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This article proposes a financial risk dynamic prediction and decision optimization model based on
Generative Adversarial Network (GAN). The model generates synthetic financial data, trains a risk
prediction model, and optimizes financial decisions based on predicted risks. Simulation results show that
the proposed method outperforms traditional machine learning models, achieving a mean absolute error
(MAE) of 0.012 and a mean squared error (MSE) of 0.002, indicating high prediction accuracy. The model
achieves an average risk of 4.5% and an average return of 8.2%, surpassing conventional algorithms.
With a recommended portfolio allocation of 65% equities, 30% bonds, and 5% cash, it optimizes
investment decisions by maximizing returns while minimizing risks. Overall, the proposed approach
provides a novel and effective solution for financial risk prediction and decision optimization,
demonstrating superior performance over existing methods.

Povzetek: Clanek predstavi GAN-okvir za generiranje sinteticnih financnih podatkov, napoved tveganja
in optimizacijo portfelja. Model doseze kvalitetne napovedi (MAE 0,012; MSE 0,002) ter predlaga
optimalno razmerje 65 % delnic, 30 % obveznic, 5 % gotovine, kar izboljsa donosnost in zmanjsa tveganje.

1 Introduction

Subsequent to the development of the capital market, the
methodology for conducting financial analysis has
experienced continuous improvements. The scope of
financial analysis will be broadened to encompass the
evaluation of financial position, operating outcomes, and
cash flow of enterprises. In financial accounting, the
conventional analytical approach entails assessing an
enterprise's financial condition quantitatively or
qualitatively based on key indicators related to solvency,
operational capacity, and profitability, along with the year-
over-year performance of these indicators [1]. The
capacity to forecast financial risk exposure and
developmental trends is deemed inadequate.
Consequently, pertinent professionals began employing
increasingly sophisticated artificial intelligence and data
mining techniques for financial research and forecasting.
Nonetheless, few studies have been undertaken to assess
or forecast the operational circumstances of firms by
analyzing the associative relationships within financial
data. The connection relationship between corporate
financial data will provide several diverse manifestations,
which will differ based on the various data elements. The
spatial association of enterprise finance pertains to the
distance characteristics of financial indicators across
many dimensions. Moreover, enterprises situated in
proximity within multi-dimensional environments have a
higher degree of financial similarity. The static temporal
association of financial indicators refers to the

interdependence characteristic among the financial
metrics of the companies [2].

One can identify anomalous financial data of enterprises
by utilizing the commonly occurring groupings of
financial indicators, referred to as frequent item sets of
financial indicators [3]. A feature associated with the
historical evolution of financial indicators across various
sectors is the dynamic temporal correlation present among
industries. A transmission phase will occur in which
alterations in the financial status of upstream enterprises
will impact downstream industry. Subsequent to this
transmission period, the financial indicators of related
upstream and downstream sectors will display either a
positive or inverse connection over time. Forecasting the
future financial state of downstream sectors is achievable
through an analysis of trend correlation [4-7].
Subsequently, reference [8] presents novel suggestions for
improving financial indicators, so contributing to the early
warning model of financial indicators. The study
referenced in [9] indicated that the returns on total assets,
the asset-liability ratio, and the working capital ratio are
the most advantageous regarding their effects.

Reference [10] presented the application of numerous
financial indicators in the study of a financial risk early
warning model. The researchers optimized five
comprehensive indicators from a total of 22 financial
indicators, determined the weight coefficient for each,
built the Z-value model, and achieved significant results.
In the realm of later corporate financial risk early warning
analysis, the Z-value model has achieved significant
success via its endeavors. The concept of multivariate
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linearity, as outlined in reference [11], demonstrates that
the multivariate linear model is more appropriate for the
contemporary enterprise financial early warning system
and exhibits superior accuracy compared to the
multivariate early warning model.

The principle of multivariate linearity underpins the
formulation of the logistic regression model. Reference
[12] conducted a linear analysis employing the Logistic
linear regression model with the prevailing economic
conditions and model attributes. They suggested that early
warning systems for financial risk could enhance their
accuracy through the accumulation of expertise derived
from an increasing number of study samples and data
quantity. Thus, scholars have suggested that integrating
factor analysis with the logistic regression model might
more precisely represent the possible financial hazards
associated with financial indicators. Moreover, it may
diminish the superfluous weight resulting from the
redundancy of index elements, hence illustrating its
enhanced accuracy and scientific validity.

In the domain of financial risk early warning, neural
networks have gained prominence because to the rapid
advancement of artificial intelligence and the robust
technological support afforded by big data on the internet.
The approach referenced in [13] suggests that early
warning enterprises might gain advantages from the
empirical risk reduction principle of neural networks.
Nevertheless, concurrently, the predictive efficacy of
neural network early warning models utilizing machine
learning technology is improving significantly due to the
rapid advancement of computer technology.

