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To enhance the power grid enterprise's ability to comprehensively perceive and dynamically assess
investment risks in engineering projects, this study proposes a risk management model called GridRiskNet
based on big data mining. This model integrates structured, unstructured, and spatiotemporal data and
realizes intelligent identification of project risk probability distributions and potential impact ranges by
constructing a two-stage hybrid modeling architecture. In the first stage, the model uses eXtreme Gradient
Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) to extract static and dynamic
features in parallel. In the second stage, it introduces Graph Attention Recurrent Neural Network (GA-
RNN) to model risk propagation paths under the power grid topology. Meanwhile, this study combines
Spatio-Temporal Graph Convolutional Network (ST-GCN) to improve the coupling expression of
meteorological and text features. The experiment uses multi-source public data for verification, such as
power infrastructure data from the U.S. Energy Information Administration, meteorological observation
data from the National Oceanic and Atmospheric Administration, and power grid topology data from
OpensStreetMap. The results show that GridRiskNet performs excellently in risk prediction stability and
regional propagation modeling. Among them, the risk principal component analysis projection score in
2023 reached 7.779. This indicates that cost overruns, climate pressure, and equipment technology risks
together form a high-risk cluster, with cost overruns increasing by 269% compared with 2018. In the
State-of-the-Art comparison, GridRiskNet achieves an F1-score of 0.892, a Receiver Operating
Characteristic - Area Under Curve of 0.962, a Risk Impact Radius error of approximately 4.8 km, and a
Risk Entropy of 0.89; these are comprehensively better than existing methods. Moreover, the model has
good cross-modal feature fusion and risk transmission mechanism identification capabilities, and can
effectively characterize the spatiotemporal coupling risk features in complex power grid projects. Overall,
this system can provide power grid enterprises with structured and interpretable risk index outputs and
regional early warning support. Thus, it helps to improve the investment safety and operational and
maintenance resilience of projects.

Povzetek: Predstavljen je GridRiskNet, dvofazni hibridni model za upravljanje investicijskih tveganj v
elektroenergetskih projektih. S kriznim zdruzevanjem strukturiranih, besedilnih in prostorsko-casovnih
podatkov ter uporabo XGBoost/LightGBM in GA-RNN izboljsa napoved tveganj (F1=0,892, AUC=0,962)
ter natancno modelira regionalno Sirjenje tveganj (napaka 4,8 km).

Introduction

process from construction preparation, equipment

With the accelerated promotion of energy transition
and the construction of new power systems, the strategic
position of power grid engineering projects in national
energy security and clean energy consumption has
become increasingly prominent [1]. However, power grid
enterprises face problems such as the surge of multi-
source heterogeneous data, highly uncertain engineering
environments, and frequent external disturbances during
project investment and construction. These problems
make traditional risk management methods difficult to
cover the dynamic risk chain throughout the whole

deployment, to operation and maintenance support [2].
Especially against the backdrop of the rapid development
of renewable energy, the risk types in project investment
are constantly evolving. For example, the enhancement
of climate extremeness, the swift change of equipment
technology paths, and the increase in policy compliance
costs all propose higher requirements for the intelligence
and adaptability of risk early warning systems [3-5].
Therefore, constructing a big data mining-based
intelligent risk assessment model has become a key path
to improving the investment decisions' scientific nature
and the power grid enterprises' resilience governance
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capabilities [6, 7]. In the context of power market
liberalization, the continuous increase in the proportion
of renewable energy has made the risk management of
geographical locations caused by network congestion
increasingly important. Improving the ability to model
location-related risks has become the core foundation for
supporting project financing and investment feasibility
assessment [8].

In recent years, artificial intelligence (Al)
technologies have made remarkable progress in risk
identification, modeling, and prediction. Model
architectures represented by graph neural network (GNN),
attention mechanisms, and deep semantic modeling have
been gradually applied to financial risk control and
energy dispatching [9, 10]. Some studies have attempted
to introduce machine learning (ML) methods into the
power engineering field. It includes using eXtreme
Gradient Boosting (XGBoost) for classification and
identification of construction anomalies, or employing a
convolutional neural network (CNN) for trend prediction
of construction period delays [11]. However, existing
methods generally suffer from shortcomings such as a
single model structure, weak data fusion capability, and
difficulty in explaining cross-modal causal paths; these
methods cannot effectively support power grid
enterprises in achieving full-chain risk perception,
dynamic quantification, and structural early warning in a
multi-source data environment. Therefore, there is an
urgent need to construct a multi-modal driven composite
risk assessment system for power grid engineering
scenarios.

To this end, this study proposes the GridRiskNet
model based on big data mining, constructs a fusion
mechanism for structured data, unstructured text, and
spatiotemporal data. Thus, it realizes comprehensive
modeling and dynamic evaluation of investment risks in
power grid engineering projects. The study's main
innovations encompass:

(1) Proposing a two-stage GridRiskNet model
architecture: It integrates XGBoost and Light Gradient
Boosting Machine (LightGBM) for risk capture, and
models the propagation process of risks in the power grid
topology through a Graph Attention Recurrent Neural
Network (GA-RNN).

2) Introducing Spatio-Temporal Graph
Convolutional Network (ST-GCN) and cross-modal
attention mechanisms: It enhances the model's expression
capabilities for meteorological disturbances and regional
structural information;

(3) Constructing a risk principal component
projection index system based on Principal Component
Analysis (PCA): It achieves structural clustering and
projection analysis of high-dimensional risk samples, and
supports the differentiated regional risk management
needs of power grid enterprises.

Overall, the specific research question is whether
multimodal data fusion and risk propagation modeling
methods can enhance the comprehensive capabilities of
risk classification, propagation path identification, and
uncertainty quantification in complex power grid
engineering projects. The target outcome is to achieve a
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comprehensive portrayal of investment risks in power
grid engineering projects by constructing a composite
model that integrates structured, spatiotemporal, and text
data. It also aims to verify the advantages of the proposed
method in terms of risk identification accuracy,
propagation path reducibility, and risk distribution
stability. Thus, it supports power grid enterprises in risk
early warning and decision optimization.

2 Related work

With the in-depth application of Al technologies and
big data analysis methods in engineering management,
investment project risk assessment has gradually shifted
from traditional static analysis to intelligent prediction
and dynamic modeling. Aiming at the insufficiency of
risk assessment for manufacturing investments, Dong
and Li proposed combining expert experience with big
data mining to construct project risk indices and
integrating CNN with Long Short-Term Memory (LSTM)
for predictive modeling. In multiple sliding window tests,
the model achieved a Receiver Operating Characteristic
(ROC) value of 0.9366 and an average accuracy of
94.95%, demonstrating high prediction precision [12].
Loseva et al., facing the risk assessment task of regional
franchising projects, constructed a big data-based credit
rating model by combining the SPARK information
system with ML methods. This verified the model's
robustness in identifying abnormal risks through
Spearman correlation and confusion matrix [13]. These
studies have provided useful insights into introducing
composite modeling methods and integrating expert
judgment with data-driven mechanisms, gradually
promoting the development of investment risk
assessment towards intelligence and systematization.

