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Standardized piano fingering practice not only concerns the stability of performance, but also directly 

affects the richness and coherence of musical expression. However, due to limitations in teacher 

resources and teaching time, existing piano teaching has significant shortcomings in personalized 

guidance and immediate feedback on errors. Therefore, this article proposes a computer vision based 

piano finger recognition and training system, which integrates convolutional neural networks (CNN) 

for hand static feature extraction, gated recurrent units (GRU) for action time series modeling, and 

introduces spatial attention and temporal attention mechanisms to improve finger recognition accuracy 

and dynamic response capability. The experiment was conducted based on a self built dataset of over 

130000 piano performance images. The system outperformed existing methods in key indicators such as 

finger gesture recognition accuracy (89.8%), macro average F1 value (90.2%), and feedback response 

delay (0.47 seconds), especially in complex action recognition and real-time feedback. The research 

results provide feasible technical support for the piano intelligent teaching system and have good 

application and promotion value. 

Povzetek：Predstavljen je sistem za prepoznavanje prstov pri klavirski igri, ki združuje dvo-tokovno 

arhitekturo CNN (prostorske značilke) + GRU (časovne sekvence) ter prostorsko (SAM) in časovno 

pozornost (SEAM) za boljšo zaznavo ključnih okvirjev in prehodov prstov. Na 130 k označenih slikah 

doseže odlično prepoznavanje, še posebej dobro pri kompleksnih menjavah prstov in hitrih zaporedjih. 

 

1 Introduction 

In recent years, with the continuous development of 

computer vision, deep learning, and artificial 

intelligence technologies, traditional piano education is 

gradually moving towards intelligence, personalization, 

and systematization. It is shifting from improving 

performance skills to using intelligent technology to 

construct personalized learning processes, conduct 

intelligent evaluations, and provide real-time feedback, 

further improving teaching and learning efficiency. In 

this context, piano fingertip action recognition is 

considered one of the key supporting technologies for 

digital music education and is attracting more attention 

from researchers. 

The finger movements during piano performance are a 

highly complex spatio-temporal characteristic: 

spatiality refers to the structural features of fingers, the 

distribution and angle changes of fingertips, etc; 

Timeliness refers to the continuity of actions, changes 

in rhythm, and variations in action modes. This 

motivational process requires the combination of static 

image features and temporal features for precise 

tracking and error correction techniques. However, due 

to the scarcity of existing resources, limited class hours, 

and outdated technology, piano players face great  

 

difficulties in providing feedback on piano playing 

techniques and movements, discovering errors, and 

providing personalized teaching. 

To enhance the tracking and parsing ability of finger 

trajectories, Kapuscinski and Majcher (2024) [1] 

combined R-CNN and Bi LSTM structures to implement 

a complex gesture recognition method that can maintain 

high efficiency and anti-interference ability in complex 

environments, providing guidance for visual detection of 

human operations. Yiqun (2022) [2] applied augmented 

reality AR and IoT technology to piano teaching, which 

can significantly improve students' performance in terms 

of playing fluency, rhythm control, and continuity. Ji, 

Wang, and Wang (2024) also attempted to use Leap 

Motion to capture performers' gesture path trajectories, 

and used the Viterbi algorithm to score their performance 

standardization, improving the system's personalized 

training and real-time feedback functions. 

In terms of technical scoring, Zhao, Wang, and Cai (2023) 

[4] integrated audio-visual routes and sound/timbre 

features into a complex environment based on the ResNet 

audio-visual joint model, opening up new horizons for 

piano performance behavior recognition and technical 

evaluation. Ruan (2024) [5] proved that students who self 

learn through Soft Mozart digital devices have better 
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learning interests and exam results than traditional 

classroom learning methods, demonstrating the 

effectiveness of digital devices in piano teaching. 

Although good progress has been made in existing 

research, there are still three problems with current 

methods: firstly, some studies focus too much on audio 

data and neglect the crucial role of finger movement 

characteristics in skill evaluation; Secondly, traditional 

models such as LSTM have a high computational cost 

and response speed for piano playing movements with 

strong coherence and variability; The third issue is that 

some studies have not accurately simulated the 

numerous hand gesture transitions and finger technique 

details, which limits the system's recognition accuracy 

and feedback quality. 

This article investigates a technique based on computer 

vision for extracting and teaching piano performance 

skills. In terms of deep image feature information of 

the hand, we use convolutional neural networks (CNN) 

for feature extraction; For the time-dependent 

information of finger movements, a Gated Recurrent 

Unit (GRU) and self attention model were used for 

feature extraction in the variation of finger movement 

sequences, which effectively assisted and aided in the 

extraction and recognition of continuous hand 

movements. The keyframe detection dynamic feedback 

mode of the system can timely detect and correct 

erroneous actions, and provide personalized 

suggestions to help students form scientific and 

effective practice habits. At the same time, a video 

library of piano finger movements was established 

using data captured by high-definition binocular 

cameras, which includes different playing styles, 

rhythms, and hand shape transformations. A total of 

about 103000 frames of video were collected and 

annotated by teachers’ multiple times to ensure video 

quality and label accuracy. Based on this, the system in 

this article has also made significant improvements in 

the accuracy, speed, and performance of identifying 

different performers. The purpose of this article is to 

construct a piano finger recognition system that 

combines time and space, to solve the problems of 

delayed response, low operational accuracy, and 

inability to provide personalized teaching solutions in 

traditional teaching systems. This innovative 

methodology is used to assist piano teaching and 

digitize piano practice, in order to achieve efficient 

teaching. 

The remaining part of this article is arranged as 

follows: Part 2 is a detailed review of existing research; 

The third part is the analysis of the overall system and 

key module structure; Part 4 is the experimental plan 

and performance evaluation results; Part 5 discusses 

the advantages and practical applications of this 

method; Part 6 is a summary and development trend of 

the research results of this method. 

 

2 Related work 

Piano finger recognition, as an important research 

direction at the intersection of music education and 

computer vision, integrates image processing, temporal 

modeling, and multimodal interaction technology, 

gradually promoting the development of piano teaching 

towards intelligence and personalization. With the 

deepening trend of digitalization in performance behavior, 

researchers continue to explore how to break through the 

bottlenecks of system accuracy, response speed, and 

adaptability, and build more efficient and intelligent 

finger recognition mechanisms. 