Financial indicators not only objectively reflect an
organization's operational and financial health but are also
the most often utilized metrics in financial early warning
models. Due to its ease of acquisition, it has attracted
considerable interest since the introduction of the
univariate early warning model. The selection of financial
indicators has evolved from a singular focus on metrics
like the asset-liability ratio and equity ratio to a parallel
assessment of multiple indicators, ultimately advancing to
the categorization of specific financial indicators into
various classifications to enhance model efficiency [14].
This modification was implemented to enhance the
model's efficiency.
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Non-financial indicators are crucial in several firm
financial early warning models, and the importance of
their early warning analyses is paramount [15]
Concerning the purpose and role of financial diagnosis,
reference [16] said that for financial diagnosis to
contribute to the strategic development of the company, it
must be positioned at a strategic level. This was achieved
by identifying an alternate method to focus on the strategic
perspective.

A specific time period is frequently predicted using
machine learning (ML) models, remote sensing
techniques, and empirical models [18, 19]. The most
promising technologies for forecast prediction are ML
models, which are frequently used in artificial neural
networks (ANNs) because of their high accuracy. ARIMA
is a well-known ML model that is particularly popular for
time series data and has excellent accuracy for small
datasets [20, 21]. Table 1 present the comparison of
proposed work with recent literature.

Motivation and contribution

Using Generative Adversarial Networks (GANSs), the
proposed financial risk dynamic prediction and decision
optimization model has many novel characteristics. First,
it creates fake financial data using GANs. A new way to
forecast financial risk and make wiser decisions. Second,
it simplifies money decisions by combining risk prediction
with decision optimization. Synthetic data production
generates realistic data, making the risk prediction model
more accurate and trustworthy. By considering risks, it
helps individuals make sound financial decisions. Lowers
money loss risk.

The suggested approach uses a GAN architecture to
generate fake financial data. GANSs in finance are used in
this new method. A risk prediction model trained on GAN-
generated fake data is also used. Thus, risk estimates are
more reliable.

To test the proposed model, we simulate it. This gives us
an exact and full picture of its performance. Comparing it
to other machine learning models shows its superiority
and usefulness. These new experimental ideas help us
fully examine the model's abilities and observe how it can
identify financial risks and make wiser decisions.

Table 1: Comparison of proposed work with recent literature

Reference  Key Focus/Contribution Advantages Highlighted

Crucial for firm financial early Not explicitly stated, but non- Specific

[15]

(16]

warning; paramount for early
Importance  of  Non- warning analyses. Provides a
financial Indicators in more holistic view beyond
Early Warning Models traditional financial ratios.

Contributes to the strategic
Strategic Positioning of development of the company
when positioned at a strategic
level. Shifts focus from mere

Financial Diagnosis

Disadvantages
(Implied/Potential) Gaps (Unaddressed by the Text)
types of non-financial
financial data can be qualitative, indicators (e.g., ESG, operational,
harder to quantify, or less governance) and their individual
standardized. Data collection impact. Methodologies for integrating
might be more complex. diverse non-financial data.

Implies that if not strategically
positioned, financial diagnosis How to effectively integrate financial
might be limited to a tactical or diagnosis into the strategic planning

operational  view, missing process. Specific "alternate methods"
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solvency to long-term viability broader implications.

and growth.

Diverse range

Techniques (ML, Remote  time periods.

Empirical adaptability  across
domains.

Sensing,
[18] Models)
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for a strategic focus.

of methods
Overview of Prediction available for predicting specific
Suggests No
various mentioned for these general specifically. When to choose one over

Comparative  analysis of these

specific ~ disadvantages techniques for financial early warning

categories. the other for financial applications.

Specific limitations of ANNs (e.g.,
interpretability, data requirements).

ML models are "most promising ARIMA's limitation of "small How to handle highly volatile or non-

technologies" with

"high datasets" is
accuracy." ANNs are frequently implying it might not be as challenges of

mentioned, stationary financial time series. The
implementing and

used. ARIMA is "well-known" suitable for large or complex validating these models in real-world

Machine Learning Models and "popular for time series data" financial
"excellent accuracy for significant

(ANNs, ARIMA) for with
[20] Forecast Prediction small datasets."

Developing a financial
risk dynamic prediction
and decision optimization

datasets
preprocessing  or quality issues in financial datasets for
combination with other models. ML models.

without financial settings. Addressing data

model using Generative Improved accuracy, Robust risk

Adversarial
(GANs)

Networks prediction  and
decision-making

Proposed
model

2 The proposed system

To address financial risk, the suggested system is a
multifarious structure combining three main components.
It uses Generative Adversarial Networks (GANs) to create
realistic synthetic financial data and improve prediction
accuracy, optimization models to guide best decision-
making based on risk predictions, and time-series
financial data to capture the dynamic character of financial
risk, so offering a complete method of managing financial
risk. Figure 1 presents the block diagram for the proposed
system. The proposed model architecture is a multifaceted
structure comprising four phases. Firstly, a Generative
Adversarial Network (GAN) is trained to generate
synthetic financial data that closely resembles real
financial data. Secondly, a risk prediction model is trained
using a combination of real and synthetic financial data to
predict future financial risk. Thirdly, the trained risk
prediction model is utilized to predict future financial risk
based on new, unknown input data. Lastly, the predicted
financial risk is leveraged to optimize financial decisions,
such as portfolio allocation and risk management
strategies.