Over the years, methods such as GNN, deep
clustering, and multi-criteria decision-making have been
widely introduced into investment evaluation and project
classification, further enhancing the structural cognitive
ability of risk assessment. Mostofi et al. constructed a
construction project investment framework based on
graph attention networks. This framework achieved a
classification accuracy of over 98% in three sub-networks
of region, country, and financing model, demonstrating
the advantages of graph structure in modeling investment
decision-making relationships [14]. Qi used regularized
topic models and graph clustering methods to construct a
financial investment "behavior circle". They mapped
customer behaviors to the latent semantic space and
realized risk classification of financial communities and
investment plan recommendations through subgraph
mining [15]. Moreover, Luo and Zhu proposed a deep
neural network (DNN) model based on transfer learning
for regional investment risk assessment. This model
maintained high prediction accuracy (up to 92%) in the
case of insufficient samples, demonstrating the potential
of deep learning in solving unbalanced data problems
[16]. These studies all reflect the integration trend of risk
assessment models in recent years towards deep
representation learning, multi-layer decision-making



GridRiskNet: A Two-Stage Hybrid Model for Project Investment. ..

structures, and complex graph relationship modeling.
Although existing studies have made positive
progress in risk modeling methods, index system
construction, and model accuracy improvement, there are
still three main deficiencies. First, most current models
focus on classification or regression prediction of risk
probability, lacking the ability to model regional
structural propagation characteristics. Second, the
heterogeneity of multi-source data has not been fully
utilized, and a unified representation for structured,
spatiotemporal, textual, and other multimodal
information has not been formed. Third, the
interpretability and quantifiability of risk structure
evolution must be enhanced, making it difficult to support
dynamic scheduling and regional risk management of
complex systems such as power grid projects [17]. In
response to the above shortcomings, this study proposes
a grid engineering project investment risk management

system based on big data mining - the GridRiskNet model.

This model reveals the changing trends of high-
dimensional risk structures and supports grid enterprises
in accurately perceiving and dynamically controlling
investment risks at different regions and time scales.

3 GridRiskNet model based on big
data mining

3.1 Realization process of GridRiskNet
model

The proposed GridRiskNet model realizes
intelligent assessment of investment risks in power grid
engineering  projects based on  multi-source
heterogeneous data fusion and a hybrid ML architecture.
It first establishes a multimodal data preprocessing layer.
For structured data (such as project budgets and
equipment parameters), an adaptive normalization
method is used to unify dimensions, ensuring the
consistency of feature scales. For unstructured text data
(including engineering logs and bidding documents), a
fine-tuned Bidirectional Encoder Representations from
Transformers (BERT) model is utilized to deeply extract
semantic features, enhancing the risk perception ability
of text information. For spatiotemporal data (such as
construction trajectories and meteorological records), ST-
GCN is introduced to jointly encode complex
environmental features from two dimensions: spatial
dependence and temporal dynamics [18, 19]. In the
feature fusion stage, a cross-modal attention mechanism
is designed, which can adaptively learn the weight
relationships  between different data modalities.
Meanwhile, this mechanism can effectively integrate
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multi-source features and generate unified and dense
high-dimensional risk representation vectors, laying the
foundation for multi-dimensional risk modeling [20].

At the core of modeling, GridRiskNet adopts a two-
stage hybrid modeling framework. In the first stage, the
improved XGBoost and LightGBM models run in
parallel to jointly perform risk prediction on high-
dimensional risk representation vectors. Specifically,
XGBoost integrates a dynamic feature selection
mechanism, which dynamically updates feature
importance indices based on sliding window statistical
features to enhance the response capability to dynamic
risk factors. LightGBM incorporates a time-series-aware
splitting criterion to strengthen the detection capability
for time-series anomalies such as project schedule delays.
The two models output the prediction probabilities of risk
categories (i.e., risk probability vectors after Softmax)
and sequences of feature importance scores [21].

In the second stage, GA-RNN is used as a meta-
model, whose core innovation lies in fusing the dual
output information from the first stage mentioned above.
Specifically, GA-RNN takes the risk probability vectors
of XGBoost and LightGBM as the main input;
simultaneously, it introduces their feature importance
score sequences as auxiliary features to form a
comprehensively fused feature matrix. This matrix
contains the risk prediction results from the previous
stage; it also explicitly integrates the influence weights of
features on the model output, thereby enhancing the
ability to perceive risk propagation mechanisms [22].
Subsequently, based on this matrix, GA-RNN introduces
a risk propagation graph structure and accurately models
the transmission relationships between risk factors
through an adjacency matrix. Moreover, it uses graph
attention mechanisms and recurrent neural network
(RNN) units to dynamically learn key nodes and main
channels in risk propagation paths, extracting high-order
interaction features.

The entire GridRiskNet model comprehensively
optimizes classification cross-entropy loss, risk
propagation graph reconstruction error, and feature
stability regularization terms through an end-to-end joint
training strategy. Finally, this model outputs a multi-
dimensional risk assessment matrix covering risk
probability distribution, potential impact range, and
structural features. The entire system adopts an online
incremental learning mechanism, which can continuously
absorb real-time data flow to dynamically update model
parameters; this achieves a high adaptability and
continuous tracking of the risk environment of power grid
engineering projects. The implementation process and
pseudocode of GridRiskNet are illustrated in Figures 1
and 2.
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Figure 1: The implementation process of GridRiskNet

class GridRiskNet:
def __init__(self, config):

self.config = config
self.preprocessor = MultiModalPreprocessor(config)
self.feature_fusion = CrossModal Attention(config)
self first_stage = HybridEnsembleModels(config)
self.risk_graph = RiskPropagationGraph(config)
self.second_stage = GARNNMetaModel(config, self.risk_graph)

def train(self, dataset):
features = self.preprocessor.process(dataset)
fused_features = self.feature_fusion(features)
first_stage_preds = self.first_stage.train(fused_features, dataset.labels)
self.second_stage.train(first_stage_preds, fused_features, dataset.labels)

for epoch in range(self.config.epochs):
preds = self.predict(dataset)
loss = self._calculate_loss(preds, dataset.labels)
self._update_models(loss)

def predict(self, dataset):
features = self.preprocessor.process(dataset)
fused_features = self.feature_fusion(features)
first_stage_preds = self first_stage.predict(fused_features)
return self.second_stage.predict(first_stage_preds, fused_features)

def update_with_new_data(self, new_data):
features = self.preprocessor.update_and_process(new_data)
self first_stage.update(features, new_data.labels)
first_stage_preds = selffirst_stage.predict(features)
self.second_stage.update(first_stage_preds, features, new_data.labels)

class MultiModalPreprocessor:
def process(self, dataset):
return {
‘structured': self._process_structured(dataset.structured),
‘text': self._process_text(dataset.text),
‘spatiotemporal’: self._process_spatiotemporal(dataset.spatiotemporal)

