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This article proposes a financial risk dynamic prediction and decision optimization model based on 

Generative Adversarial Network (GAN). The model generates synthetic financial data, trains a risk 

prediction model, and optimizes financial decisions based on predicted risks. Simulation results show that 

the proposed method outperforms traditional machine learning models, achieving a mean absolute error 

(MAE) of 0.012 and a mean squared error (MSE) of 0.002, indicating high prediction accuracy. The model 

achieves an average risk of 4.5% and an average return of 8.2%, surpassing conventional algorithms. 

With a recommended portfolio allocation of 65% equities, 30% bonds, and 5% cash, it optimizes 

investment decisions by maximizing returns while minimizing risks. Overall, the proposed approach 

provides a novel and effective solution for financial risk prediction and decision optimization, 

demonstrating superior performance over existing methods. 

Povzetek: Članek predstavi GAN-okvir za generiranje sintetičnih finančnih podatkov, napoved tveganja 

in optimizacijo portfelja. Model doseže kvalitetne napovedi (MAE 0,012; MSE 0,002) ter predlaga 

optimalno razmerje 65 % delnic, 30 % obveznic, 5 % gotovine, kar izboljša donosnost in zmanjša tveganje. 

 

1  Introduction 
Subsequent to the development of the capital market, the 

methodology for conducting financial analysis has 

experienced continuous improvements. The scope of 

financial analysis will be broadened to encompass the 

evaluation of financial position, operating outcomes, and 

cash flow of enterprises. In financial accounting, the 

conventional analytical approach entails assessing an 

enterprise's financial condition quantitatively or 

qualitatively based on key indicators related to solvency, 

operational capacity, and profitability, along with the year-

over-year performance of these indicators [1]. The 

capacity to forecast financial risk exposure and 

developmental trends is deemed inadequate. 

Consequently, pertinent professionals began employing 

increasingly sophisticated artificial intelligence and data 

mining techniques for financial research and forecasting. 

Nonetheless, few studies have been undertaken to assess 

or forecast the operational circumstances of firms by 

analyzing the associative relationships within financial 

data. The connection relationship between corporate 

financial data will provide several diverse manifestations, 

which will differ based on the various data elements. The 

spatial association of enterprise finance pertains to the 

distance characteristics of financial indicators across 

many dimensions. Moreover, enterprises situated in 

proximity within multi-dimensional environments have a 

higher degree of financial similarity. The static temporal 

association of financial indicators refers to the 

interdependence characteristic among the financial 

metrics of the companies [2].  

One can identify anomalous financial data of enterprises 

by utilizing the commonly occurring groupings of 

financial indicators, referred to as frequent item sets of 

financial indicators [3]. A feature associated with the 

historical evolution of financial indicators across various 

sectors is the dynamic temporal correlation present among 

industries. A transmission phase will occur in which 

alterations in the financial status of upstream enterprises 

will impact downstream industry. Subsequent to this 

transmission period, the financial indicators of related 

upstream and downstream sectors will display either a 

positive or inverse connection over time. Forecasting the 

future financial state of downstream sectors is achievable 

through an analysis of trend correlation [4-7]. 

Subsequently, reference [8] presents novel suggestions for 

improving financial indicators, so contributing to the early 

warning model of financial indicators. The study 

referenced in [9] indicated that the returns on total assets, 

the asset-liability ratio, and the working capital ratio are 

the most advantageous regarding their effects.  

Reference [10] presented the application of numerous 

financial indicators in the study of a financial risk early 

warning model. The researchers optimized five 

comprehensive indicators from a total of 22 financial 

indicators, determined the weight coefficient for each, 

built the Z-value model, and achieved significant results. 

In the realm of later corporate financial risk early warning 

analysis, the Z-value model has achieved significant 

success via its endeavors. The concept of multivariate 
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linearity, as outlined in reference [11], demonstrates that 

the multivariate linear model is more appropriate for the 

contemporary enterprise financial early warning system 

and exhibits superior accuracy compared to the 

multivariate early warning model.  

The principle of multivariate linearity underpins the 

formulation of the logistic regression model. Reference 

[12] conducted a linear analysis employing the Logistic 

linear regression model with the prevailing economic 

conditions and model attributes. They suggested that early 

warning systems for financial risk could enhance their 

accuracy through the accumulation of expertise derived 

from an increasing number of study samples and data 

quantity. Thus, scholars have suggested that integrating 

factor analysis with the logistic regression model might 

more precisely represent the possible financial hazards 

associated with financial indicators. Moreover, it may 

diminish the superfluous weight resulting from the 

redundancy of index elements, hence illustrating its 

enhanced accuracy and scientific validity.  

In the domain of financial risk early warning, neural 

networks have gained prominence because to the rapid 

advancement of artificial intelligence and the robust 

technological support afforded by big data on the internet. 

The approach referenced in [13] suggests that early 

warning enterprises might gain advantages from the 

empirical risk reduction principle of neural networks. 

Nevertheless, concurrently, the predictive efficacy of 

neural network early warning models utilizing machine 

learning technology is improving significantly due to the 

rapid advancement of computer technology.  

Financial indicators not only objectively reflect an 

organization's operational and financial health but are also 

the most often utilized metrics in financial early warning 

models. Due to its ease of acquisition, it has attracted 

considerable interest since the introduction of the 

univariate early warning model. The selection of financial 

indicators has evolved from a singular focus on metrics 

like the asset-liability ratio and equity ratio to a parallel 

assessment of multiple indicators, ultimately advancing to 

the categorization of specific financial indicators into 

various classifications to enhance model efficiency [14]. 