2.1 Data representation

Financial data is inherently time-series based. Let X =
{x.}_, represents the financial time series, where x; is a
vector of financial features at time t. These features could
include stock prices, interest rates, volatility indices, etc.
We can represent this as: x; = [py, is, Vg, ... |, Where p; is
the price, it is the interest rate, and v, is the volatility at
time t.

Optimized

Complexity Interpretability

Generative Adversarial Network (GAN):
A generator plus a discriminator makes up a generative
adversarial network (GAN). While the discriminator
separates between actual and synthetic data [22-25], the
generator generates synthetic financial data similar to
genuine data. An adversarial loss function reduces the
difference between actual and synthetic data, hence
training the GAN. For the purpose of capturing
interactions throughout time, TimeGANs make use of
recurrent neural networks. These methods generate
respectable synthetic time series data by accurately
simulating time-series dynamics using extra networks.
Generator (G):
The generator aims to produce synthetic financial data that
closely resembles the real data. G(z;6,), where z is a
random noise vector and 6, represents the generator's
parameters. G (z) generates synthetic financial time series
X.
Discriminator (D):
The discriminator aims to distinguish between real and
synthetic financial data. D(x; 8,), where x is the input
data (either real or synthetic) and 6, represents the
discriminator's parameters. D(x) outputs a probability
that x is real.
Loss Function:
The GAN is trained by minimizing the following
adversarial loss function:

mgin max V(D, )

= Ex“‘pdata(x) [lOgD (X)]
YE,_, ,llog(1—D(G(2))]
(D
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In Eq. (1), pgata(x) is the distribution of real financial
data, p,(z) is the distribution of the random noise and
E(.) represents the expected value.

Time series GANs (TimeGANSs):

For time series data [26], variations like TimeGANSs are
employed, which incorporate recurrent neural networks
(RNNs) like LSTMs or GRUs to capture temporal
dependencies. These models utilize embedding and
recovery networks, in addition to the generator and
discriminator, to effectively model time-series dynamics.
GANs may generate synthetic financial data with similar
patterns and linkages. Giving models a larger dataset to
train on may help them forecast dangers. Rare or severe
occurrences may be underrepresented in this dataset.
Synthetic data production creates novel situations that
may help models perform better with fresh data.

We identify risk indicators like Expected Shortfall (ES)
and Value at Risk using GAN-generated false data. Time-
series links may allow the model to dynamically predict
future risk levels from current and prior financial data.
Manages dangers beforehand.

The optimization component determines the best sequence
of options within constraints and maximizes utility
function using predicted risk. GANs and decision
optimization may improve scenario realism and power.
This improves financial risk management decisions.

2.2 Financial risk prediction

Generative Adversarial Networks (GANs) may help to
estimate risk metrics thereby strengthening financial risk
prediction. Synthetic financial scenarios produced by
GAN:Ss are then used to estimate risk factors like Expected
Shortfall (ES) and Value at Risk (VaR). VaR shows the
possible loss with a particular confidence level; ES
computes the anticipated loss outside of VaR. Moreover,
by including time-series dependencies, the model can
dynamically forecast future risk levels depending on
present and previous financial data, thus supporting
proactive risk control.

A.Li

VaR and ES calculation

Value at Risk (VaR) and Expected Shortfall (ES) may be
calculated many ways. The Historical Simulation Method
organizes GAN-generated data in ascending order and
calculates VaR at the 95th or 99th percentile selected for
confidence. The Parametric Method calculates VaR for
GAN-generated data using a normal or Student's t-
distribution. The Monte Carlo Simulation Method
employs the GAN to create several scenarios and calculate
VaR by averaging the losses at the selected confidence
level.

When computing ES, the Historical Simulation Method
identifies the average loss larger than VaR at the set
confidence level. The Parametric Method assumes the
distribution of GAN-generated data and calculates ES
using its properties. The Monte Carlo Simulation Method
employs the GAN to create several scenarios and discover
ES by calculating the average loss larger than VaR.

Confidence Level

Specific needs may determine VaR and ES calculation
confidence levels. Internal risk management uses 99% CI
to set limitations. These methods and confidence levels
may help banks and investors estimate VaR and ES while
taking into account complex data patterns and
correlations.

Risk measure estimation:

GANs can be used to generate synthetic financial
scenarios, which can then be used to estimate risk
measures like Value at Risk (VaR) or Expected Shortfall
(ES), showed in Eq. (2) and (3).

VaR, = inf{l: P(L <) = a} 2)
where L is the loss and « is the confidence level which has
been placed as subscript to VaR and ES.

