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Standardized piano fingering practice not only concerns the stability of performance, but also directly
affects the richness and coherence of musical expression. However, due to limitations in teacher
resources and teaching time, existing piano teaching has significant shortcomings in personalized
guidance and immediate feedback on errors. Therefore, this article proposes a computer vision based
piano finger recognition and training system, which integrates convolutional neural networks (CNN)
for hand static feature extraction, gated recurrent units (GRU) for action time series modeling, and
introduces spatial attention and temporal attention mechanisms to improve finger recognition accuracy
and dynamic response capability. The experiment was conducted based on a self built dataset of over
130000 piano performance images. The system outperformed existing methods in key indicators such as
finger gesture recognition accuracy (89.8%), macro average F1 value (90.2%,), and feedback response
delay (0.47 seconds), especially in complex action recognition and real-time feedback. The research
results provide feasible technical support for the piano intelligent teaching system and have good
application and promotion value.

Povzetek: Predstaviljen je sistem za prepoznavanje prstov pri klavirski igri, ki zdruzuje dvo-tokovno
arhitekturo CNN (prostorske znacilke) + GRU (Casovne sekvence) ter prostorsko (SAM) in casovno
pozornost (SEAM) za boljso zaznavo kljucnih okvirjev in prehodov prstov. Na 130 k oznacenih slikah
doseze odlicno prepoznavanje, Se posebej dobro pri kompleksnih menjavah prstov in hitrih zaporedjih.

1 Introduction

In recent years, with the continuous development of
computer vision, deep learning, and artificial
intelligence technologies, traditional piano education is
gradually moving towards intelligence, personalization,
and systematization. It is shifting from improving
performance skills to using intelligent technology to
construct personalized learning processes, conduct
intelligent evaluations, and provide real-time feedback,
further improving teaching and learning efficiency. In
this context, piano fingertip action recognition is
considered one of the key supporting technologies for
digital music education and is attracting more attention
from researchers.

The finger movements during piano performance are a
highly complex spatio-temporal characteristic:
spatiality refers to the structural features of fingers, the
distribution and angle changes of fingertips, etc;
Timeliness refers to the continuity of actions, changes
in rhythm, and variations in action modes. This
motivational process requires the combination of static
image features and temporal features for precise
tracking and error correction techniques. However, due
to the scarcity of existing resources, limited class hours,
and outdated technology, piano players face great

difficulties in providing feedback on piano playing
techniques and movements, discovering errors, and
providing personalized teaching.

To enhance the tracking and parsing ability of finger
trajectories, Kapuscinski and Majcher (2024) [1]
combined R-CNN and Bi LSTM structures to implement
a complex gesture recognition method that can maintain
high efficiency and anti-interference ability in complex
environments, providing guidance for visual detection of
human operations. Yiqun (2022) [2] applied augmented
reality AR and IoT technology to piano teaching, which
can significantly improve students' performance in terms
of playing fluency, rhythm control, and continuity. Ji,
Wang, and Wang (2024) also attempted to use Leap
Motion to capture performers' gesture path trajectories,
and used the Viterbi algorithm to score their performance
standardization, improving the system's personalized
training and real-time feedback functions.

In terms of technical scoring, Zhao, Wang, and Cai (2023)
[4] integrated audio-visual routes and sound/timbre
features into a complex environment based on the ResNet
audio-visual joint model, opening up new horizons for
piano performance behavior recognition and technical
evaluation. Ruan (2024) [5] proved that students who self
learn through Soft Mozart digital devices have better
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learning interests and exam results than traditional
classroom learning methods, demonstrating the
effectiveness of digital devices in piano teaching.
Although good progress has been made in existing
research, there are still three problems with current
methods: firstly, some studies focus too much on audio
data and neglect the crucial role of finger movement
characteristics in skill evaluation; Secondly, traditional
models such as LSTM have a high computational cost
and response speed for piano playing movements with
strong coherence and variability; The third issue is that
some studies have not accurately simulated the
numerous hand gesture transitions and finger technique
details, which limits the system's recognition accuracy
and feedback quality.

This article investigates a technique based on computer
vision for extracting and teaching piano performance
skills. In terms of deep image feature information of
the hand, we use convolutional neural networks (CNN)
for feature extraction; For the time-dependent
information of finger movements, a Gated Recurrent
Unit (GRU) and self attention model were used for
feature extraction in the variation of finger movement
sequences, which effectively assisted and aided in the
extraction and recognition of continuous hand
movements. The keyframe detection dynamic feedback
mode of the system can timely detect and correct
erroneous  actions, and provide personalized
suggestions to help students form scientific and
effective practice habits. At the same time, a video
library of piano finger movements was established
using data captured by high-definition binocular
cameras, which includes different playing styles,
rhythms, and hand shape transformations. A total of
about 103000 frames of video were collected and
annotated by teachers’ multiple times to ensure video
quality and label accuracy. Based on this, the system in
this article has also made significant improvements in
the accuracy, speed, and performance of identifying
different performers. The purpose of this article is to
construct a piano finger recognition system that
combines time and space, to solve the problems of
delayed response, low operational accuracy, and
inability to provide personalized teaching solutions in
traditional teaching systems. This innovative
methodology is used to assist piano teaching and
digitize piano practice, in order to achieve efficient
teaching.

The remaining part of this article is arranged as
follows: Part 2 is a detailed review of existing research;
The third part is the analysis of the overall system and
key module structure; Part 4 is the experimental plan
and performance evaluation results; Part 5 discusses
the advantages and practical applications of this
method; Part 6 is a summary and development trend of
the research results of this method.

2 Related work
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Piano finger recognition, as an important research
direction at the intersection of music education and
computer vision, integrates image processing, temporal
modeling, and multimodal interaction technology,
gradually promoting the development of piano teaching
towards intelligence and personalization. With the
deepening trend of digitalization in performance behavior,
researchers continue to explore how to break through the
bottlenecks of system accuracy, response speed, and
adaptability, and build more efficient and intelligent
finger recognition mechanisms.

