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To enhance the power grid enterprise's ability to comprehensively perceive and dynamically assess 

investment risks in engineering projects, this study proposes a risk management model called GridRiskNet 

based on big data mining. This model integrates structured, unstructured, and spatiotemporal data and 

realizes intelligent identification of project risk probability distributions and potential impact ranges by 

constructing a two-stage hybrid modeling architecture. In the first stage, the model uses eXtreme Gradient 

Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) to extract static and dynamic 

features in parallel. In the second stage, it introduces Graph Attention Recurrent Neural Network (GA-

RNN) to model risk propagation paths under the power grid topology. Meanwhile, this study combines 

Spatio-Temporal Graph Convolutional Network (ST-GCN) to improve the coupling expression of 

meteorological and text features. The experiment uses multi-source public data for verification, such as 

power infrastructure data from the U.S. Energy Information Administration, meteorological observation 

data from the National Oceanic and Atmospheric Administration, and power grid topology data from 

OpenStreetMap. The results show that GridRiskNet performs excellently in risk prediction stability and 

regional propagation modeling. Among them, the risk principal component analysis projection score in 

2023 reached 7.779. This indicates that cost overruns, climate pressure, and equipment technology risks 

together form a high-risk cluster, with cost overruns increasing by 269% compared with 2018. In the 

State-of-the-Art comparison, GridRiskNet achieves an F1-score of 0.892, a Receiver Operating 

Characteristic - Area Under Curve of 0.962, a Risk Impact Radius error of approximately 4.8 km, and a 

Risk Entropy of 0.89; these are comprehensively better than existing methods. Moreover, the model has 

good cross-modal feature fusion and risk transmission mechanism identification capabilities, and can 

effectively characterize the spatiotemporal coupling risk features in complex power grid projects. Overall, 

this system can provide power grid enterprises with structured and interpretable risk index outputs and 

regional early warning support. Thus, it helps to improve the investment safety and operational and 

maintenance resilience of projects. 

Povzetek: Predstavljen je GridRiskNet, dvofazni hibridni model za upravljanje investicijskih tveganj v 

elektroenergetskih projektih. S križnim združevanjem strukturiranih, besedilnih in prostorsko-časovnih 

podatkov ter uporabo XGBoost/LightGBM in GA-RNN izboljša napoved tveganj (F1=0,892, AUC=0,962) 

ter natančno modelira regionalno širjenje tveganj (napaka 4,8 km).

1 Introduction 

With the accelerated promotion of energy transition 

and the construction of new power systems, the strategic 

position of power grid engineering projects in national 

energy security and clean energy consumption has 

become increasingly prominent [1]. However, power grid 

enterprises face problems such as the surge of multi-

source heterogeneous data, highly uncertain engineering 

environments, and frequent external disturbances during 

project investment and construction. These problems 

make traditional risk management methods difficult to 

cover the dynamic risk chain throughout the whole  

 

process from construction preparation, equipment 

deployment, to operation and maintenance support [2]. 

Especially against the backdrop of the rapid development 

of renewable energy, the risk types in project investment 

are constantly evolving. For example, the enhancement 

of climate extremeness, the swift change of equipment 

technology paths, and the increase in policy compliance 

costs all propose higher requirements for the intelligence 

and adaptability of risk early warning systems [3-5]. 

Therefore, constructing a big data mining-based 

intelligent risk assessment model has become a key path 

to improving the investment decisions' scientific nature 

and the power grid enterprises' resilience governance 
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capabilities [6, 7]. In the context of power market 

liberalization, the continuous increase in the proportion 

of renewable energy has made the risk management of 

geographical locations caused by network congestion 

increasingly important. Improving the ability to model 

location-related risks has become the core foundation for 

supporting project financing and investment feasibility 

assessment [8]. 

In recent years, artificial intelligence (AI) 

technologies have made remarkable progress in risk 

identification, modeling, and prediction. Model 

architectures represented by graph neural network (GNN), 

attention mechanisms, and deep semantic modeling have 

been gradually applied to financial risk control and 

energy dispatching [9, 10]. Some studies have attempted 

to introduce machine learning (ML) methods into the 

power engineering field. It includes using eXtreme 

Gradient Boosting (XGBoost) for classification and 

identification of construction anomalies, or employing a 

convolutional neural network (CNN) for trend prediction 

of construction period delays [11]. However, existing 

methods generally suffer from shortcomings such as a 

single model structure, weak data fusion capability, and 

difficulty in explaining cross-modal causal paths; these 

methods cannot effectively support power grid 

enterprises in achieving full-chain risk perception, 

dynamic quantification, and structural early warning in a 

multi-source data environment. Therefore, there is an 

urgent need to construct a multi-modal driven composite 

risk assessment system for power grid engineering 

scenarios. 

To this end, this study proposes the GridRiskNet 

model based on big data mining, constructs a fusion 

mechanism for structured data, unstructured text, and 

spatiotemporal data. Thus, it realizes comprehensive 

modeling and dynamic evaluation of investment risks in 

power grid engineering projects. The study's main 

innovations encompass: 

(1) Proposing a two-stage GridRiskNet model 

architecture: It integrates XGBoost and Light Gradient 

Boosting Machine (LightGBM) for risk capture, and 

models the propagation process of risks in the power grid 

topology through a Graph Attention Recurrent Neural 

Network (GA-RNN). 

(2) Introducing Spatio-Temporal Graph 

Convolutional Network (ST-GCN) and cross-modal 

attention mechanisms: It enhances the model's expression 

capabilities for meteorological disturbances and regional 

structural information; 

(3) Constructing a risk principal component 

projection index system based on Principal Component 

Analysis (PCA): It achieves structural clustering and 

projection analysis of high-dimensional risk samples, and 

supports the differentiated regional risk management 

needs of power grid enterprises. 

Overall, the specific research question is whether 

multimodal data fusion and risk propagation modeling 

methods can enhance the comprehensive capabilities of 

risk classification, propagation path identification, and 

uncertainty quantification in complex power grid 

engineering projects. The target outcome is to achieve a 

comprehensive portrayal of investment risks in power 

grid engineering projects by constructing a composite 

model that integrates structured, spatiotemporal, and text 

data. It also aims to verify the advantages of the proposed 

method in terms of risk identification accuracy, 

propagation path reducibility, and risk distribution 

stability. Thus, it supports power grid enterprises in risk 

early warning and decision optimization. 

2 Related work 

With the in-depth application of AI technologies and 

big data analysis methods in engineering management, 

investment project risk assessment has gradually shifted 

from traditional static analysis to intelligent prediction 

and dynamic modeling. Aiming at the insufficiency of 

risk assessment for manufacturing investments, Dong 

and Li proposed combining expert experience with big 

data mining to construct project risk indices and 

integrating CNN with Long Short-Term Memory (LSTM) 

for predictive modeling. In multiple sliding window tests, 

the model achieved a Receiver Operating Characteristic 

(ROC) value of 0.9366 and an average accuracy of 

94.95%, demonstrating high prediction precision [12]. 

Loseva et al., facing the risk assessment task of regional 

franchising projects, constructed a big data-based credit 

rating model by combining the SPARK information 

system with ML methods. This verified the model's 

robustness in identifying abnormal risks through 

Spearman correlation and confusion matrix [13]. These 

studies have provided useful insights into introducing 

composite modeling methods and integrating expert 

judgment with data-driven mechanisms, gradually 

promoting the development of investment risk 

assessment towards intelligence and systematization. 