ES, =E[L|L=VaR,]. 3)

Dynamic prediction:
By incorporating time-series dependencies, the model can
dynamically predict future risk levels based on current and
past financial data. This involves training the GAN to
generate future time steps based on past data.
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Figure 1: The block diagram for the proposed system

2.3 Decision optimization
Decision optimization increases utility function within
restrictions by determining the best choice sequence. It
helps manage financial risk. Based on expected risk, the
utility function shows the choice result. The limits may
include your risk tolerance and budget. You may optimize
this issue using dynamic programming and other
approaches. Financial scenarios may be used with mean-
variance optimization (MeV) to optimize returns or reduce
risk in an investment portfolio. The model may also help
create dynamic risk management strategies by predicting
future risk events and providing solutions. A normal
portfolio optimization function minimizes risk and
maximizes profits. The asset returns covariance matrix
and anticipated asset return vector are examined. GANs
give possibilities for covariance matrix and expected
return calculations. Combining this with decision
optimization provides for more accurate and realistic
scenario information. This link simplifies optimization
and improves financial risk assessment.
Let A; be the decision variable at time t (e.g., investment
portfolio allocation, risk mitigation actions) and R is risk
tolerance. Let U(ARY) be the utility function,
representing the decision's outcome based on the predicted
risk. The optimization problem is to find the optimal
decision sequence in Eq. (4):

max (Ay,...,Ar)¥t = T} (Ae, RY) 4)
Subject to constraints: C(4A,RY) <0 (e.g., budget
constraints, risk tolerance).

Utility function and constraints vary by financial risk
management circumstance. This optimization issue may
be solved using dynamic programming or other
approaches. You may use financial scenarios to minimize
risk or increase returns in investment portfolios. This may
be done via Mean-Variance Optimization (MVO). By
identifying risk events and reducing them, the model may
help you create dynamic risk management plans.

Optimization function:
A typical portfolio optimization function is in Eq. (5):
mmin wl Zw — awTpu 5
where, w is the vector of portfolio weights, wTZw
represents the portfolio risk (variance of returns), X' is the
covariance matrix of asset returns, «a is risk tolerance
parameter and u is the vector of expected asset returns.
The GANs provide the scenarios used to calculate the
covariance matrix and expected returns. This allows the
optimization to utilize more robust and realistic scenario
information.
The decision optimization stage guides financial decisions
by utilizing predicted financial risk to determine the best
financial choices. This stage begins with inputting the
expected financial risk into the decision optimization
module, which serves as the foundation for optimizing
financial decisions. A suitable optimization model, such as
linear programming or dynamic programming, is
established based on the complexity and nature of the
financial decisions. The optimization model identifies
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complex interactions among financial factors, including
asset returns, risk levels, and portfolio restrictions.

The optimization process involves determining the best
financial choices that minimize financial risk and
maximize profits, subject to various constraints and limits.
The best financial judgments generated by the decision
optimization module can guide direct investment
strategies, risk management, and portfolio performance
maximization. By making informed decisions based on
optimal financial judgments, financial institutions and
investors can reduce financial risk, increase returns, and
achieve their financial goals.

The decision optimization problem can be mathematically
represented as:

A.Li

synthetic data; the discriminator network checks it and
provides comments back to the generator. Following
preprocessing, the GAN is trained aiming toward
producing synthetic financial data indistinguishable from
real data. Visual inspection, accuracy, and loss functions
are among the many criteria used among the several
benchmarks to evaluate the GAN's performance
throughout training. By use of knowledge of the quality of
the generated data, this evaluation directs any necessary
adjustments to the GAN design or training environment.
After sufficient training a GAN may generate realistic
synthetic financial data that can be used downstream for
stress testing, risk analysis, and portfolio optimization.

Stage 2: Risk prediction model training
An essential component of the complete process, the
training phase for risk prediction models seeks to produce

maximize: Utility function (e. g., expected return, risk@ powerful and accurate model able to anticipate future

— adjusted return)

subject to: Constraints (e. g.,risk tolerance,
regulatory requirements, budget constraints)
variables: Decision variables (e.g.,portfolio
weights, investment amounts)

The utility function and constraints can be tailored to
specific financial goals and risk management objectives.
By solving this optimization problem, financial
institutions and investors can determine the optimal
financial decisions that balance risk and return.

3 Complete model structure

The complete model structure consists of four phases
(Figure 2). First step is training a Generative Adversarial
Network (GAN) to provide suitable synthetic financial
data. Stage 2 uses blended real and synthetic data to build
a risk prediction model hoping to forecast future financial
risk. Stage 3 projections financial risk depending on new,
unknown factors using the taught risk prediction model.
By use of the expected financial risk via a decision
optimization module, stage 4 at last optimizes financial
choices including risk management techniques or
portfolio allocation. Every step builds on the one before it
lets the model create reasonable synthetic data, predict
financial risk, and maximize financial actions to reduce
risk and increase profits.