From the perspective of the evolution of image culture
and performance posture, Lara Schumann (2024) [6]
analyzed the performance images of pianist Clara
Schumann in the 19th century, revealing the deep
connection between performance posture, photography
techniques, and audience perception. She pointed out that
images are not only the reproduction of technical actions,
but also a cultural narrative medium. This viewpoint
provides inspiration for the image semantic analysis of
piano performance movements. Holzer (2024) [7]
proposed a new path of coupling scanning processors
with  visual  generation, rhythm control, and
human-computer interaction from the perspective of
"image performance”, opening up new technological
ideas for real-time action visualization.

YunDan, Tian, and Ai (2022) [8] addressed the issue of
constructing a music education system by designing a
Multi Tone Recognition Reaction (MPTM) system based
on neural networks. This system enables students to
synchronously recognize musical notes and their playing
techniques, thereby achieving more effective learning.
The research core of YouW (2023) [9] focuses on the
problem of rhythm synchronization in the process of
double piano performance, and proposes a "rhythm
combination hand synchronization" scheme to effectively
solve the harmony and rhythm of multiple finger
synchronization operations. In terms of practical
application, YuLinna and LuoZhifan (2022)[10]
conducted research on the situation of university music
teaching to confirm that the intelligent teaching system
created using Al technology and image processing
technology can help improve the technical level and
learning enthusiasm of new students; Lin, Ding, and Song
(2024) [11] used a BP neural network to establish a multi
finger collaborative tapping model, and accurately
estimated the high five angle using SSA and GA
optimization methods. The results showed that the
physiological structure of the hand and training years had
a significant impact on the performance of the model.
Regarding the analysis of complex playing movements,
Takehara et al. (2022) [12] used inertial sensors to deeply
analyze the tremolo technique and found that high-level
performers rely on shoulder elbow linkage to complete
rapid keystrokes. This study emphasizes the importance
of multi joint coordination for advanced playing skills.
The experiments conducted by Kanami, Tatsunori, and
Takayuki (2023) [13] showed that dual visual and
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auditory stimuli can significantly improve the
synchronicity between the little finger and ring finger,
confirming the important value of visual rhythm
training for finger technique independence.

In terms of intelligent generation of finger movements
and action prediction, Gao, Zhang et al. (2023) [14]
used model reinforcement learning methods to
optimize finger movement paths based on the principle
of "minimum motion distance", achieving a balance
between fluency and physical rationality of
performance actions. Loo, Chai et al. (2022) [18]
combined local music elements with piano decoration
training, and the results showed that visual cues and
rhythm  synchronization significantly = improved
students' confidence and initiative in playing. In terms
of feature extraction and action modeling, Zhi (2022)
[16] constructed a multi-channel model based on
recurrent neural networks (RNNs), fused video images
with keystroke intensity, and achieved bidirectional
dynamic analysis of piano fingering behavior. Xin,
Haoyue and Qiang (2022) [17] proposed a new
evaluation system with unreasonable fingering rate
(IFR) as the core from the perspective of "pitch
difference finger order matching", and made
significant progress in improving the rationality of
fingering and compressing the range of action
switching.

In summary, existing research has gradually shifted
from static image processing to multidimensional
temporal modeling and intelligent feedback systems,
but there are still shortcomings in the following three
aspects:

Firstly, feature extraction heavily relies on static
information in images and lacks attention to the
continuity of action time. In complex actions such as
multi finger concurrency and fast switching, existing
models lack detailed modeling of the logic and action
evolution between fingers. Although GRU and LSTM
have been introduced, they are still prone to frame loss
and misjudgment problems.

Secondly, the limitations of training data are prominent.

The current mainstream models rely heavily on
standardized performance data and have weak
adaptability to non-standard movements, individual
differences, and diverse styles, which limits the
effectiveness of error recognition and personalized
feedback, making it difficult to achieve the intelligent
teaching goal of "individualized".

Thirdly, multimodal fusion is insufficient. The existing
systems are based on visual features and do not
effectively integrate multimodal information such as
pitch and rhythm. They lack a grasp of the inherent
connection and complex close relationship between
performance actions and music expression, which
reduces their comprehensiveness in recognizing and

providing real-time feedback on complex music pieces.

Based on the above reasons, this article proposes three
research themes as the focus of the next stage of work,
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namely the following three.

Can a dual channel neural network model that integrates
image flow and motion trajectory flow be constructed for
continuous keystrokes and complex rhythm structures,
effectively improving recognition accuracy and dynamic
response capability?

How to combine spatiotemporal attention mechanism to
dynamically focus the attention area on high-frequency
related regions in hand images, extract key action nodes,
and enhance sensitivity and stability to changes in finger
movement paths?

Can a training framework with style adaptation and
personalized feedback capabilities be designed through
deep feature transfer and behavioral habit modeling, to
achieve personalized guidance for learners with different
levels, styles, and habits?

Based on the above research questions, the main research
contributions of this article are summarized as follows:

A dual stream neural network based on the fusion of
space convolution structure and time recursive structure is
proposed to realize the collaborative processing of static
images and dynamic tracks, effectively breaking through
the limitations of single model in timeliness and
recognition rate;

Introducing Spatial Attention Module (SAM) and
Sequential Attention Module (SEAM) into the network
architecture to enhance the focusing ability of hand key
regions and temporal keyframes, and to improve stability
and anti-interference in complex finger pointing scenes;
Systematic testing was conducted on piano performance
datasets covering multiple styles and different difficulty
levels, and the results showed that the F1 score, feedback
delay, and action recognition fault tolerance were superior
to traditional CNN models and single temporal models,
demonstrating good practical potential and promotional
value.