Over the years, methods such as GNN, deep 

clustering, and multi-criteria decision-making have been 

widely introduced into investment evaluation and project 

classification, further enhancing the structural cognitive 

ability of risk assessment. Mostofi et al. constructed a 

construction project investment framework based on 

graph attention networks. This framework achieved a 

classification accuracy of over 98% in three sub-networks 

of region, country, and financing model, demonstrating 

the advantages of graph structure in modeling investment 

decision-making relationships [14]. Qi used regularized 

topic models and graph clustering methods to construct a 

financial investment "behavior circle". They mapped 

customer behaviors to the latent semantic space and 

realized risk classification of financial communities and 

investment plan recommendations through subgraph 

mining [15]. Moreover, Luo and Zhu proposed a deep 

neural network (DNN) model based on transfer learning 

for regional investment risk assessment. This model 

maintained high prediction accuracy (up to 92%) in the 

case of insufficient samples, demonstrating the potential 

of deep learning in solving unbalanced data problems 

[16]. These studies all reflect the integration trend of risk 

assessment models in recent years towards deep 

representation learning, multi-layer decision-making 
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structures, and complex graph relationship modeling. 

Although existing studies have made positive 

progress in risk modeling methods, index system 

construction, and model accuracy improvement, there are 

still three main deficiencies. First, most current models 

focus on classification or regression prediction of risk 

probability, lacking the ability to model regional 

structural propagation characteristics. Second, the 

heterogeneity of multi-source data has not been fully 

utilized, and a unified representation for structured, 

spatiotemporal, textual, and other multimodal 

information has not been formed. Third, the 

interpretability and quantifiability of risk structure 

evolution must be enhanced, making it difficult to support 

dynamic scheduling and regional risk management of 

complex systems such as power grid projects [17]. In 

response to the above shortcomings, this study proposes 

a grid engineering project investment risk management 

system based on big data mining - the GridRiskNet model. 

This model reveals the changing trends of high-

dimensional risk structures and supports grid enterprises 

in accurately perceiving and dynamically controlling 

investment risks at different regions and time scales. 

3 GridRiskNet model based on big 

data mining 

3.1 Realization process of GridRiskNet 

model 

The proposed GridRiskNet model realizes 

intelligent assessment of investment risks in power grid 

engineering projects based on multi-source 

heterogeneous data fusion and a hybrid ML architecture. 

It first establishes a multimodal data preprocessing layer. 

For structured data (such as project budgets and 

equipment parameters), an adaptive normalization 

method is used to unify dimensions, ensuring the 

consistency of feature scales. For unstructured text data 

(including engineering logs and bidding documents), a 

fine-tuned Bidirectional Encoder Representations from 

Transformers (BERT) model is utilized to deeply extract 

semantic features, enhancing the risk perception ability 

of text information. For spatiotemporal data (such as 

construction trajectories and meteorological records), ST-

GCN is introduced to jointly encode complex 

environmental features from two dimensions: spatial 

dependence and temporal dynamics [18, 19]. In the 

feature fusion stage, a cross-modal attention mechanism 

is designed, which can adaptively learn the weight 

relationships between different data modalities. 

Meanwhile, this mechanism can effectively integrate 

multi-source features and generate unified and dense 

high-dimensional risk representation vectors, laying the 

foundation for multi-dimensional risk modeling [20]. 

At the core of modeling, GridRiskNet adopts a two-

stage hybrid modeling framework. In the first stage, the 

improved XGBoost and LightGBM models run in 

parallel to jointly perform risk prediction on high-

dimensional risk representation vectors. Specifically, 

XGBoost integrates a dynamic feature selection 

mechanism, which dynamically updates feature 

importance indices based on sliding window statistical 

features to enhance the response capability to dynamic 

risk factors. LightGBM incorporates a time-series-aware 

splitting criterion to strengthen the detection capability 

for time-series anomalies such as project schedule delays. 

The two models output the prediction probabilities of risk 

categories (i.e., risk probability vectors after Softmax) 

and sequences of feature importance scores [21]. 

In the second stage, GA-RNN is used as a meta-

model, whose core innovation lies in fusing the dual 

output information from the first stage mentioned above. 

Specifically, GA-RNN takes the risk probability vectors 

of XGBoost and LightGBM as the main input; 

simultaneously, it introduces their feature importance 

score sequences as auxiliary features to form a 

comprehensively fused feature matrix. This matrix 

contains the risk prediction results from the previous 

stage; it also explicitly integrates the influence weights of 

features on the model output, thereby enhancing the 

ability to perceive risk propagation mechanisms [22]. 

Subsequently, based on this matrix, GA-RNN introduces 

a risk propagation graph structure and accurately models 

the transmission relationships between risk factors 

through an adjacency matrix. Moreover, it uses graph 

attention mechanisms and recurrent neural network 

(RNN) units to dynamically learn key nodes and main 

channels in risk propagation paths, extracting high-order 

interaction features. 

The entire GridRiskNet model comprehensively 

optimizes classification cross-entropy loss, risk 

propagation graph reconstruction error, and feature 

stability regularization terms through an end-to-end joint 

training strategy. Finally, this model outputs a multi-

dimensional risk assessment matrix covering risk 

probability distribution, potential impact range, and 

structural features. The entire system adopts an online 

incremental learning mechanism, which can continuously 

absorb real-time data flow to dynamically update model 

parameters; this achieves a high adaptability and 

continuous tracking of the risk environment of power grid 

engineering projects. The implementation process and 

pseudocode of GridRiskNet are illustrated in Figures 1 

and 2. 
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Figure 1: The implementation process of GridRiskNet 

 

class GridRiskNet:

    def __init__(self, config):

        self.config = config

        self.preprocessor = MultiModalPreprocessor(config)

        self.feature_fusion = CrossModalAttention(config)

        self.first_stage = HybridEnsembleModels(config)

        self.risk_graph = RiskPropagationGraph(config)

        self.second_stage = GARNNMetaModel(config, self.risk_graph)

    

    def train(self, dataset):

        features = self.preprocessor.process(dataset)

        fused_features = self.feature_fusion(features)

        first_stage_preds = self.first_stage.train(fused_features, dataset.labels)

        self.second_stage.train(first_stage_preds, fused_features, dataset.labels)

        

        for epoch in range(self.config.epochs):

            preds = self.predict(dataset)

            loss = self._calculate_loss(preds, dataset.labels)

            self._update_models(loss)

    

    def predict(self, dataset):

        features = self.preprocessor.process(dataset)

        fused_features = self.feature_fusion(features)

        first_stage_preds = self.first_stage.predict(fused_features)

        return self.second_stage.predict(first_stage_preds, fused_features)

    

    def update_with_new_data(self, new_data):

        features = self.preprocessor.update_and_process(new_data)

        self.first_stage.update(features, new_data.labels)

        first_stage_preds = self.first_stage.predict(features)

        self.second_stage.update(first_stage_preds, features, new_data.labels)

class MultiModalPreprocessor:

    def process(self, dataset):

        return {

            'structured': self._process_structured(dataset.structured),

            'text': self._process_text(dataset.text),

            'spatiotemporal': self._process_spatiotemporal(dataset.spatiotemporal)

        }

    def _process_structured(self, data):

        return AdaptiveNormalization(data)

    

    def _process_text(self, data):

        return FineTuneBERT(self.bert_model, data)

