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The traditional sports training boxing system has problems with insufficient accuracy and poor real-time 

performance in high similarity action classification, and lacks adaptability to individual action 

differences. This article constructs a sports training system based on dynamic weight optimization KNN 

(BBO-KNN), aiming to improve the accuracy and real-time performance of complex action recognition, 

and provide technical support for personalized training. In response to the problems of insufficient 

accuracy (high FP rate), poor real-time performance (delay>1s), and lack of individual adaptability in 

high similarity action classification of traditional sports training systems, this study proposes a KNN 

model based on dynamic weight optimization (BBO-KNN). The model performance is optimized by fusing 

proprietary datasets with public datasets and using 5-fold cross validation (training/testing ratio 7:3). 

The experimental results validate that BBO-KNN significantly outperforms benchmark models such as 

LSTM (94.50%) and SVM (89.30%) in accuracy (96.20% ± 0.3%). The system performs highly similar 

actions such as running ↔ The FP rate of jumping has decreased to 1.6%, and the global FP rate is 

1.39%.and robustness (noise interference fluctuation ± 1.2%). The classification error distribution shows 

its stability advantage, and the confusion matrix highlights the accurate recognition of highly similar 

actions (such as running → jumping). Research has shown that the BBO-KNN model effectively solves 

the real-time and robustness problems of motion recognition through dynamic weight optimization. In the 

future, it can be extended to complex movements such as gymnastics by combining visual data and 

adapting to individual style differences through incremental learning. 

Povzetek: Članek predstavi sistem za športno vadbo, ki uporablja dinamično uteženi BBO-KNN za boljše 

prepoznavanje gibov.

1 Introduction 

Sports special training is undergoing a profound 

change from traditional experience-oriented to data-

driven. This transformation process presents multi-

dimensional technical characteristics and systematic 

development bottlenecks. From a macro perspective, it 

can be seen that the digital penetration of modern sports 

training systems has reached a considerable scale. 

According to authoritative data from the General 

Administration of Sport of China in 2024, more than 

three-quarters of professional sports teams have deployed 

various wearable devices for training data collection. 

This proportion has nearly doubled compared to five 

years ago, indicating that a fundamental paradigm shift is 

taking place in sports training methodology. 

There is a sharp intergenerational gap between the 

rapid popularization of hardware and the intelligence 

level of software systems. The widespread deployment of 

data acquisition equipment has not simultaneously 

brought about a significant improvement in training 

efficiency, but has exposed structural defects in data  

 

processing capabilities. The specific deficiency is the 

core contradiction of insufficient data utilization. 

Currently, only 42% of sports teams have established a 

complete analysis system, which means that more than 

half of the training data is dormant and cannot be 

converted into effective training decision-making basis.  

The deficiency of this data value mining stems from 

multiple technical obstacles, including but not limited to 

imperfect feature engineering construction, inefficient 

data cleaning process, and insufficient adaptability of 

analysis model. What is more prominent is the static 

phenomenon of evaluation indicators. Up to 91% of 

training systems still adopt the fixed weight scoring 

mechanism [1]. This rigid evaluation system can't adapt 

to the dynamic changes of athletes' physiological 

parameters, resulting in systematic deviation between 

training programs and actual needs. In addition, the 

feedback delay problem further amplifies this mismatch. 

The decision lag of 2.3 training cycles on average makes 

the training adjustment always lag behind the actual state 

change of athletes, resulting in the time loss of training 

effect [2]. 
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By deeply analyzing the technical essence behind 

these phenomena, we can find that the fundamental 

reason for the homogeneity of training programs lies in 

the uniformity of feature extraction dimensions and the 

lack of personalized modeling, which reflects the 

fundamental contradiction between the traditional batch 

computing model and the real-time decision-making 

needs [3]. Therefore, solving these systemic defects 

requires the introduction of innovative algorithm 

architectures and technical paradigms. There are still two 

key optimization spaces in current technology. The first 

is the balance between computing resource consumption 

and real-time requirements, especially the control of 

computational complexity when processing high-

dimensional features. The second is the model 

generalization ability in small sample scenarios and the 

adaptive performance when facing new athletes or rare 

training situations [4]. 

The core innovation of KNN dynamic weight 

optimization technology lies in building a four-

dimensional optimization space, realizing minute-level 

weight updates in the time dimension, and compressing 

the data processing delay to 1/60 of the traditional method 

through the sliding time window mechanism and 

incremental learning algorithm. Moreover, it completes 

multimodal data fusion in the feature dimension, 

integrating multi-source information such as 

biomechanics, physiology and biochemistry, and 

environmental parameters [5, 6]. In the individual 

dimension, it establishes an athlete-specific model and 

achieves efficient matching of similar samples through 

dynamic neighborhood search technology. In the 

environmental dimension, it integrates venue equipment 

parameters to build a complete training situation 

perception system. This multi-dimensional optimization 

architecture enables the system to process nonlinear and 

non-stationary training data, effectively solving the 

response hysteresis problem of traditional systems [7]. 

The traditional sports training classification system 

encounters issues of insufficient accuracy and poor real-

time performance in high-similarity action classification, 

and lacks adaptability to individual motion variations. 

Therefore, this paper constructs a sports training system 

based on Biogeography-Based OptimizationKNN (BBO-

KNN), aiming to improve the accuracy and real-time 

performance of complex action recognition and provide 

technical support for personalized training.  

This study aimed to investigate the performance 

limits of the BBO-KNN (BBO optimized KNN) 

algorithm for high-similarity action recognition by 

addressing a specific research question. The specific 

hypothesis is whether BBO-KNN could reduce the false 

positive rate (FP rate) to below 2%, while maintaining a 

stable end-to-end processing latency below 20ms and a 

classification accuracy better than 95%. This goal is 

directly aimed at the core defects of traditional systems 

(such as LSTM and SVM) in high similarity action (such 

as running and jumping) classification, with FP rate>4.2% 

and delay>200ms. To achieve this assumption, the system 

uses the BBO algorithm to optimize the feature weight 

vector to enhance local feature sensitivity, combines K-

Means clustering to compress the dataset size, and 

designs a lightweight edge architecture for real-time 

processing. 

The implementation of minute level weight updates 

through sliding time windows and incremental learning 

relies on a triple mechanism: 

(1) The 200ms sensor window slides in 10ms steps 

to ensure real-time feature extraction; 

(2) Incremental learning only updates cluster centers 

(non feature weights), and adjusts secondary cluster 

points every 5 days through new data (as mentioned in 

the conclusion); 

(3) The feature weight WK3 remains static, and its 

“dynamic” effect comes from the weight distribution 

optimized by BBO, while window sliding allows the 

model to continuously capture temporal features. 

2 Related work 

2.1 Research status of sports special 

training system 

Rodriguez et al. [8] developed a multi-sensor fusion 

wearable system. It integrates IMU, sEMG and heart rate 

monitoring modules, increasing the data collection 

dimension to 23 physiological indicators, but there is a 

15% sensor signal interference problem. The 4D optical 

capture solution proposed by Cizmic et al. [9] improves 

the motion analysis accuracy to 0.3mm, but the system 

construction cost is as high as 2 million yuan, making it 

difficult to popularize and apply. At present, non-contact 

monitoring technology based on millimeter wave radar 

can realize micro-motion capture within a range of 5m, 

but the sampling rate is limited to 120Hz. 

The BP neural network evaluation model 

constructed by Balkhi et al. [10] improves the accuracy 

of technical action scoring to 89% in sports events, but 

requires more than 800 hours of labeled data training. 

Calderón-Díaz et al. [11] introduced the transfer learning 

method, which can realize personalized modeling of new 

athletes with only 200 samples, but the cross-event 

transfer error still reaches 28%. It is worth noting that the 

digital twin evaluation system developed by Iduh et al. 

[12] controls the sports action prediction error within 1.2 ° 

through real-time physical simulation, but it needs to be 

equipped with the support of a supercomputing center. 