This modification was implemented to enhance the 

model's efficiency.  

Non-financial indicators are crucial in several firm 

financial early warning models, and the importance of 

their early warning analyses is paramount [15] 

Concerning the purpose and role of financial diagnosis, 

reference [16] said that for financial diagnosis to 

contribute to the strategic development of the company, it 

must be positioned at a strategic level. This was achieved 

by identifying an alternate method to focus on the strategic 

perspective.  

A specific time period is frequently predicted using 

machine learning (ML) models, remote sensing 

techniques, and empirical models [18, 19]. The most 

promising technologies for forecast prediction are ML 

models, which are frequently used in artificial neural 

networks (ANNs) because of their high accuracy. ARIMA 

is a well-known ML model that is particularly popular for 

time series data and has excellent accuracy for small 

datasets [20, 21]. Table 1 present the comparison of 

proposed work with recent literature. 

 

Motivation and contribution 

Using Generative Adversarial Networks (GANs), the 

proposed financial risk dynamic prediction and decision 

optimization model has many novel characteristics. First, 

it creates fake financial data using GANs. A new way to 

forecast financial risk and make wiser decisions. Second, 

it simplifies money decisions by combining risk prediction 

with decision optimization. Synthetic data production 

generates realistic data, making the risk prediction model 

more accurate and trustworthy. By considering risks, it 

helps individuals make sound financial decisions. Lowers 

money loss risk. 

The suggested approach uses a GAN architecture to 

generate fake financial data. GANs in finance are used in 

this new method. A risk prediction model trained on GAN-

generated fake data is also used. Thus, risk estimates are 

more reliable. 

To test the proposed model, we simulate it. This gives us 

an exact and full picture of its performance. Comparing it 

to other machine learning models shows its superiority 

and usefulness. These new experimental ideas help us 

fully examine the model's abilities and observe how it can 

identify financial risks and make wiser decisions. 

 

 

Table 1: Comparison of proposed work with recent literature 

Reference Key Focus/Contribution Advantages Highlighted 

Disadvantages 

(Implied/Potential) Gaps (Unaddressed by the Text) 

[15] 

Importance of Non-

financial Indicators in 

Early Warning Models 

Crucial for firm financial early 

warning; paramount for early 

warning analyses. Provides a 

more holistic view beyond 

traditional financial ratios. 

Not explicitly stated, but non-

financial data can be qualitative, 

harder to quantify, or less 

standardized. Data collection 

might be more complex. 

Specific types of non-financial 

indicators (e.g., ESG, operational, 

governance) and their individual 

impact. Methodologies for integrating 

diverse non-financial data. 

[16] 

Strategic Positioning of 

Financial Diagnosis 

Contributes to the strategic 

development of the company 

when positioned at a strategic 

level. Shifts focus from mere 

Implies that if not strategically 

positioned, financial diagnosis 

might be limited to a tactical or 

operational view, missing 

How to effectively integrate financial 

diagnosis into the strategic planning 

process. Specific "alternate methods" 
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solvency to long-term viability 

and growth. 

broader implications. for a strategic focus. 

[18] 

Overview of Prediction 

Techniques (ML, Remote 

Sensing, Empirical 

Models) 

Diverse range of methods 

available for predicting specific 

time periods. Suggests 

adaptability across various 

domains. 

No specific disadvantages 

mentioned for these general 

categories. 

Comparative analysis of these 

techniques for financial early warning 

specifically. When to choose one over 

the other for financial applications. 

[20] 

Machine Learning Models 

(ANNs, ARIMA) for 

Forecast Prediction 

ML models are "most promising 

technologies" with "high 

accuracy." ANNs are frequently 

used. ARIMA is "well-known" 

and "popular for time series data" 

with "excellent accuracy for 

small datasets." 

ARIMA's limitation of "small 

datasets" is mentioned, 

implying it might not be as 

suitable for large or complex 

financial datasets without 

significant preprocessing or 

combination with other models. 

Specific limitations of ANNs (e.g., 

interpretability, data requirements). 

How to handle highly volatile or non-

stationary financial time series. The 

challenges of implementing and 

validating these models in real-world 

financial settings. Addressing data 

quality issues in financial datasets for 

ML models. 

Proposed 

model 

Developing a financial 

risk dynamic prediction 

and decision optimization 

model using Generative 

Adversarial Networks 

(GANs) 

Improved accuracy, Robust risk 

prediction and Optimized 

decision-making Complexity Interpretability 

 

2  The proposed system 
To address financial risk, the suggested system is a 

multifarious structure combining three main components. 

It uses Generative Adversarial Networks (GANs) to create 

realistic synthetic financial data and improve prediction 

accuracy, optimization models to guide best decision-

making based on risk predictions, and time-series 

financial data to capture the dynamic character of financial 

risk, so offering a complete method of managing financial 

risk. Figure 1 presents the block diagram for the proposed 

system. The proposed model architecture is a multifaceted 

structure comprising four phases. Firstly, a Generative 

Adversarial Network (GAN) is trained to generate 

synthetic financial data that closely resembles real 

financial data. Secondly, a risk prediction model is trained 

using a combination of real and synthetic financial data to 

predict future financial risk. Thirdly, the trained risk 

prediction model is utilized to predict future financial risk 

based on new, unknown input data. Lastly, the predicted 

financial risk is leveraged to optimize financial decisions, 

such as portfolio allocation and risk management 

strategies. 