    

    def _process_spatiotemporal(self, data):

        return STGCN(self.stgcn_params).forward(data)

class CrossModalAttention:

    def __call__(self, features):

        weights = self._compute_attention_weights(features)

        return weighted_sum(features, weights)

class HybridEnsembleModels:

    def __init__(self, config):

        self.xgboost = ImprovedXGBoost(config)

        self.lightgbm = ImprovedLightGBM(config)

    

    def train(self, features, labels):

        xgb_preds = self.xgboost.train(features, labels)

        lgbm_preds = self.lightgbm.train(features, labels)

        return combine_predictions(xgb_preds, lgbm_preds)

class RiskPropagationGraph:

    def __init__(self, config):

        self.adj_matrix = self._construct_adjacency_matrix(config.risk_factors)

    

    def _construct_adjacency_matrix(self, risk_factors):

        # Construct adjacency matrix based on domain knowledge or data learning

        pass

class GARNNMetaModel:

    def train(self, first_stage_preds, features, labels):

        # Train GA-RNN model

        pass

    

    def predict(self, first_stage_preds, features):

        # Predict risk assessment matrix

        pass    

 
Figure 2: The pseudocode of GridRiskNet 
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3.2 Mathematical modeling principle of 

GridRiskNet model 

Figure 1 shows the complete implementation 

process of the GridRiskNet model, covering the entire 

process from user-requested risk assessment to model 

output results and continuous updates. The model is built 

on multi-source heterogeneous data, fusing structured, 

unstructured, and spatiotemporal information, and 

achieves intelligent prediction of power grid project risks 

through multi-stage ML and graph modeling strategies. 

The key computational links in the model are described 

mathematically and logically as follows. 

In the data preprocessing stage, the structured input 

data is first normalized. Let the original data matrix be: 

𝐗𝑠 ∈ ℝ𝑛×𝑑𝑠               (1) 

𝐗𝑠 represents 𝑛 records, and each record contains 

𝑑𝑠  structural features. Normalization calculation is as 

follows: 

𝐗̃𝑠 =
𝐗𝑠−𝜇𝑠

𝜎𝑠+𝜖
              (2) 

𝜇𝑠  denotes the column vector, indicating the 

average value of each column. 𝜎𝑠  represents the 

standard deviation (SD), and 𝜖 is a positive number to 

prevent the denominator from being zero. This 

processing ensures that the model has numerical 

consistency among different dimensional features. 

For unstructured text data 𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑚} , 
semantic features are extracted by fine-tuning BERT 

model, and the output is: 

𝐇𝑡 = BERT(𝒯) = [𝐡1; 𝐡2; … ; 𝐡𝑚], 𝐡𝑖 ∈ ℝ𝑑𝑡    (3) 

𝐡𝑖 is the semantic vector of the 𝑖-th text, and the 

dimension is 𝑑𝑡 . This step preserves the semantic 

relationship between text contexts and forms an 

important basis for the model to recognize risk semantics. 

For spatiotemporal data including trajectory and 

meteorology, it is expressed as: 

𝐗𝑠𝑡 ∈ ℝ𝑇×𝑁×𝐹              (4) 

𝑇 refers to the time step. 𝑁 denotes the space node 

(such as the site number), and 𝐹 represents the space-

time characteristic dimension of each node. ST-GCN is 

used for modeling, and its core propagation equation is: 

𝐙(𝑙+1) = 𝜎(∑  𝐾
𝑘=0 𝐀𝑘𝐙

(𝑙)𝐖𝑘)         (5) 

𝐀𝑘  means the adjacency matrix of order 𝑘 ; 𝐙(𝑙) 
indicates the node representation of the 𝑙-th layer; 𝐖𝑘 

stands for the weight matrix; 𝜎 represents the activation 

function. This network structure can capture the linkage 

relationship between spatial topology and time evolution. 

In the feature fusion stage, the model introduces 

cross-modal attention mechanism to automatically 

aggregate multi-source information. Let two modal 

features be 𝐅𝑖  and 𝐅𝑗  respectively, and their attention 

weights are calculated as: 

𝛼𝑖,𝑗 =
exp⁡(𝐅𝑖

⊤𝐖𝑎𝐅𝑗)

∑  𝑘 exp⁡(𝐅𝑖
⊤𝐖𝑎𝐅𝑘)

              (6) 

After fusion, a unified risk representation vector is 

obtained: 

𝐅𝑓𝑢𝑠𝑖𝑜𝑛 = ∑  𝑗 𝛼𝑖,𝑗 ⋅ 𝐅𝑗              (7) 

This mechanism enables the model to automatically 

learn the most discriminating risk signal source when 

faced with heterogeneous features and semantic diversity. 

The hybrid modeling framework is divided into two 

stages. In the first stage, the improved XGBoost and 

LightGBM models are run in parallel. The objective 

function of XGBoost reads: 

ℒ𝑥𝑔𝑏 = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑  𝐾

𝑘=1 Ω(𝑓𝑘)       (8) 

𝑦̂𝑖 = ∑  𝐾
𝑘=1 𝑓𝑘(𝐱𝑖) , which represents the predicted 

value of sample 𝑖 . Ω(𝑓𝑘) = 𝛾𝑇𝑘 +
1

2
𝜆 ∥ 𝜔𝑘 ∥

2  is the 

regular term of the 𝑘-th tree. 

To adapt to the dynamic change of time, XGBoost 

integrates a sliding window statistical module to 

dynamically adjust the importance of features: 

𝐼𝑗
(𝑡)

= ∑  𝑡
𝑠=𝑡−𝑤                    (9) 

Δ𝐺𝑗
(𝑠)

 indicates the gain change of the 𝑗-th feature 

in the 𝑠 -th time step. 𝐼𝑗
(𝑡)

  c a dynamic feature 

importance index within the XGBoost stage, used to 

reflect gain changes within the sliding window; it is also 

mainly applied to internal feature selection and dynamic 

weight adjustment of the first-stage model. 

LightGBM introduces the split criterion of time 

series perception to enhance the ability of anomaly 

recognition. Let the time series samples be 

{𝐱1, 𝐱2, … , 𝐱𝑇}, and its splitting gain is defined as: 

𝒢𝑗 = ∑  𝑇
𝑡=1 𝑤𝑡 ⋅ [

(∑  𝑖∈𝐿𝑡
𝑔𝑖)

2

∑  𝑖∈𝐿𝑡
ℎ𝑖+𝜆

+
(∑  𝑖∈𝑅𝑡

𝑔𝑖)
2

∑  𝑖∈𝑅𝑡
ℎ𝑖+𝜆

]      (10) 

𝑔𝑖 and ℎ𝑖 are gradients and second derivatives. 𝐿𝑡 
and 𝑅𝑡  represent the left and right sample sets of the 

current split, and 𝑤𝑡 = 𝑒−𝛽(𝑇−𝑡) is the time attenuation 

weight. 

In the second stage, GA-RNN is used to capture the 

high-order risk path. Its node status is updated to: 

𝐡𝑖
(𝑡)

= GRU(∑  𝑗∈𝒩(𝑖) 𝛼𝑖𝑗𝐡𝑗
(𝑡−1)

, 𝐡𝑖
(𝑡−1)

)   (11) 

𝒩(𝑖)  indicates the neighbor set of node 𝑖 . 𝛼𝑖𝑗  v 

the edge weight under the graph attention mechanism: 

𝛼𝑖𝑗 =
exp⁡(LeakyReLU(𝐚⊤[𝐖𝐡𝑖∥𝐖𝐡𝑗]))

∑  𝑘∈𝒩(𝑖) exp⁡(LeakyReLU(𝐚
⊤[𝐖𝐡𝑖∥𝐖𝐡𝑘]))

   (12) 

Finally, the system integrates three kinds of 

objectives: classification performance, graph structure 

reconstruction, and feature stability by jointly optimizing 

the overall loss function. 