From the above research on sports special training 

system, the current system generally faces three major 

challenges: (1) the asynchronous problem of multi-source 

data leads to 27% information loss; (2) The lack of 

interpretability of the model leads to the trust crisis of 

coaches; (3) The contradiction between hardware 

portability and accuracy is prominent. It is particularly 

noteworthy that 82% of commercial systems still use 
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static evaluation algorithms, which cannot adapt to the 

dynamic changes of athletes' status. 

2.2 Application of optimization algorithm 

in training system 

Chen et al. [13] introduced genetic algorithm into 

sports special training cycle planning, and improved the 

matching degree of training scheme by 31% through 

adaptive cross-mutation strategy, but there is the problem 

of slow iterative convergence speed (an average of 14 

hours). The improved particle swarm optimization 

algorithm by Taborri et al. [14] optimizes the load 

distribution of strength training in sports events, which 

increases the maximum strength growth rate of athletes 

by 22%, but the sensitivity of the algorithm parameters is 

high and needs repeated debugging.  

The LSTM-ATT hybrid model developed by Hanif 

et al. [15] achieves 92% accuracy in the evaluation of 

sports-specific actions, but the model needs 150,000 

pieces of labeled data for training. AshokKumar et al. [16] 

applied reinforcement learning to optimize sports-

specific strategies, which increased the athlete's scoring 

rate by 29%, but there was a problem of high training 

costs (200 hours of simulated adversarial data was 

required). The meta-learning method can shorten the 

model adaptation cycle for new athletes from 14 days to 

5 days, but it has a huge demand for computing resources, 

requiring 4 A100 graphics cards. 

The Pareto frontier algorithm proposed by Kumar et 

al. [17] balances technical improvement and injury risk 

in sports training, which optimizes the training benefit-

risk ratio by 37%, but the complexity of the algorithm 

leads to a decrease in real-time performance and a delay 

of up to 11 minutes. The NSGA-III algorithm developed 

by Molavian et al. [18] realizes the multi-objective 

optimization of sports specialties and improves the 

competition performance by 0.8%, but it needs the 

support of accurate biomechanical modeling. 

Malamatinos et al. [19] applied fuzzy logic to optimize 

sports posture, and the completion of movements was 

increased by 19%, but the construction of rule base relies 

on a large amount of expert knowledge. 

From the above research, the current research 

mainly faces three bottlenecks: (1) the contradiction 

between the real-time performance and accuracy of the 

algorithm, and the optimal system still has a delay of 5-8 

minutes; (2) The model is not explainable enough, and 68% 

of AI decisions cannot provide reasonable explanations; 

(3) The cross-project transfer capability is weak, and the 

average error is 37%. In particular, 82% of commercial 

training systems (2024 market research) still adopt static 

optimization strategies, which are difficult to adapt to the 

dynamic changes of athletes' status. 

2.3 Research status of application of KNN 

optimization algorithm in sports 

training 

The weighted dynamic KNN model proposed by 

Merzah et al. [20] improves the accuracy rate to 94% in 

sports action recognition, but the real-time calculation 

delay is still 1.2 seconds. The quantized distance 

calculation method developed by Bunker et al. [21] can 

increase the speed of athletes' posture analysis by 100 

times, but it needs the support of special quantum 

computing equipment. The improved KNN scheme 

combined with SHAP value interpretation proposed by 

Teixeira et al. [22] reduces the error of sports action 

evaluation from 3.2° to 0.8°, but the complexity of feature 

engineering increases by 3 times. 

The sliding window incremental learning system 

applied by Woltmann et al. [23] shortens the update cycle 

of the training model to 15 minutes, but the memory 

footprint is still as high as 32GB. The multi-modal 

distance measurement method proposed by Sonalcan et 

al. [24] combines electromyographic and mechanical 

characteristics in sports events, so that the prediction 

error of action angle is < 0.5 °, but 17 sensor data need to 

be synchronized. 

Table 1 below summarizes the relevant work: 

Table 1: Summary of related work 

 

Technical 

direction 
Method and Key Results Limitations and technical bottlenecks 

Multi sensor 

fusion system 

Method: Multi sensor wearable 

system (IMU/sEMG/heart 

rate)<br>Results: 23 physiological 

indicators were collected, and the 

data dimension was increased by 

300% 

Limitations: 15% signal interference<br>Bottleneck: 

Asynchronous multi-source data leads to 27% 

information loss, and there is a contradiction between 

portability and accuracy (the cost of a 0.3mm precision 

system reaches 2 million yuan) 

4D optical 

capture scheme 

Method: High precision optical 

marker point tracking<br>Result: 

Motion capture accuracy reaches 

0.3mm 

Limitations: Supercomputing Center Dependency (2-

million-yuan cost)<br>Bottleneck: High hardware 

deployment costs, difficult to popularize applications 
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BP neural 

network model 

Method: Multi layer 

backpropagation 

network<br>Result: Technical 

action scoring accuracy rate of 89% 

Limitations: 800 hours of annotated data training 

required<br>Bottleneck: high data dependency, long 

model update cycle (>2 weeks) 

Transfer learning 

program 

Method: Cross athlete feature 

transfer<br>Result: New athlete 

modeling only requires 200 samples 

Limitations: Cross project migration error of 

28%<br>Bottleneck: weak domain adaptability, 

insufficient generalization ability 

Dynamic KNN 

algorithm 

Method: Weighted Neighbor 

Classification<br>Result: Action 

recognition accuracy rate of 94% 

Limitations: Real time latency of 1.2 

seconds<br>Bottleneck: Low computational efficiency, 

unable to meet real-time requirements of<100ms 

Quantum distance 

calculation 

Method: Quantization feature 

similarity measurement<br>Result: 

Attitude analysis speed increased by 

100 times 

Limitations: Requires specialized quantum devices. 

Bottleneck: Strong hardware dependency and 

extremely high commercialization costs 

Multimodal KNN 

optimization 

Method: Fusion of 

electromyography and mechanical 

features<br>Result: Prediction error 

of action angle<0.5 ° 

Limitations: 17 sensors need to be synchronized. 

Bottleneck: The system integration complexity is high, 

and the engineering implementation is difficult 

 

From the above research, the current research on the 

application of KNN optimization algorithm in sports 

training faces three core challenges: There is a 

contradiction between real-time requirements and 

computational accuracy, and the optimal system still has 

a delay of 8-15 seconds; (2) The asynchrony of multi-

source data leads to a loss of 27% of feature information; 

(3) The cost of personalized adaptation is too high, and it 

takes 14-20 days to build a single athlete model. In 

particular, 83% of the existing systems (2025 market 

research) still adopt the static K-value strategy, which is 

difficult to adapt to the dynamic changes of training 

intensity. 

3 Sports special training system 

based on KNN dynamic weight 

optimization 

This paper improves the KNN classifier, which has 

excellent performance in feature engineering processing, 

and proposes a KNN classification algorithm based on 

the K-means clustering algorithm. This paper combines 

the univariate feature selection method and the 

BGWOPSO algorithm to search for the optimal feature 

set, and selects the BBO algorithm as the weight 

optimization module of the subsequent human motion 

intention recognition model to propose a human motion 

intention recognition model that can use fewer features to 

identify multiple motion patterns and has a higher 

classification accuracy. 

 

3.1 Design of improved nearest neighbor 

classification algorithm 

The KNN algorithm generally uses the majority 

voting method. It assumes that there are N labeled 

samples ( ) ( ) ( )1 1 2 2, , , , , ,N NT x y x y x y=  , 
ix  

represents a sample with n -dimensional features, 

, 1,2, ,n

ix R i N  =  and 
iy   is the label of 

ix  , 

( )2 2, , ,i ly c c c =
.
The label value y of the sample to 

be tested is obtained by the classification rule, as shown 

in the following formula[25]: 

( ) ( )argmax , , 1,2, , , 1,2, ,
j i k

c i jx N x
y H y c i N j L


= = =  

(1) 

( )
0

,
1

i j

i j

i j

y c
H y c

y c


= 

=
                     (2) 

Among them, 

( )  i i         x | xk is the K nearest neighbor samplesN of xx =

, and when 
i jy c=  , ( ), 1i jH y c =

 
and otherwise it is 

0. 
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3.1.1 Comparison of feature normalization 

methods 

When a sample includes multiple eigenvalues, 

features with larger magnitudes will weaken features with 

smaller magnitudes and affect the accuracy of the KNN 

classifier. Therefore, the data needs to be normalized, and 

the commonly used normalization methods are maximum 

normalization and mean-variance normalization. 

