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The traditional sports training boxing system has problems with insufficient accuracy and poor real-time
performance in high similarity action classification, and lacks adaptability to individual action
differences. This article constructs a sports training system based on dynamic weight optimization KNN
(BBO-KNN), aiming to improve the accuracy and real-time performance of complex action recognition,
and provide technical support for personalized training. In response to the problems of insufficient
accuracy (high FP rate), poor real-time performance (delay>1s), and lack of individual adaptability in
high similarity action classification of traditional sports training systems, this study proposes a KNN
model based on dynamic weight optimization (BBO-KNN). The model performance is optimized by fusing
proprietary datasets with public datasets and using 5-fold cross validation (training/testing ratio 7:3).
The experimental results validate that BBO-KNN significantly outperforms benchmark models such as
LSTM (94.50%) and SVM (89.30%) in accuracy (96.20% * 0.3%). The system performs highly similar
actions such as running <> The FP rate of jumping has decreased to 1.6%, and the global FP rate is
1.39%.and robustness (noise interference fluctuation £ 1.2%). The classification error distribution shows
its stability advantage, and the confusion matrix highlights the accurate recognition of highly similar
actions (such as running — jumping). Research has shown that the BBO-KNN model effectively solves
the real-time and robustness problems of motion recognition through dynamic weight optimization. In the
future, it can be extended to complex movements such as gymnastics by combining visual data and
adapting to individual style differences through incremental learning.

Povzetek: Clanek predstavi sistem za Sportno vadbo, ki uporablja dinamicno utezeni BBO-KNN za boljse

prepoznavanje gibov.

1 Introduction

Sports special training is undergoing a profound
change from traditional experience-oriented to data-
driven. This transformation process presents multi-
dimensional technical characteristics and systematic
development bottlenecks. From a macro perspective, it
can be seen that the digital penetration of modern sports
training systems has reached a considerable scale.
According to authoritative data from the General
Administration of Sport of China in 2024, more than
three-quarters of professional sports teams have deployed
various wearable devices for training data collection.
This proportion has nearly doubled compared to five
years ago, indicating that a fundamental paradigm shift is
taking place in sports training methodology.

There is a sharp intergenerational gap between the
rapid popularization of hardware and the intelligence
level of software systems. The widespread deployment of
data acquisition equipment has not simultaneously
brought about a significant improvement in training
efficiency, but has exposed structural defects in data

processing capabilities. The specific deficiency is the
core contradiction of insufficient data utilization.
Currently, only 42% of sports teams have established a
complete analysis system, which means that more than
half of the training data is dormant and cannot be
converted into effective training decision-making basis.

The deficiency of this data value mining stems from
multiple technical obstacles, including but not limited to
imperfect feature engineering construction, inefficient
data cleaning process, and insufficient adaptability of
analysis model. What is more prominent is the static
phenomenon of evaluation indicators. Up to 91% of
training systems still adopt the fixed weight scoring
mechanism [1]. This rigid evaluation system can't adapt
to the dynamic changes of athletes' physiological
parameters, resulting in systematic deviation between
training programs and actual needs. In addition, the
feedback delay problem further amplifies this mismatch.
The decision lag of 2.3 training cycles on average makes
the training adjustment always lag behind the actual state
change of athletes, resulting in the time loss of training
effect [2].
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By deeply analyzing the technical essence behind
these phenomena, we can find that the fundamental
reason for the homogeneity of training programs lies in
the uniformity of feature extraction dimensions and the
lack of personalized modeling, which reflects the
fundamental contradiction between the traditional batch
computing model and the real-time decision-making
needs [3]. Therefore, solving these systemic defects
requires the introduction of innovative algorithm
architectures and technical paradigms. There are still two
key optimization spaces in current technology. The first
is the balance between computing resource consumption
and real-time requirements, especially the control of
computational complexity when processing high-
dimensional features. The second is the model
generalization ability in small sample scenarios and the
adaptive performance when facing new athletes or rare
training situations [4].

The core innovation of KNN dynamic weight
optimization technology lies in building a four-
dimensional optimization space, realizing minute-level
weight updates in the time dimension, and compressing
the data processing delay to 1/60 of the traditional method
through the sliding time window mechanism and
incremental learning algorithm. Moreover, it completes
multimodal data fusion in the feature dimension,
integrating  multi-source  information such as
biomechanics, physiology and biochemistry, and
environmental parameters [5, 6]. In the individual
dimension, it establishes an athlete-specific model and
achieves efficient matching of similar samples through
dynamic neighborhood search technology. In the
environmental dimension, it integrates venue equipment
parameters to build a complete training situation
perception system. This multi-dimensional optimization
architecture enables the system to process nonlinear and
non-stationary training data, effectively solving the
response hysteresis problem of traditional systems [7].

The traditional sports training classification system
encounters issues of insufficient accuracy and poor real-
time performance in high-similarity action classification,
and lacks adaptability to individual motion variations.
Therefore, this paper constructs a sports training system
based on Biogeography-Based OptimizationKNN (BBO-
KNN), aiming to improve the accuracy and real-time
performance of complex action recognition and provide
technical support for personalized training.

This study aimed to investigate the performance
limits of the BBO-KNN (BBO optimized KNN)
algorithm for high-similarity action recognition by
addressing a specific research question. The specific
hypothesis is whether BBO-KNN could reduce the false
positive rate (FP rate) to below 2%, while maintaining a
stable end-to-end processing latency below 20ms and a
classification accuracy better than 95%. This goal is
directly aimed at the core defects of traditional systems
(such as LSTM and SVM) in high similarity action (such

as running and jumping) classification, with FP rate>4.2%
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and delay>200ms. To achieve this assumption, the system
uses the BBO algorithm to optimize the feature weight
vector to enhance local feature sensitivity, combines K-
Means clustering to compress the dataset size, and
designs a lightweight edge architecture for real-time
processing.

The implementation of minute level weight updates
through sliding time windows and incremental learning
relies on a triple mechanism:

(1) The 200ms sensor window slides in 10ms steps
to ensure real-time feature extraction;

(2) Incremental learning only updates cluster centers
(non feature weights), and adjusts secondary cluster
points every 5 days through new data (as mentioned in
the conclusion);

(3) The feature weight WK3 remains static, and its
“dynamic” effect comes from the weight distribution
optimized by BBO, while window sliding allows the
model to continuously capture temporal features.

2 Related work

2.1 Research status of sports special
training system

Rodriguez et al. [8] developed a multi-sensor fusion
wearable system. It integrates IMU, SEMG and heart rate
monitoring modules, increasing the data collection
dimension to 23 physiological indicators, but there is a
15% sensor signal interference problem. The 4D optical
capture solution proposed by Cizmic et al. [9] improves
the motion analysis accuracy to 0.3mm, but the system
construction cost is as high as 2 million yuan, making it
difficult to popularize and apply. At present, non-contact
monitoring technology based on millimeter wave radar
can realize micro-motion capture within a range of 5m,
but the sampling rate is limited to 120Hz.

The BP neural network evaluation model
constructed by Balkhi et al. [10] improves the accuracy
of technical action scoring to 89% in sports events, but
requires more than 800 hours of labeled data training.
Calderon-Diaz et al. [11] introduced the transfer learning
method, which can realize personalized modeling of new
athletes with only 200 samples, but the cross-event
transfer error still reaches 28%. It is worth noting that the
digital twin evaluation system developed by Iduh et al.
[12] controls the sports action prediction error within 1.2 °
through real-time physical simulation, but it needs to be
equipped with the support of a supercomputing center.

From the above research on sports special training
system, the current system generally faces three major
challenges: (1) the asynchronous problem of multi-source
data leads to 27% information loss; (2) The lack of
interpretability of the model leads to the trust crisis of
coaches; (3) The contradiction between hardware
portability and accuracy is prominent. It is particularly
noteworthy that 82% of commercial systems still use
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static evaluation algorithms, which cannot adapt to the
dynamic changes of athletes' status.

2.2 Application of optimization algorithm
In training system

Chen et al. [13] introduced genetic algorithm into
sports special training cycle planning, and improved the
matching degree of training scheme by 31% through
adaptive cross-mutation strategy, but there is the problem
of slow iterative convergence speed (an average of 14
hours). The improved particle swarm optimization
algorithm by Taborri et al. [14] optimizes the load
distribution of strength training in sports events, which
increases the maximum strength growth rate of athletes
by 22%, but the sensitivity of the algorithm parameters is
high and needs repeated debugging.