From the perspective of the evolution of image culture 

and performance posture, Lara Schumann (2024) [6] 

analyzed the performance images of pianist Clara 

Schumann in the 19th century, revealing the deep 

connection between performance posture, photography 

techniques, and audience perception. She pointed out that 

images are not only the reproduction of technical actions, 

but also a cultural narrative medium. This viewpoint 

provides inspiration for the image semantic analysis of 

piano performance movements. Holzer (2024) [7] 

proposed a new path of coupling scanning processors 

with visual generation, rhythm control, and 

human-computer interaction from the perspective of 

"image performance", opening up new technological 

ideas for real-time action visualization. 

YunDan, Tian, and Ai (2022) [8] addressed the issue of 

constructing a music education system by designing a 

Multi Tone Recognition Reaction (MPTM) system based 

on neural networks. This system enables students to 

synchronously recognize musical notes and their playing 

techniques, thereby achieving more effective learning. 

The research core of YouW (2023) [9] focuses on the 

problem of rhythm synchronization in the process of 

double piano performance, and proposes a "rhythm 

combination hand synchronization" scheme to effectively 

solve the harmony and rhythm of multiple finger 

synchronization operations. In terms of practical 

application, YuLinna and LuoZhifan (2022)[10] 

conducted research on the situation of university music 

teaching to confirm that the intelligent teaching system 

created using AI technology and image processing 

technology can help improve the technical level and 

learning enthusiasm of new students; Lin, Ding, and Song 

(2024) [11] used a BP neural network to establish a multi 

finger collaborative tapping model, and accurately 

estimated the high five angle using SSA and GA 

optimization methods. The results showed that the 

physiological structure of the hand and training years had 

a significant impact on the performance of the model. 

Regarding the analysis of complex playing movements, 

Takehara et al. (2022) [12] used inertial sensors to deeply 

analyze the tremolo technique and found that high-level 

performers rely on shoulder elbow linkage to complete 

rapid keystrokes. This study emphasizes the importance 

of multi joint coordination for advanced playing skills. 

The experiments conducted by Kanami, Tatsunori, and 

Takayuki (2023) [13] showed that dual visual and 
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auditory stimuli can significantly improve the 

synchronicity between the little finger and ring finger, 

confirming the important value of visual rhythm 

training for finger technique independence. 

In terms of intelligent generation of finger movements 

and action prediction, Gao, Zhang et al. (2023) [14] 

used model reinforcement learning methods to 

optimize finger movement paths based on the principle 

of "minimum motion distance", achieving a balance 

between fluency and physical rationality of 

performance actions. Loo, Chai et al. (2022) [18] 

combined local music elements with piano decoration 

training, and the results showed that visual cues and 

rhythm synchronization significantly improved 

students' confidence and initiative in playing. In terms 

of feature extraction and action modeling, Zhi (2022) 

[16] constructed a multi-channel model based on 

recurrent neural networks (RNNs), fused video images 

with keystroke intensity, and achieved bidirectional 

dynamic analysis of piano fingering behavior. Xin, 

Haoyue and Qiang (2022) [17] proposed a new 

evaluation system with unreasonable fingering rate 

(IFR) as the core from the perspective of "pitch 

difference finger order matching", and made 

significant progress in improving the rationality of 

fingering and compressing the range of action 

switching. 

In summary, existing research has gradually shifted 

from static image processing to multidimensional 

temporal modeling and intelligent feedback systems, 

but there are still shortcomings in the following three 

aspects: 

Firstly, feature extraction heavily relies on static 

information in images and lacks attention to the 

continuity of action time. In complex actions such as 

multi finger concurrency and fast switching, existing 

models lack detailed modeling of the logic and action 

evolution between fingers. Although GRU and LSTM 

have been introduced, they are still prone to frame loss 

and misjudgment problems. 

Secondly, the limitations of training data are prominent. 

The current mainstream models rely heavily on 

standardized performance data and have weak 

adaptability to non-standard movements, individual 

differences, and diverse styles, which limits the 

effectiveness of error recognition and personalized 

feedback, making it difficult to achieve the intelligent 

teaching goal of "individualized". 

Thirdly, multimodal fusion is insufficient. The existing 

systems are based on visual features and do not 

effectively integrate multimodal information such as 

pitch and rhythm. They lack a grasp of the inherent 

connection and complex close relationship between 

performance actions and music expression, which 

reduces their comprehensiveness in recognizing and 

providing real-time feedback on complex music pieces. 

Based on the above reasons, this article proposes three 

research themes as the focus of the next stage of work, 

namely the following three. 

Can a dual channel neural network model that integrates 

image flow and motion trajectory flow be constructed for 

continuous keystrokes and complex rhythm structures, 

effectively improving recognition accuracy and dynamic 

response capability? 

How to combine spatiotemporal attention mechanism to 

dynamically focus the attention area on high-frequency 

related regions in hand images, extract key action nodes, 

and enhance sensitivity and stability to changes in finger 

movement paths? 

Can a training framework with style adaptation and 

personalized feedback capabilities be designed through 

deep feature transfer and behavioral habit modeling, to 

achieve personalized guidance for learners with different 

levels, styles, and habits? 

Based on the above research questions, the main research 

contributions of this article are summarized as follows: 

A dual stream neural network based on the fusion of 

space convolution structure and time recursive structure is 

proposed to realize the collaborative processing of static 

images and dynamic tracks, effectively breaking through 

the limitations of single model in timeliness and 

recognition rate; 

Introducing Spatial Attention Module (SAM) and 

Sequential Attention Module (SEAM) into the network 

architecture to enhance the focusing ability of hand key 

regions and temporal keyframes, and to improve stability 

and anti-interference in complex finger pointing scenes; 

Systematic testing was conducted on piano performance 

datasets covering multiple styles and different difficulty 

levels, and the results showed that the F1 score, feedback 

delay, and action recognition fault tolerance were superior 

to traditional CNN models and single temporal models, 

demonstrating good practical potential and promotional 

value. 