The extreme value normalization method uses the 

maximum and minimum values in the variable value 

range to scale the original data proportionally to the data 

within the  0,1   range to eliminate the impact of the 

dimension. Since the extreme value normalization 

method is only related to the two extreme values of the 

maximum and minimum values, the scaling of each 

variable is overly dependent on the two extreme values. 

The conversion function of the extreme value 

normalization is as follows [26]: 

min

1

max min

scale

x x
x

x x

−
=

−
                           (3) 

The mean-variance normalization method uses the 

mean and standard deviation of the original data to 

standardize the data. Although all data information is 

used in the dimensionless process, the importance of each 

variable is not treated equally, and the analysis weight of 

variables with large differences is relatively large. The 

conversion function is: 

2scale

x
x





−
=                            (4) 

The maximum normalization and mean-variance 

normalization methods are used to normalize the post-FC 

mixed data set respectively, and the mean and standard 

deviation are extracted as eigenvalues, which are input 

into KNN classifier, and the classification accuracy of the 

two are compared. When the K values of the nearest 

neighbor are taken from 1 to 15 respectively, the 5-fold 

cross-validation accuracy of the KNN classifier after 

normalization by the maximum normalization method 

and the mean-variance normalization method is 

compared, and the results are shown in Figure 1(a). 

 

(a) Comparison of classifier accuracy when using maximum normalization and mean-variance normalization 

methods; 
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(b) Comparison of classifier accuracy using different distance measurement formulas 

Figure 1: Comparison of classifier accuracy (Using post FC mixed dataset (action fragment sampling rate 

100Hz)) 

 

It can be seen from Figure 1(a) that after the two 

normalization methods normalize the post-FC mixed data 

set, the accuracy of KNN classifier is not much different, 

and there is no obvious law at all. The most commonly 

used method is the nearest neighbor K value. When 

3K =   and 4K =  , the data processed by the mean-

variance normalization method has higher classification 

accuracy, so in subsequent experiments, the mean-

variance normalization method is used to normalize the 

data. 

3.1.2 Comparison of distance measurement 

formulas 

Commonly used distance measures in KNN 

algorithm include Manhattan distance, Euclidean 

distance, Chebyshev distance, Min distance and 

Mahalanobis distance, etc. The formulas are [27]: 

( ) ( ) ( )
1 1,

l ln

i j l i jL x x x x== −                (5) 

( ) ( ) ( )( )
1

2 2

2 1,
l ln

i j l i jL x x x x== −            (6) 

( ) ( ) ( )
3 , max

l l

i j i j
l

L x x x x= −              (7) 

( ) ( ) ( )( )
1

4 1,
p pl ln

i j l i jL x x x x== −          (8) 

( ) ( ) ( ) ( ) ( )( )( )
1

21

5 1,
T

l l l ln

i j l i j i jL x x x x x x−

== − −   (9) 

Among them, feature space   is an n-dimensional 

real vector space nR  , ,i jx x   , and    is the 

covariance matrix of multidimensional random variables. 

 When the data of each dimension are independent 

and identically distributed, the Mahalanobis distance is 

the Euclidean distance. The post-FC mixed data set is 

normalized using the mean-variance normalization 

method, and the mean and standard deviation are 

extracted as feature values and input into the KNN 

classifier. The dataset is a post-FC hybrid dataset (feature 

dimensions: mean and standard deviation), and the K 

value ranges from 1 to 15 (full range validation). The 

validation method uses 5-fold cross validation 

(independent calculation of accuracy for each fold). The 

results are shown in Table 2. 

 

Table 2: Comparison of classification accuracy of KNN classifier using different distance metrics 

 

Distance formula 
K value 

1 2 3 4 5 6 7 8 

Manhattan distance 92.57  92.03  91.66  91.58  91.12  91.49  91.27  92.12  
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Euclidean distance 92.12  92.67  92.40  92.67  91.39  91.75  90.48  91.02  

Chebyshev distance 90.48  90.59  90.20  89.89  89.01  89.83  88.37  88.09  

Min's distance 92.03  92.57  91.58  91.48  91.26  91.57  90.13  90.60  

Mahalanobis distance 90.14  89.60  90.87  89.87  89.31  89.78  89.90  90.24  

Distance formula 
K value 

9 10 11 12 13 14 15  

Manhattan distance 90.89  90.93  91.58  90.93  91.30  90.00  90.59   

Euclidean distance 91.49  90.20  90.24  90.29  89.92  90.10  89.01   

Chebyshev distance 87.55  87.45  87.55  87.27  87.19  87.36  86.35   

Min's distance 90.57  90.57  90.02  89.38  90.57  89.47  88.82   

Mahalanobis distance 86.45  89.25  89.09  86.81  88.23  86.25  86.08   

 

It can be seen from Figure 1 (b) and Table 2 that 

using Euclidean distance and Manhattan distance can 

make the algorithm obtain high accuracy, but using 

Manhattan distance will bring serious computational 

burden to the algorithm and the prediction time is too 

long. Considering the accuracy and operation time, 

Euclidean distance is selected for measurement. 

Figure 1 (b) and Table 2 show that the Euclidean 

distance has an accuracy of 92.67% at K=4, which is 

better than the Chebyshev distance (89.89%) and has 

better hardware adaptability. Hardware level 

optimization: The native multiply add instruction (MAC) 

of ARM7-M FPU holds the sum of squares operation, 

which enables 24-dimensional feature calculation to be 

performed at only 4.2us/time, 38% faster than Manhattan 

distance, especially avoiding the prediction penalty of 

Manhattan distance absolute value branch (Figure 1 (b) 

accuracy curve confirms this choice). 

3.1.3 Selection of nearest neighbor value 

How to choose the appropriate nearest neighbor K 

value is also critical to improving the accuracy of the 

KNN classifier. The smaller the K value is, the easier it is 

for the model to overfit. When 1K = , it is equivalent to 

predicting only based on the nearest point to the target 

point. If this point is a noise point, an error will occur. 

When the K value is larger, points farther away from the 

target will also participate in the prediction, resulting in 

underfitting. When K is equal to the total number of 

sample points, the prediction result is the label with the 

most points in all samples, and the classification model is 

completely invalid at this time. Common methods for 

selecting the nearest neighbor K value include empirical 

judgment and determination using optimization 

algorithms. 

As shown in Figure 1(a) and (b), when the nearest 

neighbor K value is from 1 to 15, the classifier achieves 

relatively high values at 2K =  and 4K = . Then, as the 

K value increases, the prediction accuracy of the 

classifier gradually decreases. When 2K = , the K value 

is small and the probability of overfitting is greater, so the 

nearest neighbor K value is 4K = . 

3.1.4 Dataset size reduction based on K-

means clustering algorithm 

Real-time implementation of KNN classifier on 

intelligent dynamic knee prostheses is difficult. In order 

to solve this problem, a combination of KNN algorithm 

and K-Means clustering algorithm is proposed. To ensure 

the accuracy of the experiments, several trials are 

performed to determine the cluster centers. 

In the post-FC hybrid dataset, each motion state 

contains 120 sets of motion data, and after feature 

extraction, the data storage amount is still huge. The K-

Means clustering algorithm can significantly reduce the 

size of the data set and remove most of the similar sample 

points.  

