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As social media rapidly develops, network public opinion has become an important channel for reflecting 

social emotions, especially in emergencies and public opinion surges. To improve the accuracy of public 

opinion sentiment analysis, a network public opinion sentiment analysis model integrating improved 

TextRank algorithm is proposed. By introducing multidimensional features such as term frequency inverse 

document frequency, part of speech, and word position, the keyword extraction process is improved, and 

combined with deep learning, the accuracy of model classification is enhanced. The findings indicated 

that the accuracy of the proposed model on the test set reached 0.96, and the F1 values on the training 

and testing sets were 92.6% and 90.9%, respectively, demonstrating the advantages of this method in 

complex sentiment analysis tasks. In addition, the model proposed by the research performed well in the 

sentiment classification task of four network public opinion hotspots, with the highest accuracy rates of 

positive and negative sentiment classification reaching 98% and 96% respectively, a root mean square 

error as low as 0.176, and a mean absolute percentage error of only 0.081. The results indicate that the 

model has better fitting and generalization abilities in sentiment classification tasks. This not only 

provides an efficient technical solution for sentiment analysis of network public opinion, but also lays an 

important foundation for the intelligent development of social media public opinion monitoring systems. 

Povzetek: Model združuje večdimenzionalno utežen TextRank (TF-IDF, besedna vrsta, položaj; G1) z 

LSTM-pozornostjo za analizo sentimenta javnega mnenja. 

 

1 Introduction 
With the widespread use of social media, Network Public 

Opinion (NPO) has become an indispensable influencing 

factor in public events, especially in emergency situations 

where changes in public emotions can quickly spread and 

form a wide social impact [1]. The Sentiment Analysis 

(SA) of NPO, as an automated technology, has been 

widely utilized in fields such as public opinion guidance 

and sentiment prediction, and has become an important 

component of public opinion management [2]. SA 

technology has been broadly utilized in fields such as 

public opinion monitoring, consumer feedback analysis, 

and emotion prediction by classifying the emotional 

tendencies of online texts [3]. However, traditional SA 

methods often face noise interference and emotional 

diversity issues when dealing with complex and 

unstructured social media data. Therefore, how to extract 

effective emotional features from large-scale and complex 

network texts to improve the accuracy and robustness of 

SA has become a research focus in the current field of SA. 

Xu et al. used text analysis and sentiment calculation to 

identify fluctuating factors, and combined Granger 

causality test to screen key variables. Based on the grey 

prediction model, they constructed an optimized model 

that integrates public opinion fluctuations, significantly  

 

 

improving prediction accuracy on four types of emergency 

event data [4]. Xu et al. focused on typical campus public 

opinion events and used Latent Dirichlet Allocation 

(LDA) for topic extraction, combined with Sentiment 

Knowledge Enhanced Pre-training (SKEP) model to 

complete emotion classification. They revealed the 

evolution law of public opinion from two dimensions: 

spatiotemporal and population characteristics, providing 

theoretical support for campus public opinion governance, 

but still limited by model accuracy [5]. Qiu et al. used 

Python to preprocess text data and combined spectral 

clustering with LDA topic models to mine high-value 

topics from multiple sources of public opinion. They 

proposed a method based on spectral clustering algorithm. 

By means of visual analysis, the core issues were 

effectively identified, and the evolution of public 

emotions throughout the process of public opinion 

dissemination was mapped out [6]. Shackleford et al. 

proposed a fusion of an improved Valence Aware 

Dictionary And Sentiment Reasoner (VADER) dictionary 

with multiple classical machine learning algorithms, and 

constructed multiple hybrid models. After comparing and 

evaluating using standard performance indicators, it was 

found that the combination of VADER dictionary and 

medium Gaussian support vector machine performed the 
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best, showing significant advantages among the seven 

comparison schemes [7]. 

Table 1: Literature summary table. 

Authors Year Algorithms/Methods used Key results Limitations 

Xu et al. [4] 2023 Granger causality+Gray prediction model 

Improved the accuracy of 

predicting public opinion on 

unexpected events 

Dependent on accuracy of 

factor selection and 

Granger test assumptions 

Xu et al. [5] 2024 
LDA+SKEP sentiment classification+spatial-

temporal analysis 

Effectively identified emotional 

features of campus opinion 

Limited by current 
sentiment classification 

model accuracy 

Qiu et al. [6] 2022 Spectral clustering+LDA+visualization 
Identified core topics and 
emotional shifts in multi-source 

public opinion 

Limited scalability 

Shackleford 

et al. [7] 
2023 

Improved VADER+Medium Gaussian Support 

Vector Machine 

Achieved best performance in 7 

schemes 

Generalization to 

multilingual text not 
discussed 

Guda et al. 

