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Knödel graphs Wd,n are regular graphs on n vertices and degree d. They have been introduced by
W. Knödel and have been proved to be minimum gossip graphs and minimum broadcast graphs for
d = blog nc. They became even more interesting in the light of recent results regarding the diameter,
which is, up to now, the smallest known diameter among all minimum broadcast graphs on 2d vertices.
Also, the logarithmic time routing algorithm that we have found, the bipancyclicity property, embedding
properties and, nevertheless, Cayley graph structure, impel these graphs as good candidates for regular
network constructions, especially in supercomputing. In this paper we describe an efficient way to com-
pute the spectra of Knödel graphs using results from Fourier analysis, circulant matrices and PD-matrices.
Based on this result we give a formula for the number of spanning trees in Knödel graphs.

Povzetek: Narejena je analiza Knödelovih grafov.

1 Introduction

Knödel graphs Wd,n, are regular graphs on even number
of vertices n and degree d. They have been introduced
by W. Knödel [10] and have been proved to be minimum
gossip graphs and minimum broadcast graphs for degree
d = blog2 nc.

Recently, it has been proved in [7] that the Knödel
graph Wd,2d on 2d vertices and degree d have diameter
dd/2 + 1e, which is the minimum known diameter among
all minimum broadcast graphs on 2d vertices. We believe
that this is also a lower bound on diameter for all regular
graphs on 2d vertices and degree d. Also, the logarithmic
time routing algorithm that we have found [9], the bipan-
cyclicity property, embedding properties and, nevertheless,
Cayley graph structure [6], impel these graphs as good can-
didates for regular network constructions, especially in su-
percomputing.

The goal of this study is to compute efficiently the spec-
tra of Knödel graphs, first for Wd,2d , and then for arbi-
trary degree g and number of vertices n. We use results
from Fourier analysis, circulant matrices and PD-matrices.
Based on this result we give a formula for the number of
spanning trees in Knödel graphs.

The paper is organized as follows: section 2 gives some
definitions, section 3 extracts the general properties of the
spectra, section 4 explains the method of computation, sec-
tion 5 makes some remarks regarding the obtained spectra
and section 6 establishes the number of spanning trees.

2 Definitions and notations

If we denote by A the adjacency matrix of a simple graph
G, the set of eigenvalues of A, together with their multi-
plicities, is said to be the spectrum of G. If we denote by
I the identity matrix, then the characteristic polynomial of
G is defined as P (λ) = det |λI −A|. The spectrum of G
will be the set of solutions of the equation P (λ) = 0.

Knowing the spectrum of a graph has a great impact on
other characteristics of the graph. For example, the com-

plexity of a graph is κ (G) = 1
n

n−1∏
k=1

(λn − λk), where n

is the number of eigenvalues, and λn is the greatest eigen-
value.

Up to now, the spectra are known for some particular
graphs: path, cycle, complete graph, complete bipartite
graph, complete tree, hypercube, k-dimensional lattice, star
graph, etc. (see [4] and [8] for further references).

The Knödel graphs Wg,n are defined as G (V, E) with
|V | = n even, and the set of edges [6]:

E =
{
(i, j)

∣∣ i + j = 2k − 1 mod n
}

(1)

where k = 1, 2, ..., g, 0 ≤ i, j ≤ n − 1, 1 ≤ g ≤
blog2 nc.

We denote the adjacency matrix of an undirected graph
by A = [aij ], where 1 ≤ i, j ≤ |V | = n, aij = 1 whenever
vertex i is adjacent to vertex j, and 0 otherwise. If M is a
matrix, we denote by MT the transpose of M , by M the
complex conjugate of M , by M∗ the transpose complex
conjugate of M , and by M−1 the inverse of M . We denote
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by π a permutation:

π =
(

1 2 ... n
σ (1) σ (2) ... σ (n)

)
, (2)

and by P (π) = (aij) the corresponding permutation ma-
trix of π, where ai,σ(i) = 1 and ai,j 6=σ(i) = 0.

If z ∈ C, we denote by z the complex conjugate of z,
and by ‖z‖ =

√
zz the norm of z.

We denote by diag (λ1, λ2, ..., λn) the diagonal matrix
with the elements of the main diagonal (λ1, λ2, ..., λn).

We denote by circ (a1, a2, ..., an) a circulant matrix with
the first row (a1, a2, ..., an). That is, the rest of the rows
will be circular permutations of the first row toward right.
Thus, it holds that ai,j = a1, i−j+1 mod n. If the step of the
shift is an integer q 6= 1, we call this matrix a (q)circulant
matrix [12].