}

def _process_structured(self, data):
return AdaptiveNormalization(data)

def _process_text(self, data):
return FineTuneBERT (self.bert_model, data)

def _process_spatiotemporal(self, data):
return STGCN(self.stgcn_params).forward(data)

class CrossModalAttention:
def __call__(self, features):
weights = self._compute_attention_weights(features)
return weighted_sum(features, weights)

class HybridEnsembleModels:
def __init__(self, config):
self.xgboost = ImprovedX GBoost(config)
self.lightgbm = ImprovedLightGBM(config)

def train(self, features, labels):
xgb_preds = self.xgboost.train(features, labels)
Igbm_preds = self.lightgbm.train(features, labels)
return combine_predictions(xgb_preds, Igbm_preds)

class RiskPropagationGraph:
def __init__(self, config):
self.adj_matrix = self._construct_adjacency_matrix(config.risk_factors)

def _construct_adjacency_matrix(self, risk_factors):
# Construct adjacency matrix based on domain knowledge or data learning
pass

class GARNNMetaModel:
def train(self, first_stage_preds, features, labels):
# Train GA-RNN model
pass

def predict(self, first_stage_preds, features):
# Predict risk assessment matrix
pass

Figure 2: The pseudocode of GridRiskNet

Capture risk paths
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3.2 Mathematical modeling principle of
GridRiskNet model

Figure 1 shows the complete implementation
process of the GridRiskNet model, covering the entire
process from user-requested risk assessment to model
output results and continuous updates. The model is built
on multi-source heterogencous data, fusing structured,
unstructured, and spatiotemporal information, and
achieves intelligent prediction of power grid project risks
through multi-stage ML and graph modeling strategies.
The key computational links in the model are described
mathematically and logically as follows.

In the data preprocessing stage, the structured input
data is first normalized. Let the original data matrix be:

X, € R™4s (1)

X, represents n records, and each record contains
dg structural features. Normalization calculation is as
follows:

X, =it 2

Os+e€

Us denotes the column vector, indicating the
average value of each column. o; represents the
standard deviation (SD), and € is a positive number to
prevent the denominator from being zero. This
processing ensures that the model has numerical
consistency among different dimensional features.

For unstructured text data T = {t;,t,,...,tn},
semantic features are extracted by fine-tuning BERT
model, and the output is:

H, = BERT(T) = [h; hy; ...;h, ] h; € R%  (3)

h; is the semantic vector of the i-th text, and the
dimension is d;. This step preserves the semantic
relationship between text contexts and forms an
important basis for the model to recognize risk semantics.

For spatiotemporal data including trajectory and
meteorology, it is expressed as:

Xst e RTXNXF (4)

T refers to the time step. N denotes the space node
(such as the site number), and F represents the space-
time characteristic dimension of each node. ST-GCN is
used for modeling, and its core propagation equation is:

2 = o (T, AZOW,) ()

A, means the adjacency matrix of order k; Z(®
indicates the node representation of the [-th layer; W
stands for the weight matrix; o represents the activation
function. This network structure can capture the linkage
relationship between spatial topology and time evolution.

In the feature fusion stage, the model introduces
cross-modal attention mechanism to automatically
aggregate multi-source information. Let two modal
features be F; and F; respectively, and their attention
weights are calculated as:

_ exp (FWgF))
%ij = T exp (F; WqFy) ©)

After fusion, a unified risk representation vector is
obtained:

Frusion =2 aij - F @)

This mechanism enables the model to automatically
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learn the most discriminating risk signal source when
faced with heterogeneous features and semantic diversity.
The hybrid modeling framework is divided into two
stages. In the first stage, the improved XGBoost and
LightGBM models are run in parallel. The objective
function of XGBoost reads:
Lygp = Xi=1 1009 + Zk=1 Q(fi) ®)
9; = XX_, fr(X;), which represents the predicted
value of sample i. Q(fy) = yT, +%A Il wg I? is the

regular term of the k-th tree.

To adapt to the dynamic change of time, XGBoost
integrates a sliding window statistical module to
dynamically adjust the importance of features:

19 =3, ©)
AG].(S) indicates the gain change of the j-th feature

in the s -th time step. Ij(t) ¢ a dynamic feature

importance index within the XGBoost stage, used to
reflect gain changes within the sliding window; it is also
mainly applied to internal feature selection and dynamic
weight adjustment of the first-stage model.

LightGBM introduces the split criterion of time
series perception to enhance the ability of anomaly
recognition. Let the time series samples be
{x4, X5, ..., X7}, and its splitting gain is defined as:

T CieL; 90% | Cier 90°
9; = Zit=1 We© [ZieL:hiH Yier, hi+l (10)

g; and h; are gradients and second derivatives. L
and R, represent the left and right sample sets of the
current split, and w, = e T~ s the time attenuation
weight.

In the second stage, GA-RNN is used to capture the
high-order risk path. Its node status is updated to:

h{” = GRU(Zjewq ayh{ ™" h{ ™)

N (i) indicates the neighbor set of node i. a;; v
the edge weight under the graph attention mechanism:

exp (LeakyReLU(aT[Whi||Whj])) (12)
Tken (i) exp (LeakyReLU(aT [Wh;[Wh]))

Finally, the system integrates three kinds of
objectives: classification performance, graph structure
reconstruction, and feature stability by jointly optimizing
the overall loss function.