[9] 
2023 TextRank method using FOX stop word list 

F1 is 16.59% and 14.22% 

respectively 

Limited robustness across 

datasets 

Lu et al. 

[10] 
2023 SciBERT+TextRank+DPCNN 

Optimized citation 

recommendation system 

Dependent on external 
vocabulary knowledge 

base 

Zhili et al. 

[11] 
2024 SSA-optimized BiLSTM 

The model evaluation results are 
highly consistent with manual 

scoring 

Limited scope of 

application 

Li et al. [12] 2024 GCN+BiLSTM 
Significantly improve deep 
question answering 

performance 

Model structure may 
increase training cost and 

data dependency 

 

Recently, the combination of keyword extraction and 

deep learning methods has gradually become a research 

hotspot in SA. The TextRank algorithm, an unsupervised 

learning method based on graph ranking, has obtained 

notable achievements in tasks such as keyword extraction 

and text summarization [8]. Guda et al. compared and 

analyzed the performance of fast automatic keyword 

extraction algorithm and TextRank algorithm under 

different stop word lists. The findings denoted that the 

TextRank method using FOX stop word list had the best 

performance, with F1 values of 16.59% and 14.22% on 

text and speech data, respectively [9]. Lu et al. proposed a 

Scientific Bidirectional Encoder Representation from 

Transformers (SciBERT) model that integrates 

vocabulary database knowledge. This method combined 

TextRank to automatically extract literature topics and 

used Deep Pyramid Convolutional Neural Networks 

(DPCNN) to construct a scientific paper semantic 

representation and citation recommendation system. 

Findings denoted that the model achieved optimal 

performance in a single WordNet fusion [10]. In addition, 

Zhili et al. proposed a deep learning-based method for 

evaluating semantic similarity of English translation 

keywords. Firstly, the keywords in the translated text were 

extracted using the co-occurrence algorithm, and the 

Sparse Search Algorithm (SSA) was used to adjust the 

network weights. A Bidirectional Long Short-Term 

Memory (BiLSTM) neural network model optimized by 

SSA was constructed. The experimental data showed that 

the sentence similarity evaluation results obtained by this 

method were highly consistent with the manual 

professional rating [11]. Li et al. proposed a hybrid neural 

network model that integrates Graph Convolutional 

Network (GCN) and BiLSTM, introducing dual attention 

and gating mechanisms, and optimizing the joint 

expression of document and graph structures through 

contrastive learning. The experimental verification on the 

HotpotQA dataset showed that this method could 

effectively improve the performance of deep problem 

solving [12]. The research methods, core achievements, 

and existing problems of the literature have been 

summarized and organized, as shown in Table 1. 

Based on Table 1, although research in this field has 

been progressing steadily, especially in the application of 

keyword extraction and deep learning models. However, 

traditional TextRank algorithms and other methods still 

have certain limitations, especially in terms of improving 

sentiment classification accuracy and model 

generalization ability. In view of this, an NPO SA model 

integrating improved TextRank algorithm is proposed, 

which enhances the ability to extract sentiment keywords 

by introducing multidimensional features such as Term 

Frequency Inverse Document Frequency (TF-IDF), part of 

speech, and word position for keyword extraction. Unlike 

previous graph sorting methods that used static weights or 

single feature initialization, G1 weighting can 

dynamically adjust the contributions of each feature and 

enhance the sensitivity of keyword extraction to complex 

emotional expressions. On this basis, the model utilizes 

Long Short-Term Memory (LSTM) networks to capture 

context dependent structures and introduces attention 

mechanisms to weight and aggregate key information, 

thereby enhancing the accuracy and robustness of 

sentiment discrimination. Not only does it form a highly 

coupled linkage mechanism of "keyword extraction 

emotion discrimination" in the model structure, but it also 

demonstrates strong cross topic adaptability and model 

interpretability through empirical verification in multiple 

public opinion hot topic tasks. The research aims to bridge 

the gap between graph sorting methods and deep models, 

improve the comprehensive performance of NPO SA, and 
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provide a more practical new technological path for social 

media sentiment recognition in complex contexts. 