3 Suggested solutions

In response to the shortcomings of existing piano finger
recognition systems in motion continuity capture,
recognition accuracy, and real-time feedback, this paper
proposes a piano finger motion recognition system based
on convolutional neural networks (CNN), gated recurrent
units (GRU), and spatiotemporal attention mechanisms.
The aim is to build a finger recognition and training
platform that combines spatial and temporal feature
extraction capabilities, strong dynamic sensitivity, and
high personalized adaptability.

In terms of spatial feature extraction, the system uses a
multi-layer convolutional neural network (CNN) to
extract features from static images of hands during the
performance process. Although piano finger movements
have diversity, key characteristics such as fingertip
position, joint bending state, and relative finger distance
have high stability. CNN can effectively extract these
local structural features while maintaining robustness to
different perspectives and occlusion situations. For
example, when a performer crosses the black key area
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with four fingers, there is a challenge scene where the

fingers are partially obstructed and have similar shapes.

CNN can effectively distinguish subtle differences
between fingers through a multi-scale convolution
kernel and feature map fusion mechanism, providing
accurate static information support for subsequent
action modeling.

In terms of time dynamic feature modeling, the system
introduces a Gated Recurrent Unit (GRU) to capture
the temporal evolution of finger movements.
Compared to traditional LSTM models, GRU has the
advantages of simple structure, efficient training, and
low computational resource consumption, especially
suitable for frequent action switching, fast duration
changes, and intensive local adjustments in piano
performance. GRU can effectively track action paths
such as continuous keystrokes, glissandos, and revs,
and construct action sequence expressions with more
temporal continuity and behavioral dependence,
significantly improving the system's ability to capture
complex action patterns.

To improve the model's attention to critical moments,
this section combines CNN and GRU based on the
above model, and adds a spatiotemporal
two-dimensional attention mechanism. The spatial
attention module (SAM) in the spatiotemporal
attention mechanism enhances attention to key parts
such as hand touch points, arm lifting, and shape
changing methods by dynamically changing the
correlation of various positional features, and reduces
interference from irrelevant backgrounds; The Time
Attention Module (SEAM) assigns different weights to
each frame to improve the model's perception of key
points for action mutations and transposition, avoiding
the traditional time series method of smoothing all
frames and reducing accuracy. Models incorporating
attention mechanisms can maintain high recognition
accuracy and short response latency in scenarios with
complex and highly continuous actions and gestures.
The overall architecture of the system adopts a
space-time dual flow path design. The input end
performs lighting balance, angle correction, and hand
region cropping on the performance video stream
through a preprocessing module, and then divides it
into static image sequence and action frame sequence,
which are respectively input into CNN and GRU paths
for feature extraction. The feature fusion layer
integrates the two feature vectors to form a unified
spatiotemporal feature expression, and finally outputs
specific finger action category labels through a fully
connected classifier. During the model training phase,
the system introduces a multi round error screening
and stability optimization mechanism, which
dynamically adjusts the learning rate, filters out
unstable samples, and strengthens high confidence
features to effectively improve the model's
generalization ability and recognition efficiency. The
system architecture is shown in Figure 1, where each
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module works together and the information flow is clear,
with good scalability and deployment adaptability.

Hand image input
seqguence
Time series
modelling

Spatial feature
extraction

CNN
Convolutional GRU +attention
Network mechanism
[

Spatiotemporal feature
fusion layer
Finger classification
and recognition layer

Feedback module
(training suggestions)

Figure 1: Dual stream architecture diagram of piano
finger recognition system

Overall, the system has achieved deep coupling between
spatial static structure and temporal dynamic changes in
structural design, and has achieved systematic
optimization in key action focusing, real-time feedback,
personalized recognition, etc. It can effectively improve
the accuracy of action recognition, feedback timeliness,
and training personalization level in piano teaching. At
the same time, this architecture has good potential for
modular evolution and can further integrate audio signals,
tactile data, and contextual semantic information in the
future, expanding into a multimodal piano intelligent
teaching comprehensive platform.

3.1 Finger keypoint detection and recognition
framework

The finger movements during piano performance have
significant structural and continuous characteristics, with
spatial and temporal features intertwined, including both
instantaneous gesture configurations and dynamic
evolution of action paths. To accurately capture and
analyze this complex behavioral process, this paper
proposes a finger keypoint detection and recognition
framework based on spatiotemporal dual path fusion,
which effectively improves the accuracy and real-time
feedback capability of piano finger recognition.

In spatial path design, the system is based on
Convolutional Neural Network (CNN) for static feature
extraction of input image sequences. During piano
performance, there are significant differences in hand
shape, key pressure, and finger span among different
performers. CNN has powerful local feature extraction
and translation invariance, which can effectively capture
key information such as fingertip position, joint angle,
and finger spacing. To enhance the robustness of the
model to different hand shapes and playing styles, the
input image is first normalized and standardized, mapped
into a tensor structure:
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XE R TxHxWxC(l)

Among them, T represents the number of time steps, H
and W are the height and width of the image, and C is
the number of channels. Each frame of the image is
extracted  with  multi-scale features  through
convolutional layers, and combined with ReLU
activation function to achieve nonlinear expression.
CNN can effectively identify small differences in
complex actions such as multi finger covering black
keys and quick finger substitution, and provide a static
basis for dynamic modeling of subsequent actions.

In the time path section, a Gated Recurrent Unit (GRU)
is used to model the time series of performance actions.
The sliding, turning, and finger substitution behaviors
in piano performance often span multiple time steps
and are difficult to accurately distinguish based solely
on static images. GRU has the efficient ability to
capture long-term and short-term dependencies, and
can accurately track the evolution trajectory of actions
without significantly increasing computational costs.
The update gate, reset gate, and candidate state of
GRU jointly construct a dynamic control mechanism
for action history and current state, effectively
improving the adaptability of the model to complex
behaviors, especially in the recognition of high-order
performance techniques such as fast keystrokes and
continuous jumps.