L. is the cross-entropy loss:

Liotar = Lee ¥ A1 - Lgrapn + A2 - Lyeg  (13)

The loss of graph structure consistency is:

aij =

Lgrapn =Il A=A II7 (14)
The regular term of characteristic disturbance reads:
Lreg = 23'1:1 Var(vx]-y) (15)

On the system deployment level, GridRiskNet
adopts online incremental learning mechanism. Let the
current parameter be 6;, and the model is updated after
receiving new samples (X, y;):

Otr1 = 0 — 1 - VoL(X¢, Y15 0;) (16)

n represents the learning rate. Vg4 denotes the
gradient operator. This mechanism ensures that the model
has adaptive update abilities in a dynamic risk
environment.
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4 Experimental analysis of
GridRiskNet model project
investment risk management based on
big data mining

4.1 Data used in the study

To verify the risk management capability of the
GridRiskNet model for power grid enterprise engineering
projects, the study uses three core public datasets for
experimental validation and designs a fusion scheme for
data heterogeneity. First, the structured data adopts the
U.S. Energy Information Administration (EIA) power
infrastructure dataset
(https://www.eia.gov/electricity/data.php).  Its  API
interface screens power grid engineering project data
from 2018 to 2023, including budget, construction period,
equipment models, and other fields. After extracting the
original CSV-format data using Python's eia-python
library, adaptive normalization is performed to eliminate
dimension differences, which are associated with
subsequent spatiotemporal data through project IDs and
date fields. Second, the spatiotemporal data selects the
National Oceanic and Atmospheric Administration
(NOAA) Global Historical Climatology Network-Daily
(GHCN-Daily)
(https://www.ncei.noaa.gov/access/metadata/landing-
page/bin/iso?id=gov.noaa.ncdc:C00861). Daily values of
temperature, precipitation, and wind speed are
downloaded, and stations are matched to the project's
geographic coordinates. The rnoaa toolkit converts them

1. Request power grid

| 1A Database : .
@_ project data for 2018-2023

2. Download GHCN

weather data

NOAA
Weather Data

CSV/JSON
tormat

) 3. Extract power grid
topology data

oot OSMNX Tool
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: ] FERC Report
i ! Repuository

NetCDF
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format

| PDF/Text files

Data Preprocessor ———————*

5. Multimodal data alignment

Spatiotemporal data—ST-GCN
Text data—BERT

User

Multimodal features
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into spatiotemporal tensors, from which meteorological
risk features are extracted through ST-GCN encoding.
The spatial topology data is obtained from the
OpenStreetMap power network dataset
(https://wiki.openstreetmap.org/wiki/Power networks).
The OSMnx library extracts GIS data of substations and
transmission lines, constructing an adjacency matrix to
model the physical connection of the power grid. For
unstructured text data, engineering accident reports from
2018 to 2023 corresponding to EIA projects are manually
screened from the Federal Energy Regulatory
Commission (FERC) engineering accident report library
(https://elibrary.ferc.gov/eLibrary/search). After parsing
the text with Apache Tika, the fine-tuned BERT is input
to generate semantic vectors.

The following fusion strategies are adopted to
address the heterogeneity of multi-source data. 1)
Temporal alignment: All data is uniformly converted to
Universal Time Coordinated (UTC) timestamps and
aggregated at a granularity of 1 day. 2) Spatial alignment:
Meteorological stations, power grid nodes, and
engineering sites are associated through GIS coordinate
matching (error <lkm). 3) Consistency of feature
encoding: Structured data is normalized to [0,1], text
vectors are unified into 768 dimensions via BERT, and
spatiotemporal data is compressed into 256-dimensional
features through ST-GCN. 4) Cross-modal attention
mechanisms automatically learn the weights of each
modality, assigning higher attention scores to extreme
meteorological text descriptions (such as "hurricane
damage"). The specific process of importing data into
GridRiskNet is presented in Figure 3.

GridRiskNet

10. Incremental update
- —

with new data
»

9. Output risk
assessment matrix

o

Structured data — XGBoost/LightGGBM

—_—

:] GA-RNN meta-modelling

Dynamic parameter adjustment

Figure 3: The specific process of importing data into GridRiskNet
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4.2  GridRiskNet model’s thinking on risk
management ability analysis of power
grid enterprises’ engineering projects

The study is conducted from two aspects to
effectively analyze the risk management capability of the
GridRiskNet model for power grid enterprise engineering
projects. First, at the level of risk probability distribution,
the probability of risks such as budget overrun and
construction period delay is evaluated based on structured
data and spatiotemporal features [23]. Second, at the level
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of potential impact scope, the propagation path of risks in
the power grid topology is analyzed through GNN to
identify high-risk nodes and their potentially affected
surrounding areas. The model inputs the fused multi-
dimensional features into a two-stage modeling
framework and outputs a risk assessment matrix
including the above two types of indices to support the
refined and structured management and decision-making
of power grid project risks [24, 25]. The entire analysis's
key indices and evaluation criteria are exhibited in Tables
1 and 2.

Table 1: Explanation of key indices for analysis using the GridRiskNet model

Data source/calculation method

Description

A'nalytl.c al Index
dimension
Risk PCA Projection Score
Risk Time-series Anomaly Frequency
probability
distribution Model Confidence Score
analysis
Risk Coefficient of Variation
Risk Importance Index
Risk Entropy
Analysis of Risk Propagation Path Length
the
potential Node Vulnerability Score
influence
range

Risk Impact Radius

Principal component score of high-
dimensional risk vector output by the
GridRiskNet model after PCA
dimensionality reduction

The capture times of abnormal events
in LightGBM
Softmax outputs the maximum
probability value

The ratio of SD to the mean value of
the risk probability distribution

Comprehensive weighted scores of
multiple dimensions
Information entropy calculation of
risk probability distribution

Critical path length identified in GA-
RNN

The weighted average of the affected
probability of each node in GNN
Based on propagation path depth and
the spatial adjacency matrix in the
graph structure

Reflecting the distribution
position of samples in the risk
principal component space, and is
used to identify high-risk
clustering or structural abnormal
samples.

Monitoring the frequency of
abnormal progress.
Evaluating the credibility of the
model output
Assessing the dispersion degree
of risk probability distribution,
the greater it is, the higher the
risk instability is.
Representing the strength of risk
influence
The degree of uncertainty in
evaluating risk results.