We denote by Γ the inverse permutation matrix, which is
a (−1)circulant: Γ = (−1)circ (1, 0, ..., 0). An important
property of Γ is that Γ2 = I , where I is the identity matrix.

We denote by F the Fourier matrix, defined by its con-
jugate transpose F ∗ = 1√

n

[
w(i−1)(j−1)

]
, 1 ≤ i, j ≤ n,

where w stands for the nth root of the unity [5]. Two im-
portant properties of F are: F ∗ = F and FF ∗ = I .

Other definitions and notations will follow in the places
they are used.

3 General graph theory
considerations

We observe that the adjacency matrix of the Knödel graphs
is a (-1)circulant matrix, called also a retrocirculant [1],
where all the rows are circular permutations of the first row
toward left. For example, the adjacency matrix of W3,23 is:

AW3,23
=




0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0




(3)

Some general remarks can be made about the spectra of
Wg,n:

– All eigenvalues are real since the adjacency matrix is
real and symmetric [3].

– The maximum eigenvalue is λn = g, since Wg,n is
regular of degree g [2].

– All eigenvalues are symmetric with respect to zero
[11] since the Knödel graph is bipartite and its char-
acteristic polynomial has the form:

P (λ) = λn + a2λ
n−2 + ... + an−2λ

2 + an (4)

– In particular, for Wd,2d , the number of distinct eigen-
values is at least

⌈
d
2

⌉
+2 since the diameter is

⌈
d
2

⌉
+1

[4].

4 Computing the spectrum of Wd,2d

According to [5], a matrix A is (-1)circulant if and only if
A = F ∗ (ΓΛ)F , where Λ = diag (γ1, γ2, ..., γn). This
relation can be transformed in FAF ∗ = ΓΛ. That means
that A and ΓΛ have the same eigenvalue set [5]. The se-
cond term is a PD-matrix, defined as a product of two
matrices, P and D, where P is a permutation matrix and
D is a diagonal matrix. The characteristic polynomial of
a PD-matrix can be computed by decomposing the per-
mutation P in prime cycles of total length n [5]. Since
Knödel graphs adjacency matrices are (-1)circulants, the
problem resumes now to that of determining the values of
γ1, γ2, ..., γn. Since ΓΛ has the form:

ΓΛ =




γ1 0 . . . 0
0 0 . . . γn

...
...

. . .
...

0 γ2 . . . 0


 , (5)

we can perform FAF ∗ = [cij ] = ΓΛ and identify the
terms c11 = γ1, c2n = γn, . . . , cn2 = γ2. In order to
perform the triple matrix multiplication FAF ∗, we note
that:

F = F
∗

=
1√
n

[
w−(i−1)(j−1) mod n

]
(6)

Since wn = 1 we may skip the modulo operations from the
powers. Also, in order to avoid confusion with the sum-
mation indices, we emphasize the matrix indices. That is,
[a]i,j means that i is the row index and j is the column
index, both varying from 1 to n.

FAF ∗ =
1
n

[
w−(i−1)(k−1)

]
i,k

[ak,m]k,m

[
w(m−1)(j−1)

]
m,j

=

1
n

[
n∑

k=1

w−(i−1)(k−1)ak,m

]

i,m

[
w(m−1)(j−1)

]
m,j

=

1
n

[
n∑

k=1

w−(i−1)(k−1)a1,m+k−1

]

i,m

·

·
[
w(m−1)(j−1)

]
m,j

(7)

Since in the first row of the adjacency matrix only d values
are nonzero, we can change the variable of summation in
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the first term of (7): k → r, where 1 ≤ r ≤ d. Therefore:

FAF ∗ =

1
n

[
d∑

r=1

w−(i−1)(2r−m)

]

i,m

[
w(m−1)(j−1)

]
m,j

=

1
n

[
n∑

m=1

(
d∑

r=1

w−(i−1)(2r−m)

)
w(m−1)(j−1)

]

i,j

=

1
n

[
n∑

m=1

d∑
r=1

w−(i−1)(2r−m)w(m−1)(j−1)

]

i,j

=

1
n

[
w−(j−1)

n∑
m=1

wm(j+i−2)
d∑

r=1

w−2r(i−1)

]

i,j

(8)

Thus, for the general term of FAF ∗ we obtain:

ci,j =
w−(j−1)

n

n∑
m=1

wm(j+i−2)
d∑

r=1

w−2r(i−1) (9)

The general term of the ΓΛ matrix from (5) can be ex-
pressed as follows:

