .

s t

Figure 6: Far away on the right side portions of visibility regions
hit the rectangles corresponding to edges.

We first notice that this reduction is clearly polynomial-
time. The total number of edges of P is 12m + 8 and the
number of points (witnesses and start/target) is n+2, each
of which can easily be computed in polynomial time.

To see that every path from s to t that is seen by k wit-
nesses corresponds to a vertex cover of G, observe the fol-
lowing: For every edge ej the quadrilateral with corners
(j, 0.5 − j), (j, j − 0.5), H(j), L(j) contains s and does
not contain t. Thus every path from s to t must cross one
of its four sides. One of the sides is the edge of a hole
that cannot be crossed. The other three sides are visibility
segments of L(j) and H(j), respectively, and thus cross-
ing them means to be seen by L(j) or H(j). Therefore, if
π is a path from s to t that is seen by the set of witnesses
W (π) then the image of W (π) under f is a vertex cover
of G. As f is a bijection, the set of witnesses has the same
cardinality as the resulting vertex cover.

On the other hand, if C ⊂ V is a vertex cover of G we
can construct a path from s to t with at most the same num-
ber of witnesses. From s we first go to the point (1, 0).
Now we are on the boundary of R1 that corresponds to
edge e1. By definition, f(H(1)) or f(L(1)) are in C.
If f(H(1)) is in C, our path proceeds to (1, 1), crossing
the visibility region of H(1) (but no other visibility re-
gion), and then to (1.5, 1). Otherwise, the path proceeds
to (1,−1) (crossing the visibility region of L(1)) and then
to (1.5,−1). In both cases, the next way point is (2, 0).
We continue in this manner, getting, for every j, from (j, 0)
to (j + 1, 0) by crossing the visibility region of H(j) if
f(H(j)) ∈ C and crossing the visibility region of L(j)
otherwise, until we reach t. The resulting set W (π) of wit-
nesses has at most as many elements as C.
It follows that an α-approximation for the BARRIER RE-
SILIENCE problem yields an α-approximation for MINI-
MUM VERTEX COVER.
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Figure 7: The removal of the segments S1 and S2 splits P into
two connected components. s and t lie in the same connected
component.

Next we show that in the case of one convex hole either
one can ignore the hole (Lemma 2) or one can compute two
paths, one of which is a minimum witness path (Theorem
3).

Lemma 2. Let P be a polygon with one convex hole H ,
(i.e. P = P ′ \ H̊ for some simple polygon P ′ and a convex
polygon H ⊂ P ). Assume that for every point h ∈ H and
for every two line segments S1, S2 ⊂ P ∪H that both have
as one endpoint h and the other endpoint on ∂(P ∪H), s
and t lie in the same connected component of (P ∪ H) \
(S1 ∪ S2). Then there is a unique shortest path from s to t
in P and it is a minimum witness path.

Proof. Take the shortest path π between s and t in P ′ =
P ∪ H . As this is a simple polygon, π is unique. By
assumption, there is no point h ∈ H and line segments
S1, S2 ⊂ P ′ that connect h to the boundary of P ′ such
that s, t lie in different components of P ′ \ (S1 ∪ S2), see
Figure 7. Then π does not intersect H .

Otherwise we could take a point h ∈ π ∩H and draw a
line segment S ⊂ P ′ that crosses π in h and ends in the two
points b1, b2 on the boundary of P ′. Then setting S1 = b1h
and S2 = b2h yields a contradiction to the assumption as s
and t lie in different connected components of P ′\(S1∪S2)
(because the shortest path crosses the segment S exactly
once).

Therefore, π is completely contained in P and is the
unique shortest path between s and t. Now suppose, there
was a path that was seen by less witnesses π′. Then there
was in particular one witnessw that sees π but not π′. Let p
be a point on the path π that is seen by w. Let further S be
the connected component of the intersection L(w, p) ∩ P ′
of the line through w and p with P ′ that contains p and S1

be the connected component of L(w, p) ∩ P that contains
p. If both endpoints of S1 lay on the boundary of P ′ then
s and t were in distinct components of P \ S1. Then every
path from s to t would have to cross S1 and therefore be
seen by w, a contradiction.

Thus, one of the endpoints must lie on the boundary of
H , let us call this endpoint h. If we now set S2 to be the
topological closure of S \ S1, then h, S1, S2 are as above

s

t

S1

S2

π1 π2
H

Figure 8: The removal of either S1 or S2 leaves polygons with
unique shortest paths π1, π2 one of which is a minimum witness
path

and s, t are in different connected components of P ′\(S1∪
S2), a contradiction.

It follows, that there can be no path π from s to t and
witness w such that w sees π but not π′. Thus the shortest
path π is optimal.