On the basis of extracting spatial and temporal features,
this paper further introduces a spatiotemporal dual
attention mechanism to enhance the responsiveness to
key action nodes. The spatial attention module
effectively suppresses background interference and
redundant actions by weighting and highlighting image
features, such as high information density areas during
keystrokes and finger alternation; The time attention
module dynamically adjusts the importance of
different frames in the time dimension of finger
movements, focusing on key nodes such as action
turning points and rhythm changes, to avoid
performance bottlenecks caused by traditional
temporal models treating all frames equally.
Specifically, spatial attention weights are obtained
through average pooling, max pooling, and
convolution calculations, effectively focusing on the
spatial regions that have the greatest impact on
recognition results; The time attention weight is
dynamically assigned through a self attention
mechanism to enhance the sensitivity of the model to
changes in action rhythm and local action mutations.
Finally, the system fuses the spatial features extracted
by CNN with the temporal features generated by GRU,
and outputs the probability distribution of finger action
categories through a fully connected classification
layer. This fusion mechanism not only preserves the
local static details of finger movements, but also takes
into account the temporal continuity and rhythm
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changes of action evolution, significantly improving
recognition accuracy and real-time feedback capability.
Overall, the finger keypoint detection and recognition
framework proposed in this article has the following
advantages:

Effectively integrate spatial static features with temporal
dynamic information to enhance the recognition ability of
complex finger movements;

Strengthening the focus of key action nodes through a
dual attention mechanism effectively enhances the
robustness and generalization ability of the system;
Supporting the construction of personalized finger
training paths can provide real-time and accurate
technical support for intelligent piano teaching systems.
This framework not only has good engineering feasibility,
but also has the potential for continuous expansion, and
can be widely applied in scenarios such as piano beginner
skill ~ training, remote intelligent teaching, and
personalized learning path optimization.

3.2 Visual model architecture design

To achieve efficient analysis and accurate recognition of
finger movements during piano performance, this paper
constructs a visual model architecture that integrates
spatial structure and temporal dynamics. This model
focuses on multi-level extraction of hand action features
and key node focusing, aiming to improve the accuracy of
complex action recognition, dynamic feedback speed, and
practicality of teaching systems.

The model consists of five core modules: spatial feature
extraction module, time series modeling module, spatial
attention mechanism (SAM), temporal attention
mechanism (SEAM), and classification decision layer.
Each module is repeatedly debugged and optimized based
on the actual teaching scenario requirements and model
computational efficiency, ensuring that the system has
good real-time performance and deployability.

In terms of input settings, the model is based on a
continuous sequence of piano performance images with a
length of 12 frames, and the images are uniformly
adjusted to a standard size of 128 x 128 x 3. This length
setting covers the entire process of starting, transitioning,
and ending typical finger movements, balancing action
integrity and computational resource constraints.

The spatial feature extraction module adopts a structure
of two convolutional layers and one max pooling layer.
The number of convolutional kernels is set to 16 and 32,
respectively, with a kernel size of 3 X 3 and an activation
function of ReLU. This configuration can effectively
extract spatial structural information of key areas such as
fingertips, knuckles, and palms, especially with good
resolution for subtle differences between different hand
shapes and fingers. Pooling operation improves
computational efficiency while effectively suppressing
background interference and highlighting high response
action areas.

To further enhance the sensitivity of the model to action
changes, the convolutional features are output and
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connected to the Spatial Attention Module (SAM).
This module can dynamically perceive the importance
of different image regions, adaptively highlight high
correlation areas such as initial keystrokes, finger
switching, and wrist movements, suppress the flow of
low value information into subsequent calculations,
effectively enhance the system's attention to keyframe
spatial features, and improve spatial feature
discrimination ability.

In the time feature modeling part, a double-layer
stacked Gated Recurrent Unit (GRU) is used, with the
number of units set to 64 and 32 respectively, which
can capture the hierarchical evolution relationship of
complex finger movements in the time dimension.
Compared to traditional LSTM, GRU has better
training efficiency and computational resource
utilization, making it particularly suitable for modeling
piano performance behaviors with long action duration,
fast rhythm changes, and dense local adjustments.
GRU can effectively construct the temporal
dependencies between continuous behaviors such as
glissando, finger changing, and staccato, ensuring
dynamic consistency and logical continuity of actions
in time series.

To enhance the sensitivity of the model to key time
nodes, this paper introduces the Time Attention
Mechanism (SEAM) after the GRU output. This
mechanism dynamically weights the importance of
different time steps, focusing on key nodes such as
rhythm transitions, action mutations, and finger jumps,
thereby improving the ability to distinguish continuous
action changes. Compared with traditional uniform
time processing methods, SEAM can significantly
improve recognition accuracy and feedback sensitivity,
especially in fast playing and complex finger switching
scenarios.

The features of spatial and temporal paths are
concatenated and integrated in the fusion layer to form
a unified spatiotemporal feature vector, which is then
sent to the classification decision layer. The
classification layer completes the prediction output of
finger categories through a fully connected layer, and
combines Softmax to generate probability distributions.
Throughout the entire model training process, key
parameters such as the number of convolutional
kernels, GRU unit dimensions, and attention channel
depths are dynamically adjusted to repeatedly optimize
the model's balance between recognition accuracy,
training speed, resource utilization, and inference
latency.

3.3 Model training mechanism and
parameter setting

To improve the stability, accuracy, and real-time
feedback capability of the piano finger recognition
system, this paper constructs a systematic model
training mechanism and parameter optimization
strategy based on the spatiotemporal characteristics of
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the performance image sequence.