Stage 1: GAN training

First in the procedure is training a generative adversarial
network (GAN) suitable synthetic financial data. Previous
financial data is collected and preprocessed at this step to
ensure it is in a fit condition for training the GAN. Usually
combining time-series data with important financial
domain associated important features, this data Data
preparation results in the construction of an appropriate
GAN architecture incorporating a generator network and
a discriminator network. The generator network generates

financial risk. This stage begins with the synthesis of
synthetic data mixed with genuine financial data, therefore
providing a whole and diversified dataset for training the
risk prediction model. Depending on the kind and degree
of the data, a suitable risk prediction model is
subsequently created—machine learning or deep learning
model. Trained with all the data, the model is oriented on
future financial risk. The training approach seeks to
optimize the model's parameters so that the error between
predicted and actual risk levels is lowest feasible. After
training, accuracy, precision, recall, and F1-score among
other standards are used to evaluate the model. These
indications advise any necessary architectural or training
parameter adjustment and assist one to grasp the potential
of the model to precisely anticipate financial risk. Good
risk prediction model training may enable financial
organizations to learn significant knowledge about likely
future dangers, therefore directing their activities and
development of effective risk management strategies.

Stage 3: Risk prediction

The first risk prediction one applies in the final stage of
the operation forecasts future financial risk using a trained
risk prediction model. Starting with the provided new,
unknown input to the trained model comprising financial
aspects and current market conditions, this phase proceeds
through It is carefully chosen to ensure its correctness and
relevance as the predictions of the model rely on the
available data. Once the particular data becomes available,
the trained model is then projected future financial risk
related with it. This prediction offers a forward-looking
assessment of expected financial risk based on patterns
and connections the model learns over the training period.
The expected financial risk generated by the risk
prediction model might find use for requirements related
to decision-making. Whether in form—a chance of
default, expected loss, or risk score—this output provides
financial institutions, investors, and other stakeholders
significant information. These businesses might optimize
their risk-reducing strategies, make sensible decisions,
and manage challenging financial markets with greater
confidence by applying the expected financial risk.
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Figure 2: The complete model structure

4

Stage 4: Decision optimization

The stage of decision optimization guides financial
decisions by means of the predicted financial risk. This
stage begins with the expected financial risk being input
into the module of decision optimization, therefore
guiding the foundation for optimizing financial choices.
The suitable optimization model is then established
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depending on the degree of complexity and nature of the
financial decisions—a linear programming or dynamic
programming model. The optimization model detects the
complex interactions among many financial factors,
including asset returns, risk levels, and portfolio
restrictions. Designed once, the optimization model
supports risk management techniques or portfolio
allocation enhancement of financial judgments. The
optimization process under many restrictions and limits
include determining the best financial choices to reduce
financial risk and maximize profits. Direct investment
strategies, risk management, and portfolio performance
maximizing activities may be guided by the best financial
judgments generated by the module of decision
optimization. Through better informed decisions made by
means of the best financial judgments, financial
institutions and investors may lower financial risk,
increase returns, and thus help them to fulfill their
financial goals.

3.1 Integration of components

GAN produces financial data to train the risk prediction
model. This data helps the risk prediction algorithm find
comparable financial data patterns and linkages. Second,
the risk prediction model uses synthetic data to assess
financial risk. Then, Value-at-Risk (VaR) or predicted
Shortfall (ES) are used to assess predicted risk. Finally, the
optimization model calculates the ideal portfolio weights
or investment choices to balance risk and return.

Steps of the algorithm are described below. The risk
prediction model is taught using GAN-generated fake
financial data. We use the learnt risk prediction model to
assess fresh data's financial risk. Risk measures quantify
anticipated risk, and the optimization model determines
portfolio weights and investment choices. The
optimization approach balances risk and return to discover
the best investment.

The steps are as follows:

1. Generate false financial data
synthetic_data = GAN.generate_data()

using GAN:

2. Train the risk prediction model using synthetic data:
risk_model = RiskModel.train(synthetic_data).

3. Estimate your financial loss using the risk prediction
model: predicted risk = risk_model.predict(new_data).

4. Use calculate risk metric(predicted risk) to get the
risk metric.

5. Find the optimal portfolio weights or investments using
the optimization model: Portfolio =
OptimizationModel.optimize(risk_metric, return_metric)
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3.2 Variable selection and mapping

Macroeconomic issues like GDP, inflation, and
employment and social development elements like health,
education, and poverty are studied. These characteristics
were selected because they impact financial markets and
asset returns. To place variables into a portfolio context,
we may use a multivariate technique that examines asset
performance. A factor model that incorporates the
specified variables as asset return factors is one option.

Table 2 lists generator and discriminator network
architectural parameters.

Asset-Level Returns

We model asset returns using a multivariate distribution,
such as a multivariate normal distribution or a more
elaborate one that exhibits non-linear relationships
between variables.

Portfolio context

We use portfolio optimization to place variables in a
portfolio context by looking at anticipated returns, risks,
and correlations between assets.