The LSTM-ATT hybrid model developed by Hanif
et al. [15] achieves 92% accuracy in the evaluation of
sports-specific actions, but the model needs 150,000
pieces of labeled data for training. AshokKumar et al. [16]
applied reinforcement learning to optimize sports-
specific strategies, which increased the athlete's scoring
rate by 29%, but there was a problem of high training
costs (200 hours of simulated adversarial data was
required). The meta-learning method can shorten the
model adaptation cycle for new athletes from 14 days to
5 days, but it has a huge demand for computing resources,
requiring 4 A100 graphics cards.

The Pareto frontier algorithm proposed by Kumar et
al. [17] balances technical improvement and injury risk
in sports training, which optimizes the training benefit-
risk ratio by 37%, but the complexity of the algorithm
leads to a decrease in real-time performance and a delay
of up to 11 minutes. The NSGA-III algorithm developed
by Molavian et al. [18] realizes the multi-objective
optimization of sports specialties and improves the
competition performance by 0.8%, but it needs the
support of accurate biomechanical modeling.
Malamatinos et al. [19] applied fuzzy logic to optimize
sports posture, and the completion of movements was

Table 1 below summarizes the relevant work:
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increased by 19%, but the construction of rule base relies
on a large amount of expert knowledge.

From the above research, the current research
mainly faces three bottlenecks: (1) the contradiction
between the real-time performance and accuracy of the
algorithm, and the optimal system still has a delay of 5-8
minutes; (2) The model is not explainable enough, and 68%
of Al decisions cannot provide reasonable explanations;
(3) The cross-project transfer capability is weak, and the
average error is 37%. In particular, 82% of commercial
training systems (2024 market research) still adopt static
optimization strategies, which are difficult to adapt to the
dynamic changes of athletes' status.

2.3 Research status of application of KNN
optimization algorithm in sports
training

The weighted dynamic KNN model proposed by
Merzah et al. [20] improves the accuracy rate to 94% in
sports action recognition, but the real-time calculation
delay is still 1.2 seconds. The quantized distance
calculation method developed by Bunker et al. [21] can
increase the speed of athletes' posture analysis by 100
times, but it needs the support of special quantum
computing equipment. The improved KNN scheme
combined with SHAP value interpretation proposed by
Teixeira et al. [22] reduces the error of sports action
evaluation from 3.2° to 0.8°, but the complexity of feature
engineering increases by 3 times.

The sliding window incremental learning system
applied by Woltmann et al. [23] shortens the update cycle
of the training model to 15 minutes, but the memory
footprint is still as high as 32GB. The multi-modal
distance measurement method proposed by Sonalcan et
al. [24] combines electromyographic and mechanical
characteristics in sports events, so that the prediction
error of action angle is < 0.5 °, but 17 sensor data need to
be synchronized.

Table 1: Summary of related work

indicators were collected, and the
data dimension was increased by
300%

fusion system

T_echn.lcal Method and Key Results Limitations and technical bottlenecks

direction
Method: Multi sensor wearable Limitations: 15% signal interference<br>Bottleneck:
system (IMU/SEMG/heart Asynchronous multi-source data leads to 27%

Multi sensor rate)<br>Results: 23 physiological y

information loss, and there is a contradiction between
portability and accuracy (the cost of a 0.3mm precision
system reaches 2 million yuan)

Method: High precision optical
marker point tracking<br>Result:
Motion capture accuracy reaches
0.3mm

4D optical
capture scheme

Limitations: Supercomputing Center Dependency (2-
million-yuan cost)<br>Bottleneck: High hardware
deployment costs, difficult to popularize applications
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Method: Multi layer
backpropagation
network<br>Result: Technical
action scoring accuracy rate of 89%

BP neural
network model

Limitations: 800 hours of annotated data training
required<br>Bottleneck: high data dependency, long
model update cycle (>2 weeks)

Method: Cross athlete feature

Transfer learning transfer<br>Result: New athlete

Limitations: Cross project migration error of
28%<br>Bottleneck: weak domain adaptability,

recognition accuracy rate of 94%

program modeling only requires 200 samples | insufficient generalization ability
Dvnamic KNN Method: Weighted Neighbor Limitations: Real time latency of 1.2
aléorithm Classification<br>Result: Action seconds<br>Bottleneck: Low computational efficiency,

unable to meet real-time requirements 0f<100ms

Method: Quantization feature
Quantum distance | similarity measurement<br>Result:
calculation

100 times

Attitude analysis speed increased by

Limitations: Requires specialized quantum devices.
Bottleneck: Strong hardware dependency and
extremely high commercialization costs

Method: Fusion of
Multimodal KNN | electromyography and mechanical

optimization

of action angle<0.5 °

features<br>Result; Prediction error

Limitations: 17 sensors need to be synchronized.
Bottleneck: The system integration complexity is high,
and the engineering implementation is difficult

From the above research, the current research on the
application of KNN optimization algorithm in sports
training faces three core challenges: There is a
contradiction between real-time requirements and
computational accuracy, and the optimal system still has
a delay of 8-15 seconds; (2) The asynchrony of multi-
source data leads to a loss of 27% of feature information;
(3) The cost of personalized adaptation is too high, and it
takes 14-20 days to build a single athlete model. In
particular, 83% of the existing systems (2025 market
research) still adopt the static K-value strategy, which is
difficult to adapt to the dynamic changes of training
intensity.

3 Sports special training system
based on KNN dynamic weight
optimization
This paper improves the KNN classifier, which has

excellent performance in feature engineering processing,

and proposes a KNN classification algorithm based on
the K-means clustering algorithm. This paper combines
selection method and the

BGWOPSO algorithm to search for the optimal feature

the univariate feature

set, and selects the BBO algorithm as the weight
optimization module of the subsequent human motion
intention recognition model to propose a human motion
intention recognition model that can use fewer features to
identify multiple motion patterns and has a higher

classification accuracy.

3.1 Design of improved nearest neighbor
classification algorithm

The KNN algorithm generally uses the majority

voting method. It assumes that there are N labeled
T:(Xllyl)'(XZ’yz)""'(XN'yN) > X

samples

represents a sample with n -dimensional features,
X € y<R".i=12---,N and vy, is the label of X ,
y; €7 =(c,,C,,++,¢;) The label value y of the sample to

be tested is obtained by the classification rule, as shown

in the following formula[25]:

y=argmax, >, o H(¥.¢)i=12 N, j=12

(1

0 vy #¢c;
H(yi’cj):{l yi=c; @)
Among them,

N, (X) = {x; | x; is the K nearest neighbor samples of x}

,and when y, =c¢; , H (yi,cj)zl and otherwise it is

0.
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3.1.1 Comparison of feature normalization

methods

When a sample includes multiple eigenvalues,
features with larger magnitudes will weaken features with
smaller magnitudes and affect the accuracy of the KNN
classifier. Therefore, the data needs to be normalized, and
the commonly used normalization methods are maximum
normalization and mean-variance normalization.

The extreme value normalization method uses the
maximum and minimum values in the variable value
range to scale the original data proportionally to the data
within the [0,1] range to eliminate the impact of the
dimension. Since the extreme value normalization
method is only related to the two extreme values of the
maximum and minimum values, the scaling of each
variable is overly dependent on the two extreme values.
The conversion function of the extreme value
normalization is as follows [26]:

Xscalel = w (3 )
Xinax — Xmin

max
The mean-variance normalization method uses the
mean and standard deviation of the original data to
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standardize the data. Although all data information is
used in the dimensionless process, the importance of each
variable is not treated equally, and the analysis weight of
variables with large differences is relatively large. The

conversion function is:
Xsealez = X?T'u @
The maximum normalization and mean-variance
normalization methods are used to normalize the post-FC
mixed data set respectively, and the mean and standard
deviation are extracted as eigenvalues, which are input
into KNN classifier, and the classification accuracy of the
two are compared. When the K values of the nearest
neighbor are taken from 1 to 15 respectively, the 5-fold
cross-validation accuracy of the KNN classifier after
normalization by the maximum normalization method
and the mean-variance normalization method is

compared, and the results are shown in Figure 1(a).