 

3 Suggested solutions 
In response to the shortcomings of existing piano finger 

recognition systems in motion continuity capture, 

recognition accuracy, and real-time feedback, this paper 

proposes a piano finger motion recognition system based 

on convolutional neural networks (CNN), gated recurrent 

units (GRU), and spatiotemporal attention mechanisms. 

The aim is to build a finger recognition and training 

platform that combines spatial and temporal feature 

extraction capabilities, strong dynamic sensitivity, and 

high personalized adaptability. 

In terms of spatial feature extraction, the system uses a 

multi-layer convolutional neural network (CNN) to 

extract features from static images of hands during the 

performance process. Although piano finger movements 

have diversity, key characteristics such as fingertip 

position, joint bending state, and relative finger distance 

have high stability. CNN can effectively extract these 

local structural features while maintaining robustness to 

different perspectives and occlusion situations. For 

example, when a performer crosses the black key area 
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with four fingers, there is a challenge scene where the 

fingers are partially obstructed and have similar shapes. 

CNN can effectively distinguish subtle differences 

between fingers through a multi-scale convolution 

kernel and feature map fusion mechanism, providing 

accurate static information support for subsequent 

action modeling. 

In terms of time dynamic feature modeling, the system 

introduces a Gated Recurrent Unit (GRU) to capture 

the temporal evolution of finger movements. 

Compared to traditional LSTM models, GRU has the 

advantages of simple structure, efficient training, and 

low computational resource consumption, especially 

suitable for frequent action switching, fast duration 

changes, and intensive local adjustments in piano 

performance. GRU can effectively track action paths 

such as continuous keystrokes, glissandos, and revs, 

and construct action sequence expressions with more 

temporal continuity and behavioral dependence, 

significantly improving the system's ability to capture 

complex action patterns. 

To improve the model's attention to critical moments, 

this section combines CNN and GRU based on the 

above model, and adds a spatiotemporal 

two-dimensional attention mechanism. The spatial 

attention module (SAM) in the spatiotemporal 

attention mechanism enhances attention to key parts 

such as hand touch points, arm lifting, and shape 

changing methods by dynamically changing the 

correlation of various positional features, and reduces 

interference from irrelevant backgrounds; The Time 

Attention Module (SEAM) assigns different weights to 

each frame to improve the model's perception of key 

points for action mutations and transposition, avoiding 

the traditional time series method of smoothing all 

frames and reducing accuracy. Models incorporating 

attention mechanisms can maintain high recognition 

accuracy and short response latency in scenarios with 

complex and highly continuous actions and gestures. 

The overall architecture of the system adopts a 

space-time dual flow path design. The input end 

performs lighting balance, angle correction, and hand 

region cropping on the performance video stream 

through a preprocessing module, and then divides it 

into static image sequence and action frame sequence, 

which are respectively input into CNN and GRU paths 

for feature extraction. The feature fusion layer 

integrates the two feature vectors to form a unified 

spatiotemporal feature expression, and finally outputs 

specific finger action category labels through a fully 

connected classifier. During the model training phase, 

the system introduces a multi round error screening 

and stability optimization mechanism, which 

dynamically adjusts the learning rate, filters out 

unstable samples, and strengthens high confidence 

features to effectively improve the model's 

generalization ability and recognition efficiency. The 

system architecture is shown in Figure 1, where each 

module works together and the information flow is clear, 

with good scalability and deployment adaptability. 

 

Figure 1：Dual stream architecture diagram of piano 

finger recognition system 

 

Overall, the system has achieved deep coupling between 

spatial static structure and temporal dynamic changes in 

structural design, and has achieved systematic 

optimization in key action focusing, real-time feedback, 

personalized recognition, etc. It can effectively improve 

the accuracy of action recognition, feedback timeliness, 

and training personalization level in piano teaching. At 

the same time, this architecture has good potential for 

modular evolution and can further integrate audio signals, 

tactile data, and contextual semantic information in the 

future, expanding into a multimodal piano intelligent 

teaching comprehensive platform. 

 

3.1 Finger keypoint detection and recognition 
framework 
The finger movements during piano performance have 

significant structural and continuous characteristics, with 

spatial and temporal features intertwined, including both 

instantaneous gesture configurations and dynamic 

evolution of action paths. To accurately capture and 

analyze this complex behavioral process, this paper 

proposes a finger keypoint detection and recognition 

framework based on spatiotemporal dual path fusion, 

which effectively improves the accuracy and real-time 

feedback capability of piano finger recognition. 

In spatial path design, the system is based on 

Convolutional Neural Network (CNN) for static feature 

extraction of input image sequences. During piano 

performance, there are significant differences in hand 

shape, key pressure, and finger span among different 

performers. CNN has powerful local feature extraction 

and translation invariance, which can effectively capture 

key information such as fingertip position, joint angle, 

and finger spacing. To enhance the robustness of the 

model to different hand shapes and playing styles, the 

input image is first normalized and standardized, mapped 

into a tensor structure: 
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C×W×H×T R∈X (1) 

 

Among them, T represents the number of time steps, H 

and W are the height and width of the image, and C is 

the number of channels. Each frame of the image is 

extracted with multi-scale features through 

convolutional layers, and combined with ReLU 

activation function to achieve nonlinear expression. 

CNN can effectively identify small differences in 

complex actions such as multi finger covering black 

keys and quick finger substitution, and provide a static 

basis for dynamic modeling of subsequent actions. 

In the time path section, a Gated Recurrent Unit (GRU) 

is used to model the time series of performance actions. 

The sliding, turning, and finger substitution behaviors 

in piano performance often span multiple time steps 

and are difficult to accurately distinguish based solely 

on static images. GRU has the efficient ability to 

capture long-term and short-term dependencies, and 

can accurately track the evolution trajectory of actions 

without significantly increasing computational costs. 

The update gate, reset gate, and candidate state of 

GRU jointly construct a dynamic control mechanism 

for action history and current state, effectively 

improving the adaptability of the model to complex 

behaviors, especially in the recognition of high-order 

performance techniques such as fast keystrokes and 

continuous jumps. 