γp = cn−p+2,p =

1
n

(
w−(p−1)

n∑
m=1

wmn
d∑

r=1

w−2r(n−(p−1))

)
(10)

But
n∑

m=1
wmn = n and w−2r(n−(p−1)) = w2r(p−1). Thus,

γp = w−(p−1)
d∑

r=1

w2r(p−1) (11)

On the other hand, Γ matrix corresponds to the permuta-
tion:

π (Γ) =
(

1 2 3 ... n/2 + 1 ... n
1 n n− 1 ... n/2 + 1 ... 2

)

This permutation can be decomposed in
n/2+1 prime cycles of total length n [5, 1]:
(1) (2, n) ... (n/2, n/2 + 2) (n/2 + 1). Thus, the charac-
teristic polynomial will be:

P (λ) = (λ− γ1)
(
λ2 − γ2γn

) (
λ2 − γ3γn−1

)
...

...
(
λ2 − γn/2γn/2+2

) (
λ− γn/2+1

)
(12)

The eigenvalues set will be:

S = {γ1,±√γ2γn,±√γ3γn−1, ...

...,±√γn/2γn/2+2, γn/2+1} (13)

For the first eigenvalue we obtain:

γ1 =
d∑

r=1

1 = d (14)

Aitken proved in [1] that, for a (-1)circulant, γn/2+1 =
a1−a2+a3− ...−an, where (a1, a2, ..., an) are the values
of the first row of adjacency matrix. Thus:

γn/2+1 =
n∑

i=1

(−1)i+1
ai =

d∑

j=1

(−1)2
j+1 = −d (15)

For the rest of the eigenvalues we have to evaluate products
of the form: γtγn−t+2, 2 ≤ t ≤ n/2. From (11) we have:

γtγn−t+2 =

(
w−(t−1)

d∑
r=1

w2r(t−1)

)
·

·
(

w−(n−t+1)
d∑

r=1

w2r(n−t+1)

)
=

(
w−(t−1)

d∑
r=1

w2r(t−1)

)(
w(t−1)

d∑
r=1

w2r(n−t+1)

)
=

d∑
r=1

w2r(t−1)
d∑

r=1

w2r(t−1) =

d∑
r=1

w2r(t−1)
d∑

r=1

w2r(t−1) =

∥∥∥∥∥
d∑

r=1

w2r(t−1)

∥∥∥∥∥

2

(16)

This confirms the well-known fact that all eigenvalues are
real. Thus, the spectrum of Wd,2d is the set:

S
(
Wd,2d

)
= {±d} ∪

{
±

∥∥∥∥∥
d∑

r=1

w2r(t−1)

∥∥∥∥∥

}
(17)

where 2 ≤ t ≤ n/2.

5 Observations
A. Not all eigenvalues are distinct. We can show that at
most (n − 4)/2 of them are distinct. If we decompose the
norm from (17) in its trigonometric form we obtain:

∥∥∥∥∥
d∑

r=1

w2r(t−1)

∥∥∥∥∥

2

=

(
d∑

r=1

cos
2π

2d
2r(t−1)

)2

+

(
d∑

r=1

sin
2π

2d
2r(t−1)

)2

(18)

We observe that this norm evaluates to the same value for
t = n/4 + 1− k, and t = n/4 + 1 + k:

∥∥∥∥∥
d∑

r=1

w2r(n/4+1−k−1)

∥∥∥∥∥

2

=

(
d∑

r=1

cos
2π
2d

2r

(
2d

4
−k

))2

+

(
d∑

r=1

sin
2π

2d
2r

(
2d

4
−k

))2

=
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(
d∑

r=1

cos
2π

2d
2r

(
2d

4
+k

))2

+

(
d∑

r=1

sin
2π

2d
2r

(
2d

4
+k

))2

=

∥∥∥∥∥
d∑

r=1

w2r(n/4+1+k−1)

∥∥∥∥∥

2

(19)

The computations for particular cases yield to the claim
that these are the only overlapping eigenvalues.
B. To our knowledge, there is no closed form for the sum
from (16). Nevertheless, computations for particular cases
suggest that, only for the particular value t = 2d/4+1, the
sum is evaluated to a closed form:

∥∥∥∥∥
d∑

r=1

w2r(2d/4)
∥∥∥∥∥

2

=

(
d∑

r=1

cos
π

2
2r

)2

+

(
d∑

r=1

sin
π

2
2r

)2

=

(
−1+1+

d∑
r=3

cos
π

2
2r

)2

+

(
0+

d∑
r=2

sin
π

2
2r

)2

=

(d− 2)2 (20)

