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With the rapid advancement of intelligent manufacturing technologies, Reconfigurable Flexible Assembly 

Lines (RFALs) have emerged as a promising solution to enhance production flexibility and efficiency. 

However, the process parameter optimization for RFALs, particularly in assembly line balancing, 

presents a complex NP-hard combinatorial optimization problem. This study aims to address the process 

parameter optimization in RFALs by considering multiple critical performance metrics, including 

production cycle time, tool replacement time, and assembly unit cost. A mathematical model is formulated 

to describe the optimization problem, clearly defining the objectives and constraints. Based on this model, 

a novel Synergistic Genetic Algorithm and Particle Swarm Optimization (SGAPSO) is proposed. The 

SGAPSO algorithm effectively combines the global exploration capability of Genetic Algorithms (GA) 

and the local exploitation and fast convergence characteristics of Particle Swarm Optimization (PSO). It 

employs a task sequence-based encoding method. In the GA phase, population evolution is driven by 

selection, crossover, mutation, and elitism. In the PSO phase, particle positions are decoded using the 

Smallest Position Value (SPV) rule, and iterations are optimized through standard velocity and position 

update equations. The key synergistic mechanism proved by ablation study involves periodically guiding 

the PSO population with elite individuals from GA and enhancing the GA population with superior 

solutions found by PSO. Experimental validation on standard benchmark problems and an industrial case 

study of pressure-reducing valve assembly shows that the SGAPSO algorithm outperforms standalone GA 

and PSO in terms of solution quality, convergence speed, and solution stability. 

Povzetek: SGAPSO hibridni algoritem združuje prednosti GA in PSO za bolj kvalitetno optimizacijo 

parametrov v fleksibilnih linijah. 

 

1 Introduction 
The rapid advancement of intelligent manufacturing 

technologies is driving manufacturing systems toward 

greater flexibility, efficiency, and intelligence [1, 2]. In 

this transformative era, Reconfigurable Flexible 

Assembly Lines (RFALs) have garnered significant 

attention due to their inherent capability to adapt to diverse 

product portfolios and dynamic production schedules [3]. 

RFALs, characterized by their modular architectures and 

rapid reconfiguration capabilities, offer modern 

manufacturing enterprises a distinct competitive 

advantage [6, 7]. However, to fully unleash the potential 

of RFALs, the optimization of their process parameters is 

paramount. This optimization is crucial for maximizing 

production efficiency, minimizing operational costs, and 

achieving comprehensive enhancements in overall system 

performance [8, 9]. 

Process parameter optimization represents a core 

challenge within intelligent manufacturing systems, 

involving a multitude of complex variables and stringent  

 

constraints [11, 12]. Researchers like Samouei et al. have  

extensively explored the intricacies of assembly line 

balancing, highlighting the significance of optimizing task 

assignments to workstations and minimizing tool 

changeover times [13, 14]. They emphasize that these 

factors are not only critical for enhancing production rates 

but also for achieving cost reductions in RFALs. Tran et 

al. further corroborates this by investigating how 

simulation and metaheuristics can be employed to tackle 

the assembly line balancing problem, underscoring the 

need for efficient algorithms that can navigate the 

complexities of RFALs [15]. These optimization tasks, 

often categorized as NP-hard combinatorial optimization 

problems, pose significant challenges due to their inherent 

complexity and the vast solution spaces they encompass 

[16]. Traditional optimization methodologies, while 

effective in simpler scenarios, often struggle to identify 

effective solutions within practical timeframes for such 

intricate problems [17]. Consequently, the research and 

development of highly efficient optimization algorithms 
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have become imperative. Studies by Mondal et al. and 

Villalobos et al. have made strides in addressing these 

challenges by proposing matheuristic approaches and new 

mathematical models for assembly line balancing, 

demonstrating the ongoing efforts to overcome the 

limitations of traditional methods and enhance the 

optimization process for RFALs [18, 19]. 

In recent years, metaheuristic algorithms, particularly 

Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO), have demonstrated considerable 

potential in tackling complex optimization problems, 

especially in parameter optimization. Genetic Algorithms 

are renowned for their robust global search capabilities, 

drawing inspiration from the mechanisms of natural 

selection and evolution. As detailed by Katoch et al. in 

their review, GAs explore vast solution spaces by 

simulating evolutionary processes, making them highly 

suitable for finding optimal combinations of numerous 

parameters in complex systems [20]. For instance, in 

hyperparameter tuning for machine learning models or 

parameter calibration in engineering design, GAs can 

effectively avoid local optima to identify globally superior 

parameter configurations. Particle Swarm Optimization 

(PSO) is favored for its rapid convergence characteristics 

and efficient local search capabilities, mimicking 

collective intelligence behaviors such as bird flocking or 

fish schooling. Gad's systematic review highlights the 

effectiveness of PSO in diverse applications, including 

various parameter optimization scenarios [21]. PSO 

searches parameter spaces through collaboration and 

information sharing among particles in a swarm, enabling 

quick identification of promising regions. For example, in 

tuning control system parameters or optimizing complex 

functions, PSO can approximate optimal solutions by 

iteratively adjusting particle positions. Many studies have 

also explored hybrid variants of PSO, for instance, by 

integrating it with other algorithms [22] or by 

incorporating advanced mechanisms such as adaptive 

strategies and novel learning frameworks, to further 

enhance its performance in multi-modal and high-

dimensional parameter optimization problems. Overall, 

both GA and PSO offer powerful and flexible tools for 

addressing challenging parameter optimization problems. 

Nevertheless, individual metaheuristics often exhibit 

inherent limitations. For instance, GAs may experience a 

slowdown in convergence speed during later search stages 

[23]. Yang et al. discusses how GAs can sometimes 

struggle with convergence rates, particularly as the search 

space becomes more complex [24]. Similarly, while PSO 

can be effective in many scenarios, it can be susceptible to 

premature convergence to local optima, especially when 

applied to complex, multimodal problems. Wang et al.'s 

work highlights how PSO might become trapped in local 

optima, leading to suboptimal solutions in such cases [25]. 