On the basis of extracting spatial and temporal features, 

this paper further introduces a spatiotemporal dual 

attention mechanism to enhance the responsiveness to 

key action nodes. The spatial attention module 

effectively suppresses background interference and 

redundant actions by weighting and highlighting image 

features, such as high information density areas during 

keystrokes and finger alternation; The time attention 

module dynamically adjusts the importance of 

different frames in the time dimension of finger 

movements, focusing on key nodes such as action 

turning points and rhythm changes, to avoid 

performance bottlenecks caused by traditional 

temporal models treating all frames equally. 

Specifically, spatial attention weights are obtained 

through average pooling, max pooling, and 

convolution calculations, effectively focusing on the 

spatial regions that have the greatest impact on 

recognition results; The time attention weight is 

dynamically assigned through a self attention 

mechanism to enhance the sensitivity of the model to 

changes in action rhythm and local action mutations. 

Finally, the system fuses the spatial features extracted 

by CNN with the temporal features generated by GRU, 

and outputs the probability distribution of finger action 

categories through a fully connected classification 

layer. This fusion mechanism not only preserves the 

local static details of finger movements, but also takes 

into account the temporal continuity and rhythm 

changes of action evolution, significantly improving 

recognition accuracy and real-time feedback capability. 

Overall, the finger keypoint detection and recognition 

framework proposed in this article has the following 

advantages: 

Effectively integrate spatial static features with temporal 

dynamic information to enhance the recognition ability of 

complex finger movements; 

Strengthening the focus of key action nodes through a 

dual attention mechanism effectively enhances the 

robustness and generalization ability of the system; 

Supporting the construction of personalized finger 

training paths can provide real-time and accurate 

technical support for intelligent piano teaching systems. 

This framework not only has good engineering feasibility, 

but also has the potential for continuous expansion, and 

can be widely applied in scenarios such as piano beginner 

skill training, remote intelligent teaching, and 

personalized learning path optimization. 

 

3.2 Visual model architecture design 
To achieve efficient analysis and accurate recognition of 

finger movements during piano performance, this paper 

constructs a visual model architecture that integrates 

spatial structure and temporal dynamics. This model 

focuses on multi-level extraction of hand action features 

and key node focusing, aiming to improve the accuracy of 

complex action recognition, dynamic feedback speed, and 

practicality of teaching systems. 

The model consists of five core modules: spatial feature 

extraction module, time series modeling module, spatial 

attention mechanism (SAM), temporal attention 

mechanism (SEAM), and classification decision layer. 

Each module is repeatedly debugged and optimized based 

on the actual teaching scenario requirements and model 

computational efficiency, ensuring that the system has 

good real-time performance and deployability. 

In terms of input settings, the model is based on a 

continuous sequence of piano performance images with a 

length of 12 frames, and the images are uniformly 

adjusted to a standard size of 128 × 128 × 3. This length 

setting covers the entire process of starting, transitioning, 

and ending typical finger movements, balancing action 

integrity and computational resource constraints. 

The spatial feature extraction module adopts a structure 

of two convolutional layers and one max pooling layer. 

The number of convolutional kernels is set to 16 and 32, 

respectively, with a kernel size of 3 × 3 and an activation 

function of ReLU. This configuration can effectively 

extract spatial structural information of key areas such as 

fingertips, knuckles, and palms, especially with good 

resolution for subtle differences between different hand 

shapes and fingers. Pooling operation improves 

computational efficiency while effectively suppressing 

background interference and highlighting high response 

action areas. 

To further enhance the sensitivity of the model to action 

changes, the convolutional features are output and 
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connected to the Spatial Attention Module (SAM). 

This module can dynamically perceive the importance 

of different image regions, adaptively highlight high 

correlation areas such as initial keystrokes, finger 

switching, and wrist movements, suppress the flow of 

low value information into subsequent calculations, 

effectively enhance the system's attention to keyframe 

spatial features, and improve spatial feature 

discrimination ability. 

In the time feature modeling part, a double-layer 

stacked Gated Recurrent Unit (GRU) is used, with the 

number of units set to 64 and 32 respectively, which 

can capture the hierarchical evolution relationship of 

complex finger movements in the time dimension. 

Compared to traditional LSTM, GRU has better 

training efficiency and computational resource 

utilization, making it particularly suitable for modeling 

piano performance behaviors with long action duration, 

fast rhythm changes, and dense local adjustments. 

GRU can effectively construct the temporal 

dependencies between continuous behaviors such as 

glissando, finger changing, and staccato, ensuring 

dynamic consistency and logical continuity of actions 

in time series. 

To enhance the sensitivity of the model to key time 

nodes, this paper introduces the Time Attention 

Mechanism (SEAM) after the GRU output. This 

mechanism dynamically weights the importance of 

different time steps, focusing on key nodes such as 

rhythm transitions, action mutations, and finger jumps, 

thereby improving the ability to distinguish continuous 

action changes. Compared with traditional uniform 

time processing methods, SEAM can significantly 

improve recognition accuracy and feedback sensitivity, 

especially in fast playing and complex finger switching 

scenarios. 

The features of spatial and temporal paths are 

concatenated and integrated in the fusion layer to form 

a unified spatiotemporal feature vector, which is then 

sent to the classification decision layer. The 

classification layer completes the prediction output of 

finger categories through a fully connected layer, and 

combines Softmax to generate probability distributions. 

Throughout the entire model training process, key 

parameters such as the number of convolutional 

kernels, GRU unit dimensions, and attention channel 

depths are dynamically adjusted to repeatedly optimize 

the model's balance between recognition accuracy, 

training speed, resource utilization, and inference 

latency. 

 

3.3 Model training mechanism and 
parameter setting 
To improve the stability, accuracy, and real-time 

feedback capability of the piano finger recognition 

system, this paper constructs a systematic model 

training mechanism and parameter optimization 

strategy based on the spatiotemporal characteristics of 

the performance image sequence. 