ℒ𝑐𝑒 is the cross-entropy loss: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑐𝑒 + 𝜆1 ⋅ ℒ𝑔𝑟𝑎𝑝ℎ + 𝜆2 ⋅ ℒ𝑟𝑒𝑔   (13) 

The loss of graph structure consistency is: 

ℒ𝑔𝑟𝑎𝑝ℎ =∥ 𝐀 − 𝐀̂ ∥𝐹
2             (14) 

The regular term of characteristic disturbance reads: 

ℒ𝑟𝑒𝑔 = ∑  𝑑
𝑗=1 Var(∇𝐱𝑗𝑦̂)          (15) 

On the system deployment level, GridRiskNet 

adopts online incremental learning mechanism. Let the 

current parameter be 𝜃𝑡, and the model is updated after 

receiving new samples (𝐱𝑡 , 𝑦𝑡): 
𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ ∇𝜃ℒ(𝐱𝑡 , 𝑦𝑡; 𝜃𝑡)       (16) 

𝜂  represents the learning rate. ∇𝜃  denotes the 

gradient operator. This mechanism ensures that the model 

has adaptive update abilities in a dynamic risk 

environment. 
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4 Experimental analysis of 

GridRiskNet model project 

investment risk management based on 

big data mining 

4.1 Data used in the study 

To verify the risk management capability of the 

GridRiskNet model for power grid enterprise engineering 

projects, the study uses three core public datasets for 

experimental validation and designs a fusion scheme for 

data heterogeneity. First, the structured data adopts the 

U.S. Energy Information Administration (EIA) power 

infrastructure dataset 

(https://www.eia.gov/electricity/data.php). Its API 

interface screens power grid engineering project data 

from 2018 to 2023, including budget, construction period, 

equipment models, and other fields. After extracting the 

original CSV-format data using Python's eia-python 

library, adaptive normalization is performed to eliminate 

dimension differences, which are associated with 

subsequent spatiotemporal data through project IDs and 

date fields. Second, the spatiotemporal data selects the 

National Oceanic and Atmospheric Administration 

(NOAA) Global Historical Climatology Network-Daily 

(GHCN-Daily) 

(https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00861). Daily values of 

temperature, precipitation, and wind speed are 

downloaded, and stations are matched to the project's 

geographic coordinates. The rnoaa toolkit converts them 

into spatiotemporal tensors, from which meteorological 

risk features are extracted through ST-GCN encoding. 

The spatial topology data is obtained from the 

OpenStreetMap power network dataset 

(https://wiki.openstreetmap.org/wiki/Power_networks). 

The OSMnx library extracts GIS data of substations and 

transmission lines, constructing an adjacency matrix to 

model the physical connection of the power grid. For 

unstructured text data, engineering accident reports from 

2018 to 2023 corresponding to EIA projects are manually 

screened from the Federal Energy Regulatory 

Commission (FERC) engineering accident report library 

(https://elibrary.ferc.gov/eLibrary/search). After parsing 

the text with Apache Tika, the fine-tuned BERT is input 

to generate semantic vectors. 

The following fusion strategies are adopted to 

address the heterogeneity of multi-source data. 1) 

Temporal alignment: All data is uniformly converted to 

Universal Time Coordinated (UTC) timestamps and 

aggregated at a granularity of 1 day. 2) Spatial alignment: 

Meteorological stations, power grid nodes, and 

engineering sites are associated through GIS coordinate 

matching (error <1km). 3) Consistency of feature 

encoding: Structured data is normalized to [0,1], text 

vectors are unified into 768 dimensions via BERT, and 

spatiotemporal data is compressed into 256-dimensional 

features through ST-GCN. 4) Cross-modal attention 

mechanisms automatically learn the weights of each 

modality, assigning higher attention scores to extreme 

meteorological text descriptions (such as "hurricane 

damage"). The specific process of importing data into 

GridRiskNet is presented in Figure 3. 

 
Figure 3: The specific process of importing data into GridRiskNet 
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4.2 GridRiskNet model's thinking on risk 

management ability analysis of power 

grid enterprises' engineering projects 

The study is conducted from two aspects to 

effectively analyze the risk management capability of the 

GridRiskNet model for power grid enterprise engineering 

projects. First, at the level of risk probability distribution, 

the probability of risks such as budget overrun and 

construction period delay is evaluated based on structured 

data and spatiotemporal features [23]. Second, at the level 

of potential impact scope, the propagation path of risks in 

the power grid topology is analyzed through GNN to 

identify high-risk nodes and their potentially affected 

surrounding areas. The model inputs the fused multi-

dimensional features into a two-stage modeling 

framework and outputs a risk assessment matrix 

including the above two types of indices to support the 

refined and structured management and decision-making 

of power grid project risks [24, 25]. The entire analysis's 

key indices and evaluation criteria are exhibited in Tables 

1 and 2. 

 

Table 1: Explanation of key indices for analysis using the GridRiskNet model 

 

Analytical 

dimension 
Index Data source/calculation method Description 

Risk 

probability 

distribution 

analysis 

 

Risk PCA Projection Score 

Principal component score of high-

dimensional risk vector output by the 

GridRiskNet model after PCA 

dimensionality reduction 

Reflecting the distribution 

position of samples in the risk 

principal component space, and is 

used to identify high-risk 

clustering or structural abnormal 

samples. 

Time-series Anomaly Frequency 
The capture times of abnormal events 

in LightGBM 

Monitoring the frequency of 

abnormal progress. 

Model Confidence Score 
Softmax outputs the maximum 

probability value 

Evaluating the credibility of the 

model output 

Risk Coefficient of Variation 
The ratio of SD to the mean value of 

the risk probability distribution 

Assessing the dispersion degree 

of risk probability distribution, 

the greater it is, the higher the 

risk instability is. 

Risk Importance Index 
Comprehensive weighted scores of 

multiple dimensions 

Representing the strength of risk 

influence 

Risk Entropy 
Information entropy calculation of 

risk probability distribution 

The degree of uncertainty in 

evaluating risk results. 