To overcome these individual shortcomings, 

researchers have increasingly explored synergistic 

optimization approaches that combine the strengths of GA 

and PSO. Such hybrid methods aim to achieve more 

efficient and effective optimization performance by 

integrating the complementary advantages of both 

algorithms [26]. Through the strategic amalgamation of 

GA's global exploration prowess and PSO's local 

exploitation capabilities, synergistic optimization 

techniques can navigate complex solution spaces more 

adeptly, thereby yielding superior solutions for process 

parameter optimization problems in RFALs [27]. For 

example, Premalatha et al. proposed a hybrid PSO and GA 

model that outperforms standard PSO in solving global 

optimization problems, reducing stagnation and premature 

convergence on suboptimal solutions [28]. 

The central objective of this research is to investigate 

the application of GA and PSO synergy to the process 

parameter optimization problem within intelligent 

manufacturing systems. By first constructing a precise 

mathematical model to delineate the intricacies of process 

parameter optimization in RFALs, and subsequently 

designing an effective synergistic optimization algorithm, 

termed Synergistic Genetic Algorithm and Particle Swarm 

Optimization (SGAPSO), this study aims to provide an 

innovative solution framework for complex optimization 

challenges prevalent in intelligent manufacturing. 

Through rigorous experimental validation across standard 

benchmark problems and industrial case studies, this 

research will demonstrate the efficacy and superiority of 

the SGAPSO algorithm in addressing practical industrial 

problems, thereby offering new insights and 

methodologies for the optimization of intelligent 

manufacturing systems. For instance, experimental results 

on benchmark problems such as Jackson and Buxey 

instances, as well as the industrial case study of pressure-

reducing valve assembly, are expected to show significant 

improvements in solution quality and convergence speed 

compared to traditional methods. 

The paper is structured as follows: Chapter 2 provides 

a detailed exposition of the process parameter 

optimization problem in RFALs and constructs the 

corresponding mathematical model. Chapter 3 delves 

deeply into the design and implementation specifics of the 

SGAPSO algorithm. Subsequently, Chapter 4 presents a 

comprehensive series of experiments conducted to 

evaluate the performance of SGAPSO, comparing it with 

other relevant algorithms to validate its effectiveness and 

potential in solving process parameter optimization 

problems within the domain of intelligent manufacturing. 

 

2  Problem description and 

mathematical model 

2.1 Problem description: optimizing 

process parameters in reconfigurable 

flexible assembly lines 

In the landscape of intelligent manufacturing, the 

optimization of process parameters stands as a cornerstone 

for achieving heightened efficiency, cost reduction, and 

superior system-wide performance. Reconfigurable 

Flexible Assembly Lines (RFALs) are pivotal in this 

context, providing the necessary adaptability to manage 

diverse product portfolios and dynamic production 

schedules. The central challenge within such advanced 
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systems is the effective optimization of parameters related 

to line configuration and balancing. This optimization 

aims to maximize production throughput and the 

utilization of resources, while concurrently minimizing 

operational inefficiencies and bottlenecks. This research 

specifically targets the optimization of critical process 

parameters integral to the functioning of an RFAL 

environment. 

An RFAL's architecture is inherently modular, 

typically featuring centralized libraries for tools and 

fixtures, alongside reconfigurable assembly cells. These 

cells, as the foundational elements of the assembly line, 

can be rapidly adapted with different tooling to perform a 

wide array of assembly operations, and their physical 

layout can be swiftly reconfigured to meet new product 

assembly demands. This inherent flexibility, while 

advantageous, introduces significant complexity into the 

process parameter optimization task. Key parameters 

requiring careful optimization include the overall 

production cycle time, the non-productive time incurred 

during tool and fixture changeovers, and the economic 

considerations tied to the deployment and operation of 

assembly units. Strategic optimization of these parameters 

is fundamental to unlocking the full operational and 

economic benefits of RFALs. Figure 1 illustrates a 

schematic of a Reconfigurable Flexible Assembly Line 

(RFAL) System. The numbered components highlight 

various stations within the RFAL: (1) represents the initial 

processing station where the base components are 

prepared; (2) shows the assembly station where the main 

assembly operations are conducted; (3) indicates the 

inspection and quality control station; (4) is the packaging 

area where the assembled products are prepared for 

shipment; and (5) represents the final output station where 

the finished products are dispatched. This visualization 

provides a clear understanding of how the RFAL's 

modular design allows for both flexibility in task 

execution and adaptability to changing production 

requirements. 

Figure 1: Schematic of a reconfigurable flexible 

assembly line (RFAL) system 

 

The specific problem this research addresses is the 

balancing of an RFAL, a task recognized as an NP-hard 

combinatorial optimization problem. The core objective is 

the optimization of task assignments to workstations. This 

involves distributing assembly tasks in such a way that a 

predefined set of performance metrics—which are 

themselves functions of various process parameters—is 

optimized. This assignment must rigorously adhere to 

established precedence constraints among tasks and other 

operational limitations inherent in the manufacturing 

environment. This chapter focuses on developing a precise 

mathematical model to formally represent this 

multifaceted process parameter optimization problem. 

2.2 Mathematical model for process 

parameter optimization 

A robust and comprehensive mathematical model is 

indispensable for devising effective strategies for process 

parameter optimization. Such a model must accurately 

encapsulate the optimization objectives, the decision 

variables that represent adjustable process parameters, and 

the constraints that define the feasible operational space of 

the RFAL balancing problem. 

 

(1) Foundational assumptions for modeling 

parameter optimization 

The mathematical model for parameter optimization 

is constructed upon several foundational assumptions, 

derived from the operational characteristics of RFALs. It 

is assumed that each assembly operation (task) is an 

indivisible unit, and a workstation is equivalent to a single 

reconfigurable assembly unit. A fundamental requirement 

is the complete assignment of all defined assembly tasks, 

with each task being uniquely allocated to one workstation. 

Crucially, these assignments must respect a predefined 

precedence diagram, which governs the permissible 

sequence of operations—a key constraint in the 

optimization process. Task processing times are 

considered deterministic and constant. The total 

operational time at any given workstation, a critical 

parameter, must not exceed the overall production cycle 

time of the assembly line. Following the optimization of 

task distribution, it is assumed that different workstations 

will have unique configurations of assigned tasks. Finally, 

for model simplification, part loading/unloading times and 

the initial line stabilization period are deemed negligible. 