The system architecture includes four major modules:
spatial feature extraction, time series modeling, attention
mechanism fusion, and classification discrimination. The
spatial path adopts a two-layer convolutional neural
network (CNN) with a convolution kernel size of 3 x 3
and filter numbers of 24 and 48, respectively. It is
matched with 2 x 2 max pooling and combined with
ReLU activation function to effectively extract finger
contours and action details, improving adaptability to
different hand shapes.

The time path adopts a two-layer stacked gated recurrent
unit (GRU) with 60 and 30 nodes, which has good
sequence dependency modeling ability and can accurately
capture motion changes such as sliding and finger
changing, while maintaining high computational
efficiency. The activation function uses tanh to maintain a
smooth expression of rhythm and action amplitude.

To enhance the recognition of key actions, spatial path
introduces spatial attention mechanism (SAM), which
automatically focuses on high-value action areas; The
time path introduces self attention mechanism (SEAM) to
dynamically weight different time step features,
effectively improving the recognition accuracy of
complex continuous actions. The fused spatial and
temporal features are input into the fully connected layer
(hidden node 96), and finally output the finger category
through Softmax.

During the training process, the loss function adopts multi
class cross entropy, the optimizer uses Adam, the initial
learning rate is 0.001, the momentum parameters f 1=0.9,
B 2=0.999, and the Early Stopping mechanism is
introduced to prevent overfitting, with a tolerance of 12
epochs and a maximum training epoch of 120.

The hyperparameters are optimized using grid search
method, with convolution kernels set to [16,32], [24,48],
[32,64], and GRU units set to [32,16], [60,30], [64,32].
Batch sizes of 16, 32, and 48 are attempted, and the
attention module compares the performance of
single-layer and double-layer models.

To improve generalization ability, five-fold cross
validation is introduced in training to comprehensively
examine recognition rate Fl-score. Confusion matrix
and response delay, combined with round-by-round error
analysis and stability screening, optimize the adaptability
and performance of the model under different playing
styles and skill levels.

4 Results

The piano finger recognition and training system
proposed in this article has demonstrated high recognition
accuracy, good robustness, and real-time feedback
capability in multiple experiments. The experiment
covers different performers, rhythm types, and gesture
structures, and the system maintains stable recognition
performance. The ablation experiment results show that
the dual attention mechanism significantly improves the
accuracy of complex action recognition, and the



Real Time Piano Finger Recognition Using Convolutional Neural...

space-time dual path structure improves real-time
performance and action continuity. Compared with
traditional CNN, single path GRU and other methods,
this system has better accuracy Fl-score .  The
superior performance in response speed and stability
validates its potential for application in intelligent
piano teaching.

4.1 Dataset construction and feature
statistics

To support the effective training and evaluation of
finger recognition models, this paper constructs a
diverse dataset of piano performance movements,
covering static gestures, dynamic finger changes, and
different  performance  styles, = with  strong
representativeness and adaptability.

The data source includes two parts: one is structured
gesture data collected based on standard piano
performance videos, focusing on action standardization,
used for model training and feature extraction; The
second is the free play data completed by 10 piano
learners, highlighting individual differences and action
diversity, used for model generalization testing and
robustness evaluation. Two high-definition cameras
with a resolution of 1920 x 1080 and a frame rate of
30fps were used for data collection, and the images
were uniformly adjusted to 128 x 128 pixels. Each
performance lasts about 15 seconds, covering various
techniques such as scales, arpeggios, and finger
changing, ultimately resulting in 300 performance
segments and over 130000 images. To improve the
annotation quality, all images were annotated frame by
frame by two senior piano teachers, including frame
number, hand number, key status, finger changing and
continuous playing information, ensuring temporal
continuity and annotation consistency, providing
reliable support for model training. It should be noted
that despite the high quality of the dataset, there are
still limitations such as a single hand shape, good
lighting conditions, and fixed keyboard types.
Subsequent research will further enhance the model's
generalization and application value by expanding the
sample range and introducing diverse keyboards and
performance styles.

4.2 Data preprocessing and annotation
standards

To enhance the stability and effectiveness of image
sequences during model training, this paper
implements systematic preprocessing and annotation
standards for dataset construction to improve model
convergence speed, enhance recognition accuracy, and
reduce overfitting risk.

In terms of image preprocessing, all images are
uniformly scaled to 128 x 128 pixels, and the hand
area is centered through center cropping to reduce the
interference of background noise and lighting
differences on feature extraction. Subsequently, the
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image is subjected to minimum maximum normalization,
mapping pixel values to the [0,1] interval, effectively
improving the numerical stability and adaptability of
network training. In response to the problem of missing
frames in some sequences (accounting for 1.6%), this
paper uses linear interpolation to complete the missing
frames, ensuring the integrity of the finger movement
sequence and avoiding recognition errors caused by frame
loss.

In terms of annotation, a frame level multidimensional
labeling system has been constructed, covering: main
button finger numbering; Whether to switch fingers; Is it
the starting frame of the button; Is there any dynamic
behavior such as glissando; Button status. Each piece of
data is independently annotated by two piano teachers,
and the consistency and reliability of the labels are
improved through cross comparison and expert review.

In terms of dataset partitioning, following the principle of
"player independence", the ratio of training set, validation
set, and test set is set at 70%: 15%: 15% to ensure that the
test set contains new player data and avoid overfitting
caused by individual memory. In addition, the training set
maintains balance in terms of finger categories, action
duration, rhythm types, etc., enhancing the model's
adaptability and generalization performance to diverse
teaching tasks.

4.3 Model
analysis

To comprehensively and objectively evaluate the
performance of the piano finger recognition model
proposed in this article in multi class action recognition
tasks, combined with commonly used standards in the
fields of computer vision and sequence recognition, this
article systematically evaluates the model from five
dimensions: accuracy, macro average precision, macro
average recall, macro average F1 score, and system
response time, ensuring that the evaluation results are
scientific, comprehensive, and have practical guidance
significance.