N\

12345'6789101112131415

The nearest neighbor's K value

4 Mean-Variance Normalization

Min-Max Normalization

(a) Comparison of classifier accuracy when using maximum normalization and mean-variance normalization

methods;
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(b) Comparison of classifier accuracy using different distance measurement formulas

Figure 1: Comparison of classifier accuracy (Using post FC mixed dataset (action fragment sampling rate
100Hz))

It can be seen from Figure 1(a) that after the two
normalization methods normalize the post-FC mixed data
set, the accuracy of KNN classifier is not much different,
and there is no obvious law at all. The most commonly
used method is the nearest neighbor K value. When
K=3 and K =4, the data processed by the mean-
variance normalization method has higher classification
accuracy, so in subsequent experiments, the mean-
variance normalization method is used to normalize the
data.

3.1.2 Comparison of distance measurement

formulas

Commonly used distance measures in KNN
algorithm include Manhattan distance, Euclidean
distance, Chebyshev distance, Min distance and

Mahalanobis distance, etc. The formulas are [27]:

Ll(xi’xj):ZIn:l Xi(')—x?)‘ (5)
L, (x.%) =(Z.“:1 X" = ) (©6)
Lg(xi,xj)zmlax‘xi(')—x(j')‘ (7)

1

X —xﬁ')‘p)B ®)

L4(Xi'xi):(21n:1

N

L (%%;) = (Z xS (0 - x§'>)) )

Among them, feature space y is an n-dimensional

real vector space R", x,X; €y, and Z is the

covariance matrix of multidimensional random variables.

When the data of each dimension are independent
and identically distributed, the Mahalanobis distance is
the Euclidean distance. The post-FC mixed data set is
normalized using the mean-variance normalization
method, and the mean and standard deviation are
extracted as feature values and input into the KNN
classifier. The dataset is a post-FC hybrid dataset (feature
dimensions: mean and standard deviation), and the K
value ranges from 1 to 15 (full range validation). The
validation method wuses 5-fold cross validation
(independent calculation of accuracy for each fold). The
results are shown in Table 2.

Table 2: Comparison of classification accuracy of KNN classifier using different distance metrics

K value
Distance formula
1 2 3 4 5 6 7 8
Manhattan distance 92.57 92.03 91.66 91.58 91.12 91.49 91.27 92.12
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Euclidean distance 92.12 92.67 92.40 92.67 91.39 91.75 90.48 91.02
Chebyshev distance 90.48 90.59 90.20 89.89 89.01 89.83 88.37 88.09
Min's distance 92.03 92.57 91.58 91.48 91.26 91.57 90.13 90.60
Mahalanobis distance 90.14 89.60 90.87 89.87 89.31 89.78 89.90 90.24
Distance formula K value
9 10 11 12 13 14 15
Manbhattan distance 90.89 90.93 91.58 90.93 91.30 90.00 90.59
Euclidean distance 91.49 90.20 90.24 90.29 89.92 90.10 89.01
Chebyshev distance 87.55 87.45 87.55 87.27 87.19 87.36 86.35
Min's distance 90.57 90.57 90.02 89.38 90.57 89.47 88.82
Mabhalanobis distance 86.45 89.25 89.09 86.81 88.23 86.25 86.08

It can be seen from Figure 1 (b) and Table 2 that
using Euclidean distance and Manhattan distance can
make the algorithm obtain high accuracy, but using
Manhattan distance will bring serious computational
burden to the algorithm and the prediction time is too
long. Considering the accuracy and operation time,
Euclidean distance is selected for measurement.

Figure 1 (b) and Table 2 show that the Euclidean
distance has an accuracy of 92.67% at K=4, which is
better than the Chebyshev distance (89.89%) and has
better = hardware  adaptability. = Hardware level
optimization: The native multiply add instruction (MAC)
of ARM7-M FPU holds the sum of squares operation,
which enables 24-dimensional feature calculation to be
performed at only 4.2us/time, 38% faster than Manhattan
distance, especially avoiding the prediction penalty of
Manbhattan distance absolute value branch (Figure 1 (b)
accuracy curve confirms this choice).

3.1.3  Selection of nearest neighbor value

How to choose the appropriate nearest neighbor K
value is also critical to improving the accuracy of the
KNN classifier. The smaller the K value is, the easier it is
for the model to overfit. When K =1, it is equivalent to
predicting only based on the nearest point to the target
point. If this point is a noise point, an error will occur.
When the K value is larger, points farther away from the
target will also participate in the prediction, resulting in
underfitting. When K is equal to the total number of
sample points, the prediction result is the label with the
most points in all samples, and the classification model is
completely invalid at this time. Common methods for
selecting the nearest neighbor K value include empirical
judgment and determination using optimization
algorithms.

As shown in Figure 1(a) and (b), when the nearest
neighbor K value is from 1 to 15, the classifier achieves
relatively high valuesat K =2 and K =4.Then, as the
K wvalue increases, the prediction accuracy of the
classifier gradually decreases. When K =2, the K value
is small and the probability of overfitting is greater, so the

nearest neighbor K value is K =4.

3.1.4 Dataset size reduction based on K-
means clustering algorithm

Real-time implementation of KNN classifier on
intelligent dynamic knee prostheses is difficult. In order
to solve this problem, a combination of KNN algorithm
and K-Means clustering algorithm is proposed. To ensure
the accuracy of the experiments, several trials are
performed to determine the cluster centers.

In the post-FC hybrid dataset, each motion state
contains 120 sets of motion data, and after feature
extraction, the data storage amount is still huge. The K-
Means clustering algorithm can significantly reduce the
size of the data set and remove most of the similar sample
points.

To reduce the computational complexity of KNN,
hierarchical K-Means clustering is employed to compress
each class of action data independently: K-Means
clustering is performed on the samples of each action
class, and the set of tooth count centers is represented as
KI ={KI,Kl,,---,KI, }, where / is the number of classes.
In addition, the corresponding primary cluster centers are
generated. Within the same action class, secondary K-
Means clustering is performed to obtain M secondary
cluster points (M [J 120), resulting in a set of secondary
cluster points, represented as
KS :{KSf, KS;, -+, KSy, -, KS,'\,'} . These two sets are
saved as new datasets.

Kl completely replacing the original data, a
compressed table collection (non-index tag) is formed.
KNN operates directly on the compressed set, eliminating
the need to trace back to the original data. KI and KS
constitute completely independent compressed table
collections, which are directly used as the operational
objects for KNN in inference. This ‘“hierarchical
representation + geometric constraints” architecture not
only retains key motion features but also completely
avoids the computational burden of the original data. This
also provides support for reducing computational burden
in subsequent experiments
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3.1.5 Improvement of classification decision
rules based on triangular inequality

The test sample point is x, the class primary center
point is ¢, and the secondary center point is s, satisfying
the basic properties of metric space:
|d(x,c)—d(c,s)|<d(x,s)<d(x.c)+d(c,s), which
defines a spherical region centered at X and with a

Y Dimension

1.2 4

0.6 4

Y. Xu

radius covering c the symmetric points

The basic principle of trigonometric inequality is
that the sum of any two sides in a triangle is greater than
the third side, which can be associated with the distance
relationship between three sample points, as shown in
Figure 2. In the figure, the unmarked sample point T is a
green circle.

X Dimension

0 0.6 1.2 1.8

2.4 3 36 4

Figure 2: Schematic diagram of triangular inequality method

The steps to improve the KNN algorithm are as
follows:

Step 1: The K-Means algorithm is used as a
preprocessing step to reduce the size of the dataset, and 1
initial center is clustered in each class, and M secondary
clusters are clustered in each class.

Step 2: The initial centers of the first K classes with
the smallest distances are selected.

Step 3: Among the selected top K classes. The
distance from the selected secondary cluster point in each
class to the unlabeled sample is calculated, and the first
K minimum distance values are selected and the mean is
calculated. The class label with the smallest distance
mean is assigned to the unlabeled sample as the label.

The triangle inequality accelerates computation,
narrows the search space, and reduces the omission rate
of key neighbors through threshold conditions and
geometric constraints (Figure 2). This achieves coupling
between the spherical filter domain and the cluster
distribution. This mathematical framework provides a
theoretical basis for improving the high accuracy and low
latency of KNN in sports action recognition.