2 Methods and materials 

2.1 Improved textrank keyword extraction 

algorithm 

The traditional TextRank algorithm usually assigns the 

same initial weight to all candidate word nodes in the 

keyword extraction process, ignoring the significant 

differences in semantic structure and text distribution of 

words, resulting in certain generalization limitations in 

keyword recognition [13]. To address this issue, the study 

introduces three semantic related attributes: part of 

speech, word position, and TF-IDF value, and constructs 

a multidimensional feature matrix to comprehensively 

measure the importance of words. TF-IDF is a statistical 

feature weighting method that evaluates the importance of 

words in text by calculating term frequency (TF) and 

document frequency [14]. Among them, TF reflects the 

frequency of words in the current text, while inverse 

document frequency (IDF) measures their scarcity in the 

corpus. The importance of the word is contingent upon the 

magnitude of the product value. The expressions for TF 

and IDF are shown in equation (1) [15]. 
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In equation (1), 
,t df  refers to the amount of times the 

word t  appears in document d , N  represents the total 

amount of documents in the corpus, and 
tn  represents the 

amount of documents containing the word t . The TF-IDF 

value is the product of TF and IDF, as shown in equation 

(2). 
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In equation (2), D  means the collection of all 

documents in the entire corpus. The importance of 

keywords is often determined by multiple heterogeneous 

features, such as word frequency intensity, sentence 

position, and part of speech category. The impact of these 

three attributes on the salience of keywords varies in 

different contexts. Compared with traditional fixed weight 

allocation or simple arithmetic mean methods, the G1 

dynamic weighting algorithm can adaptively adjust 

weights based on the distribution characteristics of 

features in the dataset, thereby more accurately 

characterizing the actual contribution value of each feature 

in semantic representation. Therefore, the study used the 

G1 weighting method to weight the differences among the 

three types of attributes, calculate the comprehensive 

weight of each word, and use it as the initial score input 

for graph nodes in the improved TextRank algorithm to 

enhance the semantic sensitivity of keyword ranking. The 

G1 weighting method is a subjective objective fusion 

method for determining weights, which utilizes the degree 

of difference between adjacent indicators to determine 

weights and avoid subjective settings. The difference 

sequence between indicators is calculated as denoted in 

equation (3) [16]. 
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In equation (3), 
,i ja  represents the value of the i th 

sample on the j th attribute, and n  represents the total 

amount of samples. 
jc  represents the degree of difference 

of the j  th attribute, which is used to measure the 

magnitude of its variation in the sample. Then, the relative 

weight is calculated, as shown in equation (4). 
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In equation (3), 
j  denotes the weight of the j th 

indicator, and 
3

1 kk
c

=  represents the sum of all attribute 

differences, used for normalization. 3 represents the total 

number of attributes, including TF-IDF, part of speech, 

and word position. After integrating attributes and 

weights, the initial rating for each word is obtained, as 

shown in equation (5). 

1 2 3-TF IDF loc pos   =  +  +             (5) 

In equation (5),   represents the comprehensive 

weight, while 
1 , 

1 , and 
3  are the weights of TF-IDF, 

word position, and part of speech, respectively. loc  and 

loc  respectively represent word position features and part 

of speech features. The comprehensive weight attributes 

are shown in Figure 1. 

Comprehensive 

weight
Word position Part of speech

Comprehensive weight

First 

sentence

Last 

sentence

Middle 

sentence Noun Adjective Verb 

VN

 

Figure 1: Schematic diagram of comprehensive weight attributes. (Source from: Author's self drawn) 
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In Figure 1, the comprehensive weights are 

constructed from three aspects: TF-IDF value, word 

position, and part of speech. The TF-IDF value 

corresponds to its weight, and the word position feature 

weight is divided into the first sentence, last sentence, and 

middle sentence according to the position in the sentence. 

The weight of part of speech features includes nouns, 

verbs, and adjectives. The G1 weighting method is used to 

determine the comprehensive weights of three attributes, 

which are used as the initial weights for keyword 

extraction in the TextRank algorithm. The improved 

TextRank (I-TextRank) algorithm is obtained, and the 

expression is denoted in equation (6). 
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In equation (6), ( )iS   represents the final weight,   

represents the damping coefficient, generally set to 0.85, 

j  is the input node of 
i , ( )iIn   stands for the set of all 

nodes pointing to 
i , and ( )jOut   indicates the set of all 

output nodes pointing to 
j . The overall process of the I-

TextRank algorithm is denoted in Figure 2. 

In Figure 2, the input text is first preprocessed, 

including TF-IDF value calculation of words, position 

feature extraction, and part of speech tagging. After 

completing the three features, the G1 weighting method is 

used to calculate the comprehensive weights and generate 

the initial weights for each word. Based on these weights, 

the algorithm constructs an I-TextRank graph structure 

and performs iterative calculations to determine word 

importance through node ranking. After the graph sorting 

is completed, the algorithm filters candidate words based 

on a preset threshold, sorts them by score, and outputs the 

final keyword list. 

2.2 NPO sentiment analysis model 

Integrating I-TextRank and LSTM-

attention 

The development process of NPO is not only driven by 

information dissemination mechanisms, but also by the 

combined effect of public attitudes and media reactions, 

forming a dynamic chain of "information diffusion-social 

response-public opinion evolution". The generation of 

public opinion is not a single dimensional dissemination 

phenomenon, but a collective construction process of risk 

perception under multi-party interaction. The social risk 

evolution of NPO in emergencies is shown in Figure 3 

[17]. 