 

2.1 Data representation 
Financial data is inherently time-series based. Let 𝑋 =
{𝑥𝑡}𝑡=1

𝑇  represents the financial time series, where 𝑥𝑡 is a 

vector of financial features at time 𝑡. These features could 

include stock prices, interest rates, volatility indices, etc.  

We can represent this as: 𝑥𝑡 = [𝑝𝑡 , 𝑖𝑡 , 𝑣𝑡 , . . . ], where 𝑝𝑡  is 

the price, it is the interest rate, and 𝑣𝑡 is the volatility at 

time 𝑡. 

 

 

Generative Adversarial Network (GAN): 

A generator plus a discriminator makes up a generative 

adversarial network (GAN). While the discriminator 

separates between actual and synthetic data [22–25], the 

generator generates synthetic financial data similar to 

genuine data. An adversarial loss function reduces the 

difference between actual and synthetic data, hence 

training the GAN. For the purpose of capturing 

interactions throughout time, TimeGANs make use of 

recurrent neural networks. These methods generate 

respectable synthetic time series data by accurately 

simulating time-series dynamics using extra networks. 

Generator (G):  

The generator aims to produce synthetic financial data that 

closely resembles the real data. 𝐺(𝑧; 𝜃𝑔) , where 𝑧  is a 

random noise vector and 𝜃𝑔 represents the generator's 

parameters. 𝐺(𝑧) generates synthetic financial time series 

𝑋̃. 

Discriminator (D):  

The discriminator aims to distinguish between real and 

synthetic financial data. 𝐷(𝑥; 𝜃𝑑),  where 𝑥  is the input 

data (either real or synthetic) and 𝜃𝑑   represents the 

discriminator's parameters. 𝐷(𝑥)  outputs a probability 

that 𝑥 is real. 

Loss Function:  

The GAN is trained by minimizing the following 

adversarial loss function: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺)

= 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝐷(𝑥)]

+ 𝐸𝑧∼𝑝𝑧(𝑧)
[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] 

(1) 
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In Eq. (1), 𝑝𝑑𝑎𝑡𝑎(𝑥)  is the distribution of real financial 

data, 𝑝𝑧(𝑧)  is the distribution of the random noise and 

𝐸(. ) represents the expected value. 

Time series GANs (TimeGANs):  

For time series data [26], variations like TimeGANs are 

employed, which incorporate recurrent neural networks 

(RNNs) like LSTMs or GRUs to capture temporal 

dependencies. These models utilize embedding and 

recovery networks, in addition to the generator and 

discriminator, to effectively model time-series dynamics. 

GANs may generate synthetic financial data with similar 

patterns and linkages. Giving models a larger dataset to 

train on may help them forecast dangers. Rare or severe 

occurrences may be underrepresented in this dataset. 

Synthetic data production creates novel situations that 

may help models perform better with fresh data. 

We identify risk indicators like Expected Shortfall (𝐸𝑆 ) 

and Value at Risk using GAN-generated false data. Time-

series links may allow the model to dynamically predict 

future risk levels from current and prior financial data. 

Manages dangers beforehand. 

The optimization component determines the best sequence 

of options within constraints and maximizes utility 

function using predicted risk. GANs and decision 

optimization may improve scenario realism and power. 

This improves financial risk management decisions.  

 

2.2 Financial risk prediction 
Generative Adversarial Networks (GANs) may help to 

estimate risk metrics thereby strengthening financial risk 

prediction. Synthetic financial scenarios produced by 

GANs are then used to estimate risk factors like Expected 

Shortfall (ES) and Value at Risk (VaR). VaR shows the 

possible loss with a particular confidence level; ES 

computes the anticipated loss outside of VaR. Moreover, 

by including time-series dependencies, the model can 

dynamically forecast future risk levels depending on 

present and previous financial data, thus supporting 

proactive risk control. 

 

 

 

 

𝑽𝒂𝑹 and 𝑬𝑺 calculation 

Value at Risk (𝑉𝑎𝑅) and Expected Shortfall (𝐸𝑆) may be 

calculated many ways. The Historical Simulation Method 

organizes GAN-generated data in ascending order and 

calculates 𝑉𝑎𝑅 at the 95th or 99th percentile selected for 

confidence. The Parametric Method calculates 𝑉𝑎𝑅  for 

GAN-generated data using a normal or Student's t-

distribution. The Monte Carlo Simulation Method 

employs the GAN to create several scenarios and calculate 

𝑉𝑎𝑅  by averaging the losses at the selected confidence 

level. 

When computing ES, the Historical Simulation Method 

identifies the average loss larger than 𝑉𝑎𝑅  at the set 

confidence level. The Parametric Method assumes the 

distribution of GAN-generated data and calculates ES 

using its properties. The Monte Carlo Simulation Method 

employs the GAN to create several scenarios and discover 

ES by calculating the average loss larger than 𝑉𝑎𝑅. 

 

Confidence Level 

Specific needs may determine 𝑉𝑎𝑅  and 𝐸𝑆  calculation 

confidence levels. Internal risk management uses 99% CI 

to set limitations. These methods and confidence levels 

may help banks and investors estimate 𝑉𝑎𝑅 and ES while 

taking into account complex data patterns and 

correlations. 

Risk measure estimation:  

GANs can be used to generate synthetic financial 

scenarios, which can then be used to estimate risk 

measures like Value at Risk (𝑉𝑎𝑅) or Expected Shortfall 

(𝐸𝑆), showed in Eq. (2) and (3). 

𝑉𝑎𝑅𝛼 = 𝑖𝑛𝑓{𝑙: 𝑃(𝐿 ≤ 𝑙) ≥ 𝛼}         (2) 

where 𝐿 is the loss and 𝛼 is the confidence level which has 

been placed as subscript to 𝑉𝑎𝑅 and 𝐸𝑆. 