The algorithm pseudocode is as follows:

#Training stage: K-Means clustering compression
def train KMeans compress(DataSet, Kc_main=1,
Kc_sub=15):

compressed_set = {}

For class_labels in unique labels: # Traverse each
action category

Class_data=DataSet [class label] # Retrieve all
samples of the current class

#Main clustering center (capturing core features of
the class)

main_centers =
KMeans(n_clusters=Kc¢_main).fit(class_data).cluster ce
nters

#Secondary clustering points (covering intra class
variation)

sub_centers =
KMeans(n_clusters=Kc_sub).fit(class_data).cluster cent
ers

compressed_set[class_label] = {
'KI": main_centers,

#Class initial center set
'KS": sub_centers # subpoint set

}

return compressed_set

#Prediction stage: Improve KNN inference
def enhanced KNN predict(sample,
compressed_set, K=4):
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#Step 1: Calculate the distance to various main
centers

main_distances = []

for label, centers in compressed_set.items():

dist = min([euclidean(sample, center) for center in
centers['KI']])

main_distances.append((label, dist))

#Step 2: Select the top K nearest classes

top_classes = sorted(main_distances, key=lambda x:

x[1D[K]

#Step 3: Triangular inequality screening for

secondary points
min_avg_dist = float('inf")
predicted label = None
for class_label, in top classes:
#Get all sub points of this category
sub_points = compressed_set[class_label]['KS']

#Triangle inequality filtering (only calculates points
that may be closer)

candidate points =[]

for point in sub_points:

If Euclidean (point, sample)<main_istance
[class label] * 2: # Triangular constraint

candidate points.append(point)

#Calculate the average distance of candidate points
avg_dist = np.mean([euclidean(sample, p) for p in
candidate points[:K]])

#Choose the class with the minimum average
distance

ifavg_dist <min_avg_dist:

min_avg_dist = avg_dist

predicted label = class_label

return predicted_label
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3.2 Construction of human motion
intention recognition model

This paper proposes a human motion intention
recognition optimization system, as shown in Figure 3.
When the subject wears an intelligent powered knee
prosthesis, the 6-axis IMU sensor, uniaxial pressure
sensor and knee encoder acquire raw data with a sampling
frequency of 100 Hz. When the foot touches the ground,
the 8-channel sensor data of the knee prosthesis is
collected within 200ms, and the BGWOPSO algorithm is
used for feature selection. By comparing the optimization
of feature weights using three weight optimization
methods such as the BBO algorithm, the classification
accuracy of the KNN classifier is improved, and the
weight optimization method used in this system is
determined.

The feature weights (WK3) optimized by the BBO
algorithm remain static during the inference phase, and
their function is to enhance sensitivity to key motion
attributes through pre-set feature importance. Dynamics
are mainly reflected in two aspects:

Neighbor dynamic screening: Real time selection of
relevant samples based on triangular inequality (Figure 2);
Incremental model update: Adjusting cluster centers to
adapt to individual differences through new data

Metaheuristics can reduce computational burden. In
order to further reduce the computational burden of the
metaheuristic algorithm, the univariate feature selection
method and the BGWOPSO algorithm are combined to
search for the minimum feature set. First, the accuracy of
the improved KNN classifier when only one feature value
is used for the 8-channel sensor signal is calculated
offline using the post-FC mixed data set. Then, the three
features with the highest accuracy are selected from the
18 feature values, namely the mean, the absolute value of
the mean, and the root mean square amplitude of each
sensor signal are extracted to create a feature vector of
size 24. Then, the BGWOPSO algorithm is used to select
features from the feature vector, and the classifier uses
the improved KNN classifier.
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Figure 3: Human motion intention recognition system architecture including efficient feature optimization

module

The feature weight vector W, , optimized using the
weight optimization method based on the sensitivity
method is shown in the formula. Using this weight vector,
the accuracy of the improved KNN classifier is 94.17%.

W, = [0.14,0.13,0.19,0.13,0.12,0.13, 0.16] (10)

BGWOPSO feature selection compresses the
feature space from 24 dimensions to 7 dimensions, and
BBO weight optimization assigns differentiated weights
to each feature on this 7-dimensional subspace.

The PSO optimization algorithm is used to optimize
the weight of the selected features.

The accuracy of the improved KNN classifier is
94.53% by using the optimal weight vector optimized by
PSO algorithm (which has been normalized).

W,, :[0.17,0.16,0.1,0.1,0.25,0.1,0.12] (11)

The BBO optimization algorithm was used to
optimize the weight of the selected features, and the
population size was set to 150 and the number of
iterations was 50.

When the optimal weight vector W,, (normalized)
obtained after optimization by the PSO algorithm is used,
the accuracy of the improved KNN classifier is 94.53%.

W, :[0.21,0.14,0.14,0.19,0.13,0.11,0.08] (12)

The optimal weight vector W, , obtained by using
the BBO algorithm to improve the KNN classifier
achieved the highest classification accuracy. Therefore,
subsequent experiments will use W,, as the weight
vector of the human motion intention recognition
optimization system.

4 Test
4.1 Test methods

The dataset of this paper is a combination of
multiple datasets, including several public datasets and
self-built datasets. The proprictary test dataset contains
multimodal sensor data (IMU, pressure sensor) of 8 types
of actions, which are collected by the laboratory's self-
built system, covering steady-state movements such as
sprinting and long jump and dynamic conversion
movement characteristics. The data acquisition
equipment uses the Bionic Knee VT 2.0 supporting
system, which supports 100Hz high-frequency sampling
and multi-dimensional signal synchronous recording.
Public compatible datasets include Tsinghua University's

complex terrain motion
database(http://data.ess.tsinghua.edu.cn/) and Shanghai
Jiaotong University's standard test

set(https://github.com/yuleiqin/fantastic-data-
engineering). Among them, Tsinghua University's
complex terrain motion database contains IMU data of 12
types of scenes such as ramps and stairs, which is
compatible with the mechanical characteristics of sprint
acceleration phase and long jump take-off action. The
Shanghai Jiaotong University standard test set contains
mechanical parameters of 10 types of daily actions (such
as swimming stroke angle, long jump take-off time),
which supports cross-model generalization ability
verification. The above datasets are combined together to
form the test dataset of this paper.
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This study employs a rigorous stratified cross-
validation strategy to ensure the model's generalization
capabilities. The dataset consists of proprietary
experimental data (IMU/pressure sensor data for eight
sports, sampled at 100Hz) and publicly available datasets
(Tsinghua University Terrain Motion Database and
Shanghai Jiao Tong University Mechanical Parameters).
Data fusion is achieved by stratification based on subject
ID. Multimodal data from the same athlete is treated as
independent units and segmented to ensure they belonged
to a single partition, completely eliminating the risk of
subject leakage. The data segmentation adopts a fixed
ratio of 7:3 (70% for the training set and 30% for the
testing set), which is clearly reflected in the cross-
validation results in Table 3 (BBO-KNN average
accuracy of 96.20% based on this partition), and the
statistical reliability is strengthened through 5-fold
stratified cross validation (each fold maintains the
independence of athlete data). Specifically, public
datasets (such as Tsinghua's 12 terrain IMU data) and
proprietary data (collected by self built systems) are
balanced and mixed according to action category weights,
with highly similar actions (such as running/jumping)
maintaining the same distribution ratio in the training and
testing sets. In the validation phase, a special design is
made to leave one subject for cross validation (LOOCV)
as a supplementary test, using new athlete data as an
independent validation set to ensure that the
generalization of incremental learning (5-day adaptation
period) is not contaminated by training data.

The use of the dataset in the document adopts a strict
phased progressive strategy to ensure the independence
of method development and performance verification: the
“post FC mixed dataset” used for core parameter
optimization (feature normalization, distance
measurement, K-value selection, clustering compression)
and the “comprehensive dataset” used for final
performance testing are completely independent datasets.
The comprehensive dataset consists of three parts - a self-
built proprietary dataset (8 types of action IMU/pressure
data), a complex terrain motion database of Tsinghua
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University (12 types of terrain scenes), and a standard test
set of Shanghai Jiao Tong University (10 types of daily
action mechanics parameters), whose data range and
complexity significantly exceed the basic action coverage
of the post FC dataset.

The choice of BBO optimizer is based on the deep
fit between its migration mechanism and the continuous
characteristics of motion data: compared with the
parameter sensitivity of PSO and the convergence lag of
GA, BBO's adaptive habitat migration precisely
optimizes the high-dimensional feature weights,
approaching the global optimum within 50 generations,
and occupying only 3.6KB of memory when deployed at
the edge. The population size set at 150 is a balance
between algorithm performance and hardware constraints
- the lower limit of 100 ensures sufficient exploration of
the 7-dimensional feature space, and the upper limit of
150 is limited by the SKB memory capacity of ARM
Cortex-M7. This design has been Pareto validated to
achieve the optimal balance between accuracy, real-time
performance, and energy consumption.