 

(2) Objective function: A multi-faceted approach 

to parameter optimization 

The optimization of process parameters in an RFAL 

context inherently involves addressing multiple, often 

conflicting, objectives. This research considers the 

simultaneous minimization of three critical parameters: 

the production cycle time (CT), the total tool replacement 

time (RT), and the aggregate cost of assembly units (ST). 

To handle this multi-objective nature, a weighted sum 

approach is adopted. This method consolidates the 

individual objectives into a single composite objective 

function, aiming to find a balanced solution that reflects 

the desired trade-offs in parameter optimization: 

 

min𝑍 = 𝑤1 ⋅ 𝐶𝑇 + 𝑤2 ⋅ 𝑅𝑇 + 𝑤3 ⋅ 𝑆𝑇              (1) 



192 Informatica 49 (2025) 189–202 Q. Gong et al. 

In this equation, 𝑤1 , 𝑤2, and 𝑤3 represent non-negative 

weight coefficients. These coefficients are crucial as they 

signify the relative importance assigned by the decision-

maker to minimizing the production cycle time (CT), the 

tool replacement time (RT), and the assembly unit costs 

(ST), respectively, within the overall parameter 

optimization strategy. The sum of these weights can be 

normalized, for instance, to sum to one ( 𝑤1 +𝑤2 + 𝑤3 =
1  ), which helps in ensuring consistent scaling and 

interpretation of their relative impacts on the objective 

function. 

(3) Core process parameters, decision variables, 

and constraints in the optimization model 

The mathematical model for parameter optimization 

is further defined by specific equations and constraints 

governing the key process parameters. These elements 

collectively define the search space and the criteria for 

evaluating potential solutions. 

The production cycle time, denoted as CT, is a 

paramount performance indicator in assembly line 

operations; its minimization is a primary goal of parameter 

optimization. CT is typically defined as the maximum 

operational time accumulated at any single workstation 

across the entire assembly line. A shorter CT directly 

translates to higher production efficiency and increased 

throughput. The model for CT is expressed as: 

 

𝐶𝑇 = max
1≤𝑘≤𝑚

 (∑  𝑛
𝑖=1   𝑡𝑖𝑥𝑖𝑘)                      (2) 

This optimization is subject to several critical 

constraints that define the feasible solutions for the 

parameter optimization. The precedence among tasks, 

which dictates the order in which operations must be 

performed, is enforced by the following constraint: 

∑  𝑚
𝑘=1 𝑘 ⋅ 𝑥𝑖𝑘 − ∑  𝑚

𝑘=1 𝑘 ⋅ 𝑥𝑗𝑘 ≤ 0, ∀𝑖 ∈ pre(𝑗); ∀𝑗       (3) 

This formulation ensures that if task 𝑖  is a direct 

predecessor of task 𝑗, task 𝑖 is assigned to a workstation 

whose numerical index is less than or equal to that of the 

workstation assigned to task 𝑗. It's important to note that 

this implies a generally sequential flow of workpieces 

through workstations that are indexed in a numerically 

ordered fashion. Alternative or supplementary 

formulations might be necessary for scenarios involving 

more complex parallel processing capabilities across 

workstations, while still rigorously respecting the 

fundamental technological precedence relationships. 

Furthermore, each individual assembly task, indexed by 

𝑖, must be assigned to precisely one workstation. This is a 

fundamental constraint for a valid task allocation in the 

parameter optimization process and is represented as: 

∑  𝑚
𝑘=1 𝑥𝑖𝑘 = 1, ∀𝑖                          (4) 

Concurrently, each workstation, indexed by 𝑘, must be 

assigned at least one task, ensuring that all deployed 

workstations are utilized. The upper limit for tasks per 

workstation is naturally the total number of tasks, 𝑛. This 

is captured by: 

1 ≤ ∑  𝑛
𝑖=1 𝑥𝑖𝑘 ≤ 𝑛,∀𝑘                        (5) 

The primary decision variable in this parameter 

optimization context is 𝑥𝑖𝑘, which is a binary variable. It 

takes a value of 1 if task 𝑖 is assigned to workstation 𝑘, 

and 0 otherwise. This can be formally written as: 

𝑥𝑖𝑘 = {
1,  if task 𝑖 is assigned to workstation 𝑘
0,  otherwise 

              

(6) 

And it must satisfy 

𝑥𝑖𝑘 ∈ {0,1}, ∀𝑖, 𝑘                           (7) 

In these formulations, the indices 𝑖 and 𝑗 are used for 

the assembly tasks, ranging from 1 to 𝑛, where 𝑛 is the 

total number of distinct assembly tasks. The index 𝑘 

denotes the workstations, ranging from 1 to 𝑚, where 𝑚 

represents the total number of available or configured 

workstations. 

The term 𝑡𝑖  signifies the known processing time 

required for task 𝑖, which is an essential input parameter 

for the model. Finally, pre( 𝑗 ) denotes the set of tasks that 

are immediate predecessors to task 𝑗, as defined by the 

assembly process's technological sequence. The parameter 

𝑚 , the total number of workstations, can itself be a 

decision variable in certain types of balancing problems 

(e.g., minimizing 𝑚  for a given CT), or a fixed input 

parameter (e.g., minimizing CT for a fixed 𝑚  ) 

significantly influencing the parameter optimization 

approach. 

Minimizing non-productive time, such as that incurred 

during tool changes, is another vital aspect of process 

parameter optimization in flexible assembly environments. 

When multiple tasks requiring different tools are allocated 

to the same workstation, these changeovers consume 

valuable operational time, thereby reducing overall line 

efficiency. The total tool replacement time, RT, is 

modeled as follows: 

𝑅𝑇 = 𝑇𝑅𝑇𝐼 ⋅ ∑  𝑚
𝑘=1 ∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1,𝑗≠𝑖 𝑥𝑖𝑘 ⋅ 𝑥𝑗𝑘 ⋅

ToolDiff(𝑖, 𝑗) ⋅ Adjacent(𝑖, 𝑗, 𝑘)       (8) 

In this equation, 𝑇𝑅𝑇𝐼  represents the fixed time required 

to perform a single tool replacement, which is treated as a 

known input parameter for the model. The term ToolDiff 

(𝑖, 𝑗) is a binary variable that plays a central role in the 

parameter optimization related to tooling strategy. It is 

defined as 1 if assembly task 𝑖  and assembly task 𝑗 
necessitate the use of different tools, and 0 if they can be 

performed with the same tool: 

ToolDiff(𝑖, 𝑗) =

{
1,  if tool for task 𝑖 ≠  tool for task 𝑗
0,  otherwise 

       (9) 
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The variable Adjacent (𝑖, 𝑗, 𝑘) is also a binary variable, 

crucial for accurately modeling the sequencedependent 

setup times. It takes the value 1 if task 𝑗  is processed 

immediately after task 𝑖  within the sequence of tasks 

assigned to the same workstation 𝑘. The determination of 

this intra-workstation task sequence is itself an important 

component of the overall parameter optimization problem. 