𝐸𝑆𝛼 = 𝐸[𝐿 ∣ 𝐿 ≥ 𝑉𝑎𝑅𝛼].                 (3) 

Dynamic prediction:  

By incorporating time-series dependencies, the model can 

dynamically predict future risk levels based on current and 

past financial data. This involves training the GAN to 

generate future time steps based on past data.

 



A GAN-Based Framework for Synthetic Financial Data Generation… Informatica 49 (2025) 303–314 307 

 

 
Figure 1: The block diagram for the proposed system 

 

2.3 Decision optimization 
Decision optimization increases utility function within 

restrictions by determining the best choice sequence. It 

helps manage financial risk. Based on expected risk, the 

utility function shows the choice result. The limits may 

include your risk tolerance and budget. You may optimize 

this issue using dynamic programming and other 

approaches. Financial scenarios may be used with mean-

variance optimization (MeV) to optimize returns or reduce 

risk in an investment portfolio. The model may also help 

create dynamic risk management strategies by predicting 

future risk events and providing solutions. A normal 

portfolio optimization function minimizes risk and 

maximizes profits. The asset returns covariance matrix 

and anticipated asset return vector are examined. GANs 

give possibilities for covariance matrix and expected 

return calculations. Combining this with decision 

optimization provides for more accurate and realistic 

scenario information. This link simplifies optimization 

and improves financial risk assessment. 

Let 𝐴𝑡 be the decision variable at time t (e.g., investment 

portfolio allocation, risk mitigation actions) and 𝑅𝑡 is risk 

tolerance. Let 𝑈(𝐴𝑡 , 𝑅𝑡)  be the utility function, 

representing the decision's outcome based on the predicted 

risk. The optimization problem is to find the optimal 

decision sequence in Eq. (4):  

max (𝐴1, . . . , 𝐴𝑇)∑𝑡 = 𝑇
𝑈
1 (𝐴𝑡 , 𝑅𝑡)            (4) 

Subject to constraints: 𝐶(𝐴𝑡 , 𝑅𝑡) ≤ 0  (e.g., budget 

constraints, risk tolerance). 

Utility function and constraints vary by financial risk 

management circumstance. This optimization issue may 

be solved using dynamic programming or other 

approaches. You may use financial scenarios to minimize 

risk or increase returns in investment portfolios. This may 

be done via Mean-Variance Optimization (MVO). By 

identifying risk events and reducing them, the model may 

help you create dynamic risk management plans. 

 

Optimization function:  

A typical portfolio optimization function is in Eq. (5):  

min
𝑤

𝑤𝑇 𝛴𝑤 − 𝜆𝑤𝑇𝜇                       (5) 

where, 𝑤  is the vector of portfolio weights, 𝑤𝑇𝛴𝑤 

represents the portfolio risk (variance of returns),  𝛴 is the 

covariance matrix of asset returns,  𝛼  is risk tolerance 

parameter and 𝜇 is the vector of expected asset returns.  

The GANs provide the scenarios used to calculate the 

covariance matrix and expected returns. This allows the 

optimization to utilize more robust and realistic scenario 

information. 

The decision optimization stage guides financial decisions 

by utilizing predicted financial risk to determine the best 

financial choices. This stage begins with inputting the 

expected financial risk into the decision optimization 

module, which serves as the foundation for optimizing 

financial decisions. A suitable optimization model, such as 

linear programming or dynamic programming, is 

established based on the complexity and nature of the 

financial decisions. The optimization model identifies 
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complex interactions among financial factors, including 

asset returns, risk levels, and portfolio restrictions. 

The optimization process involves determining the best 

financial choices that minimize financial risk and 

maximize profits, subject to various constraints and limits. 

The best financial judgments generated by the decision 

optimization module can guide direct investment 

strategies, risk management, and portfolio performance 

maximization. By making informed decisions based on 

optimal financial judgments, financial institutions and 

investors can reduce financial risk, increase returns, and 

achieve their financial goals. 

The decision optimization problem can be mathematically 

represented as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑒. 𝑔. , 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛, 𝑟𝑖𝑠𝑘

− 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝑒. 𝑔. , 𝑟𝑖𝑠𝑘 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, 

 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠, 𝑏𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 (𝑒. 𝑔. , 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜  

𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑎𝑚𝑜𝑢𝑛𝑡𝑠) 

The utility function and constraints can be tailored to 

specific financial goals and risk management objectives. 

By solving this optimization problem, financial 

institutions and investors can determine the optimal 

financial decisions that balance risk and return. 

3  Complete model structure 
The complete model structure consists of four phases 

(Figure 2). First step is training a Generative Adversarial 

Network (GAN) to provide suitable synthetic financial 

data. Stage 2 uses blended real and synthetic data to build 

a risk prediction model hoping to forecast future financial 

risk. Stage 3 projections financial risk depending on new, 

unknown factors using the taught risk prediction model. 

By use of the expected financial risk via a decision 

optimization module, stage 4 at last optimizes financial 

choices including risk management techniques or 

portfolio allocation. Every step builds on the one before it 

lets the model create reasonable synthetic data, predict 

financial risk, and maximize financial actions to reduce 

risk and increase profits. 