To reduce the computational complexity of KNN, 

hierarchical K-Means clustering is employed to compress 

each class of action data independently: K-Means 

clustering is performed on the samples of each action 

class, and the set of tooth count centers is represented as 

 1 2, , , lKI KI KI KI= , where l is the number of classes. 

In addition, the corresponding primary cluster centers are 

generated. Within the same action class, secondary K-

Means clustering is performed to obtain M  secondary 

cluster points ( 120M ), resulting in a set of secondary 

cluster points, represented as 

 1 1 1

1 2, , , , , l

M MKS KS KS KS KS=  . These two sets are 

saved as new datasets. 

KI   completely replacing the original data, a 

compressed table collection (non-index tag) is formed. 

KNN operates directly on the compressed set, eliminating 

the need to trace back to the original data. KI and KS 

constitute completely independent compressed table 

collections, which are directly used as the operational 

objects for KNN in inference. This “hierarchical 

representation + geometric constraints” architecture not 

only retains key motion features but also completely 

avoids the computational burden of the original data. This 

also provides support for reducing computational burden 

in subsequent experiments 
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3.1.5 Improvement of classification decision 

rules based on triangular inequality 

The test sample point is x, the class primary center 

point is c, and the secondary center point is s, satisfying 

the basic properties of metric space:

( ) ( ) ( ) ( ) ( ), , , , ,d x c d c s d x s d x c d c s−   + , which 

defines a spherical region centered at x  and with a 

radius covering c the symmetric points 

The basic principle of trigonometric inequality is 

that the sum of any two sides in a triangle is greater than 

the third side, which can be associated with the distance 

relationship between three sample points, as shown in 

Figure 2. In the figure, the unmarked sample point T is a 

green circle. 

 

Figure 2: Schematic diagram of triangular inequality method 

 

The steps to improve the KNN algorithm are as 

follows: 

Step 1: The K-Means algorithm is used as a 

preprocessing step to reduce the size of the dataset, and 1 

initial center is clustered in each class, and M secondary 

clusters are clustered in each class. 

Step 2: The initial centers of the first K classes with 

the smallest distances are selected. 

Step 3: Among the selected top K classes. The 

distance from the selected secondary cluster point in each 

class to the unlabeled sample is calculated, and the first 

K minimum distance values are selected and the mean is 

calculated. The class label with the smallest distance 

mean is assigned to the unlabeled sample as the label.  

The triangle inequality accelerates computation, 

narrows the search space, and reduces the omission rate 

of key neighbors through threshold conditions and 

geometric constraints (Figure 2). This achieves coupling 

between the spherical filter domain and the cluster 

distribution. This mathematical framework provides a 

theoretical basis for improving the high accuracy and low 

latency of KNN in sports action recognition. 

 

The algorithm pseudocode is as follows: 

 

#Training stage: K-Means clustering compression 

def train_KMeans_compress(DataSet, Kc_main=1, 

Kc_sub=15): 

compressed_set = {} 

For class_1abels in unique_1abels: # Traverse each 

action category 

Class_data=DataSet [class_1abel] # Retrieve all 

samples of the current class 

         

#Main clustering center (capturing core features of 

the class) 

main_centers = 

KMeans(n_clusters=Kc_main).fit(class_data).cluster_ce

nters_ 

         

#Secondary clustering points (covering intra class 

variation) 

sub_centers = 

KMeans(n_clusters=Kc_sub).fit(class_data).cluster_cent

ers_ 

         

compressed_set[class_label] = { 

'KI': main_centers, 

 #Class initial center set 

'KS': sub_centers # subpoint set 

} 

return compressed_set 

 

#Prediction stage: Improve KNN inference 

def enhanced_KNN_predict(sample, 

compressed_set, K=4): 
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#Step 1: Calculate the distance to various main 

centers 

main_distances = [] 

for label, centers in compressed_set.items(): 

dist = min([euclidean(sample, center) for center in 

centers['KI']]) 

main_distances.append((label, dist)) 

     

#Step 2: Select the top K nearest classes 

top_classes = sorted(main_distances, key=lambda x: 

x[1])[:K] 

     

#Step 3: Triangular inequality screening for 

secondary points 

min_avg_dist = float('inf') 

predicted_label = None 

for class_label, _ in top_classes: 

#Get all sub points of this category 

sub_points = compressed_set[class_label]['KS'] 

         

#Triangle inequality filtering (only calculates points 

that may be closer) 

candidate_points = [] 

for point in sub_points: 

If Euclidean (point, sample)<main_istance 

[class_1abel] * 2: # Triangular constraint 

candidate_points.append(point) 

         

#Calculate the average distance of candidate points 

avg_dist = np.mean([euclidean(sample, p) for p in 

candidate_points[:K]]) 

         

#Choose the class with the minimum average 

distance 

if avg_dist < min_avg_dist: 

min_avg_dist = avg_dist 

predicted_label = class_label 

             

return predicted_label 

 

3.2 Construction of human motion 

intention recognition model 

This paper proposes a human motion intention 

recognition optimization system, as shown in Figure 3. 

When the subject wears an intelligent powered knee 

prosthesis, the 6-axis IMU sensor, uniaxial pressure 

sensor and knee encoder acquire raw data with a sampling 

frequency of 100 Hz. When the foot touches the ground, 

the 8-channel sensor data of the knee prosthesis is 

collected within 200ms, and the BGWOPSO algorithm is 

used for feature selection. By comparing the optimization 

of feature weights using three weight optimization 

methods such as the BBO algorithm, the classification 

accuracy of the KNN classifier is improved, and the 

weight optimization method used in this system is 

determined. 

The feature weights (WK3) optimized by the BBO 

algorithm remain static during the inference phase, and 

their function is to enhance sensitivity to key motion 

attributes through pre-set feature importance. Dynamics 

are mainly reflected in two aspects: 

Neighbor dynamic screening: Real time selection of 

relevant samples based on triangular inequality (Figure 2); 

Incremental model update: Adjusting cluster centers to 

adapt to individual differences through new data 

Metaheuristics can reduce computational burden. In 

order to further reduce the computational burden of the 

metaheuristic algorithm, the univariate feature selection 

method and the BGWOPSO algorithm are combined to 

search for the minimum feature set. First, the accuracy of 

the improved KNN classifier when only one feature value 

is used for the 8-channel sensor signal is calculated 

offline using the post-FC mixed data set. Then, the three 

features with the highest accuracy are selected from the 

18 feature values, namely the mean, the absolute value of 

the mean, and the root mean square amplitude of each 

sensor signal are extracted to create a feature vector of 

size 24. Then, the BGWOPSO algorithm is used to select 

features from the feature vector, and the classifier uses 

the improved KNN classifier.  



340   Informatica 49 (2025) 331–350                                                                                       Y. Xu 

 

 

Figure 3: Human motion intention recognition system architecture including efficient feature optimization 

module 

 

The feature weight vector 
1KW  optimized using the 

weight optimization method based on the sensitivity 

method is shown in the formula. Using this weight vector, 

the accuracy of the improved KNN classifier is 94.17%. 

 1 0.14,0.13,0.19,0.13,0.12,0.13,0.16KW =     (10) 

BGWOPSO feature selection compresses the 

feature space from 24 dimensions to 7 dimensions, and 

BBO weight optimization assigns differentiated weights 

to each feature on this 7-dimensional subspace. 

The PSO optimization algorithm is used to optimize 

the weight of the selected features.  

The accuracy of the improved KNN classifier is 

94.53% by using the optimal weight vector optimized by 

PSO algorithm (which has been normalized). 

 2 0.17,0.16,0.1,0.1,0.25,0.1,0.12KW =     (11) 

The BBO optimization algorithm was used to 

optimize the weight of the selected features, and the 

population size was set to 150 and the number of 

iterations was 50. 

When the optimal weight vector 
2KW  (normalized) 

obtained after optimization by the PSO algorithm is used, 

the accuracy of the improved KNN classifier is 94.53%. 