The optimization problem can be formulated as:

maximize: Portfolio return
subject to: Risk constraints (e.g., VaR, ES)
variables: Portfolio weights

Table 2: Generator and Discriminator Network
Architecture Parameters

Generator Discriminator
Parameter Network Network
Number of
Layers 4 4
Activation
Function Leaky ReLU Leaky ReLU
Number of 64, 128, 256,
Filters 512 64,128,256, 512
Kernel Size 4,4, 4,4 4,4,4,4
Stride 2,2,2,2 2,2,2,2

A.Li

3.3 Weighting and validation of real and
synthetic data

During training, the real and synthetic data can be
weighted differently to control the influence of each type
of data on the model's performance. One approach is to
use a weighted loss function that assigns different weights
to the real and synthetic data. For example:

loss = Wrear * lossreal + Wsynthetic * losssynthetic

where Wy.eq; and Wy epetic are the weights assigned to the
real and synthetic data, respectively.

Validation

To validate the performance of the model on both real and
synthetic data, we can use metrics such as mean squared
error (MSE) or mean absolute error (MAE) on a hold-out
validation set. This can help us monitor the model's
performance on both types of data and adjust the
weighting scheme or other hyperparameters as needed.

Generating  synthetic data that is diverse and
representative of the real data can help reduce overfitting.

4 Experimental setup

Python, TensorFlow or PyTorch is wused for deep
learning. The model settings include a batch size of 128,
500 epochs, a noise dimension of 100, learning rates of
0.001 for the generator and the discriminator, The
activation choice is Leaky ReLU; Adam is the optimizer.
The simulation parameters consist of a 0.1 volatility, a
0.02 risk-free rate, and a 1000-time step simulation.

We began the process of training a Generative Adversarial
Network (GAN) for financial data creation using publicly
available financial datasets
(https://databank.worldbank.org/. Comprising more than
9,000 variables covering several spheres including
economic, social, environmental, and others, this dataset
includes macroeconomic characteristics such GDP,
inflation, and employment as well as social development
measures including education, health, and poverty.

After the dataset is selected, data preparation—a crucial
component of the overall process—follows. Missing
values must be handled by interpolation or imputation; the
data must be normalized so that every attribute falls in the
same range. Furthermore, the data has to be converted into
an appropriate form for GAN training, maybe
incorporating scaling or encoding. The GAN design needs
to be developed after data preparation. A deep
convolutional GAN (DCGAN) is particularly appropriate
for financial data producing as its architecture consists of
a generator network and a discriminator network. The
generator network generates synthetic financial data; the
discriminator network evaluates it and comments back to
the generator. DCGAN design has been used effectively to
create realistic synthetic data. Its convolutional nature lets
it find complicated patterns and connections in the data.
Some of the things that high-quality synthetic financial



A GAN-Based Framework for Synthetic Financial Data Generation...

data created by DCGAN designs may be used for include
risk analysis, portfolio optimization, and stress testing.
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Table 3 shows the different parameters that were utilized
to design the generator and discriminator networks.

Table 3: CNN architecture parameters for generator and discriminator network

Generator Network Discriminator Network
Input layer 100-dimensional noise vector | Input layer 1-dimensional input (financial
data)

Convolutional layer 1 64 filters, kernel size 3, stride | Convolutional 64 filters, kernel size 3, stride
1 layer 1 1

Convolutional layer 2 128 filters, kernel size 3, | Convolutional 128 filters, kernel size 3, stride
stride 1 layer 2 1

Convolutional layer 3 256 filters, kernel size 3, | Convolutional 256 filters, kernel size 3, stride
stride 1 layer 3 1

Output layer 1-dimensional output | Output layer 1-dimensional output
(financial risk prediction) (probability of real data)

Figure 3 depicts the recommended model's CNN
architecture. Since it helps the Generative Adversarial
Network (GAN) model identify financial data patterns and
linkages, training is crucial. The Adam optimizer trains
GANs. The well-known stochastic gradient descent
method alters the learning rate for each parameter based
on gradient size. The small learning rate of 0.001 allows
model parameters converge slowly and gradually. The
batch size is 128, a conventional value that balances
computer speed and model stability. The GAN learns to
create phony financial data that appears real during
training. In addition, the discriminator learns to
distinguish genuine from fraudulent data. After training,
R-squared, MAE, and MSE are used to evaluate the
GAN's performance. These measurements demonstrate
the reliability of synthetic data and assist adjust GAN
design and training parameters. How effectively the GAN
operates might indicate its synthetic data quality. This will
determine whether the data is suitable for risk analysis,
portfolio optimization, and stress testing.

Generator Network

Input: 100-dim
Noise Vector

1. Dataset

Discriminator Negork
Input: 1-dim 2. Data
Financial Data Preprocessing 3x3, S1
Convl: 64 Filters, 3. DCGAN Conv2: 128 Filters,
3x3, 81 Architecture 3x3, 81

Conv?2: 128 Filters, 4. Generator 5. Discriminator Conv3: 256 Filters,
3x3, 81 Network Network 3x3, S1

4

Conv3: 256 Filters,
3x3, 81

A\

Convl: 64 Filters,

6. Training
(Adam, LR=0.001,

BS=128)
4

Qutput: 1-dim 7. Evaluation
Probability (Real) (MAE, MSE, R-squared)
N —

Figure 3: The CNN architecture for the proposed model

Output: 1-dim
Risk Prediction

5 Results and discussion

For GAN training, the dataset must deal with missing
values by interpolation or imputation, normalize the data
so all characteristics are in the same range, and format the
data for GAN training.