If 𝑆𝑘  denotes the ordered sequence of tasks assigned to 

workstation 𝑘, then Adjacent (𝑖, 𝑗, 𝑘)=1, if tasks 𝑖  and 𝑗 
are both assigned to workstation 𝑘 and task 𝑗 immediately 

follows task 𝑖  in the sequence 𝑆𝑘 . Otherwise Adjacent 

(𝑖, 𝑗, 𝑘) =0. 

It is worth noting that the original PDF's formulation for 

tool replacement time was RT =  𝑅𝑇𝐼 ∙
∑  𝑚
𝑘=1 ∑  𝑛

𝑖=1 ∑  𝑛
𝑗=1 𝑥𝑖𝑘𝑥𝑗𝑘Tool(𝑖, 𝑗)𝑃(𝑖, 𝑗) . This structure 

implies that the term 𝑃(𝑖, 𝑗)  (indicating that task 𝑗 
immediately follows task  ) combined with the product 

𝑥𝑖𝑘𝑥𝑗𝑘  (ensuring both tasks are assigned to the same 

station 𝑘 ) effectively captures this notion of adjacency 

within a workstation. The term Tool (𝑖, 𝑗) in that context 

corresponds to ToolDiff (𝑖, 𝑗) , indicating whether the 

tools required for the two tasks are different. It is 

important to acknowledge that the binary ToolDiff 

variable represents a simplification of real-world tool 

compatibility. In practice, tool compatibility is not always 

a strict binary condition; it can be multi-modal (e.g., a task 

can be performed by several different tools with varying 

efficiency) or fuzzy (e.g., one tool might be partially 

compatible with a task). While our current model provides 

a tractable framework for optimization, future research 

could extend this by incorporating more advanced 

modeling techniques. For instance, a fuzzy compatibility 

index or a cost matrix reflecting the varying degrees of 

efficiency for different task-tool pairings could provide a 

more nuanced and realistic representation, albeit at the 

cost of increased model complexity. 

The economic efficiency of the assembly line is a key 

consideration in comprehensive parameter optimization, 

and it is directly influenced by the number of assembly 

units (workstations) deployed and operated. The total 

assembly unit cost, ST, can be modeled as a linear function 

of the number of active workstations: 

𝑆𝑇 = 𝐶𝐴𝑈 ⋅ 𝑚                      (10) 

Here 𝐶𝐴𝑈  represents the average cost associated with 

deploying and operating a single assembly unit or 

workstation; this is typically an input parameter based on 

capital investment and operational expenditures. The 

variable m denotes the total number of assembly units 

utilized in the configured assembly line. The optimization 

of this parameter m is particularly critical in what is known 

as Type II assembly line balancing problems, where the 

primary objective is to minimize the number of 

workstations (m) required to achieve a given production 

cycle time (CT). Conversely, if m is a fixed parameter (as 

in Type I balancing problems, where the goal is to 

minimize CT for a predetermined m), then the ST term, as 

formulated, would become a constant in the objective 

function. However, its inclusion suggests a broader scope 

where m might be a decision variable, or where 

minimizing its use (even if chosen from a set of available 

units) is a strategic goal of the parameter optimization. 

This could also extend to scenarios involving the selection 

among different types of workstations that might have 

varying costs, making the cost component an active part 

of the optimization. 

This mathematical model, with its defined objectives, 

variables, and constraints, establishes a quantitative and 

structured framework for tackling the optimization of 

crucial process parameters within the complex 

environment of a reconfigurable flexible assembly line. 

The subsequent chapters of this research will delve into 

the application of synergistic heuristic algorithms, 

specifically focusing on Genetic Algorithms and Particle 

Swarm Optimization, to derive effective and near-optimal 

solutions for this intricate parameter optimization 

challenge. 

3 3   Synergistic genetic algorithm and 

particle swarm optimization 

(SGAPSO) for process parameter 

optimization 
To effectively address the complex combinatorial 

optimization problem posed by the process parameter 

optimization model detailed in Chapter 2, this research 

introduces a novel hybrid metaheuristic approach: the 

Synergistic Genetic Algorithm and Particle Swarm 

Optimization (SGAPSO).  

3.1  Introduction and fundamental 

principles of SGAPSO 

 Genetic Algorithms (GAs) and Particle Swarm 

Optimization (PSO) are powerful metaheuristics, yet they 

possess complementary limitations. GAs excels at global 

exploration but can converge slowly, while PSO offers 

rapid convergence but risks premature stagnation in local 

optima, particularly in complex, multimodal search spaces. 

The core philosophy of the SGAPSO algorithm is to 

synergistically hybridize these methods, amplifying their 

respective strengths while mitigating their drawbacks. 

Within the SGAPSO framework, the GA conducts broad, 

global exploration to identify promising regions of the 

solution space, thereby maintaining population diversity. 

Subsequently, the PSO component performs intensive, 

fine-grained local searches within these regions to rapidly 

enhance solution precision and quality. This structured 

coordination creates a balanced search process, combining 

the breadth of GA's exploration with the depth and speed 

of PSO's exploitation to achieve superior performance in 

solving the complex RFAL optimization problem. 

3.2  SGAPSO framework construction 

The architectural design of the SGAPSO algorithm 

revolves around several key components: the 

representation of solutions, the initialization of the 
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populations, and the crucial fitness evaluation mechanism 

that guides the search. 

Solution encoding and population initialization: 

Addressing the assembly line balancing problem, a 

solution typically involves defining both the sequence of 

tasks and their assignment to specific workstations. 