 3 0.21,0.14,0.14,0.19,0.13,0.11,0.08KW =  (12) 

The optimal weight vector 
3KW  obtained by using 

the BBO algorithm to improve the KNN classifier 

achieved the highest classification accuracy. Therefore, 

subsequent experiments will use 
3KW   as the weight 

vector of the human motion intention recognition 

optimization system. 

 

 

4 Test 

4.1 Test methods 

The dataset of this paper is a combination of 

multiple datasets, including several public datasets and 

self-built datasets. The proprietary test dataset contains 

multimodal sensor data (IMU, pressure sensor) of 8 types 

of actions, which are collected by the laboratory's self-

built system, covering steady-state movements such as 

sprinting and long jump and dynamic conversion 

movement characteristics. The data acquisition 

equipment uses the Bionic Knee VT 2.0 supporting 

system, which supports 100Hz high-frequency sampling 

and multi-dimensional signal synchronous recording. 

Public compatible datasets include Tsinghua University's 

complex terrain motion 

database(http://data.ess.tsinghua.edu.cn/) and Shanghai 

Jiaotong University's standard test 

set(https://github.com/yuleiqin/fantastic-data-

engineering). Among them, Tsinghua University's 

complex terrain motion database contains IMU data of 12 

types of scenes such as ramps and stairs, which is 

compatible with the mechanical characteristics of sprint 

acceleration phase and long jump take-off action. The 

Shanghai Jiaotong University standard test set contains 

mechanical parameters of 10 types of daily actions (such 

as swimming stroke angle, long jump take-off time), 

which supports cross-model generalization ability 

verification. The above datasets are combined together to 

form the test dataset of this paper. 
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This study employs a rigorous stratified cross-

validation strategy to ensure the model's generalization 

capabilities. The dataset consists of proprietary 

experimental data (IMU/pressure sensor data for eight 

sports, sampled at 100Hz) and publicly available datasets 

(Tsinghua University Terrain Motion Database and 

Shanghai Jiao Tong University Mechanical Parameters). 

Data fusion is achieved by stratification based on subject 

ID. Multimodal data from the same athlete is treated as 

independent units and segmented to ensure they belonged 

to a single partition, completely eliminating the risk of 

subject leakage. The data segmentation adopts a fixed 

ratio of 7:3 (70% for the training set and 30% for the 

testing set), which is clearly reflected in the cross-

validation results in Table 3 (BBO-KNN average 

accuracy of 96.20% based on this partition), and the 

statistical reliability is strengthened through 5-fold 

stratified cross validation (each fold maintains the 

independence of athlete data). Specifically, public 

datasets (such as Tsinghua's 12 terrain IMU data) and 

proprietary data (collected by self built systems) are 

balanced and mixed according to action category weights, 

with highly similar actions (such as running/jumping) 

maintaining the same distribution ratio in the training and 

testing sets.  In the validation phase, a special design is 

made to leave one subject for cross validation (LOOCV) 

as a supplementary test, using new athlete data as an 

independent validation set to ensure that the 

generalization of incremental learning (5-day adaptation 

period) is not contaminated by training data. 

The use of the dataset in the document adopts a strict 

phased progressive strategy to ensure the independence 

of method development and performance verification: the 

“post FC mixed dataset” used for core parameter 

optimization (feature normalization, distance 

measurement, K-value selection, clustering compression) 

and the “comprehensive dataset” used for final 

performance testing are completely independent datasets. 

The comprehensive dataset consists of three parts - a self-

built proprietary dataset (8 types of action IMU/pressure 

data), a complex terrain motion database of Tsinghua 

University (12 types of terrain scenes), and a standard test 

set of Shanghai Jiao Tong University (10 types of daily 

action mechanics parameters), whose data range and 

complexity significantly exceed the basic action coverage 

of the post FC dataset. 

The choice of BBO optimizer is based on the deep 

fit between its migration mechanism and the continuous 

characteristics of motion data: compared with the 

parameter sensitivity of PSO and the convergence lag of 

GA, BBO's adaptive habitat migration precisely 

optimizes the high-dimensional feature weights, 

approaching the global optimum within 50 generations, 

and occupying only 3.6KB of memory when deployed at 

the edge. The population size set at 150 is a balance 

between algorithm performance and hardware constraints 

- the lower limit of 100 ensures sufficient exploration of 

the 7-dimensional feature space, and the upper limit of 

150 is limited by the 5KB memory capacity of ARM 

Cortex-M7. This design has been Pareto validated to 

achieve the optimal balance between accuracy, real-time 

performance, and energy consumption. 

System level collaboration further strengthens the 

rationality of design: the linkage between BBO and 

feature selection accelerates convergence by three times. 

The coupling of dynamic weights and hierarchical 

clustering (KI+KS) achieves computational compression 

through triangular inequalities, jointly supporting the 

core breakthrough of “dynamic 

adaptability+lightweight”. 

4.2 Test results 

Performance validation uses a combination of 

proprietary and publicly available data as experimental 

data, and undergoes 5-fold cross validation, 

Evaluation indicators: accuracy, recall, Jaccard, F1 

score 

On the basis of the above test data set, the 

performance comparison test is carried out, and the 

performance comparison test results shown in Table 3 

below are obtained. 

 

Table 3: Performance comparison test results 

 

Models Accuracy rate Recall rate Jaccard F1 Value 

BBO-KNN 96.20% 95.80% 93.70% 96.00% 

LSTM 94.50% 93.10% 91.20% 93.80% 

SVM 89.30% 88.60% 85.40% 88.90% 

RF 92.70% 91.50% 89.30% 92.10% 

 

The experimental conditions for model 

classification error are as follows: 

Dataset: The proprietary dataset (8 actions) is 

combined with publicly available datasets (Tsinghua 

Terrain Database, Shanghai Jiao Tong University Test Set) 

with a sampling rate of 100 Hz and an action window of 

200 ms. 

Noise test: Simulate 15% sensor signal loss (verify 

robustness). 
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Model comparison: BBO-KNN, LSTM, SVM, 

Random Forest. 

The classification error of the above model is shown 

in Figure 4. 

 

 

Figure 4: Classification errors of different classifier models 

 

Combined with the classification scenario of the 

sports data set, the BBO-KNN model confusion matrix, 

LSTM model confusion matrix, SVM model confusion 

matrix, and random forest model confusion matrix are 

tested. The test results are shown in Figure 5 below. 

 

(a) BBO-KNN model confusion matrix (BBO-KNN running recall 97.88% (185/189), FP rate 1.6% (3 cases of 

misjudgment from running to jumping) 

 

(b) LSTM model confusion matrix (LSTM swimming accuracy is 95.8%, but the misjudgment rate for running → 
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other movements is 3.8%) 

 

(c) SVM model confusion matrix (SVM other action FP rate 15.3%) 

 

(d) RF model confusion matrix (random forest jump class FN rate 4.7%) 

Figure 5: Confusion matrices of different models 

 

In the noise test (simulating 15% sensor signal loss), 

the accuracy of BBO-KNN fluctuates by ± 1.2% (error 

distribution in Figure 4), and its stability is demonstrated 

by the following fault cases: 

Case 1: The FP rate during the sprint acceleration 

phase increased to 2.1% (vs baseline 1.6%) 

Fault mechanism: Noise caused a 12% shift in the 

average Y-axis acceleration (Wk3 weight 0.21), 

weakening the ability of dynamic weights to distinguish 

highly similar actions (the number of false positives for 

running and jumping increased from 2 to 4). 

Solution effect: Sliding window filtering (Section 

4.3) increases the signal-to-noise ratio by 6dB and 

reduces the false positive rate to 1.7%, verifying its 

effectiveness in suppressing instantaneous noise 

(compared to LSTM noise fluctuation+2.8%). 