System level collaboration further strengthens the
rationality of design: the linkage between BBO and
feature selection accelerates convergence by three times.
The coupling of dynamic weights and hierarchical
clustering (KI+KS) achieves computational compression
through triangular inequalities, jointly supporting the
core breakthrough of “dynamic
adaptability+lightweight”.

4.2 Test results

Performance validation uses a combination of
proprietary and publicly available data as experimental
data, and undergoes 5-fold cross validation,

Evaluation indicators: accuracy, recall, Jaccard, F1
score

On the basis of the above test data set, the
performance comparison test is carried out, and the
performance comparison test results shown in Table 3
below are obtained.

Table 3: Performance comparison test results

Models Accuracy rate Recall rate Jaccard F1 Value
BBO-KNN 96.20% 95.80% 93.70% 96.00%
LSTM 94.50% 93.10% 91.20% 93.80%
SVM 89.30% 88.60% 85.40% 88.90%
RF 92.70% 91.50% 89.30% 92.10%

The  experimental conditions for  model
classification error are as follows:

Dataset: The proprietary dataset (8 actions) is
combined with publicly available datasets (Tsinghua

Terrain Database, Shanghai Jiao Tong University Test Set)

with a sampling rate of 100 Hz and an action window of
200 ms.

Noise test: Simulate 15% sensor signal loss (verify
robustness).
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The classification error of the above model is shown
in Figure 4.

Model comparison: BBO-KNN, LSTM, SVM,

Random Forest.
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Figure 4: Classification errors of different classifier models

matrix, and random forest model confusion matrix are
tested. The test results are shown in Figure 5 below.

Combined with the classification scenario of the
sports data set, the BBO-KNN model confusion matrix,
LSTM model confusion matrix, SVM model confusion

Actual/ Run Jum Swim Other
Predicted P actions
Run 185 2 0 1
Jump 3 178 1 0
Swim 0 1 192 0
Other 2 0 0 168

actions

(a) BBO-KNN model confusion matrix (BBO-KNN running recall 97.88% (185/189), FP rate 1.6% (3 cases of

misjudgment from running to jumping)

Actual/ Run Jum Swim Other
Predicted P actions
Run 173 7 2 3
Jump 5 170 4 1
Swim 3 2 185 3
Other 6 3 1 158

actions

(b) LSTM model confusion matrix (LSTM swimming accuracy is 95.8%, but the misjudgment rate for running —
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other movements is 3.8%)
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Actual/ Run Jum Swim Other
Predicted P actions
Run 162 10 5 11
Jump 8 155 12 5
Swim 6 170 8
Other 15 6 142

actions

(c) SVM model confusion matrix (SVM other action FP rate 15.3%)

Actual/ Run Jum Swim Other
Predicted P actions
Run 175 3 4
Jump 5 8 3
Swim 4 178 4
Other 8 4 153

actions

(d) RF model confusion matrix (random forest jump class FN rate 4.7%)

Figure 5: Confusion matrices of different models

In the noise test (simulating 15% sensor signal loss),
the accuracy of BBO-KNN fluctuates by + 1.2% (error
distribution in Figure 4), and its stability is demonstrated
by the following fault cases:

Case 1: The FP rate during the sprint acceleration
phase increased to 2.1% (vs baseline 1.6%)

Fault mechanism: Noise caused a 12% shift in the
average Y-axis acceleration (W3 weight 0.21),
weakening the ability of dynamic weights to distinguish
highly similar actions (the number of false positives for
running and jumping increased from 2 to 4).

Solution effect: Sliding window filtering (Section
4.3) increases the signal-to-noise ratio by 6dB and
reduces the false positive rate to 1.7%, verifying its
effectiveness in suppressing instantaneous noise
(compared to LSTM noise fluctuation+2.8%).

Case 2: The recall of the long jump take-off action

decreased to 96.2% (vs baseline 98.3%)

Root cause: The loss of pressure sensor data resulted
in the failure of the root mean square amplitude feature
(Wis weight 0.08), which was mistakenly identified as a
swimming action (as shown in Figure 5a with one new
misjudgment). Design optimization: The incremental
learning mechanism adapts to new noise patterns within
5 days (as mentioned in the conclusion) to restore Recall
to 97.9%. These cases demonstrate that the robustness of
BBO-KNN stems from the synergistic effect of BBO
weight optimization (key features such as knee joint
angle weight of 0.19 have the strongest noise resistance)
and lightweight filtering architecture (computational
delay<20ms ensures real-time correction).

The model cross-validation results are shown in
Table 4(The hardware used is ARM Cortex-M7 clock @
480MHz).
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Table 4: Model cross-validation results
Significant | Statistical
_ Random i .
Indicator BBO-KNN LSTM SVM . ) difference validation
ores
(p-value) methods
Classification 94.50% * 89.30% % 92.70% + independent-
96.20% + 0.3% <0.001*
accuracy 0.8% 1.2% 0.9% sample t test
. 3.8% 5.2%
Maximum crossover . 7.8% (Other . . .
. (Running — . (jumping Fisher exact
FP rate error (running — Actions — <0.001*
. . Other — test
jumping): 1.6% . Jump) L
Actions) swimming)
End to end System clock
<20ms >200ms >150ms >100ms -
latency measurement
. Fluctuation = 1.2% . . Monte Carlo
Noise . Fluctuations Fluctuations | +3.5% . .
(signal loss test of . 0.003* simulation
robustness +2.8% +4.1% fluctuation .
15%) (1000 times)
. 24 dimensional 150000 Feature Learning
Training data . . . 80000
. features+incremental | annotated engineering - curve
requirements . samples .
learning data dependency analysis
Online .
Model 5 days (new athlete Time cost
. 14 days updates are 10 days <0.001* .
update cycle | adaptation) tracking
not supported

The quantitative delay comparison results with

SOTA model are shown in Table 5 below:

Table 5: Quantitative delay comparison results

Model Delay (end-to-end) Hardware dependency Input sensitivity
. Low (Feature Dimension
Universal sensor (low- .
BBO-KNN <20ms ) Compression Buffer Input
cos
Fluctuations)
High (complete sequence
LSTM >200ms GPU Accelerator required for temporal
modeling)
Medium (kernel function
SVM >150ms CPU cluster .
calculation burden)
) i High (uncompressed
KNN 1.2 seconds No special requirements .
sample size)

The results of parameter sensitivity verification are

shown in Table 6 below:
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Table 6: Parameter sensitivity verification

Convergence
Parameter Accuracy FP rate . .
. . . algebraic Key conclusions
perturbation fluctuation fluctuation o
variation
Population
size + 30%
Convergence
15 - .
. Insufficient population leads to local
» 105 (-30%) -0.70% 0.90% generations . L
optima (WK3 weight imbalance)
ahead of
schedule
Delay 8th .
. Revenue does not offset calculation
» 195 (+30%) 0.20% -0.10% generation
costs (delay 1 23%)
convergence
Iteration times
+20%
Not reaching the convergence saturation
» 40 (-20%) -0.40% 0.60% - . L
point (K=4 curve in Figure 1a)
Diminishing marginal benefits
» 60 (+20%) 0.10% -0.05% -
(resource waste 1 35%)

By quantifying the contributions of each module

using the variable control method, the results of the

ablation experiment are shown in Table 7 below:

Table 7: Results of ablation test

Ablation component Accuracy variation FP rate change Key Function
Complete BBO-KNN 96.20% 1.60% -
Remove BBO weight Decreased feature
L 94.17% (]2.03%) 1.90% o
optimization sensitivity
Remove context fusion Increased confusion in
92.50% (13.70%) 3.20% . o .
highly similar actions
Remove feature selection Noise  characteristics
90.10% (16.10%) 5.80% interfere with decision-
making
Only using single center Loss of intra class
clustering 89.42% (16.78%) 6.50% diversity (comparison in
Table 6)

To further verify the universality of the model in this
article, Berkeley MHAD (international dataset:
https://tele-immersion.citris-uc.org/berkeley mhad) was
used to validate the universality of basic actions. Table 8
shows the performance comparison results of the model

on the Berkeley MHAD dataset. This dataset contains 12
basic actions with a balanced sample size (approximately
150 samples per class), using the same 5-fold cross
validation method as the document (training/testing ratio
7:3). The evaluation indicators include accuracy, recall,



346 Informatica 49 (2025) 331-350

Jaccard coefficient, and F1 score.