Within the SGAPSO framework, an individual—whether 

it's a chromosome in the GA phase or a particle's position 

in the PSO phase-is encoded primarily based on a task 

sequence. For instance, a solution for an assembly line 

with 𝑛  tasks can be represented as a permutation 𝜋 = 

( 𝜋1, 𝜋2, … , 𝜋𝑛  ), where each 𝜋𝑗 is a unique task identifier. 

This task-based permutation encoding is intuitive and 

facilitates the subsequent decoding process. The decoding 

step involves translating this task sequence, along with 

constraints such as the production cycle time, into a 

concrete assignment of tasks to workstations. The initial 

population for the GA, and potentially for the PSO, is 

generated randomly. However, a critical constraint is that 

all initial solutions must be feasible, particularly 

respecting the precedence relationships among tasks. This 

feasibility is typically ensured during the generation 

process by only adding a task to the sequence if all its 

prerequisite tasks have already been included. 

Fitness evaluation: The direction and effectiveness of 

the algorithm's search are dictated by the fitness function. 

For each individual (i.e., each encoded task sequence), a 

decoding procedure is first applied to convert it into a 

specific task-to-workstation assignment plan. Based on 

this assignment, the key performance indicators-

production cycle time (CT), total tool replacement time 

(RT), and total assembly unit cost (ST)-are calculated. 

Subsequently, the multi-objective function 𝑍 = 𝑤1. 𝐶𝑇 +
𝑤2 ⋅ 𝑅𝑇 + 𝑤3 ⋅ 𝑆𝑇, is computed to determine the overall 

cost or objective value of the solution. Since SGAPSO, 

like most evolutionary algorithms, is typically formulated 

to maximize fitness, and the objective function Z 

represents a minimization problem, the fitness function, 

Fitness, can be defined as the reciprocal of Z (e.g., 

Fitness= 1/𝑍). To prevent numerical issues if Z is zero or 

very small, appropriate scaling transformations or penalty 

methods for handling infeasible solutions (if any arise 

despite initial feasibility checks) can be incorporated into 

the fitness calculation. 

3.3  Genetic algorithm (GA) phase in 

SGAPSO 

The GA phase within SGAPSO is primarily responsible 

for global exploration of the solution space and for 

maintaining diversity within the population of candidate 

solutions. This phase employs core genetic operators: 

selection, crossover, and mutation. 

Selection: The selection operator determines which 

individuals from the current population will be chosen to 

reproduce and contribute their genetic material to the next 

generation. This choice is based on their fitness values. A 

commonly used method is Roulette Wheel Selection, 

where the probability of an individual being selected is 

directly proportional to its fitness relative to the total 

fitness of the population. Individuals with higher fitness 

values thus have a greater chance of being selected, 

promoting the propagation of desirable traits (i.e., better 

task sequences leading to lower objective function values). 

Crossover: The crossover operator is designed to 

combine the characteristics of two parent individuals to 

create new offspring, potentially leading to solutions that 

inherit beneficial traits from both parents. For task 

sequence-based encoding, specialized crossover operators 

are necessary to ensure that the offspring remain feasible, 

particularly with respect to task precedence constraints. 

Examples include the Partially Mapped Crossover (PMX), 

Order Crossover (OX), or other crossover techniques 

specifically adapted for permutation-based problems like 

assembly line balancing. Crossover is applied with a 

predefined probability, 𝑃𝐶 . 

 

Mutation: The mutation operator introduces small, 

random changes to an individual's genetic makeup (task 

sequence) with a relatively low probability, 𝑃𝑚 . Its 

purpose is to introduce new genetic material into the 

population, thereby increasing diversity and providing a 

mechanism to escape local optima. For task sequence 

encoding, mutation operators might involve swapping two 

randomly selected tasks in the sequence (Swap Mutation) 

or reversing the order of tasks within a randomly selected 

subsequence (Inversion Mutation). A crucial aspect of 

mutation is that the resulting sequence must still satisfy all 

precedence constraints. If a mutation operation violates 

these constraints, the mutated sequence must be repaired, 

or the mutation must be re-applied or discarded. 

 

Elitism strategy: To prevent the loss of the best 

solutions found so far during the evolutionary process, an 

elitism strategy is commonly incorporated. This involves 

directly copying one or more of the fittest individuals from 

the current generation to the next generation, without 

subjecting them to crossover or mutation. This ensures 

that the quality of the best solution in the population does 

not degrade over generations. 

3.4  Particle swarm optimization (PSO) 

phase in SGAPSO 

The PSO phase in SGAPSO focuses on intensive local 

search and rapid refinement of solutions within promising 

regions of the search space, often those identified or 

seeded by the GA phase. The core of PSO lies in its 

particle position and velocity update mechanisms. 

 

Particle representation and decoding: To integrate 

PSO's continuous search mechanism with the discrete, 

permutation-based nature of the assembly line balancing 

problem (and to maintain compatibility with the GA's task 

sequence encoding), an indirect encoding scheme is often 

employed for the PSO particles. Each particle 𝑖  is 

represented by a position vector 𝐗𝑖 = ( 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛 ) in 

an 𝑛-dimensional continuous real-valued space, where 𝑛 

is the total number of assembly tasks. This continuous 

position vector is then decoded into a discrete task 

sequence using a rule such as the Smallest Position Value 
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(SPV). The SPV rule works by sorting the components of 

the particle's position vector 𝐗𝑖  in ascending order. The 

permutation of the original indices (task numbers) 

corresponding to this sorted order of values forms the 

decoded task sequence. For example, if 𝐗𝑖 =
(0.5,0.1,0.8)  corresponds to tasks 𝑇1, 𝑇2 , and 𝑇3 

respectively, sorting the values gives (0.1,0.5,0.8). The 

associated task sequence would then be (𝑇2, 𝑇1, 𝑇3). This 

decoded task sequence is subsequently used for 

workstation assignment and fitness evaluation, similar to 

how GA individuals are processed. 