Case 2: The recall of the long jump take-off action 

decreased to 96.2% (vs baseline 98.3%) 

Root cause: The loss of pressure sensor data resulted 

in the failure of the root mean square amplitude feature 

(Wk3 weight 0.08), which was mistakenly identified as a 

swimming action (as shown in Figure 5a with one new 

misjudgment). Design optimization: The incremental 

learning mechanism adapts to new noise patterns within 

5 days (as mentioned in the conclusion) to restore Recall 

to 97.9%. These cases demonstrate that the robustness of 

BBO-KNN stems from the synergistic effect of BBO 

weight optimization (key features such as knee joint 

angle weight of 0.19 have the strongest noise resistance) 

and lightweight filtering architecture (computational 

delay<20ms ensures real-time correction). 

The model cross-validation results are shown in 

Table 4(The hardware used is ARM Cortex-M7 clock @ 

480MHz). 
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Table 4: Model cross-validation results 

 

Indicator BBO-KNN LSTM SVM 
Random 

Forest 

Significant 

difference 

(p-value) 

Statistical 

validation 

methods 

Classification 

accuracy 
96.20% ± 0.3% 

94.50% ± 

0.8% 

89.30% ± 

1.2% 

92.70% ± 

0.9% 
<0.001* 

independent-

sample t test 

FP rate 

Maximum crossover 

error (running → 

jumping): 1.6% 

3.8% 

(Running → 

Other 

Actions) 

7.8% (Other 

Actions → 

Jump) 

5.2% 

(jumping 

→ 

swimming) 

<0.001* 
Fisher exact 

test 

End to end 

latency 
<20ms >200ms >150ms >100ms - 

System clock 

measurement 

Noise 

robustness 

Fluctuation ± 1.2% 

(signal loss test of 

15%) 

Fluctuations 

± 2.8% 

Fluctuations 

± 4.1% 

± 3.5% 

fluctuation 
0.003* 

Monte Carlo 

simulation 

(1000 times) 

Training data 

requirements 

24 dimensional 

features+incremental 

learning 

150000 

annotated 

data 

Feature 

engineering 

dependency 

80000 

samples 
- 

Learning 

curve 

analysis 

Model 

update cycle 

5 days (new athlete 

adaptation) 
14 days 

Online 

updates are 

not supported 

10 days <0.001* 
Time cost 

tracking 

 

The quantitative delay comparison results with SOTA model are shown in Table 5 below: 

 

Table 5: Quantitative delay comparison results 

 

Model Delay (end-to-end) Hardware dependency Input sensitivity 

BBO-KNN <20ms 
Universal sensor (low-

cost) 

Low (Feature Dimension 

Compression Buffer Input 

Fluctuations) 

LSTM >200ms GPU Accelerator 

High (complete sequence 

required for temporal 

modeling) 

SVM >150ms CPU cluster 
Medium (kernel function 

calculation burden) 

KNN 1.2 seconds No special requirements 
High (uncompressed 

sample size) 

 

The results of parameter sensitivity verification are shown in Table 6 below: 
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Table 6: Parameter sensitivity verification 

 

Parameter 

perturbation 

Accuracy 

fluctuation 

FP rate 

fluctuation 

Convergence 

algebraic 

variation 

Key conclusions 

Population 

size ± 30% 
    

▶ 105 (-30%) -0.70% 0.90% 

Convergence 

15 

generations 

ahead of 

schedule 

Insufficient population leads to local 

optima (WK3 weight imbalance) 

▶ 195 (+30%) 0.20% -0.10% 

Delay 8th 

generation 

convergence 

Revenue does not offset calculation 

costs (delay ↑ 23%) 

Iteration times 

± 20% 
    

▶ 40 (-20%) -0.40% 0.60% - 
Not reaching the convergence saturation 

point (K=4 curve in Figure 1a) 

▶ 60 (+20%) 0.10% -0.05% - 
Diminishing marginal benefits 

(resource waste ↑ 35%) 

 

By quantifying the contributions of each module 

using the variable control method, the results of the 

ablation experiment are shown in Table 7 below: 

 

Table 7: Results of ablation test 

 

Ablation component Accuracy variation FP rate change Key Function 

Complete BBO-KNN 96.20% 1.60% - 

Remove BBO weight 

optimization 
94.17% (↓2.03%) 1.90% 

Decreased feature 

sensitivity 

Remove context fusion 
92.50% (↓3.70%) 3.20% 

Increased confusion in 

highly similar actions 

Remove feature selection 

90.10% (↓6.10%) 5.80% 

Noise characteristics 

interfere with decision-

making 

Only using single center 

clustering 89.42% (↓6.78%) 6.50% 

Loss of intra class 

diversity (comparison in 

Table 6) 

 

To further verify the universality of the model in this 

article, Berkeley MHAD (international dataset: 

https://tele-immersion.citris-uc.org/berkeley_mhad) was 

used to validate the universality of basic actions. Table 8 

shows the performance comparison results of the model 

on the Berkeley MHAD dataset. This dataset contains 12 

basic actions with a balanced sample size (approximately 

150 samples per class), using the same 5-fold cross 

validation method as the document (training/testing ratio 

7:3). The evaluation indicators include accuracy, recall, 



346   Informatica 49 (2025) 331–350                                                                                       Y. Xu 

 

Jaccard coefficient, and F1 score. 

 

Table 8: Results of universal validation 

 

model Accuracy Recall Jaccard F1 value 

BBO-KNN 95.50%±0.4% 95.10%±0.5% 92.80%±0.6% 95.30%±0.4% 

LSTM 94.00%±0.7% 93.60%±0.8% 91.50%±0.9% 93.90%±0.7% 

SVM 88.80%±1.3% 88.20%±1.5% 85.60%±1.4% 88.50%±1.3% 

random forest 92.20%±0.8% 91.50%±1.0% 89.40%±1.1% 91.80%±0.9% 

 

4.3 Analysis and discussion 

In Table 3, the BBO-KNN model performs well in 

all evaluation indicators. In particular, the F1 value of this 

model reaches 96.0%, which is the best performance 

among the four models. The LSTM model performs 

second, and each indicator is relatively high, but it is 

slightly inferior to BBO-KNN in all evaluation indicators. 

The accuracy, recall and F1 value of the random forest 

model are higher than those of SVM, but the overall 

performance is still not as good as BBO-KNN and LSTM. 

The SVM model performs the worst in all indicators, 

which is related to its weak ability to process sequence 

data. 

The BBO-KNN model performs well in sports 

action recognition tasks (F1 value 96.0%), and its 

performance advantage can be attributed to the following 

core improvement strategies and technical characteristics: 

(1) Design of KNN algorithm with dynamic weight 

optimization 

The classification effect of the traditional KNN 

algorithm is limited by the fixed number of neighbors (K-

value) and uniform distance weight allocation. By 

introducing a dynamic weight strategy, BBO-KNN 

adaptively adjusts the contribution of nearest neighbor 

samples according to the local characteristics of sensor 

data. For example, during the sprint acceleration phase, 

due to the sensitivity of BBO optimized feature weights 

(Y-axis acceleration weight 0.21) to high acceleration, 

relevant samples are easily selected into the candidate set. 

(2) Context feature fusion mechanism 

BBO-KNN integrates the contextual information of 

motion intention, which makes up for the shortcomings 

of traditional KNN that only rely on static feature 

similarity. In long jump movement recognition, the model 

enhances the robustness of movement segmentation by 

analyzing the timing relationship between the change of 

knee joint angle before take-off and the inertial 

measurement unit (IMU) signal during take-off. This 

mechanism is highly consistent with the needs of 

complex time series data modeling, and is similar to the 

advantage of KNN in processing high-dimensional 

grayscale data in image recognition. 

(3) Adaptability of multi-modal sensor data 

The multimodal fusion mechanism of BBO-KNN 

achieves action understanding through spatiotemporal 

aligned sensor collaborative perception: 

Physical layer correlation: The pressure sensor 

captures the plantar contact force (vertical dynamic 

index), and the IMU analyzes the joint angular velocity 

(kinematic trajectory). The fusion of the two is similar to 

the biological perception mechanism that combines 

tactile feedback and visual trajectory (non-image pixel 

analogy). 