Table 8: Results of universal validation

Y. Xu

model Accuracy Recall Jaccard F1 value

BBO-KNN 95.50%0.4% 95.10%+0.5% 92.80%+0.6% 95.30%+0.4%
LST™M 94.00%+0.7% 93.60%+0.8% 91.50%+0.9% 93.90%+0.7%
SVM 88.80%+1.3% 88.20%+1.5% 85.60%+1.4% 88.50%+1.3%
random forest 92.20%+0.8% 91.50%+1.0% 89.40%+1.1% 91.80%+0.9%

4.3 Analysis and discussion

In Table 3, the BBO-KNN model performs well in
all evaluation indicators. In particular, the F1 value of this
model reaches 96.0%, which is the best performance
among the four models. The LSTM model performs
second, and each indicator is relatively high, but it is

slightly inferior to BBO-KNN in all evaluation indicators.

The accuracy, recall and F1 value of the random forest
model are higher than those of SVM, but the overall

performance is still not as good as BBO-KNN and LSTM.

The SVM model performs the worst in all indicators,
which is related to its weak ability to process sequence
data.

The BBO-KNN model performs well in sports
action recognition tasks (F1 value 96.0%), and its
performance advantage can be attributed to the following

core improvement strategies and technical characteristics:

(1) Design of KNN algorithm with dynamic weight
optimization

The classification effect of the traditional KNN
algorithm is limited by the fixed number of neighbors (K-
value) and uniform distance weight allocation. By
introducing a dynamic weight strategy, BBO-KNN
adaptively adjusts the contribution of nearest neighbor
samples according to the local characteristics of sensor
data. For example, during the sprint acceleration phase,
due to the sensitivity of BBO optimized feature weights
(Y-axis acceleration weight 0.21) to high acceleration,
relevant samples are easily selected into the candidate set.

(2) Context feature fusion mechanism

BBO-KNN integrates the contextual information of
motion intention, which makes up for the shortcomings
of traditional KNN that only rely on static feature
similarity. In long jump movement recognition, the model
enhances the robustness of movement segmentation by
analyzing the timing relationship between the change of
knee joint angle before take-off and the inertial
measurement unit (IMU) signal during take-off. This
mechanism is highly consistent with the needs of
complex time series data modeling, and is similar to the
advantage of KNN in processing high-dimensional
grayscale data in image recognition.

(3) Adaptability of multi-modal sensor data

The multimodal fusion mechanism of BBO-KNN
achieves action understanding through spatiotemporal
aligned sensor collaborative perception:

Physical layer correlation: The pressure sensor
captures the plantar contact force (vertical dynamic
index), and the IMU analyzes the joint angular velocity
(kinematic trajectory). The fusion of the two is similar to
the biological perception mechanism that combines
tactile feedback and visual trajectory (non-image pixel
analogy).

Technical advantage: As shown in the confusion
matrix in Figure 5 (a), the precise distinction between
running and jumping (FP rate of 1.6%) is due to the
complementarity of pressure IMU (jump pressure
distribution vs change in aerial angular velocity). This
fusion logic is similar to the probability interpretability of
Gaussian Mixture Model (GMM) in multi-source signal
separation (non background modeling analogy).

The weight vector optimized by BBO directly
quantifies the contributions of each sensor, and the newly
added data only updates the cluster center (non-black box
parameters). The athlete style adaptation records are
retained as an independent KS subset.

(4) Robustness enhancement and noise suppression

BBO-KNN effectively reduces the influence of
sensor noise on classification results by integrating
filtering algorithms and outlier detection modules. For
example, when the foot touches the ground during
sprinting, the model can filter out the interference of
instantaneous vibration signals on acceleration data. This
is similar to the idea of suppressing dynamic noise in
background modeling using the Gaussian mixture model
(GMM), but BBO-KNN achieves real-time requirements
through lighter calculations.

The excellent performance of BBO-KNN stems
from its comprehensive design of dynamic weight
optimization, context feature fusion, multi-modal data
adaptability and noise suppression mechanism. These
improvements not only inherit the intuition and efficiency
of the traditional KNN algorithm, but also make up for its
shortcomings in timing modeling and noise sensitivity.
Therefore, this model is especially suitable for scenes
such as sports actions, which need to give consideration
to real-time and classification accuracy.
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In Figure 4, the classification error of BBO-KNN is
3.8%, Weight optimization reduces sensitivity to K
values, and improves the recognition accuracy of action
boundary through local feature adaptation. For example,
in knee prosthesis movement, dynamically adjusting the
neighbor weight can avoid misclassification during gait
phase switching. The error of LSTM is 5.5%. Although it
is good at time series modeling, it is not as flexible as
BBO-KNN in capturing short-term motion features.
When the action segment is short, the LSTM may lose
key frame information.

The classification error of random forest is 7.3%.
Due to the hard boundary characteristics of ensemble
decision tree, the gradual features of continuous motion
intention are insufficiently fitted. The classification error
of SVM is 10.7%. It is difficult to select kernel function
in high-dimensional IMU data, and it is sensitive to
unbalanced training data.

The low error of BBO-KNN verifies its advantages
in motion intent recognition tasks. Its core is to solve the
bottleneck of traditional methods in real-time and noise
robustness through dynamic neighbor selection and
context fusion.

In Figure 5 (a), the high diagonal accuracy of the
confusion matrix of the BBO-KNN model is high, and the
classification accuracy of the running and swimming
categories reaches 98.4% and 99.0% respectively, which
benefits from the dynamic weight strategy's ability to
capture local motion features. Moreover, only 3 cases of
jumping movements were misclassified as running,
reflecting its optimized sensitivity to changes in knee
joint angles.

In Figure 5(b), the LSTM model confusion matrix
shows that the proportion of running misjudged as
jumping is 3.8%, which is related to the inertial signal
delay in the action switching stage. In addition, the
swimming action recognition accuracy is 95.8%, which
is better than the short-term action classification, showing
that it has a strong advantage in long-term actions.

In Figure 5 (c), the confusion matrix of the SVM
model shows that the FP rate of other action categories
reaches 15.3%. This is because the RBF kernel function
is sensitive to data distribution. At the same time, 9 cases
are misjudged as jumps, which is related to the similarity
of action amplitude.

In Figure 5 (d), the confusion matrix of the random
forest model shows that the accuracy of the training set is
98.2%, and the FN rate of the “jumping” category of the
test set is 4.7%, which is caused by the sensitivity of the
deep tree structure to noise.

In Table 4, the M-KNN model exhibits statistically
significant advantages in key performance indicators: its
classification accuracy of 96.20% + 0.3% (t=7.32, df=8,
p<0.001) significantly outperforms LSTM (94.50% =+
0.8%) and SVM (89.30% =+ 1.2%). The core
breakthrough lies in dynamic weight optimization (WK3
vector), which compresses the FP rate of highly similar
actions to 1.6% (Fisher's test p<0.001). Specifically, there
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are only 3 cases of running jump misjudgment (compared
to 7 cases of LSTM), which is clearly presented in the
confusion matrix of Figure 5a; At the same time, its
lightweight architecture achieves end-to-end latency
0f<20ms (more than 10 times faster than LSTM>200ms),
which is attributed to K-Means clustering reducing
computational load by 8§7% (original 120 groups/class —
1 center point+15 key points); In terms of robustness,
BBO-KNN fluctuated only + 1.2% (Monte Carlo
simulation p=0.003) in the noise test with a sensor signal
loss of 15%, significantly better than LSTM's + 2.8%,
confirming the strong anti-interference ability of sliding
window filtering (error distribution verification in Figure
4); In addition, BBO weight optimization compresses the
feature dimension from 24 to 7 (Equation 10), shortening
the construction cycle of new athlete models to 5 days (t-
test p<0.001), and solving the bottleneck of 28% cross
item error in traditional transfer learning. These
quantitative  results  rigorously  validate  the
comprehensive  innovation of dynamic weight
architecture in terms of accuracy, real-time performance,
and adaptability.

Table 5 shows that edge deployment avoids data
transmission overhead. The latency fluctuation in the
noise test is =1 ms, which is associated with an accuracy
fluctuation of +1.2%. This is indirectly supported by the
error distribution in Figure 4 and is significantly better
than the latency fluctuation of +10 ms in LSTM (because
the cyclic structure amplifies the noise effect).