Theorem 3. Let P = P ′ \ H̊ a polygon with one convex
hole, s, t be start and target point, respectively. Let there
be line segments S1, S2, each of them connecting a point
on an edge (not a vertex) of H to a point on an edge (not
a vertex) of the boundary of P ∪ H , so that s and t lie in
different connected components of P \ (S1 ∪ S2). Either
the shortest path π1 from s to t in P \ S1 or the shortest
path π2 from s to t in P \ S2 is a minimum witness path in
P .

Proof. Suppose none of them were optimal. Then there
exist witnesses w1, w2 (possibly w1 = w2) and a path π′,
such that w1, w2 do not see π′, but w1 sees point p1 on
π1 and w2 sees p2 on π2. Let T1 and T2 denote the line
segments from boundary to boundary of P ∪H through w1

and p1 and through w2 and p2, respectively. The segments
S1 and T1 together with H as well as S2, T2, H separate
the points s and t. By the existence of π′, T1, T2 and H
together do not separate s and t. The connected component
of s in P \ (T1 ∪ T2) is simply connected and contains
t. As π′ does not cross T1, T2 it crosses both S1 and S2.
s and t lie in different components of P \ (S1 ∪ S2), so
(S1 ∪ S2) is crossed an odd number of times. Now we
can repeatedly replace subpaths between two crossings of
the same segment Si by the direct paths along the segment
(this does not add witnesses) until only one crossing is left,
contradicting the fact, that π′ crosses S1 and S2.

It follows that in this case the barrier resilience can be
computed in polynomial time by computing S1 and S2 and
then the respective shortest paths.
One can show that this also holds if P contains many con-
vex holes that are strictly separated in a sense made precise
below.

Theorem 4. Let P = P ′ \⋃mi=1 H̊i a polygon with convex
holes, s, t ∈ P , W = {w1, . . . , wn} ⊂ P a set of witness
points. Let for every i 6= j there be a line segment Sij ⊂ P
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s.t. Hi and Hj lie in distinct connected components of P ′ \
Sij and Sij is not seen by any witness w ∈ W . Then one
can find a minimum witness path from s to t in polynomial
time.

Proof. Let Cij denote the connected component of P ′ \
Sij that contains Hi. Then for every 1 ≤ i ≤ m, Ci =⋂
j 6=i Cij is a simple polygon, that contains Hi but no Hj

for any other index j 6= i. For j 6= i Ci ∩Cj = ∅. We now
compute in O(|P ′|) time the shortest path π′ from s to t in
P ′. The parts of π′ outside

⋃m
i=1 Ci are already optimal by

Theorem 3. To get the witness-minimal path π through P ,
we replace the parts of π′ inside the Ci by witness-optimal
paths, according to Lemma 2 or Theorem 3. The different
parts do not affect each other. To this end let us call the
point where π′ enters Ci si and the point where it leaves
Ci ti. We then draw a segment B1 from an arbitrary point
on the boundary of Hi to the boundary of Ci. Then we
compute in time O(|P ′| + m) = O(|P |) the shortest path
π1
i from si to ti inCi\(H̊i∪B1). We then choose a second

segment B2 from Hi to the boundary of Ci, that intersects
π1
i (if such a segment exists; otherwise π1

i is optimal in Ci
by Lemma 2) and compute in time O(|P ′|+m) = O(|P |)
the shortest path π2

i from si to ti in Ci \ (H̊i ∪ B2). We
choose the path less seen by witnesses in P to replace the
part of π′ insideCi. (Testing all possible path π1

i or π2
i with

all possible witnesses can be done in total time O(n|P |2)
after the construction of the witnesses’ visibility polygons.)

By sewing together the thus computed parts we get a
witness-minimal path π from s to t in P . The running time
is dominated by the visibility tests that can be carried out
in O(n|P |2) The computation of the polygons Ci can be
computed in time O(m2|P ′|). (Shoot a ray from Hi to find
the boundary ofCi inO(|P ′|+m). Then follow the bound-
ary, turning at every intersection. Testing for the intersec-
tions of the m many Sij is in total time O(m2), following
the boundary of |P ′| and testing if it meets a segment is in
O(m|P ′|).)

We note that as usual for fixed k the question if the
barrier resilience is at most k is polynomially solvable by
checking all k-element subsets of the set of visibility poly-
gons of witnesses.

5 Future work

Finding more classes of polygons where the problem is
polynomially solvable is one direction of future research.
Introducing more sophisticated assumptions on the seper-
atedness of the sensors is another direction. There are also
variations like weighted or mobile sensors waiting to be
examined further. It would be interesting to know if the
inapproximability result is tight, so probably the most im-
portant task is to design an approximation algorithm for the
general case of polygons with arbitrarily many holes.
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