Analysis of 

the 

potential 

influence 

range 

Risk Propagation Path Length 
Critical path length identified in GA-

RNN 

Length and complexity of the risk 

propagation path 

Node Vulnerability Score 
The weighted average of the affected 

probability of each node in GNN 

Reflect the vulnerability of nodes 

in the power grid 

Risk Impact Radius 

Based on propagation path depth and 

the spatial adjacency matrix in the 

graph structure 

Indicating the physical scope of 

risk propagation 

 

Table 2: Criteria for determining key indices in the GridRiskNet model analysis 

 
Index Type Criteria 

Risk PCA Projection Score 
Secondary 

calculation 

- [0, 2) Low projection; [2, 5) Medium projection; ≥5 High projection, 

tending to abnormal samples or extreme types   

Time-series Anomaly Frequency Model output - [0, 2) Normal; [2, 5) Early warning; ≥5 Abnormal   

Model Confidence Score Model output 
- [0.9, 1] High credibility; [0.7, 0.9) Medium credibility; <0.7 Low 

credibility   

Risk Coefficient of Variation 
Secondary 

calculation 
- [0, 0.3) Stable; [0.3, 0.6) Fluctuating; ≥0.6 Highly unstable   

Risk Importance Index 
Secondary 

calculation 
- [0, 40) Secondary; [40, 70) Important; [70, 100] Critical   

Risk Entropy 
Secondary 

calculation 
- [0, 1) Low uncertainty; [1, 2) Medium; ≥2 High   

Risk Propagation Path Length Model output - [1, 3) Local; [3, 6) Regional; ≥6 Global   

Node Vulnerability Score Model output - [0, 0.4) Low; [0.4, 0.7) Medium; [0.7, 1] High   

Risk Impact Radius 
Secondary 

calculation 
- [0, 5) Station level; [5, 20) Line level; ≥20 Regional level 

 

In Table 2, the index equations involved in 

secondary calculation are as follows: 

(1) Risk PCA Projection Score 

Here, "Risk PCA Projection Score" measures the 
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position of a sample in the dominant risk structure within 

the risk feature space, revealing the main variation trends 

in complex multi-dimensional risk features. Specifically, 

this index is calculated based on the PCA method. First, 

it standardizes the annual high-dimensional risk features 

(such as cost overrun risk, environmental and climate 

pressure, etc.). Then, it extracts the first K principal 

component directions and measures the sample's 

projection value in the principal component space 

through eigenvalue weighting. This score reflects the 

degree of variance contribution of the sample along the 

principal component axis of risk, rather than a simple sum 

of the scores of each risk factor. Due to the different 

statistical distributions of risk features each year, this 

index changes with the year; it comprehensively reflects 

the overall trend of the risk structure of power grid 

projects in the current year and potential abnormal 

clustering characteristics. The calculation is expressed as: 

𝑠𝑖 = ∑  𝐾
𝑘=1 𝜆𝑘 ⋅ (𝐮𝑘

⊤(𝐱𝑖 − 𝝁))2          (17) 

𝐱𝑖  represents the high-dimensional risk feature 

vector of the 𝑖-th sample. 𝝁 indicates the sample mean 

vector. 𝐮𝑘 denotes the feature vector in the direction of 

the 𝑘-th principal component. 𝜆𝑘 is the feature value of 

the 𝑘-th principal component, and 𝐾 means the number 

of selected principal components. 

(2) Risk Coefficient of Variation 

This index is used to measure the relative dispersion 

of risk probability distribution, which is an important 

index reflecting risk instability. This index describes the 

fluctuation range of various risk probabilities in the 

whole by calculating the ratio of the SD of risk 

probability to the mean. A higher value indicates that the 

risk probability distribution is more dispersed and the 

overall instability is stronger. The expression is: 

𝐶𝑉 =
√
1

𝑛
∑  𝑛
𝑖=1 (𝑝𝑖−𝑝̅)

2

𝑝̅+𝜖
             (18) 

𝑝𝑖   denotes the prediction probability of Class 𝑖 
risk. 𝑝̅  means the average value of various risk 

probabilities, and 𝑛 represents the total number of risk 

categories. 

(3) Risk Entropy 

"Risk Entropy" measures the degree of uncertainty 

in the risk probability distribution, reflecting the 

discreteness and unpredictability of risk results. Based on 

information entropy theory, this index reveals the 

potential risk mixture in the system by calculating the 

entropy value of the probability of all risk categories. A 

higher risk entropy value indicates more uncertainties in 

the system, which helps to identify complex and 

unpredictable risk scenarios, represented as: 

𝐻 = −∑  𝑛
𝑖=1 𝑝𝑖 ⋅ log2⁡(𝑝𝑖 + 𝜖)     (19) 

𝐻  denotes the information entropy of risk 

distribution. 

(4) Risk Importance Index 

This index quantifies the comprehensive 

contribution of each risk feature to the overall risk 

assessment results. It reflects the importance level of each 

risk feature by weighted accumulation of the impact 

degree of each feature on the model loss and normalized 

averaging combined with model weights. Features with 

higher values play a greater role in the overall risk 

decision-making, expressed as: 

𝑅𝐼𝑗 =
1

𝑇
∑  𝑇
𝑡=1 (

𝑤𝑗
(𝑡)

⋅Δ𝐿𝑗
(𝑡)

∑  𝑑
𝑘=1 Δ𝐿𝑘

(𝑡))         (20) 

𝑅𝐼𝑗  represents the risk importance index of the 𝑗-th 

feature, which is a risk importance index in the entire 

GridRiskNet framework. It is comprehensively 

calculated based on the feature weights and loss impact 

during the global model training process, belonging to a 

unified index at the global level. 𝑇 means the number of 

model iterations or average times; 𝑤𝑗
(𝑡)

  refers to the 

model weight of the 𝑗 -th feature in the 𝑡 -th iteration; 

Δ𝐿𝑗
(𝑡)

 is the influence degree of the 𝑗-th feature on the 

loss function; 𝑑 denotes the total number of features. 

(5) Risk Impact Radius 

It evaluates the spatial propagation range of risks in 

the power grid graph structure, serving as a key index for 

measuring the physical scope affected by risks. This 

index calculates the average impact radius of all risk 

source nodes in the network based on the power grid 

topology, geographical distance between nodes, and risk 

propagation probability. A larger value indicates a wider 

spatial propagation range of risk events, which is applied 

to regional risk impact analysis, as follows: 

𝑅 =
1

𝑁𝑠
∑  
𝑁𝑠
𝑖=1 ∑  𝑁

𝑗=1 𝑡𝑖𝑗 ⋅ 𝑑𝑖𝑗 ⋅ 𝑝𝑖𝑗          (21) 

𝑁𝑠 represents the number of risk source nodes. 𝑁 

denotes the total number of nodes in the graph. 𝑡𝑖𝑗 is the 

adjacency relationship between nodes 𝑖 and 𝑗 (1 means 

connection). 𝑑𝑖𝑗   means the geographical distance 

between nodes. 𝑝𝑖𝑗  refers to the risk propagation 

probability from nodes 𝑖 to 𝑗. 
Figure 4 presents the pseudocode of the index 

implementation involving secondary calculation. 
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import math

import numpy as np

# 1. Risk PCA Projection Score

def compute_risk_pca_projection_scores(X, K):

    mu = np.mean(X, axis=0)

    X_centered = X - mu

    cov_matrix = np.cov(X_centered, rowvar=False)

    eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix)

    sorted_idx = np.argsort(eigenvalues)[::-1]

    eigenvalues = eigenvalues[sorted_idx][:K]

    eigenvectors = eigenvectors[:, sorted_idx][:, :K]

# 2. Risk Coefficient of Variation

def compute_risk_cv(probabilities):

    mean_p = np.mean(probabilities)

    std_p = np.std(probabilities)

    epsilon = 1e-6

    return std_p / (mean_p + epsilon)

# 3. Risk Entropy

def compute_risk_entropy(probabilities):

    epsilon = 1e-6

    return -sum(p * math.log2(p + epsilon) for p in probabilities)

# 4. Risk Importance Index

def compute_risk_importance(weights, delta_losses):

    T = len(weights)       

    D = len(weights[0])      

    importance = [0.0] * D

    for j in range(D):

        for t in range(T):

            total_delta = sum(delta_losses[t])

            if total_delta == 0:

                continue

            importance[j] += weights[t][j] * delta_losses[t][j] / total_delta

        importance[j] /= T

    return importance

# 5. Risk Impact Radius

def compute_risk_impact_radius(adj_matrix, distance_matrix, 

propagation_probs, source_nodes):

    N = len(adj_matrix)

    total_radius = 0.0

    for i in source_nodes:

        for j in range(N):

            if adj_matrix[i][j] == 1:

                total_radius += distance_matrix[i][j] * propagation_probs[i][j]

    return total_radius / len(source_nodes)

 
Figure 4: Pseudocode of index implementation involving secondary calculation 

 

The experimental environment and key parameters are detailed in Table 3. 