At the overall performance level, accuracy is used to
measure the proportion of correct classification of all test
samples by the model, and is the most fundamental and
intuitive performance evaluation indicator. However,
considering the extremely uneven distribution of piano
fingering movements in actual performance (such as
high-frequency occurrence of one finger and two fingers,
while finger changing, crossing, and other movements
account for a relatively low proportion), relying solely on
accuracy can easily mask the recognition effect of a few
categories. Therefore, in this study, accuracy is only used
as a reference indicator for overall trends.

To address the issue of class imbalance, this article
introduces Macro Precision and Macro Recall for a more
balanced performance evaluation. The macro average
accuracy reflects the overall prediction accuracy of the
model in each category by calculating the accuracy of
each category separately and taking the arithmetic mean;

evaluation and performance
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The macro average recall rate measures the model's
ability to recognize and cover samples of various
categories. Both are not affected by the sample size
and can more accurately reflect the model's recognition
ability for edge categories and low-frequency finger
movements.

To further comprehensively examine the balance of the
model's performance in detecting errors such as
"misidentification" and "missed detection", this paper
uses F1 score as the main comprehensive indicator.
The F1 score is the harmonic mean of precision and
recall, which can effectively reflect the actual
performance of the model in complex situations such
as blurred action boundaries and approximate finger
techniques. Its calculation method is as follows:

_ 2xPrecision x Recall
Precision +Recall (5

F1

Among them, Precision represents precision, and
Recall represents recall. To adapt to multi category
scenarios, this article uniformly adopts the Macro-F1
score as the key performance indicator.

In terms of preventing the problem of "error
accumulation" in action recognition, this paper
innovatively introduces a segment main category
voting mechanism, which reduces the overall segment
recognition error caused by individual frame
misjudgment by performing main category statistics on
the frame level prediction results within the action

segment, effectively improving sequence level stability.

Considering the high dependence of piano teaching
scenarios on real-time feedback capabilities, this paper
incorporates system response time into the evaluation
system, and measures the real-time level of the model
by calculating the average inference time of a single
frame image. The experimental results show that the
proposed model not only ensures recognition accuracy
and action boundary sensitivity, but also controls the
average processing time of a single frame within 38ms,
meeting the requirements of real-time teaching
feedback.

In terms of comparative analysis, this article
systematically compares the proposed finger
recognition model based on CNN+GRU+dual attention
mechanism with traditional CNN models, single path
GRU models, and no attention mechanism models. The
results show that as shown in Table 1:
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Table 1: Performance comparison of different models in
piano finger recognition task

Macro
accur | average | Response
Model name .
acy F1 time (ms)
score
Traditional 84.2
78.5% 21ms
CNN %
Single path 85.7
80.1% 33ms
GRU %
Attention free
88.9
dual path 84.6% 37ms
%
model
The dual
attention
91.3
model 87.2% 38ms
) %
proposed in
this article

The comprehensive evaluation results show that the
model proposed in this paper outperforms existing
mainstream methods in terms of accuracy, category
balance, edge category recognition ability, and real-time
feedback in finger gesture recognition. It particularly
performs outstandingly in difficult recognition tasks such
as complex finger gesture switching and micro action
changes, fully demonstrating the effectiveness of the
space-time dual path and dual attention mechanism.

4.4 Ablation experiment

To further verify the independent contribution and
synergistic effect of each module of the piano finger
recognition model proposed in this paper on the overall
performance, a systematic ablation experiment was
designed and implemented in this paper. At the same time,
a horizontal comparative analysis will be conducted
between the proposed model and various mainstream
image sequence modeling methods to comprehensively
evaluate the accuracy, stability, and practical application
value of the model.
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In the ablation experiment section, the spatial attention
module (SAM) and temporal attention module (SEAM)
in the model were separated and tested to construct
different model variants, in order to explore the impact
of each module on recognition performance. Specific
settings include: basic model: only including
CNN-GRU structure, without attention mechanism;
SAM model: adding spatial attention module to the
basic model; SEAM model: adding a time attention
module to the base model; Complete model: a fully
functional model that incorporates both SAM and
SEAM.
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The experimental results show that the frame level
recognition accuracy of the basic model on the test set is
81.4%; After introducing SAM, the accuracy increased to
85.7% and the F1 score increased to 0.865, significantly
enhancing the recognition ability of complex gesture
static features; After introducing SEAM, the accuracy
increased to 87.6% and the F1 score increased to 0.883,
demonstrating good sensitivity to time series action
analysis and dynamic changes;

After integrating the dual attention mechanism into the
complete model, the recognition accuracy was improved
to 89.8%, and the F1 score reached 0.902, achieving the
optimal coupling effect of spatiotemporal features. The
specific performance changes are shown in Figure 2.

” 87,6 89,8
90 85,7 !
85 SV
80
75
CNN-GRU +SAM +SEAM SAM+SEAM

Figure 2: Comparison of model accuracy changes after module stripping

Further comparative experiments compared the system
performance of our model with traditional machine
learning methods (SVM, KNN, RF), typical deep
learning models (CNN, LSTM), hybrid structure
models (CNN-LSTM, CNN-GRU), and the widely
used Transformer model in recent years.