The population size (150) and iteration count (50)
configuration of the BBO algorithm are based on the
balance between feature space complexity and
convergence efficiency: BGWOPSO feature selection
compresses the feature space from 24 dimensions to 7
dimensions, and BBO weight optimization assigns
differentiated weights to each feature on this 7
dimensional subspace, but to avoid the problem of high
GPU cost, a final size of 150 is set to ensure weight
diversity; If the number of iterations is 50, based on the
saturation point of the convergence curve (K=4 curve in
Figure la, the accuracy improvement after 40 generations
is less than 0.1%), the global optimum is approached
under the constraint of computational resources.
Verification shows that when the population size is
reduced by 30% to 105, the weight vector WK3 becomes
imbalanced due to insufficient exploration of high-
dimensional space (7-dimensional feature combination
reduced to 4.9 dimensional equivalent coverage),
resulting in a 0.7% decrease in accuracy and a 0.9%
increase in FP rate (3 new misclassifications in the
confusion matrix); When the number of iterations is
reduced by 20% to 40 times, the convergence saturation
point is not reached (Figure 1a shows that there is still 0.4%
optimization space for K=4 in the 40th generation),
resulting in insufficient optimization of feature weights
(such as acceleration mean weight 0.21 — 0.18), directly
causing the FP rate to increase by 0.6% (reaching 2.2%,
breaking the target threshold). On the contrary, excessive
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parameter increase (population 195/iteration 60) leads to
a sharp decrease in marginal benefits: expanding the
population size by 30% only improves accuracy by 0.2%,
but increases computational latency by 23% (beyond the
20ms real-time constraint), and the fitness gain after 60
iterations is less than 0.05%, which violates the principle
of lightweight design.

The significant advantage of BBO-KNN over
existing SOTA (96.20% accuracy vs LSTM
94.50%/SVM 89.30%) lies in its innovative fusion of
dynamic weight architecture and lightweight data
processing paradigm. In high similarity action scenes
(such as running — jumping), traditional KNN causes
boundary blurring (FP rate>4.2%) due to fixed K values,

while BBO-KNN compresses the misjudgment rate to 1.6%

through BBO optimized dynamic weight vector WK3
(Equation 14) combined with local feature weighting,
thanks to its enhanced adaptive sensitivity to action
biomechanical features. Compared with LSTM and other
time series models, BBO-KNN abandons the redundant
cycle structure and adopts K-Means clustering
compression and edge computing deployment to reduce
the delay from>200ms to<20ms of LSTM while
maintaining the accuracy, breaking through the real-time
bottleneck. This lightweight design solves the cost
contradiction at the same time - compared to the optical
capture scheme (2 million yuan) and the quantum
computing scheme (dependent on specialized equipment),
BBO-KNN achieves a 90% reduction in hardware costs
through universal sensors (IMU/pressure). In terms of
individual adaptability, traditional transfer learning faces
a 28% cross item error, while the incremental learning
mechanism of BBO-KNN compresses the modeling
cycle of new athletes from 14-20 days to 5 days, filling
the technical gap in personalized training. These
breakthroughs validate the core value of dynamic weight
optimization in addressing static algorithm rigidity (82%
system defects) and high-dimensional data noise
sensitivity (sensor interference fluctuations + 1.2% vs
LSTM =+ 2.8%).

In this study, there are three main reasons why data
imbalance is not a problem: (1) inherent balance of the
dataset: the document clearly designed and validated
sample size balance (with class differences<14.3%), and
maintained distribution consistency through hierarchical
cross validation. (2) The implicit robustness of the model:
K-Means clustering, BBO dynamic weights, and
triangular inequality decision-making all implicitly
enhance the tolerance for imbalance without the need for
explicit processing. (3) Experimental empirical support:
High precision, low FP rate, and uniform error
distribution confirm that performance is not affected by
minority classes. Therefore, it is reasonable that the
methods section did not separately discuss the handling
of imbalances. If future research involves real
imbalanced data (such as rare actions), oversampling or
cost sensitive habits may be considered, but the balanced
dataset used in this study already meets the requirements.

Y. Xu

The lightweight features of the BBO-KNN
architecture are empirically supported by triple core
optimization: at the memory level, K-Means clustering
compression reduces each class of action samples from
120 groups to 1 main center+15 key points, reducing
memory usage to 3.62KB (96.1% lower than traditional
KNN), meeting the SRAM constraints of embedded
devices (such as smart prosthetics) (typically > 64KB).
This compression strategy was validated in section 3.1.4
with a data refinement rate of 87.5%; In terms of
computational performance, the BBO algorithm
compresses the feature dimension from 24 dimensions to
7 dimensions (equation 10), combined with triangular
inequality filtering (principle shown in Figure 2) to
reduce 85% of invalid calculations, resulting in a stable
end-to-end delay of less than 20ms (Table 5 shows 66.7
times acceleration). The measured power consumption on
the ARM Cortex-M7 chip is only 0.12W, which is 89.3%
lower than the LSTM scheme; In terms of resource
robustness, under noise interference testing (sensor signal
loss of 15%), the delay fluctuation is only + 1.2%, the
memory usage is<5KB, and the power consumption
is<0.13W (Table 6), which verifies the adaptability of
edge deployment. These optimizations - storage
compression, computation simplification, and energy
efficiency management - have been rigorously supported
by 50% cross validation (Table 3) and real-time
benchmark testing, addressing the high resource
dependency issues of traditional systems (such as LSTM
latency>200ms and GPU requirements), providing an
efficient solution for medical wearable devices.

In Table 7,The ablation research system
deconstructed the core contribution of BBO-KNN:
removing BBO weight optimization resulted in a 2.03%
drop in accuracy (96.20% — 94.17%) and a 1.9%
increase in FP rate, highlighting the critical role of
dynamic weights in feature sensitivity; Disabling context
fusion resulted in a 3.70% (92.50%) decrease in accuracy
and a significant increase in confusion of highly similar
actions (running — jumping misjudgment rate+3.2%),
validating its effectiveness in resolving boundary
blurring; Missing feature selection leads to a 6.10%
accuracy loss (90.10%) and a 5.8% FP rate degradation,
exposing the interference of noisy features; However,
single center clustering caused a 6.78% (89.42%) drop in
accuracy due to the loss of intra class diversity, which
supports the necessity of hierarchical structure. There is
strong collaboration between components: BBO and
feature selection linkage increase convergence speed by
three times, while context fusion and triangle inequality
collaboration reduce computational complexity by 65%,
jointly  supporting the system's comprehensive
breakthroughs in accuracy (1 35.8%), real-time
performance (delay | 98.7%), and robustness (noise
fluctuation £ 1.2%).

Based on the analysis of model architecture and
performance, the BBO-KNN model exhibits significant
advantages in scalability and edge deployment:
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(1) Lightweight architecture and computational
optimization: BBO-KNN adaptively adjusts feature
importance through dynamic weight optimization (BBO
algorithm), and significantly reduces computational
complexity by combining K-Means clustering to
compress feature dimensions. Its parameter count is only
1/5 of traditional deep learning models, and its memory
usage is controlled within 50MB, meeting the resource
constraints of wearable devices.

(2) Feasibility of edge deployment: In real-time
detection scenarios such as mango grading, BBO-KNN
has a inference delay of less than 8ms and an accuracy
rate of 98% on embedded devices such as Jetson Nang,
verifying its efficiency in resource constrained
environments. The noise robustness test shows that the
performance fluctuation of the sensor under noise is less
than 1.2%, ensuring the stability of medical leave and
other fields.

(3) Real time guarantee mechanism:

Dynamic feature selection: BBO algorithm filters
redundant features in real-time (such as retaining only
key biomechanical indicators such as knee joint angle in
motion recognition), reducing computational complexity
by 30%.

Hardware co-optimization: INT8 quantization and
hardware accelerated instruction sets are supported, and
they consume only 22MW of power on the ARM Cortex-
M7 processor, enabling 24/7 real-time monitoring.

In summary, BBO-KNN has solved the bottleneck
of computing, energy consumption, and real-time
performance of edge devices through algorithm hardware
collaborative design, providing a reliable technical
foundation for wearable health monitoring and intelligent
prosthetics.

5 Conclusion

This study verified the superiority of the BBO-KNN
model on sports data sets through comparative
experiments. The results show that the model
significantly improves the classification accuracy of
high-similarity actions through dynamic weight strategy
and local feature optimization, the system performs
highly similar actions such as running <> The FP rate of
jumping has decreased to 1.6%, and the global FP rate is
1.39%. At the same time, it has low latency (<20ms) and
strong anti-interference characteristics, and is superior to
traditional models such as LSTM and SVM in real-time
and robustness.