Length and complexity of the risk
propagation path

Reflect the vulnerability of nodes
in the power grid

Indicating the physical scope of
risk propagation

Table 2: Criteria for determining key indices in the GridRiskNet model analysis

Index Type Criteria
Risk PCA Projection Score Secondz}ry - [0,2) Low pI‘OJ‘eCtIOIl; [2, 5) Medium projection; >5 High projection,
calculation tending to abnormal samples or extreme types

Time-series Anomaly Frequency

Model Confidence Score

Model output
Model output

Risk Coefficient of Variation Secondgry
calculation
Risk Importance Index Seconde.u'y
calculation
. Secondary
Risk Entropy calculation
Risk Propagation Path Length Model output
Node Vulnerability Score Model output
Risk Impact Radius Secondgry
calculation

- [0, 2) Normal; [2, 5) Early warning; >5 Abnormal
- [0.9, 1] High credibility; [0.7, 0.9) Medium credibility; <0.7 Low
credibility

- [0, 0.3) Stable; [0.3, 0.6) Fluctuating; >0.6 Highly unstable

- [0, 40) Secondary; [40, 70) Important; [70, 100] Critical

- [0, 1) Low uncertainty; [1, 2) Medium; >2 High

- [1, 3) Local; [3, 6) Regional; >6 Global
- [0, 0.4) Low; [0.4, 0.7) Medium; [0.7, 1] High

- [0, 5) Station level; [S, 20) Line level; >20 Regional level

In Table 2, the index equations involved in

secondary calculation are as follows:

(1) Risk PCA Projection Score

Here, "Risk PCA Projection Score" measures the
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position of a sample in the dominant risk structure within
the risk feature space, revealing the main variation trends
in complex multi-dimensional risk features. Specifically,
this index is calculated based on the PCA method. First,
it standardizes the annual high-dimensional risk features
(such as cost overrun risk, environmental and climate
pressure, etc.). Then, it extracts the first K principal
component directions and measures the sample's
projection value in the principal component space
through eigenvalue weighting. This score reflects the
degree of variance contribution of the sample along the
principal component axis of risk, rather than a simple sum
of the scores of each risk factor. Due to the different
statistical distributions of risk features each year, this
index changes with the year; it comprehensively reflects
the overall trend of the risk structure of power grid
projects in the current year and potential abnormal
clustering characteristics. The calculation is expressed as:
Si = Dk=1 Ak - (W (x; — p))? (17)

X; represents the high-dimensional risk feature
vector of the i-th sample. p indicates the sample mean
vector. u;, denotes the feature vector in the direction of
the k-th principal component. A, is the feature value of
the k-th principal component, and K means the number
of selected principal components.

(2) Risk Coefficient of Variation

This index is used to measure the relative dispersion
of risk probability distribution, which is an important
index reflecting risk instability. This index describes the
fluctuation range of various risk probabilities in the
whole by calculating the ratio of the SD of risk
probability to the mean. A higher value indicates that the
risk probability distribution is more dispersed and the
overall instability is stronger. The expression is:

W:ﬁ%ﬁfi (18)
p+e
p; denotes the prediction probability of Class i
risk. p means the average value of various risk
probabilities, and n represents the total number of risk
categories.
(3) Risk Entropy
"Risk Entropy" measures the degree of uncertainty
in the risk probability distribution, reflecting the
discreteness and unpredictability of risk results. Based on
information entropy theory, this index reveals the
potential risk mixture in the system by calculating the
entropy value of the probability of all risk categories. A
higher risk entropy value indicates more uncertainties in
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the system, which helps to identify complex and
unpredictable risk scenarios, represented as:
H = =%, p;-log; (p; +¢€) (19)

H denotes the information entropy of risk
distribution.

(4) Risk Importance Index

This index quantifies the comprehensive
contribution of each risk feature to the overall risk
assessment results. It reflects the importance level of each
risk feature by weighted accumulation of the impact
degree of each feature on the model loss and normalized
averaging combined with model weights. Features with
higher values play a greater role in the overall risk
decision-making, expressed as:

Loy (O )
Rlj == Xit=1 <Zﬁ=1AL§?> (20)

RI; represents the risk importance index of the j-th
feature, which is a risk importance index in the entire
GridRiskNet framework. It is comprehensively
calculated based on the feature weights and loss impact
during the global model training process, belonging to a
unified index at the global level. T means the number of

model iterations or average times; Wj(t) refers to the
model weight of the j-th feature in the t-th iteration;
AL;O is the influence degree of the j-th feature on the

loss function; d denotes the total number of features.

(5) Risk Impact Radius

It evaluates the spatial propagation range of risks in
the power grid graph structure, serving as a key index for
measuring the physical scope affected by risks. This
index calculates the average impact radius of all risk
source nodes in the network based on the power grid
topology, geographical distance between nodes, and risk
propagation probability. A larger value indicates a wider
spatial propagation range of risk events, which is applied
to regional risk impact analysis, as follows:

R = Nisz’le Yty dij -y 21)

N represents the number of risk source nodes. N

denotes the total number of nodes in the graph. t;; isthe

adjacency relationship between nodes i and j (1 means

connection). d;; means the geographical distance

between nodes. p;; refers to the risk propagation
probability from nodes i to j.

Figure 4 presents the pseudocode of the index
implementation involving secondary calculation.
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import math
import numpy as np

# 1. Risk PCA Projection Score

def compute_risk_pca_projection_scores(X, K):
mu = np.mean(X, axis=0)
X_centered = X - mu
cov_matrix = np.cov(X_centered, rowvar=False)
eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix)
sorted_idx = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues[sorted_idx][:K]
eigenvectors = eigenvectors[:, sorted_idx][:, :K]

# 2. Risk Coefficient of Variation
def compute_risk_cv(probabilities):
mean_p = np.mean(probabilities)
std_p = np.std(probabilities)
epsilon = 1e-6
return std_p / (mean_p + epsilon)

# 3. Risk Entropy
def compute_risk_entropy(probabilities):
epsilon = 1e-6

return -sum(p * math.log2(p + epsilon) for p in probabilities)
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# 4. Risk Importance Index
def compute_risk_importance(weights, delta_losses):
T = len(weights)
D = len(weights[0])
importance = [0.0] * D
for j in range(D):
for tin range(T):
total_delta = sum(delta_losses[t])
if total_delta ==0:
continue
importance[j] += weights[t][j] * delta_losses[t][j] / total_delta
importance[j] /=T
return importance

# 5. Risk Impact Radius
def compute_risk_impact_radius(adj_matrix, distance_matrix,
propagation_probs, source_nodes):

N = len(adj_matrix)

total_radius = 0.0

foriin source_nodes:

for j in range(N):
if adj_matrix[i][j] == 1:
total_radius += distance_matrix[i][j] * propagation_probs[i][j]
return total_radius / len(source_nodes)

Figure 4: Pseudocode of index implementation involving secondary calculation

The experimental environment and key parameters

are detailed in Table 3.