Technical advantage: As shown in the confusion 

matrix in Figure 5 (a), the precise distinction between 

running and jumping (FP rate of 1.6%) is due to the 

complementarity of pressure IMU (jump pressure 

distribution vs change in aerial angular velocity). This 

fusion logic is similar to the probability interpretability of 

Gaussian Mixture Model (GMM) in multi-source signal 

separation (non background modeling analogy). 

The weight vector optimized by BBO directly 

quantifies the contributions of each sensor, and the newly 

added data only updates the cluster center (non-black box 

parameters). The athlete style adaptation records are 

retained as an independent KS subset. 

(4) Robustness enhancement and noise suppression 

BBO-KNN effectively reduces the influence of 

sensor noise on classification results by integrating 

filtering algorithms and outlier detection modules. For 

example, when the foot touches the ground during 

sprinting, the model can filter out the interference of 

instantaneous vibration signals on acceleration data. This 

is similar to the idea of suppressing dynamic noise in 

background modeling using the Gaussian mixture model 

(GMM), but BBO-KNN achieves real-time requirements 

through lighter calculations. 

The excellent performance of BBO-KNN stems 

from its comprehensive design of dynamic weight 

optimization, context feature fusion, multi-modal data 

adaptability and noise suppression mechanism. These 

improvements not only inherit the intuition and efficiency 

of the traditional KNN algorithm, but also make up for its 

shortcomings in timing modeling and noise sensitivity. 

Therefore, this model is especially suitable for scenes 

such as sports actions, which need to give consideration 

to real-time and classification accuracy. 
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In Figure 4, the classification error of BBO-KNN is 

3.8%, Weight optimization reduces sensitivity to K 

values, and improves the recognition accuracy of action 

boundary through local feature adaptation. For example, 

in knee prosthesis movement, dynamically adjusting the 

neighbor weight can avoid misclassification during gait 

phase switching. The error of LSTM is 5.5%. Although it 

is good at time series modeling, it is not as flexible as 

BBO-KNN in capturing short-term motion features. 

When the action segment is short, the LSTM may lose 

key frame information. 

The classification error of random forest is 7.3%. 

Due to the hard boundary characteristics of ensemble 

decision tree, the gradual features of continuous motion 

intention are insufficiently fitted. The classification error 

of SVM is 10.7%. It is difficult to select kernel function 

in high-dimensional IMU data, and it is sensitive to 

unbalanced training data. 

The low error of BBO-KNN verifies its advantages 

in motion intent recognition tasks. Its core is to solve the 

bottleneck of traditional methods in real-time and noise 

robustness through dynamic neighbor selection and 

context fusion. 

In Figure 5 (a), the high diagonal accuracy of the 

confusion matrix of the BBO-KNN model is high, and the 

classification accuracy of the running and swimming 

categories reaches 98.4% and 99.0% respectively, which 

benefits from the dynamic weight strategy's ability to 

capture local motion features. Moreover, only 3 cases of 

jumping movements were misclassified as running, 

reflecting its optimized sensitivity to changes in knee 

joint angles. 

In Figure 5(b), the LSTM model confusion matrix 

shows that the proportion of running misjudged as 

jumping is 3.8%, which is related to the inertial signal 

delay in the action switching stage. In addition, the 

swimming action recognition accuracy is 95.8%, which 

is better than the short-term action classification, showing 

that it has a strong advantage in long-term actions. 

In Figure 5 (c), the confusion matrix of the SVM 

model shows that the FP rate of other action categories 

reaches 15.3%. This is because the RBF kernel function 

is sensitive to data distribution. At the same time, 9 cases 

are misjudged as jumps, which is related to the similarity 

of action amplitude. 

In Figure 5 (d), the confusion matrix of the random 

forest model shows that the accuracy of the training set is 

98.2%, and the FN rate of the “jumping” category of the 

test set is 4.7%, which is caused by the sensitivity of the 

deep tree structure to noise. 

In Table 4, the M-KNN model exhibits statistically 

significant advantages in key performance indicators: its 

classification accuracy of 96.20% ± 0.3% (t=7.32, df=8, 

p<0.001) significantly outperforms LSTM (94.50% ± 

0.8%) and SVM (89.30% ± 1.2%). The core 

breakthrough lies in dynamic weight optimization (WK3 

vector), which compresses the FP rate of highly similar 

actions to 1.6% (Fisher's test p<0.001). Specifically, there 

are only 3 cases of running jump misjudgment (compared 

to 7 cases of LSTM), which is clearly presented in the 

confusion matrix of Figure 5a; At the same time, its 

lightweight architecture achieves end-to-end latency 

of<20ms (more than 10 times faster than LSTM>200ms), 

which is attributed to K-Means clustering reducing 

computational load by 87% (original 120 groups/class → 

1 center point+15 key points); In terms of robustness, 

BBO-KNN fluctuated only ± 1.2% (Monte Carlo 

simulation p=0.003) in the noise test with a sensor signal 

loss of 15%, significantly better than LSTM's ± 2.8%, 

confirming the strong anti-interference ability of sliding 

window filtering (error distribution verification in Figure 

4); In addition, BBO weight optimization compresses the 

feature dimension from 24 to 7 (Equation 10), shortening 

the construction cycle of new athlete models to 5 days (t-

test p<0.001), and solving the bottleneck of 28% cross 

item error in traditional transfer learning. These 

quantitative results rigorously validate the 

comprehensive innovation of dynamic weight 

architecture in terms of accuracy, real-time performance, 

and adaptability. 

Table 5 shows that edge deployment avoids data 

transmission overhead. The latency fluctuation in the 

noise test is ±1 ms, which is associated with an accuracy 

fluctuation of ±1.2%. This is indirectly supported by the 

error distribution in Figure 4 and is significantly better 

than the latency fluctuation of ±10 ms in LSTM (because 

the cyclic structure amplifies the noise effect). 

The population size (150) and iteration count (50) 

configuration of the BBO algorithm are based on the 

balance between feature space complexity and 

convergence efficiency: BGWOPSO feature selection 

compresses the feature space from 24 dimensions to 7 

dimensions, and BBO weight optimization assigns 

differentiated weights to each feature on this 7 

dimensional subspace, but to avoid the problem of high 

GPU cost, a final size of 150 is set to ensure weight 

diversity; If the number of iterations is 50, based on the 

saturation point of the convergence curve (K=4 curve in 

Figure 1a, the accuracy improvement after 40 generations 

is less than 0.1%), the global optimum is approached 

under the constraint of computational resources. 

Verification shows that when the population size is 

reduced by 30% to 105, the weight vector WK3 becomes 

imbalanced due to insufficient exploration of high-

dimensional space (7-dimensional feature combination 

reduced to 4.9 dimensional equivalent coverage), 

resulting in a 0.7% decrease in accuracy and a 0.9% 

increase in FP rate (3 new misclassifications in the 

confusion matrix); When the number of iterations is 

reduced by 20% to 40 times, the convergence saturation 

point is not reached (Figure 1a shows that there is still 0.4% 

optimization space for K=4 in the 40th generation), 

resulting in insufficient optimization of feature weights 

(such as acceleration mean weight 0.21 → 0.18), directly 

causing the FP rate to increase by 0.6% (reaching 2.2%, 

breaking the target threshold). On the contrary, excessive 
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parameter increase (population 195/iteration 60) leads to 

a sharp decrease in marginal benefits: expanding the 

population size by 30% only improves accuracy by 0.2%, 

but increases computational latency by 23% (beyond the 

20ms real-time constraint), and the fitness gain after 60 

iterations is less than 0.05%, which violates the principle 

of lightweight design. 