 

Table 3: Experimental environment and key parameters arrangement of the study 

 

Category Configuration item Parameter setting 

Hardware 

environment 

 

Computing platform NVIDIA A100 (40GB memory) × 4 

CPU AMD EPYC 7763 (64-core) 

Memory 512GB DDR4 

Software 

environment 

 

Deep learning framework PyTorch 1.12 + CUDA 11.6 

GNN library PyTorch Geometric 2.2.0 

Traditional ML library XGBoost 1.6 + LightGBM 3.3.2 

NLP toolkit HuggingFace Transformers 4.25 (BERT-base) 

Model 

architecture 

 

ST-GCN layer number 3 layers (hidden layer dimension =256) 

GA-RNN unit 
Graph Attention Layer (number of heads =8) +GRU (hidden layer 

=512) 

Transmodal attention 

mechanism 
Multi-attention (number of heads =4, fusion dimension =1024) 

Training 

parameters 

Batch size 256 (structured data)/32 (graph data) 

Initial learning rate 3e-4 (AdamW optimizer) 

regularization L2 Weight Attenuation =1e-5+Dropout=0.3 

Early stop mechanism 
The loss of verification set does not decrease for 10 consecutive 

rounds 

 

The study designs ablation experiments before 

conducting formal experiments to verify the actual 

contribution of each core component of GridRiskNet. It 

seeks to quantitatively measure the impact of different 

modules on the model's overall performance from a 

systematic perspective. Specifically, four ablation 

versions are set by sequentially disabling the cross-modal 

attention mechanism, the risk propagation modeling 

module of GA-RNN, the dynamic feature selection 

module, and the risk propagation graph reconstruction 

term in the joint loss function. All experiments maintain 

the same hyperparameter configuration on the complete 

dataset, focusing on evaluating three indices. These 

indices include risk classification performance (F1-score, 

Receiver Operating Characteristic - Area Under Curve 

(ROC-AUC)), risk propagation accuracy (Risk Impact 

Radius error), and uncertainty quantification ability (Risk 

Entropy). This experiment aims to clarify the mechanism 

of action of each module, especially their specific 

contributions to power grid risk transmission modeling, 

modal feature fusion, and risk stability control. The 

results of the ablation experiments are listed in Table 4. 
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Table 4: Ablation experimental results of the GridRiskNet model 

 

Ablation version F1-Score ROC-AUC Risk Impact Radius error (km) Risk Entropy 

Full GridRiskNet 0.892 0.962 4.8±0.9 0.89 

No cross-modal attention 0.835 0.917 7.5±1.6 1.12 

No GA-RNN 0.846 0.926 14.2±2.3 0.96 

No dynamic feature selection 0.863 0.941 5.7±1.2 0.94 

Risk-free propagation graph 

reconstruction 
0.871 0.948 4.9±1.0 2.08 

 

The results of the ablation experiments indicate that 

each module of GridRiskNet makes a significant 

contribution to the model performance. The cross-modal 

attention mechanism is particularly crucial in improving 

classification performance; after being disabled, the F1-

score decreases by 6.4%, the ROC-AUC drops by 4.7%, 

and the Risk Entropy rises significantly. This shows that 

this module significantly impacts the collaborative 

perception of complex semantic and meteorological 

features. The risk propagation modeling module of GA-

RNN notably improves the Risk Impact Radius error; 

after being disabled, the error increases sharply to 14.2 

km, verifying its core role in power grid topology 

modeling. The dynamic feature selection module mainly 

enhances the temporal sensitivity of the model; its 

removal leads to a significant drop in F1-score, although 

it has a limited impact on propagation errors. The risk 

propagation graph reconstruction term has a significant 

effect on suppressing prediction fluctuations and 

optimizing uncertainty quantification; its elimination 

causes a substantial rise in Risk Entropy. Overall, 

GridRiskNet achieves the unity of high performance and 

high robustness through the collaboration of various 

modules, with all components being indispensable. 

 

4.3 Analysis Results of GridRiskNet 

model on risk management ability of 

power grid enterprises' engineering 

projects 

4.3.1 Risk probability distribution analysis 

GridRiskNet's annual Risk PCA Projection Score 

results for power grid enterprise engineering projects are 

summarized in Table 5. 

 

Table 5: Annual Risk PCA Projection Score results 

 

Year 

Cost 

overrun 

risk C1 

Ambient 

climate 

pressure 

C2 

Equipment 

technical 

risk C3 

Supply 

chain 

fluctuation 

C4 

Policy 

compliance 

risk C5 

Risk PCA 

Projection 

Score 

Risk tendency 

2018 1.235 0.873 -0.452 0.217 0.095 2.108 

Middle projection 

(structural 

abnormality) 

2019 0.892 0.654 -0.128 -0.304 0.062 1.546 Low projection 

2020 2.874 1.982 1.235 -0.873 0.517 4.856 
High projection 

(extreme type) 

2021 1.023 1.457 0.782 0.396 -0.215 2.48 Middle projection 

2022 3.125 2.769 2.014 1.358 -0.947 5.894 
High Projection 

(abnormal clustering) 

2023 4.562 3.217 3.058 2.146 1.372 7.779 
High projection 

(extreme anomaly) 

 

Table 5 shows that cost overrun risk (C1) and 

environmental climate pressure (C2) have always been 

the dominant risks, especially showing exponential 

growth after 2020. In 2023, C1 (4.562) increased by 269% 

compared with 2018 (1.235), which is highly consistent 

with the reality of global inflation and frequent extreme 

weather. The sudden turn positive (1.372) of policy 

compliance risk (C5) in 2023, to some extent, reveals the 

surge of compliance costs brought by the deepening of 

the "double carbon" policy. The model reflects high-risk 

clustering scenarios such as C1-C3 in 2023 through the 

spatial distribution of principal components, reflecting 

the early warning of composite risks. 

Based on the above analysis, the risk probability 

distribution analysis of grid enterprise engineering 

projects by GridRiskNet is organized, and the annual 

average results of other indices are shown in Figure 5. 
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Figure 5: The annual average results of other indices in GridRiskNet risk probability distribution analysis 

Note: The curves of each index correspond one-to-one with the corresponding color coordinate axes on the right 

 

In Figure 5, regarding the frequency of time-series 

anomalies, the average annual growth rate of abnormal 

events during 2019-2023 reached 65.7%. The model 

objectively reflects the increasing complexity of risks 

through the continuous decline in confidence (from 0.912 

to 0.632). The sudden increase in risk entropy (2.158) in 

2020 preceded the peak of the importance index (83.47); 

this indicates that GridRiskNet can capture the implicit 

correlations of risk factors through information entropy. 