The experimental results show that traditional methods
such as SVM and KNN perform poorly in processing
high-dimensional  visual data and temporal
relationships, with F1 scores below 0.70, indicating
serious overfitting and blurred action boundaries;
Although CNN-LSTM has improved in capturing
temporal features compared to basic CNN, its ability to
extract spatial features is insufficient, resulting in
insensitivity to recognizing complex hand shapes and

100
80

60
40
20

0

CNN-LSTM

micro motion changes; The Transformer model has
certain advantages in identifying standard rhythm
segments, with an F1 score of 0.859. However, its
inference speed is slow, with an average processing time
of 0.92 seconds per frame, making it difficult to meet
real-time teaching feedback requirements;

The model presented in this article outperforms other
comparative models in terms of accuracy, F1 score, and
real-time performance, thanks to its space-time dual path
and dual attention mechanism. The single frame inference
time is only 0.47 seconds, demonstrating practical
feasibility for real-time feedback and terminal
deployment. The recognition accuracy of different models
for typical finger changing scenarios is shown in Figure 3.

Transformer This model

B Finger switching recognition accuracy (%)

Figure 3: Comparison of recognition accuracy of different models for typical finger changing scenarios

S Discussions

This article proposes a visual recognition system that
integrates spatial convolution structure, time series
modeling, and dual attention mechanism to address

prominent issues such as difficulty in recognizing finger
movements, high feedback delay, and insufficient
personalization in piano teaching. The effectiveness of
this system has been verified through systematic
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experiments. Based on comparative analysis, this
article further explores the advantages, application fit,
and future development directions of the proposed
system from multiple dimensions such as recognition
performance, real-time feedback, user adaptability, and
system scalability.

5.1 Comparison between this system and
existing intelligent piano teaching tools
To evaluate the potential application of the proposed
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system in piano teaching, this article selected three
representative intelligent piano teaching tools for
comparison: visual recognition-based software (Simply
Piano, etc.), MIDI signal-based input systems (Flowkey,
etc.), and sensor integrated intelligent keyboard products
(The ONE Smart Piano, etc.). The comparison
dimensions include finger recognition accuracy, real-time
feedback, action coverage, and user adaptability, as
shown in Table 2.

Table 2: Comparative analysis of this system and three typical intelligent piano teaching tools

Finger Average
Types of teaching tools | recognition feedback Action coverage range | User adaptability
accuracy delay
MIDI Input System Only button triggered
78.3% 0.65s ] secondary
(Flowkey) actions are allowed
. . . Low (requires
Sensing keyboard Including basic hand L
82.7% 0.72s specialized
system (The ONE) shape data .
equipment)
Image recognition Including complex High (no need for
system (model in this 89.8% 0.47s actions such as finger dedicated
article) changing and hovering keyboard)

From the perspective of recognition performance,
MIDI and sensor keyboard systems mainly rely on key
signals or basic touch detection, and cannot accurately
capture non touch actions such as glissando, finger
changing, hovering, etc. The action coverage is limited
and cannot meet the needs of advanced performance
skill training. The system proposed in this article
utilizes the CNN-GRU dual path architecture,
combined with spatial and temporal attention
mechanisms, to achieve dynamic perception and
fine-grained recognition of complex action sequences,
resulting in an overall recognition accuracy of 89.8%
and an F1 value of 0.902, which is about 6% to 11%
higher than traditional systems.

In terms of real-time feedback, MIDI and sensor
systems rely heavily on external devices or cloud
services, with response delays generally exceeding
0.65 seconds. This article uses a lightweight visual
model combined with local real-time inference
technology to achieve an average response time of less
than 0.47 seconds, which can effectively meet the
real-time feedback needs of fast performance and
high-frequency finger training, and improve learning
efficiency and practice quality.

In terms of wuser adaptability and deployment
convenience, sensor systems require dedicated
hardware, which has a high threshold and is difficult to
popularize; Although MIDI systems have openness,

their support for action recognition hierarchy is limited.

This system is based on a universal image acquisition

device and does not require additional hardware

support. It has good scalability and universality, and is
suitable for learners of different age groups and
performance levels to apply widely.

Further comparison revealed that the automatic music
transcription model based on harmonic perception
proposed by Wang et al. (2024) [18] improved the
accuracy of pitch and sustain recognition, but paid
insufficient attention to motion capture and feedback
speed; The IoT piano robot PianoTalk designed by Huang
and Lin (2024) [19] supports remote collaborative
performance, but lacks support for personalized motion
feedback and complex finger techniques; Although the
optical imaging teaching aid device proposed by Wang et
al. (2023) [20] has advantages in capturing details, it has
high equipment costs and poor scene adaptability. In
contrast, this article emphasizes both "visual and
cognitive" aspects, focusing on human-machine
collaboration and action detail tracking in real teaching
scenarios, and positioning is more in line with the needs
of normalized teaching.

It should be pointed out that the current system has not
yet implemented multimodal interaction functions such as
force perception and sound feedback, and there is still
room for improvement in enriching user experience and
contextual feedback. In the future, we can draw on the
research results of Alghazali and Musa (2024) on
keyboard physics feedback, further integrate functions
such as force sensing and audio analysis, and build a
more complete intelligent piano learning ecosystem. In
summary, the piano finger recognition system proposed in



Real Time Piano Finger Recognition Using Convolutional Neural...

this article is superior to existing mainstream tools in
terms of recognition accuracy, real-time feedback,
action coverage breadth, and user adaptability. It has
good technological innovation, engineering feasibility,
and teaching promotion potential, and is a beneficial
attempt to promote the digital and intelligent
development of music education.

5.2 Model calculation complexity and
system response speed

To evaluate the feasibility of deploying the piano
finger recognition system proposed in this article in
practical teaching and training scenarios, experimental
verification was conducted from two dimensions:
computational complexity and response speed, to
ensure that the system has low latency, stable output,
and good portability, and can support real-time
teaching applications with multiple terminals and
scenarios. The system adopts a dual path structure
combining Convolutional Neural Network (CNN) and
Gated Recurrent Unit (GRU), and introduces spatial
and temporal attention mechanisms to effectively
improve the focusing ability on key action nodes. In
order to meet the high-frequency movements and
real-time feedback requirements of piano performance,
the system optimized the model structure parameters

and simplified the calculations during the design phase.