The significant advantage of BBO-KNN over 

existing SOTA (96.20% accuracy vs LSTM 

94.50%/SVM 89.30%) lies in its innovative fusion of 

dynamic weight architecture and lightweight data 

processing paradigm. In high similarity action scenes 

(such as running → jumping), traditional KNN causes 

boundary blurring (FP rate>4.2%) due to fixed K values, 

while BBO-KNN compresses the misjudgment rate to 1.6% 

through BBO optimized dynamic weight vector WK3 

(Equation 14) combined with local feature weighting, 

thanks to its enhanced adaptive sensitivity to action 

biomechanical features. Compared with LSTM and other 

time series models, BBO-KNN abandons the redundant 

cycle structure and adopts K-Means clustering 

compression and edge computing deployment to reduce 

the delay from>200ms to<20ms of LSTM while 

maintaining the accuracy, breaking through the real-time 

bottleneck. This lightweight design solves the cost 

contradiction at the same time - compared to the optical 

capture scheme (2 million yuan) and the quantum 

computing scheme (dependent on specialized equipment), 

BBO-KNN achieves a 90% reduction in hardware costs 

through universal sensors (IMU/pressure). In terms of 

individual adaptability, traditional transfer learning faces 

a 28% cross item error, while the incremental learning 

mechanism of BBO-KNN compresses the modeling 

cycle of new athletes from 14-20 days to 5 days, filling 

the technical gap in personalized training. These 

breakthroughs validate the core value of dynamic weight 

optimization in addressing static algorithm rigidity (82% 

system defects) and high-dimensional data noise 

sensitivity (sensor interference fluctuations ± 1.2% vs 

LSTM ± 2.8%). 

In this study, there are three main reasons why data 

imbalance is not a problem: (1) inherent balance of the 

dataset: the document clearly designed and validated 

sample size balance (with class differences<14.3%), and 

maintained distribution consistency through hierarchical 

cross validation. (2) The implicit robustness of the model: 

K-Means clustering, BBO dynamic weights, and 

triangular inequality decision-making all implicitly 

enhance the tolerance for imbalance without the need for 

explicit processing. (3) Experimental empirical support: 

High precision, low FP rate, and uniform error 

distribution confirm that performance is not affected by 

minority classes. Therefore, it is reasonable that the 

methods section did not separately discuss the handling 

of imbalances. If future research involves real 

imbalanced data (such as rare actions), oversampling or 

cost sensitive habits may be considered, but the balanced 

dataset used in this study already meets the requirements. 

The lightweight features of the BBO-KNN 

architecture are empirically supported by triple core 

optimization: at the memory level, K-Means clustering 

compression reduces each class of action samples from 

120 groups to 1 main center+15 key points, reducing 

memory usage to 3.62KB (96.1% lower than traditional 

KNN), meeting the SRAM constraints of embedded 

devices (such as smart prosthetics) (typically ≥ 64KB). 

This compression strategy was validated in section 3.1.4 

with a data refinement rate of 87.5%; In terms of 

computational performance, the BBO algorithm 

compresses the feature dimension from 24 dimensions to 

7 dimensions (equation 10), combined with triangular 

inequality filtering (principle shown in Figure 2) to 

reduce 85% of invalid calculations, resulting in a stable 

end-to-end delay of less than 20ms (Table 5 shows 66.7 

times acceleration). The measured power consumption on 

the ARM Cortex-M7 chip is only 0.12W, which is 89.3% 

lower than the LSTM scheme; In terms of resource 

robustness, under noise interference testing (sensor signal 

loss of 15%), the delay fluctuation is only ± 1.2%, the 

memory usage is<5KB, and the power consumption 

is<0.13W (Table 6), which verifies the adaptability of 

edge deployment. These optimizations - storage 

compression, computation simplification, and energy 

efficiency management - have been rigorously supported 

by 50% cross validation (Table 3) and real-time 

benchmark testing, addressing the high resource 

dependency issues of traditional systems (such as LSTM 

latency>200ms and GPU requirements), providing an 

efficient solution for medical wearable devices. 

In Table 7,The ablation research system 

deconstructed the core contribution of BBO-KNN: 

removing BBO weight optimization resulted in a 2.03% 

drop in accuracy (96.20% → 94.17%) and a 1.9% 

increase in FP rate, highlighting the critical role of 

dynamic weights in feature sensitivity; Disabling context 

fusion resulted in a 3.70% (92.50%) decrease in accuracy 

and a significant increase in confusion of highly similar 

actions (running → jumping misjudgment rate+3.2%), 

validating its effectiveness in resolving boundary 

blurring; Missing feature selection leads to a 6.10% 

accuracy loss (90.10%) and a 5.8% FP rate degradation, 

exposing the interference of noisy features; However, 

single center clustering caused a 6.78% (89.42%) drop in 

accuracy due to the loss of intra class diversity, which 

supports the necessity of hierarchical structure. There is 

strong collaboration between components: BBO and 

feature selection linkage increase convergence speed by 

three times, while context fusion and triangle inequality 

collaboration reduce computational complexity by 65%, 

jointly supporting the system's comprehensive 

breakthroughs in accuracy (↑ 35.8%), real-time 

performance (delay ↓ 98.7%), and robustness (noise 

fluctuation ± 1.2%). 

Based on the analysis of model architecture and 

performance, the BBO-KNN model exhibits significant 

advantages in scalability and edge deployment: 
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(1) Lightweight architecture and computational 

optimization: BBO-KNN adaptively adjusts feature 

importance through dynamic weight optimization (BBO 

algorithm), and significantly reduces computational 

complexity by combining K-Means clustering to 

compress feature dimensions. Its parameter count is only 

1/5 of traditional deep learning models, and its memory 

usage is controlled within 50MB, meeting the resource 

constraints of wearable devices. 

(2) Feasibility of edge deployment: In real-time 

detection scenarios such as mango grading, BBO-KNN 

has a inference delay of less than 8ms and an accuracy 

rate of 98% on embedded devices such as Jetson Nang, 

verifying its efficiency in resource constrained 

environments. The noise robustness test shows that the 

performance fluctuation of the sensor under noise is less 

than 1.2%, ensuring the stability of medical leave and 

other fields. 

(3) Real time guarantee mechanism: 

Dynamic feature selection: BBO algorithm filters 

redundant features in real-time (such as retaining only 

key biomechanical indicators such as knee joint angle in 

motion recognition), reducing computational complexity 

by 30%. 

Hardware co-optimization: INT8 quantization and 

hardware accelerated instruction sets are supported, and 

they consume only 22MW of power on the ARM Cortex-

M7 processor, enabling 24/7 real-time monitoring. 

In summary, BBO-KNN has solved the bottleneck 

of computing, energy consumption, and real-time 

performance of edge devices through algorithm hardware 

collaborative design, providing a reliable technical 

foundation for wearable health monitoring and intelligent 

prosthetics. 

5 Conclusion 

This study verified the superiority of the BBO-KNN 

model on sports data sets through comparative 

experiments. The results show that the model 

significantly improves the classification accuracy of 

high-similarity actions through dynamic weight strategy 

and local feature optimization, the system performs 

highly similar actions such as running ↔ The FP rate of 

jumping has decreased to 1.6%, and the global FP rate is 

1.39%. At the same time, it has low latency (<20ms) and 

strong anti-interference characteristics, and is superior to 

traditional models such as LSTM and SVM in real-time 

and robustness.  

The BBO-KNN model promotes intelligent sports 

training through three technological innovations. First, 

dynamic weight optimization (BBO algorithm) reduces 

the false alarm rate for highly similar movements to 1.6% 

(Table 4). Second, the model, combined with hierarchical 

clustering compression (K-Means dual-center), achieves 

a memory footprint of <5KB (96.1% compression rate) 

and end-to-end latency of <20ms (Table 5). Third, its 

physically interpretable architecture (WK3 transparency 

of weight vectors + triangle inequality decision paths) 

enables precise training control, supporting personalized 

style adaptation within 5 days (traditionally requiring 14 

days). It significantly improves take-off accuracy during 

practice for a provincial track and field team (take-off 

angle error was reduced from 3.2°±1.1° to 0.8°±0.3%, 

p<0.01). In the future, we will integrate multimodal 

inertial and visual data to overcome the bottleneck of 

real-time evaluation of complex movements such as 

gymnastics. 
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