The BBO-KNN model promotes intelligent sports
training through three technological innovations. First,
dynamic weight optimization (BBO algorithm) reduces
the false alarm rate for highly similar movements to 1.6%
(Table 4). Second, the model, combined with hierarchical
clustering compression (K-Means dual-center), achieves
a memory footprint of <SKB (96.1% compression rate)
and end-to-end latency of <20ms (Table 5). Third, its
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physically interpretable architecture (WK3 transparency
of weight vectors + triangle inequality decision paths)
enables precise training control, supporting personalized
style adaptation within 5 days (traditionally requiring 14
days). It significantly improves take-off accuracy during
practice for a provincial track and field team (take-off
angle error was reduced from 3.2°+1.1° to 0.8°+0.3%,
p<0.01). In the future, we will integrate multimodal
inertial and visual data to overcome the bottleneck of
real-time evaluation of complex movements such as
gymnastics.

References

[1] Lin, Q., & Zou, J. (2022). Design of a professional
sports competition adjudication system based on
data analysis and action recognition algorithm.
Scientific ~ Programming, 2022(1), 9402195-
9402206. https://doi.org/10.1155/2022/9402195

[2] Abid, Y. M., Kaittan, N., Mahdi, M., Bakri, B. 1.,
Omran, A., Altace, M., & Abid, S. K. (2023).
Development of an intelligent controller for sports
training system based on FPGA. Journal of
Intelligent Systems, 32(1), 20220260-20220270.
https://doi.org/10.1515/jisys-2022-0260

[3] Deepak, V., Anguraj, D. K., & Mantha, S. S. (2023).
An efficient recommendation system for athletic
performance optimization by enriched grey wolf
optimization. Personal and Ubiquitous Computing,
27(3), 1015-1026. https://doi.org/10.1007/s00779-
022-01683-z

[4] Canbulat, O. A., Turgay, S., & Kara, E. S. (2025). A
machine learning approach to baseball player
assessment using KNN, logistic regression, and
gaussian naive bayes. Financial Engineering, 3(1),
14-21. https://doi.org/10.37394/232032.2025.3.2

[5] Tan, L., & Ran, N. (2023). Applying artificial
intelligence technology to analyze the athletes’
training under sports training monitoring system.
International Journal of Humanoid Robotics, 20(06),
2250017.
https://doi.org/10.1142/S0219843622500177

[6] Yan, X. (2024). Effects of deep learning network
optimized by introducing attention mechanism on
basketball players' action recognition. Informatica,
48(19). https://doi.org/10.31449/inf.v48119.6188

[7] He, P. (2023). Sports motion feature extraction and
automatic recognition algorithm based on video
image technology. Academic Journal of Computing
&  Information  Science, 6(12), 106-117.
https://doi.org/10.25236/AJCIS.2023.061212

[8] Rodriguez Macias, M., Gimenez Fuentes-Guerra, F.
J., & Abad Robles, M. T. (2022). The sport training
process of para-athletes: A systematic review.
International Journal of Environmental Research
and Public  Health, 19(12), 7242-7253.
https://doi.org/10.3390/ijerph19127242



350

(9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

(18]

[19]

Informatica 49 (2025) 331-350

Cizmic, D., Hoelbling, D., Baranyi, R., Breiteneder,
R., & Grechenig, T. (2023). Smart boxing glove
“RD o”: IMU combined with force sensor for highly
accurate technique and target recognition using
machine learning. Applied Sciences, 13(16), 9073-
9088. https://doi.org/10.3390/app13169073

Balkhi, P., & Moallem, M. (2022). A multipurpose
wearable sensor-based system for weight training.
Automation, 3(1), 132-152.
https://doi.org/10.3390/automation3010007
Calderon-Diaz, M., Silvestre Aguirre, R., Vasconez,
J. P, Yafiez, R., Roby, M., Querales, M., & Salas, R.
(2023). Explainable machine learning techniques to
predict muscle injuries in professional soccer
players through biomechanical analysis. Sensors,
24(1), 119-131. https://doi.org/10.3390/s24010119
Iduh, B. N., Umeh, M. N., Anusiuba, O. I., & Egba,
F. A. (2024). Development of a predictive modeling
framework for athlete injury risk assessment and
prevention: A machine learning approach. European
Journal of Theoretical and Applied Sciences, 2(4),
894-906.
https://doi.org/10.59324/ejtas.2024.2(4).73

Chen, J., & Cui, P. (2024). The application of deep
learning in sports competition data prediction.
Scalable Computing: Practice and Experience,
25(6), 5322-5330.

Taborri, J., Palermo, E., & Rossi, S. (2023). Warning:

A wearable inertial-based sensor integrated with a
support vector machine algorithm for the
identification of faults during race walking. Sensors,
23(11), 5245-5256.
https://doi.org/10.3390/s23115245

Hanif, M. A., Akram, T., Shahzad, A., Khan, M. A.,
Tariq, U., Choi, J. I, et al. (2022). Smart devices
based multisensory approach for complex human
activity recognition. Computers, Materials &
Continua, 70(2), 3221-3234.
https://doi.org/10.32604/cmc.2022.019815
AshokKumar, S., & Rajesh, K. P. (2023). Hyper-
parameters activation on machine learning
algorithms to improve the recognition of human
activities with IoT sensor dataset. Indian Journal of
Science and Technology, 16(35), 2856-2867.
https://doi.org/10.17485/1JST/v16135.882

Kumar, G. S., Kumar, M. D., Reddy, S. V. R,
Kumari, B. S., & Reddy, C. R. (2024). Injury
prediction in sports using artificial intelligence
applications: A brief review. Journal of Robotics and
Control (JRC), 5(1), 16-26.
https://doi.org/10.18196/jrc.v5i1.20814

Molavian, R., Fatahi, A., Abbasi, H., & Khezri, D.
(2023).  Artificial intelligence approach in
biomechanics of gait and sport: a systematic
literature review. Journal of Biomedical Physics &
Engineering, 13(5), 383-395.
https://doi.org/10.31661/jbpe.v0i0.2305-1621
Malamatinos, M. C., Vrochidou, E., & Papakostas,

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Y. Xu

G. A. (2022). On predicting soccer outcomes in the
Greek league using machine learning. Computers,
11(9), 133-145.
https://doi.org/10.3390/computers11090133
Merzah, B. M., Croock, M. S., & Rashid, A. N.
(2024). Intelligent classifiers for football player
performance based on machine learning models.
International Journal of Electrical and Computer
Engineering Systems, 15(2), 173-183.
https://doi.org/10.32985/ijeces.15.2.6

Bunker, R., & Susnjak, T. (2022). The application of
machine learning techniques for predicting match
results in team sport: A review. Journal of Artificial

Intelligence ~ Research,  73(3), 1285-1322.
https://doi.org/10.1613/jair.1.13509
Teixeira, J. E., Afonso, P., Schneider, A.,

Branquinho, L., Maio, E., Ferraz, R., et al. (2025).
Player tracking data and psychophysiological
features associated with mental fatigue in U15, U17,
and U19 male football players: A machine learning
approach. Applied Sciences, 15(7), 3718-3730.
https://doi.org/10.3390/app15073718

Woltmann, L., Hartmann, C., Lehner, W., Rausch, P.,
& Ferger, K. (2023). Sensor-based jump detection
and classification with machine learning in
trampoline gymnastics. German journal of exercise
and sport research, 53(2), 187-195.
https://doi.org/10.1007/s12662-022-00866-3
Sonalcan, H., Bilen, E., Ates, B., & Segkin, A. C.
(2025). Action recognition in basketball with
inertial measurement unit-supported vest. Sensors,
25(2), 563-275. https://doi.org/10.3390/525020563
Canbulat, O. A., Turgay, S. A. & Kara, E. S. (2025).
A machine learning approach to baseball player
assessment using KNN, logistic regression, and
gaussian naive bayes. Financial Engineering, 3, 14-
21. https://doi.org/10.37394/232032.2025.3.2
Zhang, Y., Wang, X., Xiu, H., Ren, L., Han, Y., Ma,
Y., Chen, W., Wei, G. & Ren, L. (2023). An
optimization system for intent recognition based on
an improved KNN algorithm with minimal feature
set for powered knee prosthesis. Journal of Bionic
Engineering, 20(6), 2619-2632.
https://doi.org/10.1007/s42235-023-00419-w

Cao, G., Zhang, Y., Zhang, H., Zhao, T., & Xia, C.
(2024). A hybrid recognition method via Kelm with
Cpso for Mmg-based upper-limb movements
classification. Journal of Mechanics in Medicine
and Biology, 24(06), 2350084.
https://doi.org/10.1142/S0219519423500847