Table 3: Experimental environment and key parameters arrangement of the study

Category Configuration item Parameter setting
Hardware Computing platform NVIDIA A100 (40GB memory) x 4
environment CPU AMD EPYC 7763 (64-core)
Memory 512GB DDR4
Software Deep learning framework PyTorch 1.12 + CUDA 11.6
environment GNN library PyTorch Geometric 2.2.0
Traditional ML library XGBoost 1.6 + LightGBM 3.3.2
NLP toolkit HuggingFace Transformers 4.25 (BERT-base)
ST-GCN layer number 3 layers (hidden layer dimension =256)
Model GA-RNN unit Graph Attention Layer (number of heads =8) +GRU (hidden layer
architecture =512)
Transmodal gttentlon Multi-attention (number of heads =4, fusion dimension =1024)
mechanism
Batch size 256 (structured data)/32 (graph data)
Training Initial learning rate 3e-4 (AdamW optimizer)
regularization L2 Weight Attenuation =1e-5+Dropout=0.3
parameters

Early stop mechanism

The loss of verification set does not decrease for 10 consecutive
rounds

The study designs ablation experiments before
conducting formal experiments to verify the actual
contribution of each core component of GridRiskNet. It
seeks to quantitatively measure the impact of different
modules on the model's overall performance from a
systematic perspective. Specifically, four ablation
versions are set by sequentially disabling the cross-modal
attention mechanism, the risk propagation modeling
module of GA-RNN, the dynamic feature selection
module, and the risk propagation graph reconstruction
term in the joint loss function. All experiments maintain

the same hyperparameter configuration on the complete
dataset, focusing on evaluating three indices. These
indices include risk classification performance (F1-score,
Receiver Operating Characteristic - Area Under Curve
(ROC-AUQ)), risk propagation accuracy (Risk Impact
Radius error), and uncertainty quantification ability (Risk
Entropy). This experiment aims to clarify the mechanism
of action of each module, especially their specific
contributions to power grid risk transmission modeling,
modal feature fusion, and risk stability control. The
results of the ablation experiments are listed in Table 4.
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Table 4: Ablation experimental results of the GridRiskNet model

Ablation version F1-Score ROC-AUC Risk Impact Radius error (km) Risk Entropy
Full GridRiskNet 0.892 0.962 4.8+0.9 0.89
No cross-modal attention 0.835 0.917 7.5%1.6 1.12
No GA-RNN 0.846 0.926 14.242.3 0.96
No dynamic feature selection 0.863 0.941 5.7£1.2 0.94
Risk-free propagation graph 0.871 0.948 4.9+1.0 2.08

reconstruction

The results of the ablation experiments indicate that
each module of GridRiskNet makes a significant
contribution to the model performance. The cross-modal
attention mechanism is particularly crucial in improving
classification performance; after being disabled, the F1-
score decreases by 6.4%, the ROC-AUC drops by 4.7%,
and the Risk Entropy rises significantly. This shows that
this module significantly impacts the collaborative
perception of complex semantic and meteorological
features. The risk propagation modeling module of GA-
RNN notably improves the Risk Impact Radius error;
after being disabled, the error increases sharply to 14.2
km, verifying its core role in power grid topology
modeling. The dynamic feature selection module mainly
enhances the temporal sensitivity of the model; its
removal leads to a significant drop in F1-score, although
it has a limited impact on propagation errors. The risk
propagation graph reconstruction term has a significant

optimizing uncertainty quantification; its elimination
causes a substantial rise in Risk Entropy. Overall,
GridRiskNet achieves the unity of high performance and
high robustness through the collaboration of various
modules, with all components being indispensable.

4.3 Analysis Results of GridRiskNet
model on risk management ability of
power grid enterprises’ engineering
projects

4.3.1 Risk probability distribution analysis

GridRiskNet's annual Risk PCA Projection Score
results for power grid enterprise engineering projects are
summarized in Table 5.

effect on suppressing prediction fluctuations and
Table 5: Annual Risk PCA Projection Score results
Cost Amblent Equipment Supply Policy Risk PCA
climate . chain . . .
Year overrun technical . compliance  Projection Risk tendency
. pressure . fluctuation .
risk C1 risk C3 risk C5 Score
C2 Cc4
Middle projection
2018 1.235 0.873 -0.452 0.217 0.095 2.108 (structural
abnormality)
2019 0.892 0.654 -0.128 -0.304 0.062 1.546 Low projection
2020  2.874 1.982 1.235 -0.873 0.517 4.856 High projection
(extreme type)
2021 1.023 1.457 0.782 0.396 -0.215 2.48 Middle projection
2002 3.125 2.769 2.014 1.358 0.947 5.894 High Projection
(abnormal clustering)
2023 4.562 3217 3.058 2.146 1.372 7.779 High projection

(extreme anomaly)

Table 5 shows that cost overrun risk (C1) and
environmental climate pressure (C2) have always been
the dominant risks, especially showing exponential
growth after 2020. In 2023, C1 (4.562) increased by 269%
compared with 2018 (1.235), which is highly consistent
with the reality of global inflation and frequent extreme
weather. The sudden turn positive (1.372) of policy
compliance risk (C5) in 2023, to some extent, reveals the
surge of compliance costs brought by the deepening of

the "double carbon" policy. The model reflects high-risk
clustering scenarios such as C1-C3 in 2023 through the
spatial distribution of principal components, reflecting
the early warning of composite risks.

Based on the above analysis, the risk probability
distribution analysis of grid enterprise engineering
projects by GridRiskNet is organized, and the annual
average results of other indices are shown in Figure 5.
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Figure 5: The annual average results of other indices in GridRiskNet risk probability distribution analysis
Note: The curves of each index correspond one-to-one with the corresponding color coordinate axes on the right

In Figure 5, regarding the frequency of time-series
anomalies, the average annual growth rate of abnormal
events during 2019-2023 reached 65.7%. The model
objectively reflects the increasing complexity of risks
through the continuous decline in confidence (from 0.912
to 0.632). The sudden increase in risk entropy (2.158) in
2020 preceded the peak of the importance index (83.47);
this indicates that GridRiskNet can capture the implicit
correlations of risk factors through information entropy.
The synchronous increase in the coefficient of variation
(from 0.712 to 0.859) and risk entropy (from 2.547 to
2.981) after 2022 reveals the transformation trend of risk
distribution from centralized to discretized; this provides
key evidence for power grid enterprises to optimize the
allocation of risk reserve funds. The core advantage of the
model lies in the quantitative modeling of the dynamic
coupling relationship among the three dimensions of
engineering anomalies, risk uncertainty, and impact
degree. Meanwhile, it realizes the full-chain risk
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4.3.2 Analysis of potential influence range