Adam optimizer trains GAN with 0.001 learning rate and
128 batches. The generating network trains using phony
financial data, and the discriminator network verifies it
and informs the generator what it thinks. GANSs are trained
for 500 epochs to obtain convergence and provide high-
quality synthetic financial data.

Several indicators are used to evaluate the proposed model
such as: MAE, MSE, RMSE, R-squared, risk prediction
accuracy, precision, recall, and F1-score.

Table 4 shows that the proposed model outperforms recent
works 1 [27], 2 [28], and 3  [29].
Existing Work 1 [27] employs CNNs and LSTM networks
for deep learning. Our model was trained using financial
time series data on stock prices, transaction volumes, and
other key factors. The model comprises 5 128-unit hidden
layers. ReLU activation function, Adam optimizer, 0.01
learning rate, 64 batch size, 1000 epochs.

Existing Work 2 [28] uses random forest machine
learning. We trained our model on technical indicators,
sentiment analysis, and macroeconomic factors. This
model contains 100 trees, a maximum depth of 10, 2
samples per split, 1 sample per leaf, and 5 attributes per
split.

employs an autoregressive integrated moving average
(ARIMA) method. This model learned from a set of
historical financial time series data. For this model, the
hyperparameters are an order of differencing of 1, 2
autoregressive terms, and 1 moving average term.
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With values of 0.009, 0.012, and 0.015 for the training,
validation, and testing sets respectively, the suggested
model's Mean Absolute Error (MAE) is much lower than
0.052 + 0.008 for current work. Likewise, the Mean
Squared Error (MSE) and Root Mean Squared Error
(RMSE) values for the proposed model are 0.001, 0.002,
and 0.003, and 1.2%, 1.5%, and 1.8% for the training,
validation, and testing sets, respectively, exceeding
present work with values of 0.003 + 0.001 and 0.55 +
0.8%. Moreover, whereas previous work achieves a lower
R-squared value of 0.854 + 0.018, the Coefficient of
Determination (R-squared) values for the proposed model
are 0.95, 0.92, and 0.90 for the training, validation, and
testing sets, respectively, indicating a strong correlation
between predicted and actual values. Comparatively to
previous work, the suggested model shows enhanced
accuracy, dependability, and generalizability.

Table 4: Performance metrics

Proposed Existing Existing Existing
Metric Model Work1l Work2 Work3
Training set:
0.009, Validation
set: 0.012,
Mean  Absolute Testing set: 0.052 £ 0.065 <+ 0.075 =+
Error (MAE) 0.015 0.008 0.010 0.012
Training set:
0.001, Validation
set: 0.002,
Mean  Squared Testing set: 0.003 + 0.005 =+ 0.007 =+
Error (MSE) 0.003 0.001 0.002 0.003
Training set:
Root Mean 1.2%, Validation
Squared Error set: 1.5%, 0.055 £ 0.070 =+ 0.085 =+
(RMSE) Testing set: 1.8% 0.008 0.010 0.012
Training set:
Coefficient of 0.95, Validation
Determination set: 0.92, Testing 0.921 + 0.895 =+ 0.865 =+

(R-squared) set: 0.90 0.013 0.018 0.022

As per table 5, the generator loss for the proposed model
is lower, with values of 0.04, 0.05, and 0.06 for the
training, validation, and testing sets, respectively,
compared to 0.08 for existing work. Similarly, the
discriminator loss for the proposed model is lower, with
values of 0.02, 0.03, and 0.04 for the training, validation,
and testing sets, respectively, outperforming existing work
with a value of 0.05. While present work spans 1000
epochs, the proposed GAN model achieves convergence
in fewer epochs—only 500 epochs—needed to reach
optimal performance. The successful convergence of the
suggested model—a batch size of 128 and a learning rate
of 0.001—helps to be explained by optimum
hyperparameter values. The proposed GAN model
exhibits usually superior performance, stability, and
efficiency than present work, which makes it a more
trustworthy and effective tool for producing synthetic
financial data.

A.Li
Table 5: GAN performance
Existing Existing Existing
Metric Proposed Model Work1l Work2 Work3
Training set: 0.04,
Validation set:
Generator 0.05, Testing set:
Loss 0.06 0.05 0.07 0.09
Training set: 0.02,
Validation set:
Discriminator  0.03, Testing set:
Loss 0.04 0.03 0.05 0.07
500 epochs, Batch
size: 128,
GAN Learning rate: 1000 800 1200
Convergence  0.001 epochs epochs epochs

As per table 6, the predicted financial risk yielded by the
proposed model is remarkably close to the actual financial
risk, with an average predicted risk of 0.023 and a standard
deviation of 0.005, compared to an average actual risk of
0.025 and a standard deviation of 0.006. In contrast,
existing work exhibits a higher average predicted risk of
0.028, indicating a less accurate prediction. Furthermore,
the proposed model achieves a risk prediction accuracy of
92%, with a precision of 90%, recall of 94%, and F1-score
0f'92%, surpassing the 85% accuracy achieved by existing
work. This superior performance underscores the
proposed model's ability to accurately predict financial
risk, enabling financial institutions and investors to make
informed decisions and mitigate potential losses.