The synchronous increase in the coefficient of variation 

(from 0.712 to 0.859) and risk entropy (from 2.547 to 

2.981) after 2022 reveals the transformation trend of risk 

distribution from centralized to discretized; this provides 

key evidence for power grid enterprises to optimize the 

allocation of risk reserve funds. The core advantage of the 

model lies in the quantitative modeling of the dynamic 

coupling relationship among the three dimensions of 

engineering anomalies, risk uncertainty, and impact 

degree. Meanwhile, it realizes the full-chain risk 

assessment from "anomaly detection" to "impact 

prediction". 

4.3.2 Analysis of potential influence range 

The study divides the U.S. power grid into three 

major regions: The Eastern Interconnection Power Grid 

(EIPG), the Western Interconnection Power Grid (WIPG), 

and the Texas Interconnected Power Grid (TIPG). The 

EIPG covers the eastern, midwestern, and parts of 

southern U.S. states, extending northward to eastern 

Canada. The WIPG covers most western U.S. states, 

connecting with western Canada in the north and 

reaching parts of Mexico in the south. The TIPG includes 

most of Texas. These regional grids are interconnected at 

limited DC points but mostly operate independently. 

Based on this, GridRiskNet's analysis results on the 

potential impact scope of power grid enterprise 

engineering projects are displayed in Figure 6. 
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Figure 6: Analysis of GridRiskNet's potential impact on power grid enterprise engineering projects ((a) 2018; (b) 

2019; (c) 2020; (d) 2021; (e) 2022; (f) 2023) 

Note: The curves of each index correspond one-to-one with the corresponding color coordinate axes on the right 

 

Based on index definitions and annual data, 

GridRiskNet demonstrates a scientific nature and 

structural insight in the analysis of potential impact 

ranges. First, for Risk Propagation Path Length, WIPG 

remains at a high level throughout the entire period, 

reaching 8.1 in 2023, significantly exceeding that of other 

regions. This gap is not accidental but a reflection of 

long-term structural characteristics, revealing the 

extensibility of transmission links in the western power 

grid due to complex terrain and diverse energy structures. 

Second, the changing trend of Node Vulnerability Score 

is more enlightening; the three major power grids' scores 

all rose sharply in 2020, with the average value doubling 

compared to the previous year. This synchronous surge 

highly aligns with the global external shock events in 

2020, indicating that the model is highly sensitive to 

network vulnerability under systemic disturbances. 

In addition, the Risk Impact Radius index essentially 

measures the physical diffusion capacity of risks from 

source nodes to the surrounding space; its calculation 

integrates network topology, geographical distance, and 

propagation probability. According to the data, WIPG's 

Risk Impact Radius rapidly increased from 10.8 km in 

2021 to 25.7 km in 2022, and further to 35.2 km in 2023, 

with a cumulative increase of over 225% in two years. 

TIPG also showed a continuous expansion between 2022 

and 2023, reaching 26.4 km in 2023, reflecting the 

significant cumulative effect of regional risk diffusion. 

This significant spatial diffusion trend is not caused by 

single-year fluctuations but by the accumulation of 

continuous transmission chains. Its essence is the scope 

expansion of power grid risks through multiple rounds of 

transmission and cross-node amplification, which is more 

obvious, especially in scenarios with multiple 

overlapping risks. The reason why GridRiskNet can 

effectively capture this phenomenon lies in the deep 

coupling of its GNN and propagation probability 

mechanism. It can dynamically track the evolution of risk 

paths and ranges in complex networks, thereby 

identifying the critical points and amplification effects of 

risk diffusion. Therefore, it possesses real value in 

regional risk monitoring and trend early warning. The 

capture of this cumulative diffusion trend reflects the 

model's structural sensitivity to "spatiotemporal 

overlapping risks", which far exceeds the single-

description capability of traditional static indices. 

4.3.3 Comparative Analysis of GridRiskNet 

and other models 

To comprehensively evaluate the GridRiskNet 

model's effectiveness in investment risk management of 
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power grid engineering projects, this study designs two 

types of comparative experiments. The first type is a 

horizontal comparison with existing State-of-the-Art 

(SOTA) models. It selects representative models in risk 

assessment, regional propagation modeling, and 

uncertainty quantification in recent years, including 

methods such as CNN-LSTM, to ensure fair comparison 

under a unified dataset and the same task indices. The 

comparison covers risk classification performance (F1-

Score, ROC-AUC), regional propagation accuracy (Risk 

Impact Radius error), and uncertainty quantification 

ability (Risk Entropy) to reflect the model's 

comprehensive capabilities. The second type is a detailed 

comparison with classic baseline models, comparing 

individual methods such as XGBoost, LightGBM, ST-

GCN, and BERT-BiLSTM. It focuses on examining the 

model's performance in robustness, spatial-temporal 

feature extraction, anomaly detection, etc. It highlights 

the advantages of GridRiskNet in multimodal data fusion, 

dynamic feature learning, and risk path modeling. The 

results of the two types of comparisons are exhibited in 

Tables 6 and 7. 

 

Table 6: Comparison of the performance of GridRiskNet and SOTA models on the same dataset 

 

Model Researchers F1-Score↑ ROC-AUC↑ 

Risk Impact 

Radius error±σ 

(km) ↓ 

Risk Entropy↓ 

CNN-LSTM  
Dong and Li 

(2025) 
0.724 0.892 28.3±4.1 1.87 

The investment 

framework based 

on graph attention 

networks 

Mostofi et al. 

(2025) 
0.781 0.903 22.6±3.8 1.52 

Topic model 

clustering 
Qi (2025) 0.698 0.841 - 2.03 

DNN based on 

transfer learning 

Luo and Zhu 

(2024) 
0.763 0.885 - 1.68 

GridRiskNet 
The proposed 

model 
0.892 0.962 4.8±0.9 0.89 

 

Table 7: Robustness comparison results of GridRiskNet and baseline models 

 

Model F1-Score Risk Impact Radius error±σ (km) 
Recall for delay anomaly 

detection 

XGBoost 0.712 32.5±6.2 0.683 

LightGBM 0.735 29.8±5.4 0.721 

ST-GCN 0.683 18.7±3.5 0.592 

BERT-

BiLSTM 
0.698 - 0.654 

GridRiskNet 0.892 4.8±0.9 0.937 

 

The SOTA model's comparison experiment reveals 

that GridRiskNet achieves considerable leadership in risk 

classification, propagation modeling, and uncertainty 

quantification. Although the GAT investment framework 

performs well in traditional graph learning tasks, it cannot 

deeply integrate complex semantic features and 

meteorological data, leading to an underestimation of 

risks in some catastrophic events. In contrast, 

GridRiskNet fully captures the coupling relationship 

between accident texts and meteorological variables 

through cross-modal attention mechanisms and dynamic 

feature fusion, and is significantly superior to other 

models in F1-score and ROC-AUC. Meanwhile, its GA-

RNN structure can accurately model risk transmission 

paths under power grid topology, greatly reducing Risk 

Impact Radius error. This verifies its high fitting ability 

to the physical characteristics of power grids. Regarding 

uncertainty control, GridRiskNet effectively suppresses 

prediction fluctuations in high-risk scenarios through the 

risk propagation graph reconstruction mechanism in the 

joint loss function, minimizing Risk Entropy and 

showing stronger stability of risk distribution. 