Text 
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Word position 

feature acquisition
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Construction of I-
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Calculate the weight of 
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calculation

Part of speech 

tagging processing

 

Figure 2: I-TextRank algorithm process. (Source from: Author's self drawn) 
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Figure 3: The social risk framework of NPO. (Source from: Author's self drawn) 
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Figure 4: LSTM-Attention structure. (Source from: Author's self drawn) 

 

Figure 3 shows the social amplification process of 

NPO triggered by emergencies, including three main 

stages: information dissemination path, amplification 

mechanism, and social feedback mechanism. After an 

emergency occurs, relevant information is transmitted to 

the public through the dissemination chain, with the 

government, media, and the public forming the initial 

amplification station, playing a core role as the main body 

of information diffusion in characterizing risk events. 

Subsequently, risk information triggers government 

response and public emotional reactions, and this social 

feedback process is further amplified by media coverage 

and public behavior, ultimately forming public opinion 

fluctuations in cyberspace. SA has become an important 

tool for understanding and grasping changes in public 

sentiment in this complex and dynamic public opinion 

environment. Research extracts keywords based on I-

TextRank and constructs a classification model using deep 

learning techniques for sentiment polarity analysis. 

Firstly, the LSTM network is employed for the purpose of 

binary classification, with the objective of discriminating 

positive and negative emotions. Subsequently, AM is 

introduced with a view to optimizing the model's ability to 

capture key emotional information and to improve overall 

performance. The LSTM-Attention structure is denoted in 

Figure 4 [18]. 

In Figure 4, the LSTM-Attention model sequentially 

inputs sequence data 
1x , 

2x , 
3x , 

4x , and performs 

temporal processing through LSTM units to generate 

hidden state vectors 
1h , 

2h , 
3h , 

4h  and corresponding 

outputs 
1y , 

2y , 
3y , 

4y . 
th  represents the hidden state 

vector at the t -th time step. These outputs are processed 

through an attention mechanism layer, which calculates 

the correlation score between each vector and the global 

context, assigns different attention weights, and then 

weights 
1y , 

2y , 
3y , and 

4y  to obtain the final context 

aware representation as the model output. LSTM receives 

the embedded vector sequence and outputs the hidden 

state sequence as shown in equation (7) [19]. 

1( , )t t th LSTM e h −=                          (7) 

In equation (7), 
te  represents a low dimensional word 

vector. To weight each hidden state, the model introduces 

an AM to calculate the attention score for each time step. 

The expression for calculating attention score is shown in 

equation (8). 

tanh( )t u t uu h b= +                         (8) 

In equation (8), 
tu  represents the attention score 

vector of the t  th time step, 
u  represents the trainable 

weight matrix, and 
tu  is the bias vector, which increases 

the expressive power of the model. After normalization, 

the attention weight of each time step can be normalized 

to the relative importance of the current hidden state in 

sentiment classification, as expressed in equation (9). 
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In equation (9), 
A  denotes the attention weight, u

 

refers to the trainable context vector, T

tu u  represents the 

dot product of the attention score vector and the context 

vector, T  represents the total length of the sequence. It is 

imperative to normalize all time-step attention scores, 

thereby ensuring that the sum of the weights is equal to 

one. To obtain the final weighted hidden state, the 

attention weights are utilized to weight and sum the hidden 

states of all time steps, as shown in equation (10). 

1
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In equation (10), v  represents sentence sentiment 

representation that integrates attention information. 

Finally, the hidden states weighted by the AM are input 

into the fully connected layer, and the probability 

distribution of each emotion category is calculated using 

the softmax function, as denoted in equation (11). 

ˆ softmax( )c cy v b= =                      (11) 



360 Informatica 49 (2025) 355–366 M. He et al. 

Original sentence

Word vectorI-TextRank keyword 
extraction

LSTM extracts sentence 
vectors

Input Node: 256

Hidden node: 128

Output 

node

 

Figure 5: The overall architecture of the I-TextRank-based sentiment analysis framework. (Source from: Author's self 

drawn) 

 

In equation (11), the probability distribution vector of 

the emotion category predicted by the ŷ  model represents 

the probability that the sentence belongs to each category. 

c  means the weight matrix, and 
cb  means the bias 

vector. Finally, the cross-entropy loss function is used as 

the optimization objective, as expressed in equation (12). 
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In equation (12), L  means the total loss value, C  

means the number of categories, 
iy  represents the unique 

heat vector of the true label, and ˆ
iy  means the prediction 

probability. The process of integrating I-TextRank and 

LSTM-Attention for NPO SA is shown in Figure 5. 