Thus, for Wd,2d , the spectrum from (17) can be written as:

SW
d,2d

= {±d,±(d− 2)}∪

∪
{
±

∥∥∥∥∥
d∑

r=1

w2r(t−1)

∥∥∥∥∥

}
(21)

where 2 ≤ t ≤ n/4 and the last set has multiplicity two.
C. Note that in the formulas (7)−(16) we didn’t make
any assumptions regarding the number of vertices n nor the
degree d. Therefore, the result from (17) can be extended
in a similar manner for Knödel graphs with arbitrary degree
g and number of vertices n, Wg,n:

SWg,n = {±g} ∪
{
±

∥∥∥∥∥
g∑

r=1

w2r(t−1)

∥∥∥∥∥

}
(22)

where 2 ≤ t ≤ n/2.
For example, for W2,2k , which are cycles C2k of length

2k, applying (22), we obtain the spectrum:

SC2k
= {±k} ∪

{
±

∥∥∥w2(t−1) + w4(t−1)
∥∥∥
}

(23)

where 2 ≤ t ≤ 2k−1. The norm from (23) can be evaluated
to 2 cos 2π(t− 1)/2k as follows:

∥∥∥w2(t−1) + w4(t−1)
∥∥∥

2

=
(

cos
2π

2k
2 (t− 1) + cos

2π

2k
4 (t− 1)

)2

+

(
sin

2π

2k
2 (t− 1) + sin

2π

2k
4 (t− 1)

)2

=

4
(

cos
2π

2k
(t− 1)

)2

(24)

Thus, we meet the well-known result [2] that the spectrum
of a cycle of length n is the set:

SCn =
{

2 cos
2πj

n

∣∣∣∣ 1 ≤ j ≤ n

}
(25)

6 The number of spanning trees
An immediate consequence of the spectra of the Knödel
graphs Wg,n is an O

(
ng2

)
formula for the number of span-

ning trees. It is well known that, given a graph G on n
vertices and degree k, the number of spanning trees can be
expressed as:

κ (G) =
1
n

p−1∏
t=1

(k − λt)
mt , (26)

where λt are the eigenvalues, mt their multiplicities, and p
the number of distinct eigenvalues [2]. Thus, for the par-
ticular case in which the degree is d and the number of
vertices is 2d, using (21) we obtain:

κ
(
Wd,2d

)
=

d(2d− 2)
2d−2

2d−2∏
t=2


d2−

∥∥∥∥∥
d∑

r=1

w2r(t−1)

∥∥∥∥∥

2



2

(27)

If we further decompose the norm from (27) in its trigono-
metric form, we obtain:

∥∥∥∥∥
d∑

r=1

w2r(t−1)

∥∥∥∥∥

2

=

(
d∑

r=1

cos
2π

2d
2r(t−1)

)2

+

(
d∑

r=1

sin
2π

2d
2r(t−1)

)2

=

d +
d∑

i=1

d∑

j=i+1

cos
2π

2d

(
2i − 2j

)
(t− 1) (28)

Substituting this result in (27) and changing the variable
t → t + 1 we obtain for the number of spanning trees of
Wd,2d :

κ
(
Wd,2d

)
=

2d(d− 1)
2d−2

2d−2−1∏
t=1

(
d2 − d− Φ(t)

)2
(29)

where:

Φ(t) =
d∑

i=1

d∑

j=i+1

cos
2π

2d

(
2i − 2j

)
t (30)

In general, for Knödel graphs having arbitrary degree
g and arbitrary number of vertices n, Wg,n, according to
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(22), the number of spanning trees can be expressed as fol-
lows:

κ (Wg,n) =
2g

n

n/2∏
t=2


g2 −

∥∥∥∥∥
g∑

r=1

w2r(t−1)

∥∥∥∥∥

2

 (31)

A straightforward upper bound for the number of spanning
trees of Knödel graphs Wg,n can be obtained cancelling the
norm from (31):

∥∥∥∥∥
g∑

r=1

w2r(t−1)

∥∥∥∥∥

2

= 0 (32)

Therefore, for κ (Wg,n) we obtain the upper bound:

κ (Wg,n) ≤ 2gn−1

n
(33)

Since, for Knödel graphs Wg,n, the degree of a vertex g is
upper bounded by blog2 nc (see (1)), the bound from (33)
can be expressed as follows:

κ (Wg,n) ≤ 2 blog2 ncn−1

n
(34)
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