The system architecture includes four major modules: 

spatial feature extraction, time series modeling, attention 

mechanism fusion, and classification discrimination. The 

spatial path adopts a two-layer convolutional neural 

network (CNN) with a convolution kernel size of 3 × 3 

and filter numbers of 24 and 48, respectively. It is 

matched with 2 × 2 max pooling and combined with 

ReLU activation function to effectively extract finger 

contours and action details, improving adaptability to 

different hand shapes. 

The time path adopts a two-layer stacked gated recurrent 

unit (GRU) with 60 and 30 nodes, which has good 

sequence dependency modeling ability and can accurately 

capture motion changes such as sliding and finger 

changing, while maintaining high computational 

efficiency. The activation function uses tanh to maintain a 

smooth expression of rhythm and action amplitude. 

To enhance the recognition of key actions, spatial path 

introduces spatial attention mechanism (SAM), which 

automatically focuses on high-value action areas; The 

time path introduces self attention mechanism (SEAM) to 

dynamically weight different time step features, 

effectively improving the recognition accuracy of 

complex continuous actions. The fused spatial and 

temporal features are input into the fully connected layer 

(hidden node 96), and finally output the finger category 

through Softmax. 

During the training process, the loss function adopts multi 

class cross entropy, the optimizer uses Adam, the initial 

learning rate is 0.001, the momentum parameters β 1=0.9, 

β 2=0.999, and the Early Stopping mechanism is 

introduced to prevent overfitting, with a tolerance of 12 

epochs and a maximum training epoch of 120. 

The hyperparameters are optimized using grid search 

method, with convolution kernels set to [16,32], [24,48], 

[32,64], and GRU units set to [32,16], [60,30], [64,32]. 

Batch sizes of 16, 32, and 48 are attempted, and the 

attention module compares the performance of 

single-layer and double-layer models. 

To improve generalization ability, five-fold cross 

validation is introduced in training to comprehensively 

examine recognition rate F1-score、 Confusion matrix 

and response delay, combined with round-by-round error 

analysis and stability screening, optimize the adaptability 

and performance of the model under different playing 

styles and skill levels. 

 

4 Results 
The piano finger recognition and training system 

proposed in this article has demonstrated high recognition 

accuracy, good robustness, and real-time feedback 

capability in multiple experiments. The experiment 

covers different performers, rhythm types, and gesture 

structures, and the system maintains stable recognition 

performance. The ablation experiment results show that 

the dual attention mechanism significantly improves the 

accuracy of complex action recognition, and the 
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space-time dual path structure improves real-time 

performance and action continuity. Compared with 

traditional CNN, single path GRU and other methods, 

this system has better accuracy F1-score 、  The 

superior performance in response speed and stability 

validates its potential for application in intelligent 

piano teaching. 

 

4.1 Dataset construction and feature 
statistics 
To support the effective training and evaluation of 

finger recognition models, this paper constructs a 

diverse dataset of piano performance movements, 

covering static gestures, dynamic finger changes, and 

different performance styles, with strong 

representativeness and adaptability. 

The data source includes two parts: one is structured 

gesture data collected based on standard piano 

performance videos, focusing on action standardization, 

used for model training and feature extraction; The 

second is the free play data completed by 10 piano 

learners, highlighting individual differences and action 

diversity, used for model generalization testing and 

robustness evaluation. Two high-definition cameras 

with a resolution of 1920 × 1080 and a frame rate of 

30fps were used for data collection, and the images 

were uniformly adjusted to 128 × 128 pixels. Each 

performance lasts about 15 seconds, covering various 

techniques such as scales, arpeggios, and finger 

changing, ultimately resulting in 300 performance 

segments and over 130000 images. To improve the 

annotation quality, all images were annotated frame by 

frame by two senior piano teachers, including frame 

number, hand number, key status, finger changing and 

continuous playing information, ensuring temporal 

continuity and annotation consistency, providing 

reliable support for model training. It should be noted 

that despite the high quality of the dataset, there are 

still limitations such as a single hand shape, good 

lighting conditions, and fixed keyboard types. 

Subsequent research will further enhance the model's 

generalization and application value by expanding the 

sample range and introducing diverse keyboards and 

performance styles. 

 

4.2 Data preprocessing and annotation 
standards 
To enhance the stability and effectiveness of image 

sequences during model training, this paper 

implements systematic preprocessing and annotation 

standards for dataset construction to improve model 

convergence speed, enhance recognition accuracy, and 

reduce overfitting risk. 

In terms of image preprocessing, all images are 

uniformly scaled to 128 × 128 pixels, and the hand 

area is centered through center cropping to reduce the 

interference of background noise and lighting 

differences on feature extraction. Subsequently, the 

image is subjected to minimum maximum normalization, 

mapping pixel values to the [0,1] interval, effectively 

improving the numerical stability and adaptability of 

network training. In response to the problem of missing 

frames in some sequences (accounting for 1.6%), this 

paper uses linear interpolation to complete the missing 

frames, ensuring the integrity of the finger movement 

sequence and avoiding recognition errors caused by frame 

loss. 

In terms of annotation, a frame level multidimensional 

labeling system has been constructed, covering: main 

button finger numbering; Whether to switch fingers; Is it 

the starting frame of the button; Is there any dynamic 

behavior such as glissando; Button status. Each piece of 

data is independently annotated by two piano teachers, 

and the consistency and reliability of the labels are 

improved through cross comparison and expert review. 

In terms of dataset partitioning, following the principle of 

"player independence", the ratio of training set, validation 

set, and test set is set at 70%: 15%: 15% to ensure that the 

test set contains new player data and avoid overfitting 

caused by individual memory. In addition, the training set 

maintains balance in terms of finger categories, action 

duration, rhythm types, etc., enhancing the model's 

adaptability and generalization performance to diverse 

teaching tasks. 

 

4.3 Model evaluation and performance 
analysis 
To comprehensively and objectively evaluate the 

performance of the piano finger recognition model 

proposed in this article in multi class action recognition 

tasks, combined with commonly used standards in the 

fields of computer vision and sequence recognition, this 

article systematically evaluates the model from five 

dimensions: accuracy, macro average precision, macro 

average recall, macro average F1 score, and system 

response time, ensuring that the evaluation results are 

scientific, comprehensive, and have practical guidance 

significance. 