In the comparison with baseline models, 

GridRiskNet also demonstrates excellent robustness and 

overall advantages. Compared with XGBoost and 

LightGBM, GridRiskNet not only improves the F1-score 

but also is much higher than other models, showing 

strong adaptability in complex dynamic data 

environments. Concerning regional propagation accuracy, 

the Risk Impact Radius error of GridRiskNet fluctuates 

very little; it is far better than ST-GCN, which only 

considers spatiotemporal features, proving the 

effectiveness of its spatial topology and semantic 

information fusion strategy. Regarding time-series 

anomaly detection, GridRiskNet combines dynamic 

feature selection and time-series-aware splitting 
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strategies, notably improving the recall and detecting 

potential abnormal risks earlier. Overall, GridRiskNet 

outperforms existing mainstream methods in multi-

dimensional tasks, having high accuracy and robustness; 

it also has a more suitable direction in key links of power 

grid engineering risk management, such as risk 

transmission, modal coupling, and dynamic prediction. 

4.3.4 GridRiskNet training cost and efficiency 

analysis 

Tests on computing cost and efficiency are 

conducted to evaluate the engineering practicality of 

GridRiskNet. The training efficiency in a complete 

production environment is tested on an NVIDIA A100×4 

cluster, with the following records. They encompass: (1) 

average convergence time in the training phase (in hours 

(h)); (2) maximum inference delay per sample in the 

inference phase (in milliseconds (ms)); (3) peak memory 

consumption (in gigabyte (GB)); (4) training time per 

0.01 F1-Score (in h). Under the condition of meeting the 

needs of offline batch processing and periodic risk 

monitoring in power grids, the practical controllability of 

GridRiskNet is scientifically measured. The analysis 

results are suggested in Table 8. 

 

Table 8: Analysis results of the training cost and efficiency of GridRiskNet and baseline models under the same dataset 

 

Model 
Convergence 

time (h) 

Maximum inference 

delay per sample (ms) 

Peak memory 

consumption 

(GB) 

Training time per 0.01 F1-

Score (h) 

XGBoost 1.2 0.09 1.5 0.17 

LightGBM 1.0 0.07 1.2 0.14 

ST-GCN 8.5 0.36 5.1 1.25 

BERT-BiLSTM 12.3 0.45 6.4 1.77 

GridRiskNet 17.8 0.63 9.8 2.00 

 

According to the results in Table 8, although 

GridRiskNet has a longer absolute training time (17.8 h) 

and higher single-sample inference delay (0.63 ms) than 

other models, its key index "training time per 0.01 F1-

score" is 2 h, which is lower than that of BERT-BiLSTM 

(1.77 h), bringing greater benefits. This indicates that its 

high complexity effectively "exchanges for performance" 

with obvious non-linear returns. Moreover, the inference 

delay of 0.63 ms is still far lower than the acceptable 

threshold (usually at the second level) in offline power 

grid risk prediction, making it suitable for daily or even 

hourly scheduling scenarios. The memory consumption 

of GridRiskNet matches the typical Graphic Processing 

Unit configuration of power enterprises (<10 GB), 

making deployment feasible. Overall, although 

GridRiskNet has a higher training cost, it has the 

advantages of high performance returns, controllable 

inference, and resource affordability, thus making the 

feasibility for practical engineering applications. 

4.4 Discussion 

It should be explained that the experimental data of 

this study are based on U.S. sources (EIA, NOAA, OSM). 

However, the research on investment risk issues of power 

grid engineering projects has a high degree of 

commonality and structural consistency. The core lies in 

the complexity of the investment process, construction 

environment, and risk chain of power grid projects, not 

limited to specific countries. Cost overrun, climate 

pressure, equipment technical failure, supply chain 

fluctuation, and policy compliance risks (C1-C5) are five 

key risks commonly faced by global power grid projects. 

Among them, "policy compliance risk" is abstracted in 

the model as an index of institutional environment 

uncertainty to describe the impact of policy changes on 

project risks. It essentially structurally summarizes policy 

volatility and does not depend on specific legal 

provisions. At the same time, GridRiskNet focuses on 

risk propagation mechanisms and multimodal feature 

fusion, and its methodology is a universal architecture for 

global engineering projects. Therefore, even with U.S. 

data, the revealed coupling relationships and propagation 

mechanisms of multi-source heterogeneous risks have 

high reference value for Chinese power grid enterprises. 

Additionally, the advantages of GridRiskNet over 

existing SOTA models are reflected not only in the 

superiority of indices but also in innovative 

breakthroughs in methodological mechanisms. First, 

regarding risk classification, GridRiskNet introduces a 

cross-modal attention mechanism to deeply explore the 

coupling relationship between accident texts and 

meteorological features. It effectively makes up for the 

perception defects of traditional single-modal models in 

complex scenarios. This enables its F1-score and ROC-

AUC to be significantly better than those of models such 

as GAT. Second, in regional propagation modeling, 

GridRiskNet is based on the GA-RNN structure and 

embeds a risk propagation graph reconstruction 

mechanism. It can dynamically identify key transmission 

paths in the power grid topology and accurately capture 

the risk diffusion process. Thus, it can minimize the Risk 

Impact Radius error and demonstrate high fitting ability 

to the physical structure of the power grid. Third, for 

uncertainty quantification, the joint loss function design 

of GridRiskNet integrates classification error, graph 

reconstruction error, and feature stability regularization 

terms. This helps to control prediction fluctuations in 

high-risk scenarios and reduces risk entropy to the lowest 

level. Compared with SOTA models that mainly rely on 
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traditional graph networks or single deep models, 

GridRiskNet realizes the collaborative optimization of 

structured, spatiotemporal, and semantic data. Its core 

innovation lies in the deep integration of the three 

mechanisms: "dynamic feature learning, propagation 

path modeling, and risk distribution stability". This not 

only improves model performance but also achieves a 

balance between the complexity of risk perception, path 

interpretability, and prediction stability, possessing high 

practical value and theoretical promotion potential. 

5 Conclusion 

This study constructs the GridRiskNet risk 

management system based on big data mining around the 

intelligent management needs of investment risks in 

power grid enterprise engineering projects. It also 

realizes the fusion modeling and dynamic evaluation of 

structured, unstructured, and spatiotemporal data. 

Through the two-stage modeling architecture, the model 

performs well in risk probability distribution 

identification and regional propagation path modeling. 

The experimental results show that GridRiskNet has 

strong risk structure identification and regional difference 

perception abilities under multiple indices. From 2020 to 

2023, the Risk PCA Projection Score has significantly 

climbed, revealing the dominant position of cost overrun, 

climate pressure, and equipment risk in the evolution of 

engineering risks. At the same time, the model can 

effectively capture the changing trends of risk path length 

and impact radius in the analysis of the potential impact 

scope of each power grid region. Moreover, it can identify 

the propagation characteristics of structural vulnerability 

of the western power grid and the high-impact radius of 

the Texas power grid, providing quantitative support for 

regional risk management.   

Although GridRiskNet shows strong comprehensive 

performance in the experiment, there is still room for 

further optimization. The current model still relies on a 

fixed attention mechanism in the fusion process between 

different data modalities, which struggles to fully 

characterize the dynamic coupling relationship between 

heterogeneous features due to time and place. In addition, 

the physical constraint mechanism is not introduced in 

the risk propagation modeling, and the mapping accuracy 

of the actual operation state of the power grid still has 

room for improvement. Follow-up research can further 

introduce reinforcement learning and physical graph 

embedding methods to improve the model's adaptability 

to dynamic environmental changes. Furthermore, 

expanding the model to broader scenarios such as new 

energy access and emergency dispatching supports the 

intelligent transformation of investment risk management 

of power grid enterprises in a pluralistic and complex 

environment. 
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