 

Stage 1: GAN training 

First in the procedure is training a generative adversarial 

network (GAN) suitable synthetic financial data. Previous 

financial data is collected and preprocessed at this step to 

ensure it is in a fit condition for training the GAN. Usually 

combining time-series data with important financial 

domain associated important features, this data Data 

preparation results in the construction of an appropriate 

GAN architecture incorporating a generator network and 

a discriminator network. The generator network generates 

synthetic data; the discriminator network checks it and 

provides comments back to the generator. Following 

preprocessing, the GAN is trained aiming toward 

producing synthetic financial data indistinguishable from 

real data. Visual inspection, accuracy, and loss functions 

are among the many criteria used among the several 

benchmarks to evaluate the GAN's performance 

throughout training. By use of knowledge of the quality of 

the generated data, this evaluation directs any necessary 

adjustments to the GAN design or training environment. 

After sufficient training a GAN may generate realistic 

synthetic financial data that can be used downstream for 

stress testing, risk analysis, and portfolio optimization. 

 

Stage 2: Risk prediction model training 

An essential component of the complete process, the 

training phase for risk prediction models seeks to produce 

a powerful and accurate model able to anticipate future 

financial risk. This stage begins with the synthesis of 

synthetic data mixed with genuine financial data, therefore 

providing a whole and diversified dataset for training the 

risk prediction model. Depending on the kind and degree 

of the data, a suitable risk prediction model is 

subsequently created—machine learning or deep learning 

model. Trained with all the data, the model is oriented on 

future financial risk. The training approach seeks to 

optimize the model's parameters so that the error between 

predicted and actual risk levels is lowest feasible. After 

training, accuracy, precision, recall, and F1-score among 

other standards are used to evaluate the model. These 

indications advise any necessary architectural or training 

parameter adjustment and assist one to grasp the potential 

of the model to precisely anticipate financial risk. Good 

risk prediction model training may enable financial 

organizations to learn significant knowledge about likely 

future dangers, therefore directing their activities and 

development of effective risk management strategies. 

 

Stage 3: Risk prediction 

The first risk prediction one applies in the final stage of 

the operation forecasts future financial risk using a trained 

risk prediction model. Starting with the provided new, 

unknown input to the trained model comprising financial 

aspects and current market conditions, this phase proceeds 

through It is carefully chosen to ensure its correctness and 

relevance as the predictions of the model rely on the 

available data. Once the particular data becomes available, 

the trained model is then projected future financial risk 

related with it. This prediction offers a forward-looking 

assessment of expected financial risk based on patterns 

and connections the model learns over the training period. 

The expected financial risk generated by the risk 

prediction model might find use for requirements related 

to decision-making. Whether in form—a chance of 

default, expected loss, or risk score—this output provides 

financial institutions, investors, and other stakeholders 

significant information. These businesses might optimize 

their risk-reducing strategies, make sensible decisions, 

and manage challenging financial markets with greater 

confidence by applying the expected financial risk. 
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Figure 2: The complete model structure 

 

Stage 4: Decision optimization 

The stage of decision optimization guides financial 

decisions by means of the predicted financial risk. This 

stage begins with the expected financial risk being input 

into the module of decision optimization, therefore 

guiding the foundation for optimizing financial choices. 

The suitable optimization model is then established 

depending on the degree of complexity and nature of the 

financial decisions—a linear programming or dynamic 

programming model. The optimization model detects the 

complex interactions among many financial factors, 

including asset returns, risk levels, and portfolio 

restrictions. Designed once, the optimization model 

supports risk management techniques or portfolio 

allocation enhancement of financial judgments. The 

optimization process under many restrictions and limits 

include determining the best financial choices to reduce 

financial risk and maximize profits. Direct investment 

strategies, risk management, and portfolio performance 

maximizing activities may be guided by the best financial 

judgments generated by the module of decision 

optimization. Through better informed decisions made by 

means of the best financial judgments, financial 

institutions and investors may lower financial risk, 

increase returns, and thus help them to fulfill their 

financial goals. 

 

3.1 Integration of components 
GAN produces financial data to train the risk prediction 

model. This data helps the risk prediction algorithm find 

comparable financial data patterns and linkages. Second, 

the risk prediction model uses synthetic data to assess 

financial risk. Then, Value-at-Risk ( 𝑉𝑎𝑅 ) or predicted 

Shortfall (𝐸𝑆) are used to assess predicted risk. Finally, the 

optimization model calculates the ideal portfolio weights 

or investment choices to balance risk and return. 

Steps of the algorithm are described below. The risk 

prediction model is taught using GAN-generated fake 

financial data. We use the learnt risk prediction model to 

assess fresh data's financial risk. Risk measures quantify 

anticipated risk, and the optimization model determines 

portfolio weights and investment choices. The 

optimization approach balances risk and return to discover 

the best investment. 

The steps are as follows: 

1. Generate false financial data using GAN: 

synthetic_data = GAN.generate_data() 

2. Train the risk prediction model using synthetic data: 

risk_model = RiskModel.train(synthetic_data). 

3. Estimate your financial loss using the risk prediction 

model: predicted_risk = risk_model.predict(new_data). 

4. Use calculate_risk_metric(predicted_risk) to get the 

risk metric. 

5. Find the optimal portfolio weights or investments using 

the optimization model: Portfolio = 

OptimizationModel.optimize(risk_metric, return_metric) 
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3.2 Variable selection and mapping 

Macroeconomic issues like GDP, inflation, and 

employment and social development elements like health, 

education, and poverty are studied. These characteristics 

were selected because they impact financial markets and 

asset returns. To place variables into a portfolio context, 

we may use a multivariate technique that examines asset 

performance. A factor model that incorporates the 

specified variables as asset return factors is one option. 

Table 2 lists generator and discriminator network 

architectural parameters. 