In Figure 5, the emotion classification process mainly 

includes two core stages, namely sentence feature 

extraction and deep neural network classification. In the 

feature extraction stage, the input original sentence is first 

used to extract keywords through the I-TextRank 

algorithm. The original sentence and the extracted 

keywords are jointly input to the word embedding module 

and converted into a sequence of word vectors. Then, the 

word vector sequence is input into the LSTM network for 

sequence modeling, further capturing the contextual 

semantic relationships in the sentence and generating a 

complete sentence vector. Finally, the sentence vector is 

fed into a deep neural network classifier, which consists 

of a fully connected neural network structure with 256 

input nodes and 128 hidden nodes, and outputs a 

classification result node to determine the emotional 

category. 

3 Results 

3.1 I-TextRank performance test 

To verify the performance of I-TextRank, the Weibo 

Sentiment dataset was selected for experimental testing. 

This dataset was constructed by collecting public opinion 

data from Sina Weibo, a major Chinese microblogging 

platform. The data comes from popular topics and search 

events within two months, covering daily social 

discussions and emergency public events. The topic 

selection process involved keyword frequency analysis, 

real-time hot topic crawling, and manual filtering to 

ensure relevance and representativeness. In the data 

preprocessing stage, Jieba word segmentation tool was 

used for Chinese word segmentation, while removing stop 

words and noisy characters. The processed text was 

converted into Word2Vec word vector representation. In 

the emotional annotation process, the initial sentiment 

polarity annotation was first performed based on a rule-

based sentiment dictionary, and then independently 

verified manually by three professional annotators to 

ensure the accuracy and consistency of the annotation 

results. For annotation cases with differences, the majority 

voting mechanism was used for final judgment. The final 

constructed Weibo sentiment dataset contained 5000 

annotated samples, with a balanced distribution of positive 

and negative sentiment categories. The model parameter 

configuration is shown in Table 2. 

Based on the parameter configuration in Table 2, to 

verify the contribution of each component of the G1 

weighting method and model structure to the overall 

performance, a ablation experiment was designed to 

compare the performance of four keyword extraction 

strategies in sentiment classification tasks. The results are 

shown in Table 3. 

Table 2: Hyperparameter settings. 

Hyperparameter Value 

Input size 256 

Hidden units 128 

Output size 2 

Batch size 32 

Learning rate 0.001 

Dropout rate 0.5 

Iterations 300 

Data set Weibo Sentiment 
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Table 3: Results of ablation experiment. 

Model variant Accuracy (%) F1 value (%) 

TextRank (Baseline) 88.2 86.5 

TextRank-TF-IDF 90.5 88.3 

TextRank-Equal weights 91.2 89.0 

I-TextRank 96.3 90.9 
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Figure 6: Loss function variation curve. (Source from: Author's self drawn) 

 

From Table 3, there were significant differences in the 

performance of the four models in sentiment classification 

tasks. TextRank, as the basic model, had an accuracy of 

88.2% and an F1 value of 86.5%, showing the worst 

performance. This indicates that without introducing any 

feature weighting mechanism, its keyword ranking results 

have limited support for sentiment discrimination. After 

introducing TF-IDF as the unique feature into the initial 

score, the performance of the TextRank TF-IDF model 

significantly improved, with an accuracy of 90.5% and an 

F1 value of 88.3%, verifying the positive role of word 

frequency information in keyword importance evaluation. 

On this basis, by further introducing language structure 

features such as part of speech and word position and 

assigning equal weights, the model performance was 

further improved to an accuracy of 91.2% and an F1 value 

of 89.0%, indicating that multi-feature fusion helps to 

improve the quality of keyword ranking. The final 

proposed I-TextRank model adopted the G1 weighting 

strategy for differentiated fusion of three types of features, 

achieving the highest accuracy of 96.3% and F1 value of 

90.9%, significantly better than other models, fully 

demonstrating the significant effect of the G1 weighting 

mechanism in improving the semantic sensitivity of 

keyword recognition and optimizing sentiment 

classification performance. In the comparative 

experiment, with a maximum iteration of 300, the 

proposed model was compared and tested with traditional 

TextRank and Deviation Rule Markov Model (DRMM) 

[20]. The change in loss function is shown in Figure 6. 