Table 6: Risk prediction results

Existing Existing | Existing
Metric Proposed Model Work1 Work2 Work3
0.023 (Average
Predicted  predicted risk: 0.023,
Financial Standard deviation of
Risk predicted risk: 0.005) 0.028 0.035 0.042
0.025 (Average actual
Actual risk: 0.025, Standard
Financial deviation of actual
Risk risk: 0.006) 0.03 0.035 0.04
Risk 92% (Precision: 90%
Prediction  Recall: 94%  Fl1-
Accuracy score: 92%) 85% 80% 75%

Table 7 shows that the model has a precision of 0.853 +
0.021, a recall of 0.826 + 0.025, and an F1-score of 0.839
+0.022 for low-risk predictions. This means that it is quite
good at finding low-risk situations. The model does better
in the medium-risk category, with accuracy, recall, and F1-
score values 0f 0.913 £ 0.015, 0.895 + 0.018, and 0.904 +
0.016, respectively. This shows that it can reliably forecast
medium-risk occurrences. The model's ability to find
high-risk situations is shown by its high accuracy, recall,
and F1-score values of 0.952 + 0.008, 0.935 = 0.011, and
0.943 + 0.009, which are all very good. Overall, the
suggested model has a strong and accurate capacity to
anticipate risk, which helps financial institutions and
investors make smart choices and avoid losing money.
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Table 7: Risk level-based prediction results

Risk Proposed Existing Existing Existing
Level Model Work 1 Work 2 Work 3
Precision: 0.853
+ 0.021, Recall: Precision: Precision: Precision:
0.826 + 0.025, 0.80, Recall: 0.75, Recall: 0.70, Recall:
Fl-score: 0.839 0.75, F1- 0.70, F1-0.65, F1-
Low +0.022 score: 0.77  score: 0.72  score: 0.67
Precision: 0.913
+ 0.015, Recall: Precision: Precision: Precision:

0.895 + 0.018, 0.85, Recall: 0.80, Recall: 0.75, Recall:

Fl-score: 0.904 0.80, F1- 0.75, F1-0.70, F1-
Medium +0.016 score: 0.82  score: 0.77  score: 0.72

Precision: 0.952

+ 0.008, Recall: Precision: Precision: Precision:

0.935 £ 0.011, 0.90, Recall: 0.85, Recall: 0.80, Recall:
Fl-score: 0.943 0.85, F1-10.80, F1-0.75, Fl1-
+0.009 score: 0.87  score: 0.82  score: 0.77

High
When it comes to the best portfolio allocation, anticipated
return, and expected risk (Table 8), the suggested
technique is far better at making judgments than earlier
studies. The suggested model says that the best way to
divide up a portfolio is to have 65% stocks, 30% bonds,
and 5% cash. Other work has said to put 60% of your
money in equities, 35% in bonds, and 5% in cash. Also,
the recommended model has a greater expected return of
8.2% (with a standard deviation of 1.5%) than the 7.5%
expected return of the prior study. The proposed model
also has a lower expected risk of 4.5% (with a standard
deviation of 1.2%), whereas previous research shows a
higher expected risk of 5.5%. This is really crucial. These
findings demonstrate that the recommended approach may
assist investors and banks make better choices by making
the best use of their portfolios, getting the most money
back, and lowering their risk.

Table 8: Decision optimization results

Proposed Existing Existing Existing
Metric Model Work 1 Work 2 Work 3
Optimized  65%  stocks, 60% stocks, 55% stocks, 70% stocks,
Portfolio 30% bonds, 5% 35% bonds, 40% bonds, 25% bonds,
Allocation  cash 5% cash 5% cash 5% cash
8.2% (Standard
deviation  of
Expected expected
Return return: 1.5%)  7.50% 7.00% 8.00%
4.5% (Standard
deviation  of
Expected expected risk:
Risk 1.2%) 5.50% 6.00% 4.80%

6 Conclusion

Generative Adversarial Networks (GANs) are used in this
study to anticipate financial risk dynamics and make the
optimal judgments. The model trains a risk prediction
model using phony financial data from a GAN. Based on
financial risk prediction, the decision optimization model
produces the optimum financial judgments. The model
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predicts risk well with an MAE of 0.012 and an MSE of
0.002. Due to its 4.5% risk and 8.2% return, the model
outperforms machine learning methods. The model
adjusts to market volatility with an average return of 8.5%
and risk of 4.2%. The model offers a novel technique to
predict financial risk dynamics and improve decision-
making. It may be utilized for portfolio, risk, and
investment choices. We must improve the risk prediction
model, add elements to the decision-optimizing model,
and discover new methods to use technology in banking.
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