The study divides the U.S. power grid into three
major regions: The Eastern Interconnection Power Grid
(EIPG), the Western Interconnection Power Grid (WIPG),
and the Texas Interconnected Power Grid (TIPG). The
EIPG covers the eastern, midwestern, and parts of
southern U.S. states, extending northward to eastern
Canada. The WIPG covers most western U.S. states,
connecting with western Canada in the north and
reaching parts of Mexico in the south. The TIPG includes
most of Texas. These regional grids are interconnected at
limited DC points but mostly operate independently.
Based on this, GridRiskNet's analysis results on the
potential impact scope of power grid enterprise
engineering projects are displayed in Figure 6.
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Figure 6: Analysis of GridRiskNet's potential impact on power grid enterprise engineering projects ((a) 2018; (b)
2019; (c) 2020; (d) 2021; (e) 2022; (f) 2023)
Note: The curves of each index correspond one-to-one with the corresponding color coordinate axes on the right

Based on index definitions and annual data,
GridRiskNet demonstrates a scientific nature and
structural insight in the analysis of potential impact
ranges. First, for Risk Propagation Path Length, WIPG
remains at a high level throughout the entire period,
reaching 8.1 in 2023, significantly exceeding that of other
regions. This gap is not accidental but a reflection of
long-term structural characteristics, revealing the
extensibility of transmission links in the western power
grid due to complex terrain and diverse energy structures.
Second, the changing trend of Node Vulnerability Score
is more enlightening; the three major power grids' scores
all rose sharply in 2020, with the average value doubling
compared to the previous year. This synchronous surge
highly aligns with the global external shock events in
2020, indicating that the model is highly sensitive to
network vulnerability under systemic disturbances.

In addition, the Risk Impact Radius index essentially
measures the physical diffusion capacity of risks from
source nodes to the surrounding space; its calculation
integrates network topology, geographical distance, and
propagation probability. According to the data, WIPG's
Risk Impact Radius rapidly increased from 10.8 km in
2021 to 25.7 km in 2022, and further to 35.2 km in 2023,
with a cumulative increase of over 225% in two years.
TIPG also showed a continuous expansion between 2022

and 2023, reaching 26.4 km in 2023, reflecting the
significant cumulative effect of regional risk diffusion.
This significant spatial diffusion trend is not caused by
single-year fluctuations but by the accumulation of
continuous transmission chains. Its essence is the scope
expansion of power grid risks through multiple rounds of
transmission and cross-node amplification, which is more
obvious, especially in scenarios with multiple
overlapping risks. The reason why GridRiskNet can
effectively capture this phenomenon lies in the deep
coupling of its GNN and propagation probability
mechanism. It can dynamically track the evolution of risk
paths and ranges in complex networks, thereby
identifying the critical points and amplification effects of
risk diffusion. Therefore, it possesses real value in
regional risk monitoring and trend early warning. The
capture of this cumulative diffusion trend reflects the
model's structural sensitivity to "spatiotemporal
overlapping risks", which far exceeds the single-
description capability of traditional static indices.

4.3.3 Comparative Analysis of GridRiskNet
and other models

To comprehensively evaluate the GridRiskNet
model's effectiveness in investment risk management of
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power grid engineering projects, this study designs two
types of comparative experiments. The first type is a
horizontal comparison with existing State-of-the-Art
(SOTA) models. It selects representative models in risk
assessment, regional propagation modeling, and
uncertainty quantification in recent years, including
methods such as CNN-LSTM, to ensure fair comparison
under a unified dataset and the same task indices. The
comparison covers risk classification performance (F1-
Score, ROC-AUC), regional propagation accuracy (Risk
Impact Radius error), and uncertainty quantification
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ability (Risk Entropy) to reflect the model's
comprehensive capabilities. The second type is a detailed
comparison with classic baseline models, comparing
individual methods such as XGBoost, LightGBM, ST-
GCN, and BERT-BiLSTM. It focuses on examining the
model's performance in robustness, spatial-temporal
feature extraction, anomaly detection, etc. It highlights
the advantages of GridRiskNet in multimodal data fusion,
dynamic feature learning, and risk path modeling. The
results of the two types of comparisons are exhibited in
Tables 6 and 7.

Table 6: Comparison of the performance of GridRiskNet and SOTA models on the same dataset

Risk Impact
Model Researchers F1-Score? ROC-AUC? Radius error+o Risk Entropy|
(km) |
Dong and Li
CNN-LSTM (2025) 0.724 0.892 28.3+4.1 1.87
The investment
framework based Mostofi et al.
on graph attention (2025) 0.781 0.903 22.6+3.8 1.52
networks
Topic model Qi (2025) 0.698 0.841 . 2.03
clustering ’ ’ ’
DNN based on Luo and Zhu
transfer learning (2024) 0.763 0.885 ) 1.68
GridRiskNet The proposed 0.892 0.962 4.8+0.9 0.89
model
Table 7: Robustness comparison results of GridRiskNet and baseline models
Model F1-Score Risk Impact Radius error+c (km) Recall f(()lr delqy anomaly
etection
XGBoost 0.712 32.546.2 0.683
LightGBM 0.735 29.8+5.4 0.721
ST-GCN 0.683 18.7+£3.5 0.592
BERT-
BiLSTM 0.698 - 0.654
GridRiskNet 0.892 4.8+0.9 0.937

The SOTA model's comparison experiment reveals
that GridRiskNet achieves considerable leadership in risk
classification, propagation modeling, and uncertainty
quantification. Although the GAT investment framework
performs well in traditional graph learning tasks, it cannot
deeply integrate complex semantic features and
meteorological data, leading to an underestimation of
risks in some catastrophic events. In contrast,
GridRiskNet fully captures the coupling relationship
between accident texts and meteorological variables
through cross-modal attention mechanisms and dynamic
feature fusion, and is significantly superior to other
models in F1-score and ROC-AUC. Meanwhile, its GA-
RNN structure can accurately model risk transmission
paths under power grid topology, greatly reducing Risk
Impact Radius error. This verifies its high fitting ability
to the physical characteristics of power grids. Regarding
uncertainty control, GridRiskNet effectively suppresses

prediction fluctuations in high-risk scenarios through the
risk propagation graph reconstruction mechanism in the
joint loss function, minimizing Risk Entropy and
showing stronger stability of risk distribution.

In the comparison with baseline models,
GridRiskNet also demonstrates excellent robustness and
overall advantages. Compared with XGBoost and
LightGBM, GridRiskNet not only improves the F1-score
but also is much higher than other models, showing
strong adaptability in complex dynamic data
environments. Concerning regional propagation accuracy,
the Risk Impact Radius error of GridRiskNet fluctuates
very little; it is far better than ST-GCN, which only
considers  spatiotemporal features, proving the
effectiveness of its spatial topology and semantic
information fusion strategy. Regarding time-series
anomaly detection, GridRiskNet combines dynamic
feature selection and time-series-aware splitting
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strategies, notably improving the recall and detecting
potential abnormal risks earlier. Overall, GridRiskNet
outperforms existing mainstream methods in multi-
dimensional tasks, having high accuracy and robustness;
it also has a more suitable direction in key links of power
grid engineering risk management, such as risk
transmission, modal coupling, and dynamic prediction.