Figures 6 (a) and 6 (b) respectively show the curves 

of the loss functions of three algorithms on the dataset as 

a function of iteration times. In Figure 6 (a), as the number 

of iterations increased, the I-TextRank decreased the 

fastest and the curve was relatively stable. After the 200th 

iteration, it tended to stabilize and eventually dropped to 

the lowest value of about 0.04, significantly better than the 

other two models. Although DRMM and TextRank could 

also achieve a certain degree of loss reduction, their 

overall decline rate was slower, their fluctuations were 

greater, and their final convergence level was higher than 

I-TextRank, indicating poor fitting performance on the 

Levy function. In Figure 6 (b), I-TextRank also showed 

significant advantages. Although there were some 

fluctuations in the initial stage, compared to DRMM and 

TextRank, its convergence was smoother and faster. The 

final loss value of I-TextRank decreased to 0.03, while 

DRMM and TextRank still had significant fluctuations in 

the later stages of iteration, and the lowest loss value was 

still higher than I-TextRank, indicating weak 

generalization ability. The study used the Weibo 

Sentiment dataset, which was segmented into a training set 

and a testing set in an 8:2 ratio. The classification accuracy 

of the three models on the dataset was tested, and the 

outcomes are denoted in Figure 7. 
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Figure 7: Classification accuracy of three models on datasets. (Source from: Author's self drawn) 

Table 4: Multiple indicator test results. 

Data set Model Precision/% Recall/% F1/% 

Training dataset 

DRMM 77.3 79.1 78.7 

TextRank 86.5 85.5 84.2 

I-TextRank 93.4 91.9 92.6 

Test dataset 

DRMM 79.8 77.9 78.8 

TextRank 88.1 87.1 86.5 

I-TextRank 91.7 91.1 90.9 

 

Figures 7 (a) and 7 (b) respectively show the trends of 

the accuracy of the three models on the training and testing 

sets as a function of the number of iterations. Overall, the 

I-TextRank model performed better than TextRank and 

DRMM on both datasets, demonstrating its stronger fitting 

ability and better generalization performance. In Figure 7 

(a), all three models had low accuracy in the initial stage. 

The I-TextRank quickly increased to 0.75 after the 50th 

iteration, reached above 0.95 in the 100th iteration, and 

remained at 0.96 thereafter. The accuracy of the TextRank 

model remained stable at 0.88, with a slightly slower 

convergence speed but still acceptable stability. The 

DRMM model showed the smallest improvement, with an 

accuracy rate of around 0.79 after the 100th round and 

slight fluctuations in the later stages, indicating its limited 

ability to fit the training set. In Figure 7 (b), the accuracy 

of I-TextRank remained stable at 0.97 after the 100th 

round, indicating that the model did not exhibit significant 

overfitting and had strong generalization ability. The 

accuracy of the TextRank model on the test set was 

slightly lower than that on the training set, at 0.82, which 

was almost consistent with the trend of the training set. 

However, the overall accuracy was low, further verifying 

its shortcomings in extracting key emotional features. The 

study conducted another comparison using precision, 

recall, and F1 value as indicators, and the test findings are 

denoted in Table 4. 

According to Table 4, on the training set, the precision 

of I-TextRank reached 93.4%, the recall rate was 91.9%, 

and the F1 value was 92.6%, significantly higher than 

TextRank and DRMM. This indicated that I-TextRank 

could better capture emotional key features during the 

model learning stage, improving the accuracy and stability 

of classification. On the test set, I-TextRank also 

performed well, with an F1 value of 90.9%, far higher than 

TextRank's 86.5% and DRMM's 78.8%. In addition, 

although TextRank performed better than the training set 

on the test set, it was still significantly lower than I-

TextRank, indicating that I-TextRank not only has strong 

fitting ability in the training stage, but also has stronger 

generalization ability and robustness. Overall, I-TextRank 

outperformed the comparison model in precision, 

coverage, and overall performance, indicating that the 

strategy of introducing multidimensional weights and G1 

weighting to improve the initial node score can effectively 

enhance the semantic sensitivity of keyword extraction 

and sentiment discrimination, and is suitable for NPO SA 

tasks. 

3.2 Application effect of NPO sentiment 

analysis model integrating I-TextRank 

After conducting performance tests on I-TextRank, the 

study used four different fields of public opinion hotspots, 

namely AI fraud, college entrance examination reform, 

short drama money grabbing chaos, and US-China 

relations. The raw online data for each topic was collected 

through Sina Weibo, news portals, and forum discussions. 

The data has undergone cleaning, duplicate data removal, 

and sentiment annotation. For each hotspot, 

approximately 2000 samples were compiled and manually 

labeled as positive or negative emotions through a semi-

automatic process. 
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Figure 8: Classification accuracy results under different hotspots. (Source from: Author's self drawn) 

Table 5: Classification error results under different hotpots. 