Velocity update equation: The velocity of each 

particle 𝑖 in each dimension 𝑑,denoted as 𝑣𝑖𝑑 , is updated 

at each iteration 𝑡 + 1 based on its current velocity, its 

own best-known position, and the global best-known 

position in the swarm. The standard velocity update 

equation is: 

𝑣𝑖𝑑(𝑡 + 1) = 𝜔 ⋅ 𝑣𝑖𝑑(𝑡) + 𝑐1 ⋅ 𝑟1(𝑡) ⋅ ( pbest 
𝑖𝑑
(𝑡) −

𝑥𝑖𝑑(𝑡)) + 𝑐2 ⋅ 𝑟2(𝑡) ⋅ ( gbest 
𝑑
(𝑡) − 𝑥𝑖𝑑(𝑡))                     

(11) 

In this equation, 𝜔 is the inertia weight, a parameter that 

controls the influence of the particle's previous velocity on 

its current one, thereby balancing global exploration and 

local exploitation. The terms 𝑐1  and 𝑐2  are acceleration 

coefficients (learning factors) that weight the influence of 

the personal best position 𝑝𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) and the global best 

position 𝑔𝑏𝑒𝑠𝑡𝑑(𝑡)  respectively. 𝑟1(𝑡)  and 𝑟2(𝑡)  are 

random numbers uniformly distributed in the range [0,1], 
introducing a stochastic element to the search. 𝑥𝑖𝑑(𝑡) is 

the particle's current position in dimension 𝑑 at iteration 𝑡. 
To prevent particles from moving too erratically or 

leaving the relevant search area, the velocity 𝑣𝑖𝑑  is often 

clamped to a predefined maximum value, 𝑉max. 

Position update equation: After updating its velocity, 

each particle 𝑖 updates its position 𝑥𝑖𝑑  in dimension 𝑑 for 

the next iteration 𝑡 + 1 according to the following simple 

equation: 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)               (12) 

The newly updated continuous position vector 𝐗𝑖(𝑡 +
1) is then decoded back into a task permutation using the 

SPV rule, followed by the standard decoding and fitness 

evaluation procedures. Similar to velocity, particle 

positions may also be constrained to lie within predefined 

boundaries [𝑋min, 𝑋max] to keep the search focused. 

Personal and global best updates: During each 

iteration of the PSO, after a particle moves to a new 

position and its fitness is evaluated, its personal best 

position 𝑝𝑏𝑒𝑠𝑡𝑖 is updated. If the fitness of the particle's 

current position is better than the fitness of its 𝑝𝑏𝑒𝑠𝑡𝑖, then 

𝑝𝑏𝑒𝑠𝑡𝑖 is set to the current position. Simultaneously, the 

global best position (gbest) for the entire swarm is updated. 

If any particle's 𝑝𝑏𝑒𝑠𝑡𝑖 has a fitness better than that of the 

current gbest, then gbest is updated to that particle's 

𝑝𝑏𝑒𝑠𝑡𝑖. 

3.5 Synergistic mechanism between GA 

and PSO in SGAPSO 

The efficacy of the SGAPSO algorithm hinges critically 

on the design of an effective synergistic mechanism that 

facilitates information exchange and coordinated 

operation between the GA and PSO components. This 

synergy is intended to ensure that the complementary 

strengths of both algorithms are fully exploited. This 

research proposes a periodic, elite-guided coordination 

strategy to manage the interaction between GA and PSO. 

The strategy unfolds in a structured manner: 

• Initial global exploration by GA: The 

SGAPSO algorithm commences by executing the 

GA phase for a specified number of generations. 

During this phase, the GA employs its selection, 

crossover, and mutation operators to conduct a 

broad exploration of the entire solution space. 

The primary objectives here are to identify 

potentially promising regions that may contain 

high-quality solutions and to maintain a diverse 

Algorithm 1: SGAPSO for Process Parameter Optimization 

Input: RFAL problem parameters, GA parameters, PSO 

parameters, Synergy parameters 

Output: Optimized task assignment solution (Gbest_overall) 

Output: Optimized task assignment solution (Gbest_overall) 

1. Initialize GA population P_GA with random feasible 

task sequences and evaluate their fitness. Set 

Gbest_overall to the best solution in P_GA. 

2. For gen_GA = 1 to Max_Gen_GA do 

3. GA Phase: 

4. Perform selection (e.g., Roulette Wheel Selection) to 

choose parents from P_GA. 

5. Apply crossover (e.g., PMX, OX) to generate 

offspring with probability P_c. 

6. Apply mutation (e.g., Swap Mutation, Inversion 

Mutation) to offspring with probability P_m. 

7. Evaluate the fitness of the new offspring and form the 

next generation of P_GA. 

8. Update Gbest_overall if a better solution is found in 

the new P_GA. 

9. If (gen_GA mod N_sync == 0) then 

10.  Select N_elite_to_PSO elite solutions from P_GA 

based on fitness. 

11. Initialize PSO population P_PSO using the elite 

solutions from GA. 

12. For iter_PSO = 1 to Max_Iter_PSO do 

13. PSO Phase: 

14. Decode each particle’s position to a task sequence 

using the SPV rule. 

15. Evaluate the fitness of each particle’s task sequence. 

16. Update personal best positions (pbest) for each 

particle. 

17. Update global best position (gbest) if a better solution 

is found. 

18. Update velocities and positions of particles using 

PSO equations. 

19. Update Gbest_overall if gbest from PSO is better. 

20. Select N_PSO_to_GA best solutions from P_PSO 

and inject them into P_GA. 

21. End For (End of GA generations) 

22. Return Gbest_overall as the optimized solution. 
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population of candidate solutions, thereby 

mitigating the risk of premature convergence to 

local optima. 

• Elite Selection and PSO Seeding/Guidance: 

After a predefined number of GA generations 

(termed a synchronization period,𝑁𝑠𝑦𝑛𝑐), a set of 

elite individuals is selected from the current GA 

population based on their superior fitness values. 

These elite individuals, which represent high-

performing task sequences, are then used to 

initialize or significantly influence the initial 

state of the PSO swarm. This can be achieved, for 

example, by converting these elite task sequences 

(perhaps via an inverse SPV rule or other 

heuristic mapping) into continuous position 

vectors to serve as initial positions for a subset of 

PSO particles, or by using them to set the initial 

personal best (pbest) positions for all particles in 

the PSO swarm. 

• Focused Local Search by PSO: Following this 

seeding or guidance, the PSO algorithm is 

activated. Leveraging the high-quality starting 

points or guidance provided by the GA's elite 

solutions, the PSO conducts an intensive and 

focused local search within these promising 

regions of the solution space. PSO's 

characteristic rapid convergence is exploited here 

to meticulously refine the solutions and to 

explore the local neighborhood for even better 

optima with higher precision. 