At the overall performance level, accuracy is used to 

measure the proportion of correct classification of all test 

samples by the model, and is the most fundamental and 

intuitive performance evaluation indicator. However, 

considering the extremely uneven distribution of piano 

fingering movements in actual performance (such as 

high-frequency occurrence of one finger and two fingers, 

while finger changing, crossing, and other movements 

account for a relatively low proportion), relying solely on 

accuracy can easily mask the recognition effect of a few 

categories. Therefore, in this study, accuracy is only used 

as a reference indicator for overall trends. 

To address the issue of class imbalance, this article 

introduces Macro Precision and Macro Recall for a more 

balanced performance evaluation. The macro average 

accuracy reflects the overall prediction accuracy of the 

model in each category by calculating the accuracy of 

each category separately and taking the arithmetic mean; 
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The macro average recall rate measures the model's 

ability to recognize and cover samples of various 

categories. Both are not affected by the sample size 

and can more accurately reflect the model's recognition 

ability for edge categories and low-frequency finger 

movements. 

To further comprehensively examine the balance of the 

model's performance in detecting errors such as 

"misidentification" and "missed detection", this paper 

uses F1 score as the main comprehensive indicator. 

The F1 score is the harmonic mean of precision and 

recall, which can effectively reflect the actual 

performance of the model in complex situations such 

as blurred action boundaries and approximate finger 

techniques. Its calculation method is as follows: 

 

Recall+Precision

Recall×Precision×2
 =F1

(2) 

 

Among them, Precision represents precision, and 

Recall represents recall. To adapt to multi category 

scenarios, this article uniformly adopts the Macro-F1 

score as the key performance indicator. 

In terms of preventing the problem of "error 

accumulation" in action recognition, this paper 

innovatively introduces a segment main category 

voting mechanism, which reduces the overall segment 

recognition error caused by individual frame 

misjudgment by performing main category statistics on 

the frame level prediction results within the action 

segment, effectively improving sequence level stability. 

Considering the high dependence of piano teaching 

scenarios on real-time feedback capabilities, this paper 

incorporates system response time into the evaluation 

system, and measures the real-time level of the model 

by calculating the average inference time of a single 

frame image. The experimental results show that the 

proposed model not only ensures recognition accuracy 

and action boundary sensitivity, but also controls the 

average processing time of a single frame within 38ms, 

meeting the requirements of real-time teaching 

feedback. 

In terms of comparative analysis, this article 

systematically compares the proposed finger 

recognition model based on CNN+GRU+dual attention 

mechanism with traditional CNN models, single path 

GRU models, and no attention mechanism models. The 

results show that as shown in Table 1: 

 

 

 

 

 

 

 

 

 

 

Table 1：Performance comparison of different models in 

piano finger recognition task 

Model name 
accur

acy 

Macro 

average 

F1 

score 

Response 

time (ms) 

Traditional 

CNN 

84.2

% 
78.5% 21ms 

Single path 

GRU 

85.7

% 
80.1% 33ms 

Attention free 

dual path 

model 

88.9

% 
84.6% 37ms 

The dual 

attention 

model 

proposed in 

this article 

91.3

% 
87.2% 38ms 

 

The comprehensive evaluation results show that the 

model proposed in this paper outperforms existing 

mainstream methods in terms of accuracy, category 

balance, edge category recognition ability, and real-time 

feedback in finger gesture recognition. It particularly 

performs outstandingly in difficult recognition tasks such 

as complex finger gesture switching and micro action 

changes, fully demonstrating the effectiveness of the 

space-time dual path and dual attention mechanism. 

 

4.4 Ablation experiment 
To further verify the independent contribution and 

synergistic effect of each module of the piano finger 

recognition model proposed in this paper on the overall 

performance, a systematic ablation experiment was 

designed and implemented in this paper. At the same time, 

a horizontal comparative analysis will be conducted 

between the proposed model and various mainstream 

image sequence modeling methods to comprehensively 

evaluate the accuracy, stability, and practical application 

value of the model. 
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In the ablation experiment section, the spatial attention 

module (SAM) and temporal attention module (SEAM) 

in the model were separated and tested to construct 

different model variants, in order to explore the impact 

of each module on recognition performance. Specific 

settings include: basic model: only including 

CNN-GRU structure, without attention mechanism; 

SAM model: adding spatial attention module to the 

basic model; SEAM model: adding a time attention 

module to the base model; Complete model: a fully 

functional model that incorporates both SAM and 

SEAM. 

The experimental results show that the frame level 

recognition accuracy of the basic model on the test set is 

81.4%; After introducing SAM, the accuracy increased to 

85.7% and the F1 score increased to 0.865, significantly 

enhancing the recognition ability of complex gesture 

static features; After introducing SEAM, the accuracy 

increased to 87.6% and the F1 score increased to 0.883, 

demonstrating good sensitivity to time series action 

analysis and dynamic changes; 

After integrating the dual attention mechanism into the 

complete model, the recognition accuracy was improved 

to 89.8%, and the F1 score reached 0.902, achieving the 

optimal coupling effect of spatiotemporal features. The 

specific performance changes are shown in Figure 2. 

 

Figure 2：Comparison of model accuracy changes after module stripping 

 

Further comparative experiments compared the system 

performance of our model with traditional machine 

learning methods (SVM, KNN, RF), typical deep 

learning models (CNN, LSTM), hybrid structure 

models (CNN-LSTM, CNN-GRU), and the widely 

used Transformer model in recent years. 

The experimental results show that traditional methods 

such as SVM and KNN perform poorly in processing 

high-dimensional visual data and temporal 

relationships, with F1 scores below 0.70, indicating 

serious overfitting and blurred action boundaries; 

Although CNN-LSTM has improved in capturing 

temporal features compared to basic CNN, its ability to 

extract spatial features is insufficient, resulting in 

insensitivity to recognizing complex hand shapes and 

micro motion changes; The Transformer model has 

certain advantages in identifying standard rhythm 

segments, with an F1 score of 0.859. However, its 

inference speed is slow, with an average processing time 

of 0.92 seconds per frame, making it difficult to meet 

real-time teaching feedback requirements; 

The model presented in this article outperforms other 

comparative models in terms of accuracy, F1 score, and 

real-time performance, thanks to its space-time dual path 

and dual attention mechanism. The single frame inference 

time is only 0.47 seconds, demonstrating practical 

feasibility for real-time feedback and terminal 

deployment. The recognition accuracy of different models 

for typical finger changing scenarios is shown in Figure 3.