Asset-Level Returns 

We model asset returns using a multivariate distribution, 

such as a multivariate normal distribution or a more 

elaborate one that exhibits non-linear relationships 

between variables. 

Portfolio context 

We use portfolio optimization to place variables in a 

portfolio context by looking at anticipated returns, risks, 

and correlations between assets. 

 The optimization problem can be formulated as: 

maximize: Portfolio return 

subject to: Risk constraints (e.g., 𝑉𝑎𝑅, 𝐸𝑆) 

variables: Portfolio weights 

 

 

Table 2: Generator and Discriminator Network 

Architecture Parameters 

Parameter 

Generator 

Network 

Discriminator 

Network 

Number of 

Layers 4 4 

Activation 

Function Leaky ReLU Leaky ReLU 

Number of 

Filters 

64, 128, 256, 

512 64, 128, 256, 512 

Kernel Size 4, 4, 4, 4 4, 4, 4, 4 

Stride 2, 2, 2, 2 2, 2, 2, 2 

 

 

 

3.3 Weighting and validation of real and 

synthetic data 

During training, the real and synthetic data can be 

weighted differently to control the influence of each type 

of data on the model's performance. One approach is to 

use a weighted loss function that assigns different weights 

to the real and synthetic data. For example: 

𝑙𝑜𝑠𝑠 =  𝑤𝑟𝑒𝑎𝑙  ∗  𝑙𝑜𝑠𝑠𝑟𝑒𝑎𝑙  +  𝑤𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐  ∗  𝑙𝑜𝑠𝑠𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐  

where 𝑤𝑟𝑒𝑎𝑙  and 𝑤𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐  are the weights assigned to the 

real and synthetic data, respectively. 

Validation 

To validate the performance of the model on both real and 

synthetic data, we can use metrics such as mean squared 

error (MSE) or mean absolute error (MAE) on a hold-out 

validation set. This can help us monitor the model's 

performance on both types of data and adjust the 

weighting scheme or other hyperparameters as needed. 

Generating synthetic data that is diverse and 

representative of the real data can help reduce overfitting. 

4  Experimental setup 
Python, TensorFlow or PyTorch is used for deep 

learning. The model settings include a batch size of 128, 

500 epochs, a noise dimension of 100, learning rates of 

0.001 for the generator and the discriminator, The 

activation choice is Leaky ReLU; Adam is the optimizer. 

The simulation parameters consist of a 0.1 volatility, a 

0.02 risk-free rate, and a 1000-time step simulation. 

We began the process of training a Generative Adversarial 

Network (GAN) for financial data creation using publicly 

available financial datasets 

(https://databank.worldbank.org/. Comprising more than 

9,000 variables covering several spheres including 

economic, social, environmental, and others, this dataset 

includes macroeconomic characteristics such GDP, 

inflation, and employment as well as social development 

measures including education, health, and poverty.  

After the dataset is selected, data preparation—a crucial 

component of the overall process—follows. Missing 

values must be handled by interpolation or imputation; the 

data must be normalized so that every attribute falls in the 

same range. Furthermore, the data has to be converted into 

an appropriate form for GAN training, maybe 

incorporating scaling or encoding. The GAN design needs 

to be developed after data preparation. A deep 

convolutional GAN (DCGAN) is particularly appropriate 

for financial data producing as its architecture consists of 

a generator network and a discriminator network. The 

generator network generates synthetic financial data; the 

discriminator network evaluates it and comments back to 

the generator. DCGAN design has been used effectively to 

create realistic synthetic data. Its convolutional nature lets 

it find complicated patterns and connections in the data. 

Some of the things that high-quality synthetic financial 
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data created by DCGAN designs may be used for include 

risk analysis, portfolio optimization, and stress testing. 

Table 3 shows the different parameters that were utilized 

to design the generator and discriminator networks.

 

Table 3: CNN architecture parameters for generator and discriminator network 

 

Generator Network Discriminator Network 

Input layer 100-dimensional noise vector Input layer 1-dimensional input (financial 

data) 

Convolutional layer 1 64 filters, kernel size 3, stride 

1 

Convolutional 

layer 1 

64 filters, kernel size 3, stride 

1 

Convolutional layer 2 128 filters, kernel size 3, 

stride 1 

Convolutional 

layer 2 

128 filters, kernel size 3, stride 

1 

Convolutional layer 3 256 filters, kernel size 3, 

stride 1 

Convolutional 

layer 3  

256 filters, kernel size 3, stride 

1 

Output layer 1-dimensional output 

(financial risk prediction) 

Output layer 1-dimensional output 

(probability of real data) 

 

Figure 3 depicts the recommended model's CNN 

architecture. Since it helps the Generative Adversarial 

Network (GAN) model identify financial data patterns and 

linkages, training is crucial. The Adam optimizer trains 

GANs. The well-known stochastic gradient descent 

method alters the learning rate for each parameter based 

on gradient size. The small learning rate of 0.001 allows 

model parameters converge slowly and gradually. The 

batch size is 128, a conventional value that balances 

computer speed and model stability. The GAN learns to 

create phony financial data that appears real during 

training. In addition, the discriminator learns to 

distinguish genuine from fraudulent data. After training, 

R-squared, MAE, and MSE are used to evaluate the 

GAN's performance. These measurements demonstrate 

the reliability of synthetic data and assist adjust GAN 

design and training parameters. How effectively the GAN 

operates might indicate its synthetic data quality. This will 

determine whether the data is suitable for risk analysis, 

portfolio optimization, and stress testing. 