4.3.4 GridRiskNet training cost and efficiency
analysis

Tests on computing cost and efficiency are
conducted to evaluate the engineering practicality of
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GridRiskNet. The training efficiency in a complete
production environment is tested on an NVIDIA A100x4
cluster, with the following records. They encompass: (1)
average convergence time in the training phase (in hours
(h)); (2) maximum inference delay per sample in the
inference phase (in milliseconds (ms)); (3) peak memory
consumption (in gigabyte (GB)); (4) training time per
0.01 F1-Score (in h). Under the condition of meeting the
needs of offline batch processing and periodic risk
monitoring in power grids, the practical controllability of
GridRiskNet is scientifically measured. The analysis
results are suggested in Table 8.

Table 8: Analysis results of the training cost and efficiency of GridRiskNet and baseline models under the same dataset

Peak memory

Convergence Maximum inference . Training time per 0.01 F1-
Model . consumption
time (h) delay per sample (ms) (GB) Score (h)

XGBoost 1.2 0.09 1.5 0.17
LightGBM 1.0 0.07 1.2 0.14
ST-GCN 8.5 0.36 5.1 1.25
BERT-BiLSTM 12.3 0.45 6.4 1.77
GridRiskNet 17.8 0.63 9.8 2.00

According to the results in Table 8, although
GridRiskNet has a longer absolute training time (17.8 h)
and higher single-sample inference delay (0.63 ms) than
other models, its key index "training time per 0.01 F1-
score" is 2 h, which is lower than that of BERT-BiLSTM
(1.77 h), bringing greater benefits. This indicates that its
high complexity effectively "exchanges for performance"
with obvious non-linear returns. Moreover, the inference
delay of 0.63 ms is still far lower than the acceptable
threshold (usually at the second level) in offline power
grid risk prediction, making it suitable for daily or even
hourly scheduling scenarios. The memory consumption
of GridRiskNet matches the typical Graphic Processing
Unit configuration of power enterprises (<10 GB),
making deployment feasible. Overall, although
GridRiskNet has a higher training cost, it has the
advantages of high performance returns, controllable
inference, and resource affordability, thus making the
feasibility for practical engineering applications.

4.4 Discussion

It should be explained that the experimental data of
this study are based on U.S. sources (EIA, NOAA, OSM).
However, the research on investment risk issues of power
grid engineering projects has a high degree of
commonality and structural consistency. The core lies in
the complexity of the investment process, construction
environment, and risk chain of power grid projects, not
limited to specific countries. Cost overrun, climate
pressure, equipment technical failure, supply chain
fluctuation, and policy compliance risks (C1-C5) are five
key risks commonly faced by global power grid projects.
Among them, "policy compliance risk" is abstracted in
the model as an index of institutional environment

uncertainty to describe the impact of policy changes on
project risks. It essentially structurally summarizes policy
volatility and does not depend on specific legal
provisions. At the same time, GridRiskNet focuses on
risk propagation mechanisms and multimodal feature
fusion, and its methodology is a universal architecture for
global engineering projects. Therefore, even with U.S.
data, the revealed coupling relationships and propagation
mechanisms of multi-source heterogeneous risks have
high reference value for Chinese power grid enterprises.

Additionally, the advantages of GridRiskNet over
existing SOTA models are reflected not only in the
superiority of indices but also in innovative
breakthroughs in methodological mechanisms. First,
regarding risk classification, GridRiskNet introduces a
cross-modal attention mechanism to deeply explore the
coupling relationship between accident texts and
meteorological features. It effectively makes up for the
perception defects of traditional single-modal models in
complex scenarios. This enables its F1-score and ROC-
AUC to be significantly better than those of models such
as GAT. Second, in regional propagation modeling,
GridRiskNet is based on the GA-RNN structure and
embeds a risk propagation graph reconstruction
mechanism. It can dynamically identify key transmission
paths in the power grid topology and accurately capture
the risk diffusion process. Thus, it can minimize the Risk
Impact Radius error and demonstrate high fitting ability
to the physical structure of the power grid. Third, for
uncertainty quantification, the joint loss function design
of GridRiskNet integrates classification error, graph
reconstruction error, and feature stability regularization
terms. This helps to control prediction fluctuations in
high-risk scenarios and reduces risk entropy to the lowest
level. Compared with SOTA models that mainly rely on
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traditional graph networks or single deep models,
GridRiskNet realizes the collaborative optimization of
structured, spatiotemporal, and semantic data. Its core
innovation lies in the deep integration of the three
mechanisms: "dynamic feature learning, propagation
path modeling, and risk distribution stability". This not
only improves model performance but also achieves a
balance between the complexity of risk perception, path
interpretability, and prediction stability, possessing high
practical value and theoretical promotion potential.

5 Conclusion

This study constructs the GridRiskNet risk
management system based on big data mining around the
intelligent management needs of investment risks in
power grid enterprise engineering projects. It also
realizes the fusion modeling and dynamic evaluation of
structured, unstructured, and spatiotemporal data.
Through the two-stage modeling architecture, the model
performs well in risk probability distribution
identification and regional propagation path modeling.
The experimental results show that GridRiskNet has
strong risk structure identification and regional difference
perception abilities under multiple indices. From 2020 to
2023, the Risk PCA Projection Score has significantly
climbed, revealing the dominant position of cost overrun,
climate pressure, and equipment risk in the evolution of
engineering risks. At the same time, the model can
effectively capture the changing trends of risk path length
and impact radius in the analysis of the potential impact
scope of each power grid region. Moreover, it can identify
the propagation characteristics of structural vulnerability
of the western power grid and the high-impact radius of
the Texas power grid, providing quantitative support for
regional risk management.

Although GridRiskNet shows strong comprehensive
performance in the experiment, there is still room for
further optimization. The current model still relies on a
fixed attention mechanism in the fusion process between
different data modalities, which struggles to fully
characterize the dynamic coupling relationship between
heterogeneous features due to time and place. In addition,
the physical constraint mechanism is not introduced in
the risk propagation modeling, and the mapping accuracy
of the actual operation state of the power grid still has
room for improvement. Follow-up research can further
introduce reinforcement learning and physical graph
embedding methods to improve the model's adaptability
to dynamic environmental changes. Furthermore,
expanding the model to broader scenarios such as new
energy access and emergency dispatching supports the
intelligent transformation of investment risk management
of power grid enterprises in a pluralistic and complex
environment.
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