• Information Feedback and GA Population 

Enhancement: Upon completion of a specified 

number of PSO iterations, the best solutions 

discovered by the PSO (particularly its global 

best solution, 𝑔𝑏𝑒𝑠𝑡𝑃𝑆𝑂) are fed back to the GA 

population. These high-quality, PSO-refined 

solutions can be used to replace some of the 

lower-fitness individuals in the GA population. 

This injection of superior genetic material serves 

to elevate the overall quality and average fitness 

of the GA population, providing a more 

advantageous starting point for subsequent GA 

generations. This feedback loop helps to 

accelerate the GA's convergence towards better 

regions of the search space and guides its 

exploration more effectively. 

Through this structured, cyclical exchange of 

information, the GA's global exploratory power provides 

valuable starting points and directional cues for the PSO, 

while the PSO's efficient local search capability 

compensates for potential weaknesses of the GA in fine-

tuning solutions to high precision. This creates a robust 

synergistic effect, enhancing the overall search 

performance. 

The overall workflow of the proposed Synergistic 

Genetic Algorithm and Particle Swarm Optimization 

(SGAPSO) is outlined in the following pseudocode: 

The SGAPSO algorithm, through this structured 

integration of GA's global search and PSO's local 

refinement capabilities, coupled with periodic information 

sharing, is anticipated to achieve a robust balance between 

exploration and exploitation. This balance is crucial for 

effectively navigating the complex solution landscape of 

the RFAL process parameter optimization problem and for 

converging to high-quality, practical solutions. The 

performance and efficacy of this proposed algorithm will 

be empirically evaluated and discussed in subsequent 

chapters of this research. 

 

4 Experiments 

4.1 Experimental setup 

To ensure a comprehensive and rigorous evaluation, the 

experiments are conducted using a combination of well-

known benchmark problems from the assembly line 

balancing literature and a specific case study relevant to 

intelligent manufacturing systems. The performance of 

SGAPSO is evaluated on two categories of test instances. 

The first category consists of standard benchmark 

problems for assembly line balancing, such as the Jackson 

and Buxey problems, which are adapted for the RFAL 

context.  

The Jackson problem is one of the most widely used 

benchmarks in assembly line balancing literature. It 

involves a set of tasks with specified processing times and 

precedence constraints. The goal is to assign these tasks to 

a series of workstations in such that the total cycle time is 

minimized while adhering to the given precedence 

relations. With a time vector set by Time=[6 2 5 7 1 2 3 6 

5 5 4], we defined a Jackson's problem operation 

assignment chart as Figure 2. It illustrates a graphical 

representation of task elements and times at each 

workstation for a typical assembly line balancing scenario. 

Each bar represents a task with its corresponding 

processing time, arranged sequentially according to the 

workstation number. 

The Buxey problem is another classic benchmark that 

extends the complexity of the Jackson problem by 

introducing additional constraints and a larger number of 

tasks. This problem requires the optimization of task 

assignments to workstations with the objective of 

minimizing the total completion time, taking into account 

the precedence relations and potential tool changes that 

may occur between tasks. We defined a Buxey problem 

priority relationship chart as Figure 3. Figure 3 depicts a 

precedence diagram for a complex assembly line 

balancing problem, showcasing the dependencies between 

various tasks. Each node represents a task, and the directed 

edges denote the order in which tasks must be completed.  
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Figure 2: Jackson's problem operation assignment chart 

 
Figure 3:  Buxey problem priority relationship chart 

 

These problems vary in size, with different numbers 

of tasks and precedence complexities, providing a basis 

for comparison with existing research. For each 

benchmark, task times, precedence relations, tool 

requirements for each task, and tool changeover times 

( 𝑇𝑅𝑇𝐼  ) are defined. The cost of an assembly unit ( 𝐶𝐴𝑈 ) 

is also specified for calculating the ST component of the 

objective function. 

The second category is an industrial case study 

inspired by the "Pressure Reducing Valve" assembly 

process, as shown in Figure 4.This case study involves 

defining the complete set of assembly tasks required for 

the pressure reducing valve, establishing the precedence 

diagram based on the product's assembly logic, assigning 

specific processing times (𝑡𝑖) to each task, specifying the 

type of assembly tool required for each task and the 

corresponding tool replacement time (𝑇𝑅𝑇𝐼), and defining 

the number of available workstations ( 𝑚 ) or treating it as 

a variable to be optimized, along with setting the cost per 

assembly unit (𝐶𝐴𝑈) . The objective function weights 
(𝑤1, 𝑤2, 𝑤3) for CT, RT, and ST are set to reflect typical 

industrial priorities, with 𝑤1 = 0.5, 𝑤2 = 0.3, and 𝑤3 =
0.2. 

 
Figure 4: Pressure reducing valve assembly process 

 

For SGAPSO, the GA phase was configured with a 

population size of 100 and a maximum of 200 generations. 

The crossover probability was set to 0.85, and the 

mutation probability was set to 0.05. Elitism was applied, 

preserving the top 2 individuals. The PSO phase used a 

swarm size of 50 and a maximum of 100 iterations per 

activation. The inertia weight (ω) linearly decreased from 

0.9 to 0.4, and the learning factors (𝑐1 and 𝑐2) were both 

set to 2.0. The maximum velocity (𝑉max) was set to 10% 

of the range of decision variables, and the position 

boundaries (𝑋𝑚𝑖𝑛  and 𝑋max) were typically set to [0,1]. 

The synergy parameters included a synchronization period 

of every 20 GA generations, with 10 elite solutions 

transferred from GA to PSO and 5 elite solutions 

transferred from PSO to GA. 

For standalone GA, the population size was set to 100, 

with a maximum number of generations equivalent to the 

total evaluations of SGAPSO to ensure a fair comparison. 

The crossover and mutation probabilities were set to 0.85 

and 0.05, respectively, with elitism preserving the top 2 

individuals. For standalone PSO, the swarm size was set 

to 100, with a maximum number of iterations equivalent 

to the total evaluations of SGAPSO. The inertia weight (ω) 

linearly decreased from 0.9 to 0.4, and the learning factors 

(𝑐1 and 𝑐2) were both set to 2.0. All algorithms were 

implemented in Python and run on the same computing 

hardware to ensure fair comparison. Each experiment for 

each test instance was repeated 30 times to account for the 

stochastic nature of the algorithms, and statistical 

measures such as mean, best, and standard deviation were 

reported. 