 
Figure 3: The CNN architecture for the proposed model 

 

 

5  Results and discussion 
For GAN training, the dataset must deal with missing 

values by interpolation or imputation, normalize the data 

so all characteristics are in the same range, and format the 

data for GAN training.  

 

Adam optimizer trains GAN with 0.001 learning rate and 

128 batches. The generating network trains using phony 

financial data, and the discriminator network verifies it 

and informs the generator what it thinks. GANs are trained 

for 500 epochs to obtain convergence and provide high-

quality synthetic financial data.  

 

Several indicators are used to evaluate the proposed model 

such as: MAE, MSE, RMSE, R-squared, risk prediction 

accuracy, precision, recall, and F1-score.  

 

Table 4 shows that the proposed model outperforms recent 

works 1 [27], 2 [28], and 3 [29].  

Existing Work 1 [27] employs CNNs and LSTM networks 

for deep learning. Our model was trained using financial 

time series data on stock prices, transaction volumes, and 

other key factors. The model comprises 5 128-unit hidden 

layers. ReLU activation function, Adam optimizer, 0.01 

learning rate, 64 batch size, 1000 epochs.  

 

Existing Work 2 [28] uses random forest machine 

learning. We trained our model on technical indicators, 

sentiment analysis, and macroeconomic factors. This 

model contains 100 trees, a maximum depth of 10, 2 

samples per split, 1 sample per leaf, and 5 attributes per 

split. 

 

employs an autoregressive integrated moving average 

(ARIMA) method. This model learned from a set of 

historical financial time series data. For this model, the 

hyperparameters are an order of differencing of 1, 2 

autoregressive terms, and 1 moving average term. 
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With values of 0.009, 0.012, and 0.015 for the training, 

validation, and testing sets respectively, the suggested 

model's Mean Absolute Error (MAE) is much lower than 

0.052 ± 0.008 for current work. Likewise, the Mean 

Squared Error (MSE) and Root Mean Squared Error 

(RMSE) values for the proposed model are 0.001, 0.002, 

and 0.003, and 1.2%, 1.5%, and 1.8% for the training, 

validation, and testing sets, respectively, exceeding 

present work with values of 0.003 ± 0.001 and 0.55 ± 

0.8%. Moreover, whereas previous work achieves a lower 

R-squared value of 0.854 ± 0.018, the Coefficient of 

Determination (R-squared) values for the proposed model 

are 0.95, 0.92, and 0.90 for the training, validation, and 

testing sets, respectively, indicating a strong correlation 

between predicted and actual values. Comparatively to 

previous work, the suggested model shows enhanced 

accuracy, dependability, and generalizability. 

 

Table 4: Performance metrics 

 

Metric 

Proposed 

Model 

Existing 

Work 1 

Existing 

Work 2 

Existing 

Work 3 

Mean Absolute 
Error (MAE) 

Training set: 
0.009, Validation 

set: 0.012, 

Testing set: 
0.015 

0.052 ± 
0.008 

0.065 ± 
0.010 

0.075 ± 
0.012 

Mean Squared 

Error (MSE) 

Training set: 

0.001, Validation 

set: 0.002, 
Testing set: 

0.003 

0.003 ± 

0.001 

0.005 ± 

0.002 

0.007 ± 

0.003 

Root Mean 

Squared Error 

(RMSE) 

Training set: 
1.2%, Validation 

set: 1.5%, 

Testing set: 1.8% 

0.055 ± 

0.008 

0.070 ± 

0.010 

0.085 ± 

0.012 

Coefficient of 

Determination 

(R-squared) 

Training set: 
0.95, Validation 

set: 0.92, Testing 

set: 0.90 

0.921 ± 

0.013 

0.895 ± 

0.018 

0.865 ± 

0.022 

 

As per table 5, the generator loss for the proposed model 

is lower, with values of 0.04, 0.05, and 0.06 for the 

training, validation, and testing sets, respectively, 

compared to 0.08 for existing work. Similarly, the 

discriminator loss for the proposed model is lower, with 

values of 0.02, 0.03, and 0.04 for the training, validation, 

and testing sets, respectively, outperforming existing work 

with a value of 0.05. While present work spans 1000 

epochs, the proposed GAN model achieves convergence 

in fewer epochs—only 500 epochs—needed to reach 

optimal performance. The successful convergence of the 

suggested model—a batch size of 128 and a learning rate 

of 0.001—helps to be explained by optimum 

hyperparameter values. The proposed GAN model 

exhibits usually superior performance, stability, and 

efficiency than present work, which makes it a more 

trustworthy and effective tool for producing synthetic 

financial data. 

 

 

 

 

 

Table 5: GAN performance 

 

Metric Proposed Model 

Existing 

Work 1 

Existing 

Work 2 

Existing 

Work 3 

Generator 

Loss 

Training set: 0.04, 
Validation set: 

0.05, Testing set: 

0.06 0.05 0.07 0.09 

Discriminator 
Loss 

Training set: 0.02, 
Validation set: 

0.03, Testing set: 
0.04 0.03 0.05 0.07 

GAN 

Convergence 

500 epochs, Batch 

size: 128, 

Learning rate: 

0.001 

1000 

epochs 

800 

epochs 

1200 

epochs 

 

As per table 6, the predicted financial risk yielded by the 

proposed model is remarkably close to the actual financial 

risk, with an average predicted risk of 0.023 and a standard 

deviation of 0.005, compared to an average actual risk of 

0.025 and a standard deviation of 0.006. In contrast, 

existing work exhibits a higher average predicted risk of 

0.028, indicating a less accurate prediction. Furthermore, 

the proposed model achieves a risk prediction accuracy of 

92%, with a precision of 90%, recall of 94%, and F1-score 

of 92%, surpassing the 85% accuracy achieved by existing 

work. This superior performance underscores the 

proposed model's ability to accurately predict financial 

risk, enabling financial institutions and investors to make 

informed decisions and mitigate potential losses. 