Hot topics in public opinion Model RMSE MAPE 2R  

Hotpot 1 

CNN-SVM 0.215 0.123 0.892 

PERT-BiLST-Att 0.195 0.105 0.912 

I-TextRank 0.176 0.083 0.932 

Hotpot 2 

CNN-SVM 0.221 0.135 0.885 

PERT-BiLST-Att 0.205 0.119 0.901 

I-TextRank 0.175 0.079 0.926 

Hotpot 3 

CNN-SVM 0.238 0.151 0.878 

PERT-BiLST-Att 0.211 0.122 0.909 

I-TextRank 0.192 0.085 0.919 

Hotpot 4 

CNN-SVM 0.231 0.148 0.874 

PERT-BiLST-Att 0.205 0.113 0.911 

I-TextRank 0.185 0.081 0.921 

 

The emotional category analysis ability of the four 

models was further validated through network data 

collection and processing. The NPO SA model based on 

I-TextRank proposed by the research was compared and 

analyzed with the mixed Convolutional Neural Network 

and Support Vector Machine (CNN-SVM) model [21], as 

well as the SA model that integrates Pretrained 

Embedding-Bidirectional Long Short-Term Memory-

Attention (PERT-BiLST-Att) [22]. AI fraud, college 

entrance examination reform, short drama money circle 

chaos, and China-US relations are recorded as hotspot 

1~hotspot 4 respectively, and the classification accuracy 

is shown in Figure 8. 

Figures 8 (a) and 8 (b) show the ROC curves of three 

models on four different public opinion hotspots, 

respectively. Performance evaluations were conducted on 

each hotspot, and the classification performance of the 

models was quantified using AUC. In Figure 8 (a), the I-

TextRank model consistently outperformed the other two 

models in the four public opinion hotspots, especially in 

the classification of positive emotions, with an accuracy 

rate of almost 100%. On the four hotspots, the positive 

emotion classification accuracy of I-TextRank was 98%, 

96%, 95%, and 94%, respectively. PERT-BiLST-Att 

performed relatively stable on these hotspots, with an 

accuracy rate of around 90% for positive emotion 

classification. In Figure 8 (b), the accuracy of the I-

TextRank model in classifying negative emotions in four 

public opinion hotspots was 96%, 95%, 93%, and 92%, 

respectively. The accuracy of PERT-BiLST-Att's negative 

emotion classification remained above 80%, 

demonstrating its relative advantage in emotion 

classification. However, the performance of CNN-SVM 

was relatively lagging behind, with significantly lower 

classification accuracy for both positive and negative 

emotions compared to I-TextRank and PERT-BiLST-Att. 

Especially in negative emotion classification, its accuracy 

was relatively low. The study selected Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error 

(RMSE), and Fit Coefficient 2R  as evaluation metrics to 

compare the error results of different models. The findings 

are denoted in Table 5. 
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Figure 9: ROC curves of different models under different hotpots. (Source from: Author's self drawn) 

Table 6: Cross-validation performance. 

Fold Accuracy (%) F1 value (%) AUC 

1 96.0 90.7 0.9335 

2 95.6 90.2 0.9361 

3 95.8 90.4 0.9378 

4 96.2 91.0 0.9354 

5 95.6 90.2 0.9382 

Average value 95.8 90.5 0.9362 

Standard deviation 0.24 0.29 0.0017 

 

From Table 5, the I-TextRank model had the best 

error performance in all four hotspots, consistently 

showing the lowest RMSE and MAPE, as well as the 

highest 2R  value, indicating that the model had strong 

fitting and generalization abilities in sentiment 

classification tasks. Among them, on hotspot 1, the RMSE 

of I-TextRank was 0.176, MAPE was 0.083, and 2R  was 

0.932, all of which were better than the other two models. 

PERT-BiLST-Att closely followed, with three indicators 

of 0.195, 0.105, and 0.912, while CNN-SVM had weaker 

performance, with with three indicators of 0.215, 0.123, 

and 0.892. On Hotspot 2, I-TextRank also demonstrated 

strong performance, with with three indicators of 0.175, 

0.079, and 0.926. The performance of PERT-BiLST-Att 

was relatively stable, with with three indicators of 0.195, 

0.105, and 0.912. The three indicators of CNN-SVM were 

0.220, 0.119, and 0.885, indicating relatively low 

performance. On Hotspot 3 and Hotspot 4, I-TextRank 

maintained the lowest RMSE and MAPE, while 2R  had 

the highest, at 0.919 and 0.921 respectively, 

demonstrating its powerful ability in these complex SA 

tasks. In contrast, CNN-SVM and PERT-BiLST-Att 

performed poorly. The Area Under ROC Curve (AUC) 

results obtained from testing on four hot topics are shown 

in Figure 9. 

Figures 9 (a), 9 (b), 9 (c), and 9 (d) show the ROC 

curves of three models on four different public opinion 

hotspots. Performance evaluations were conducted on 

each hotspot, and the classification performance of the 

models was quantified by Area Under the Curve (AUC). 