 

Figure 3：Comparison of recognition accuracy of different models for typical finger changing scenarios 

 

5 Discussions 
This article proposes a visual recognition system that 

integrates spatial convolution structure, time series 

modeling, and dual attention mechanism to address 

prominent issues such as difficulty in recognizing finger 

movements, high feedback delay, and insufficient 

personalization in piano teaching. The effectiveness of 

this system has been verified through systematic 
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experiments. Based on comparative analysis, this 

article further explores the advantages, application fit, 

and future development directions of the proposed 

system from multiple dimensions such as recognition 

performance, real-time feedback, user adaptability, and 

system scalability. 

 

5.1 Comparison between this system and 
existing intelligent piano teaching tools 
To evaluate the potential application of the proposed 

system in piano teaching, this article selected three 

representative intelligent piano teaching tools for 

comparison: visual recognition-based software (Simply 

Piano, etc.), MIDI signal-based input systems (Flowkey, 

etc.), and sensor integrated intelligent keyboard products 

(The ONE Smart Piano, etc.). The comparison 

dimensions include finger recognition accuracy, real-time 

feedback, action coverage, and user adaptability, as 

shown in Table 2.

 

Table 2：Comparative analysis of this system and three typical intelligent piano teaching tools 

Types of teaching tools 

Finger 

recognition 

accuracy 

Average 

feedback 

delay 

Action coverage range User adaptability 

MIDI Input System 

(Flowkey) 
78.3% 0.65s 

Only button triggered 

actions are allowed 
secondary 

Sensing keyboard 

system (The ONE) 
82.7% 0.72s 

Including basic hand 

shape data 

Low (requires 

specialized 

equipment) 

Image recognition 

system (model in this 

article) 

89.8% 0.47s 

Including complex 

actions such as finger 

changing and hovering 

High (no need for 

dedicated 

keyboard) 

 

From the perspective of recognition performance, 

MIDI and sensor keyboard systems mainly rely on key 

signals or basic touch detection, and cannot accurately 

capture non touch actions such as glissando, finger 

changing, hovering, etc. The action coverage is limited 

and cannot meet the needs of advanced performance 

skill training. The system proposed in this article 

utilizes the CNN-GRU dual path architecture, 

combined with spatial and temporal attention 

mechanisms, to achieve dynamic perception and 

fine-grained recognition of complex action sequences, 

resulting in an overall recognition accuracy of 89.8% 

and an F1 value of 0.902, which is about 6% to 11% 

higher than traditional systems. 

In terms of real-time feedback, MIDI and sensor 

systems rely heavily on external devices or cloud 

services, with response delays generally exceeding 

0.65 seconds. This article uses a lightweight visual 

model combined with local real-time inference 

technology to achieve an average response time of less 

than 0.47 seconds, which can effectively meet the 

real-time feedback needs of fast performance and 

high-frequency finger training, and improve learning 

efficiency and practice quality. 

In terms of user adaptability and deployment 

convenience, sensor systems require dedicated 

hardware, which has a high threshold and is difficult to 

popularize; Although MIDI systems have openness, 

their support for action recognition hierarchy is limited. 

This system is based on a universal image acquisition 

device and does not require additional hardware  

 

support. It has good scalability and universality, and is 

suitable for learners of different age groups and 

performance levels to apply widely. 

Further comparison revealed that the automatic music 

transcription model based on harmonic perception 

proposed by Wang et al. (2024) [18] improved the 

accuracy of pitch and sustain recognition, but paid 

insufficient attention to motion capture and feedback 

speed; The IoT piano robot PianoTalk designed by Huang 

and Lin (2024) [19] supports remote collaborative 

performance, but lacks support for personalized motion 

feedback and complex finger techniques; Although the 

optical imaging teaching aid device proposed by Wang et 

al. (2023) [20] has advantages in capturing details, it has 

high equipment costs and poor scene adaptability. In 

contrast, this article emphasizes both "visual and 

cognitive" aspects, focusing on human-machine 

collaboration and action detail tracking in real teaching 

scenarios, and positioning is more in line with the needs 

of normalized teaching. 

It should be pointed out that the current system has not 

yet implemented multimodal interaction functions such as 

force perception and sound feedback, and there is still 

room for improvement in enriching user experience and 

contextual feedback. In the future, we can draw on the 

research results of Alghazali and Musa (2024) on 

keyboard physics feedback, further integrate functions 

such as force sensing and audio analysis, and build a 

more complete intelligent piano learning ecosystem. In 

summary, the piano finger recognition system proposed in 
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this article is superior to existing mainstream tools in 

terms of recognition accuracy, real-time feedback, 

action coverage breadth, and user adaptability. It has 

good technological innovation, engineering feasibility, 

and teaching promotion potential, and is a beneficial 

attempt to promote the digital and intelligent 

development of music education. 

 

5.2 Model calculation complexity and 
system response speed 
To evaluate the feasibility of deploying the piano 

finger recognition system proposed in this article in 

practical teaching and training scenarios, experimental 

verification was conducted from two dimensions: 

computational complexity and response speed, to 

ensure that the system has low latency, stable output, 

and good portability, and can support real-time 

teaching applications with multiple terminals and 

scenarios. The system adopts a dual path structure 

combining Convolutional Neural Network (CNN) and 

Gated Recurrent Unit (GRU), and introduces spatial 

and temporal attention mechanisms to effectively 

improve the focusing ability on key action nodes. In 

order to meet the high-frequency movements and 

real-time feedback requirements of piano performance, 

the system optimized the model structure parameters 

and simplified the calculations during the design phase. 