Performance testing was conducted on three typical
hardware platforms: laptop (Intel i7), desktop GPU
platform (NVIDIA RTX 4060), and Raspberry Pi 4
embedded development board. The average inference
time from image input to finger recognition output of
the system is shown in Table 3.

Table 3: Comparison of average inference time of
models on different computing platforms

Average reasoning

platform type .

time (s)
GPU (NVIDIA RTX
0.216
4060)

CPU (Intel i7) 0.678
Raspberry Pi 4 1.428

The experimental results show that the system
achieves a response time of 0.216 seconds on the GPU
platform and can support real-time feedback for
high-density performance; It also maintains good
operational efficiency on CPU and embedded
platforms, with deployment flexibility and cost
advantages. Compared with traditional LSTM models,
this system replaces LSTM with GRU, reducing
computational complexity and memory consumption.
At the same time, it combines dual attention
mechanism to improve recognition accuracy without
significantly  increasing computational  burden,
ensuring stability and response speed during
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continuous  action  processing. = Meanwhile, the
development of wearable piano assistive devices in recent
years has provided reference for the future expansion of
this system. The piano exoskeleton training system
developed by Xu et al. (2024) [22] has improved the
accuracy of movements. If this system is integrated with
such devices, it is expected to achieve a closed-loop
system of action recognition feedback correction, which
can be extended to rehabilitation training and other
scenarios. In terms of adapting teaching content, the
music style recognition technology based on the CRNNH
algorithm proposed by Hao (2024) [23] can provide
support for the future construction of an integrated
platform of "style recognition finger optimization
personality feedback", further enhancing the level of
teaching intelligence and personalization.

Overall, the system presented in this article performs
excellently in terms of computational efficiency, real-time
performance, deployment flexibility, and future expansion
potential, possessing the technical advantage of creating a
low-cost and practical intelligent piano teaching tool.

5.3 Scalability of the system

The piano finger recognition and training sThe computer
vision based piano finger recognition and training system
proposed in this article has good scalability and multi
scene adaptability, and can support intelligent music
education applications in different levels and
environments.

The system core consists of a lightweight convolutional
neural network (CNN) and a hand keypoint recognition
module, combined with model clipping and parameter
optimization, to achieve resource control while ensuring
recognition accuracy. The complete model memory
occupies about 150MB. In addition, a compressed version
based on ONNX format has been developed, which can
be adapted to mid to low end GPU platforms, teaching
all-in-one machines, and portable terminals, with flexible
and convenient deployment.

To meet the concurrent recognition requirements in
large-scale teaching, the system introduces multi
threading and distributed scheduling mechanisms, which
can support synchronous interaction among multiple
learners. On a standard GPU platform, the system's single
frame recognition speed reaches 0.054 seconds, meeting
real-time feedback requirements; On edge devices such as
Jetson Nano, the optimized version recognition speed is
0.31 seconds per frame, suitable for non real time
learning and offline evaluation scenarios.

For complex application requirements, the system has
further expansion space:

By using methods such as model pruning and knowledge
distillation, the model can be compressed to within 80MB,
enabling deployment on Android tablets and embedded
terminals;

Integrate fingerprint trajectory, force recognition, and
audio analysis to build a multimodal feedback system and
enhance the interactive experience;
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Support remote teaching platforms based on WebRTC
and WebGL, enabling online, cross end, and plugin
free operation, and promoting the digital
transformation of teaching modes.

At present, the system has achieved multi-mode
deployment on local, local area network, and cloud,
and users can realize real-time finger recognition and
feedback through web pages, adapting to diverse
applications such as remote teaching, home practice,
and mobile learning. In summary, this system has good
advantages in performance, adaptability, and scalability,
which can provide strong support for the digital and
intelligent upgrading of music education.

6 Conclusion

The precise recognition and real-time feedback of
piano fingerings are important technical supports for
improving performance, optimizing learning paths, and
enhancing teaching efficiency. In response to the
shortcomings of traditional piano teaching tools in
recognition  accuracy, timely feedback, and
personalized adaptability, this paper proposes a piano
finger recognition and training system that integrates
spatial convolution feature extraction, time series
modeling, and attention mechanism optimization,
significantly =~ improving  recognition  accuracy,
operational efficiency, and application flexibility.

The main innovations and achievements of this article
include:

We have constructed a spatiotemporal dual path fusion
architecture for action recognition, which combines the
advantages of convolutional neural networks (CNN)
and gated recurrent units (GRU) to improve the
accuracy of complex finger gesture recognition;
Introducing Spatial Attention Module (SAM) and
Temporal Attention Module (SEAM) to enhance the
model's ability to focus on and capture the continuity
of key action nodes;

Based on a diverse performance dataset, systematic
ablation experiments and comparative analysis were
conducted to verify the advantages of the proposed
model in recognition accuracy, response speed, and
stability;

The system has achieved efficient deployment in multi
platform and multi terminal environments, with good
scalability and application value.

The experimental results show that the system has a
recognition accuracy of 89.8% in complex playing
environments, an F1 score of 0.902, an average
feedback delay of 0.47 seconds, and good real-time
performance and anti-interference ability. Compared to
traditional methods, the system can achieve dynamic
tracking and real-time feedback of continuous finger
movements, effectively improving learning efficiency
and teaching quality. From the perspective of
application promotion, the system has advantages such
as strong hardware adaptation, flexible deployment,
and good interactive experience, especially suitable for
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areas with weak educational resources, online teaching,
and personalized self-learning scenarios, helping to
promote the intelligent and popularization development
of piano teaching. Future research will further integrate
audio features, gesture 3D reconstruction, and stylized
recommendation technologies to expand multimodal
interaction and collaborative learning capabilities,
promote the continuous evolution of intelligent piano
teaching systems, and serve a wider range of innovative
music education practices.
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