 

Table 6: Risk prediction results 

 

Metric Proposed Model 

Existing 

Work 1 

Existing 

Work 2 

Existing 

Work 3 

Predicted 
Financial 

Risk 

0.023 (Average 

predicted risk: 0.023, 
Standard deviation of 

predicted risk: 0.005) 0.028 0.035 0.042 

Actual 
Financial 

Risk 

0.025 (Average actual 

risk: 0.025, Standard 
deviation of actual 

risk: 0.006) 0.03 0.035 0.04 

Risk 
Prediction 

Accuracy 

92% (Precision: 90% 
Recall: 94% F1-

score: 92%) 85% 80% 75% 

 

Table 7 shows that the model has a precision of 0.853 ± 

0.021, a recall of 0.826 ± 0.025, and an F1-score of 0.839 

± 0.022 for low-risk predictions. This means that it is quite 

good at finding low-risk situations. The model does better 

in the medium-risk category, with accuracy, recall, and F1-

score values of 0.913 ± 0.015, 0.895 ± 0.018, and 0.904 ± 

0.016, respectively. This shows that it can reliably forecast 

medium-risk occurrences. The model's ability to find 

high-risk situations is shown by its high accuracy, recall, 

and F1-score values of 0.952 ± 0.008, 0.935 ± 0.011, and 

0.943 ± 0.009, which are all very good. Overall, the 

suggested model has a strong and accurate capacity to 

anticipate risk, which helps financial institutions and 

investors make smart choices and avoid losing money. 
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Table 7: Risk level-based prediction results 

 

Risk 

Level 

Proposed 

Model 

Existing 

Work 1 

Existing 

Work 2 

Existing 

Work 3 

Low 

Precision: 0.853 
± 0.021, Recall: 

0.826 ± 0.025, 

F1-score: 0.839 
± 0.022 

Precision: 

0.80, Recall: 

0.75, F1-
score: 0.77 

Precision: 

0.75, Recall: 

0.70, F1-
score: 0.72 

Precision: 

0.70, Recall: 

0.65, F1-
score: 0.67 

Medium 

Precision: 0.913 

± 0.015, Recall: 

0.895 ± 0.018, 
F1-score: 0.904 

± 0.016 

Precision: 

0.85, Recall: 
0.80, F1-

score: 0.82 

Precision: 

0.80, Recall: 
0.75, F1-

score: 0.77 

Precision: 

0.75, Recall: 
0.70, F1-

score: 0.72 

High 

Precision: 0.952 

± 0.008, Recall: 
0.935 ± 0.011, 

F1-score: 0.943 

± 0.009 

Precision: 
0.90, Recall: 

0.85, F1-

score: 0.87 

Precision: 
0.85, Recall: 

0.80, F1-

score: 0.82 

Precision: 
0.80, Recall: 

0.75, F1-

score: 0.77 

 

When it comes to the best portfolio allocation, anticipated 

return, and expected risk (Table 8), the suggested 

technique is far better at making judgments than earlier 

studies. The suggested model says that the best way to 

divide up a portfolio is to have 65% stocks, 30% bonds, 

and 5% cash. Other work has said to put 60% of your 

money in equities, 35% in bonds, and 5% in cash. Also, 

the recommended model has a greater expected return of 

8.2% (with a standard deviation of 1.5%) than the 7.5% 

expected return of the prior study. The proposed model 

also has a lower expected risk of 4.5% (with a standard 

deviation of 1.2%), whereas previous research shows a 

higher expected risk of 5.5%. This is really crucial. These 

findings demonstrate that the recommended approach may 

assist investors and banks make better choices by making 

the best use of their portfolios, getting the most money 

back, and lowering their risk. 

 

Table 8: Decision optimization results 

 

Metric 

Proposed 

Model 

Existing 

Work 1 

Existing 

Work 2 

Existing 

Work 3 

Optimized 
Portfolio 

Allocation 

65% stocks, 
30% bonds, 5% 

cash 

60% stocks, 
35% bonds, 

5% cash 

55% stocks, 
40% bonds, 

5% cash 

70% stocks, 
25% bonds, 

5% cash 

Expected 

Return 

8.2% (Standard 
deviation of 

expected 

return: 1.5%) 7.50% 7.00% 8.00% 

Expected 

Risk 

4.5% (Standard 
deviation of 

expected risk: 

1.2%) 5.50% 6.00% 4.80% 

 

6  Conclusion 

Generative Adversarial Networks (GANs) are used in this 

study to anticipate financial risk dynamics and make the 

optimal judgments. The model trains a risk prediction 

model using phony financial data from a GAN. Based on 

financial risk prediction, the decision optimization model 

produces the optimum financial judgments. The model 

predicts risk well with an MAE of 0.012 and an MSE of 

0.002. Due to its 4.5% risk and 8.2% return, the model 

outperforms machine learning methods. The model 

adjusts to market volatility with an average return of 8.5% 

and risk of 4.2%. The model offers a novel technique to 

predict financial risk dynamics and improve decision-

making. It may be utilized for portfolio, risk, and 

investment choices. We must improve the risk prediction 

model, add elements to the decision-optimizing model, 

and discover new methods to use technology in banking. 
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