In Figure 9 (a), the I-TextRank model performed the most 

outstandingly, with an AUC value of 0.9453, far 

exceeding the other two models, demonstrating its 

superior performance in handling this public opinion 

hotspot. The AUC values of PERT-BiLST-Att and CNN-

SVM were 0.9178 and 0.8465, respectively, indicating a 

certain gap compared to I-TextRank. In Figure 9 (b), I-

TextRank still performed the best with an AUC of 0.9387. 

The AUC value of PERT-BiLST-Att was 0.9242, while 

the performance of CNN-SVM was still low, with an AUC 

value of 0.8846. The curves of I-TextRank and PERT-

BiLST-Att showed a significant difference in the false 

positive rate range, further demonstrating the excellent 

performance of I-TextRank in this hotspot. In Figures 9 

(c) and 9 (d), I-TextRank consistently demonstrated strong 

performance, with AUC values of 0.9444 and 0.9421, 

respectively, consistently at its optimal position. The AUC 

values of PERT-BiLST-Att were 0.9167 and 0.9136 in 

hotspot 3 and hotspot 4, respectively, maintaining a 

relatively stable performance. The AUC value of CNN-
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SVM was the lowest, with AUC values of 0.8957 and 

0.8913 for hotspot 3 and hotspot 4, respectively, indicating 

its weaker performance on these hotspots. From this, it can 

be seen that the I-TextRank curve is almost entirely above 

the other two curves, indicating that it can better 

distinguish between positive and negative samples. To 

avoid overfitting of the model and verify its generalization 

ability under different data partitions, a five-fold cross 

validation experiment was conducted on the dataset, and 

the results are shown in Table 6. 

From the results in Table 6, the I-TextRank model 

performed stably in various performance indicators in the 

five-fold cross validation, with minimal fluctuations and 

good generalization ability and robustness. The accuracy 

fluctuated between 95.6% and 96.2%, with a mean of 

95.8% and a standard deviation of only 0.24%, indicating 

that the model has very little difference in classification 

performance under different training test partitions. The 

average F1 value was 90.5%, with a standard deviation of 

0.29%, indicating that the model's ability to distinguish 

positive and negative emotions remains stable. The AUC 

value remained above 0.9335 in all compromises, with the 

highest reaching 0.9382 and an average of 0.9362, with a 

standard deviation of only 0.0017, further demonstrating 

the model's strong discriminative ability on different 

subsets. The overall results indicate that the model does 

not have overfitting issues for a certain data partition, and 

its performance is not accidentally high, but has stability 

and universality at the structural level. Therefore, the 

proposed feature fusion and weighting mechanism is 

effective and reliable in sentiment classification tasks. 

4 Conclusion 
An SA model that integrates I-TextRank and LSTM-

Attention was proposed to address the limitations of 

existing SA methods in keyword extraction and sentiment 

classification accuracy. By combining the advantages of I-

TextRank in keyword extraction stage with the contextual 

modeling ability of LSTM-Attention model, the 

performance of sentiment feature extraction and 

classification was effectively enhanced. The performance 

test results of I-TextRank showed that its accuracy on the 

test set was 0.96, and its F1 value was as high as 90.9%. 

From this, I-TextRank outperformed the comparison 

model in terms of iterative convergence speed, training 

fitting ability, and testing generalization performance, 

demonstrating the advantages of this model in NPO SA 

tasks. When conducting SA on four public opinion 

hotspots, namely AI fraud, college entrance examination 

reform, short drama money grabbing chaos, and US-China 

relations, the accuracy of this model was the best among 

all tasks. It performed particularly well in the 

classification of positive and negative emotions, with the 

highest accuracy of positive and negative emotion 

classification in AI fraud, at 98% and 96% respectively. In 

terms of AUC values, this model outperformed the other 

two models, with the highest AUC value of 0.9448 in the 

hot topic of short drama money making chaos, 

demonstrating the strong advantage of this model in 

handling complex public opinion data. The results 

demonstrated that the proposed model had significant 

merits in improving the semantic sensitivity of keyword 

extraction and sentiment classification, and could 

effectively enhance the accuracy and stability of public 

opinion SA tasks. There are also certain limitations in the 

research. The I-TextRank algorithm relies heavily on the 

keyword extraction process, and for some texts with subtle 

or complex emotional expressions, there may still be 

insufficient accuracy in extraction. Future work could 

attempt to introduce cross domain transfer mechanisms to 

enable models to adapt to emotional distribution 

differences across different themes, contexts, and social 

platforms, enhancing their cross-scenario robustness. 

Second, considering extensions to multilingual text 

processing scenarios, especially for resource-poor 

languages, model applicability is enhanced through 

multilingual embedding or cross-language transfer 

learning. At the same time, multimodal data is further 

integrated to enhance the model's comprehensive 

perception ability of emotional signals and improve the 

recognition effect of complex semantics, ironic 

metaphors, and other emotional forms. 
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