Performance testing was conducted on three typical 

hardware platforms: laptop (Intel i7), desktop GPU 

platform (NVIDIA RTX 4060), and Raspberry Pi 4 

embedded development board. The average inference 

time from image input to finger recognition output of 

the system is shown in Table 3. 

 

Table 3：Comparison of average inference time of 

models on different computing platforms 

platform type 
Average reasoning 

time (s) 

GPU（NVIDIA RTX 

4060） 
0.216 

CPU（Intel i7） 0.678 

Raspberry Pi 4 1.428 

 

The experimental results show that the system 

achieves a response time of 0.216 seconds on the GPU 

platform and can support real-time feedback for 

high-density performance; It also maintains good 

operational efficiency on CPU and embedded 

platforms, with deployment flexibility and cost 

advantages. Compared with traditional LSTM models, 

this system replaces LSTM with GRU, reducing 

computational complexity and memory consumption. 

At the same time, it combines dual attention 

mechanism to improve recognition accuracy without 

significantly increasing computational burden, 

ensuring stability and response speed during 

continuous action processing. Meanwhile, the 

development of wearable piano assistive devices in recent 

years has provided reference for the future expansion of 

this system. The piano exoskeleton training system 

developed by Xu et al. (2024) [22] has improved the 

accuracy of movements. If this system is integrated with 

such devices, it is expected to achieve a closed-loop 

system of action recognition feedback correction, which 

can be extended to rehabilitation training and other 

scenarios. In terms of adapting teaching content, the 

music style recognition technology based on the CRNNH 

algorithm proposed by Hao (2024) [23] can provide 

support for the future construction of an integrated 

platform of "style recognition finger optimization 

personality feedback", further enhancing the level of 

teaching intelligence and personalization. 

Overall, the system presented in this article performs 

excellently in terms of computational efficiency, real-time 

performance, deployment flexibility, and future expansion 

potential, possessing the technical advantage of creating a 

low-cost and practical intelligent piano teaching tool. 

 

5.3 Scalability of the system 
The piano finger recognition and training sThe computer 

vision based piano finger recognition and training system 

proposed in this article has good scalability and multi 

scene adaptability, and can support intelligent music 

education applications in different levels and 

environments. 

The system core consists of a lightweight convolutional 

neural network (CNN) and a hand keypoint recognition 

module, combined with model clipping and parameter 

optimization, to achieve resource control while ensuring 

recognition accuracy. The complete model memory 

occupies about 150MB. In addition, a compressed version 

based on ONNX format has been developed, which can 

be adapted to mid to low end GPU platforms, teaching 

all-in-one machines, and portable terminals, with flexible 

and convenient deployment. 

To meet the concurrent recognition requirements in 

large-scale teaching, the system introduces multi 

threading and distributed scheduling mechanisms, which 

can support synchronous interaction among multiple 

learners. On a standard GPU platform, the system's single 

frame recognition speed reaches 0.054 seconds, meeting 

real-time feedback requirements; On edge devices such as 

Jetson Nano, the optimized version recognition speed is 

0.31 seconds per frame, suitable for non real time 

learning and offline evaluation scenarios. 

For complex application requirements, the system has 

further expansion space: 

By using methods such as model pruning and knowledge 

distillation, the model can be compressed to within 80MB, 

enabling deployment on Android tablets and embedded 

terminals; 

Integrate fingerprint trajectory, force recognition, and 

audio analysis to build a multimodal feedback system and 

enhance the interactive experience; 
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Support remote teaching platforms based on WebRTC 

and WebGL, enabling online, cross end, and plugin 

free operation, and promoting the digital 

transformation of teaching modes. 

At present, the system has achieved multi-mode 

deployment on local, local area network, and cloud, 

and users can realize real-time finger recognition and 

feedback through web pages, adapting to diverse 

applications such as remote teaching, home practice, 

and mobile learning. In summary, this system has good 

advantages in performance, adaptability, and scalability, 

which can provide strong support for the digital and 

intelligent upgrading of music education. 

 

6 Conclusion 
The precise recognition and real-time feedback of 

piano fingerings are important technical supports for 

improving performance, optimizing learning paths, and 

enhancing teaching efficiency. In response to the 

shortcomings of traditional piano teaching tools in 

recognition accuracy, timely feedback, and 

personalized adaptability, this paper proposes a piano 

finger recognition and training system that integrates 

spatial convolution feature extraction, time series 

modeling, and attention mechanism optimization, 

significantly improving recognition accuracy, 

operational efficiency, and application flexibility. 

The main innovations and achievements of this article 

include: 

We have constructed a spatiotemporal dual path fusion 

architecture for action recognition, which combines the 

advantages of convolutional neural networks (CNN) 

and gated recurrent units (GRU) to improve the 

accuracy of complex finger gesture recognition; 

Introducing Spatial Attention Module (SAM) and 

Temporal Attention Module (SEAM) to enhance the 

model's ability to focus on and capture the continuity 

of key action nodes; 

Based on a diverse performance dataset, systematic 

ablation experiments and comparative analysis were 

conducted to verify the advantages of the proposed 

model in recognition accuracy, response speed, and 

stability; 

The system has achieved efficient deployment in multi 

platform and multi terminal environments, with good 

scalability and application value. 

The experimental results show that the system has a 

recognition accuracy of 89.8% in complex playing 

environments, an F1 score of 0.902, an average 

feedback delay of 0.47 seconds, and good real-time 

performance and anti-interference ability. Compared to 

traditional methods, the system can achieve dynamic 

tracking and real-time feedback of continuous finger 

movements, effectively improving learning efficiency 

and teaching quality. From the perspective of 

application promotion, the system has advantages such 

as strong hardware adaptation, flexible deployment, 

and good interactive experience, especially suitable for 

areas with weak educational resources, online teaching, 

and personalized self-learning scenarios, helping to 

promote the intelligent and popularization development 

of piano teaching. Future research will further integrate 

audio features, gesture 3D reconstruction, and stylized 

recommendation technologies to expand multimodal 

interaction and collaborative learning capabilities, 

promote the continuous evolution of intelligent piano 

teaching systems, and serve a wider range of innovative 

music education practices. 
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