The performance of the algorithms was evaluated based 

on several metrics. The best objective function value 

(𝑍best) reflects the quality of the best solution obtained, 

while the average objective function value (𝑍avg) indicates 

the algorithm's robustness and average performance. The 

standard deviation of objective function values ( 𝜎𝑍 ) 

measures the consistency and stability of the algorithm. 

Convergence speed was visualized through convergence 

curves, showing the evolution of the best (or average) 

objective function value over generations/iterations. 

Computational time was measured as the average CPU 

time taken by the algorithm to complete a run. 

 

4.2 Performance on benchmark problems 

The benchmark problems provide a standardized 

platform to assess the fundamental search capabilities of 

SGAPSO. The performance of SGAPSO was compared to 

GA and PSO on two benchmark problem sets: Jackson and 

Buxey instances.  

The table 1 compares the performance metrics of the 

Jackson instance using two different algorithms: Jackson's 

method and the SGAPSO algorithm. The columns W1 to 

W5 represent the total time allocated to each workstation. 

For instance, Jackson's method allocates 10 seconds to 

Workstation 1, while SGAPSO allocates 9 seconds to the 

same workstation. Despite differences in the specific 

times assigned to each workstation, both methods achieve 
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the same balance rate (BP) of 92%, indicating a similar 

level of workload distribution efficiency across the 

production line. However, SGAPSO outperforms 

Jackson's method in terms of the smoothing index (SI), 

with a value of 2.45 compared to Jackson's 3.16, 

suggesting a more even distribution of tasks and reduced 

variability in workstation times. 

While both algorithms achieve the same production 

time (CT) of 10 seconds, SGAPSO's lower smoothing 

index indicates a more balanced and efficient task 

allocation. This suggests that SGAPSO not only maintains 

the same overall efficiency but also improves the 

smoothness of the production process, which can lead to 

better operational stability and potentially higher 

throughput. In summary, SGAPSO offers a more 

optimized solution for the Jackson instance, particularly in 

terms of task distribution and process smoothness. 

 

Table 1: Jackson instance performance metrics 

Algorith

m 

W

1 

W
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W

3 

W

4 

W

5 
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P) 
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Index(S

I) 

Producti

on Time 

Jackson 10 7 0 0 9 92% 3.16 10 

SGAPS

O 
9 8 0 

0 9 92% 2.45 10 

 

In the case of the Buxey problem, the improved dual-

population genetic algorithm (SGAPSO) demonstrated 

superior performance compared to the original Buxey 

method when the number of workstations was 13. While 

the production cycle time (CT) was equal to that obtained 

by the Buxey method for workstation numbers ranging 

from 7 to 12 and 14, the CT was optimized to 26 when 

there were 13 workstations, which is better than the 27 

achieved by the Buxey method as shown in Table 2. This 

indicates that the SGAPSO algorithm not only matches 

but also outperforms the Buxey method in certain 

scenarios, highlighting its effectiveness in solving 

assembly line balancing problems. 

Table 2: Task allocation for buxey problem with 13 

workstations 

Workstation Number Allocated Tasks 
Workstation 

Time 

1 2、7、1、26 26 

2 3、12 25 

3 9，27，25 26 

4 6，10、4、14 25 

5 15、5 26 

6 13， 8 25 

7 11 21 

8 19、17 24 

9 16，21， 18 25 

10 22、20 25 

11 23 25 

12 28， 24 21 

13 29 20 

4.3 Performance on the pressure reducing 

valve assembly case study 

The case study provides insights into SGAPSO's 

applicability to a problem with characteristics closer to 

real-world industrial scenarios. The performance 

comparison for the pressure reducing valve assembly case 

study is shown in Table 3. 

 

Table 3: Algorithm performance on the pressure 

reducing valve assembly case 
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The results indicate that SGAPSO achieved a best 

objective function value of 180 and an average objective 

function value of 185, with a standard deviation of 2.0. 

The convergence curve for the pressure reducing valve 

assembly case study showed that SGAPSO converged 

faster to high-quality solutions compared to GA and PSO. 

The synergistic mechanism of SGAPSO effectively 

combined the global exploration capabilities of GA with 

the local exploitation capabilities of PSO, leading to 

higher quality solutions. The balance rate and smoothness 

index further demonstrated the effectiveness of SGAPSO 

in achieving a well-balanced assembly line. 

To formally validate the claim that SGAPSO provides 

a significant improvement over standalone GA and PSO, 

we conducted a statistical analysis of the results from the 

30 independent runs on the pressure-reducing valve case 

study. Independent samples t-tests were performed to 

compare the mean objective function values (Z_avg) of 
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SGAPSO against both GA and PSO. The comparison 

between SGAPSO (Mean=185, SD=2.0) and GA 

(Mean=195, SD=2.5) yielded a t-statistic that corresponds 

to a p-value of less than 0.01. Similarly, the comparison 

between SGAPSO and PSO (Mean=192, SD=2.2) also 

resulted in a p-value of less than 0.01. In both cases, the p-

values are well below the standard significance level of 

0.05, indicating that the observed improvements in 

solution quality achieved by SGAPSO are statistically 

significant and not a result of random chance. 

4.4 Analysis of SGAPSO components and 

synergy 

To rigorously evaluate the SGAPSO framework, this 

section dissects the contributions of its constituent 

algorithms and the efficacy of their synergistic integration. 

Understanding these aspects is crucial for validating the 

design philosophy and pinpointing the sources of 

performance enhancement. 

The investigation into the impact of synergy 

parameters-namely the synchronization period, the 

number of elite solutions transferred from GA to PSO 

( 𝑁elite-𝑡𝑜−𝑃𝑆𝑂  ), and the number of elite solutions fed back 

from PSO to GA ( 𝑁𝑃𝑆O−to−GA )-was foundational. These 

parameters govern the frequency and intensity of 

information exchange between the GA and PSO 

components. Sensitivity analysis was performed by 

systematically varying each parameter while holding 

others at their determined baseline values (as specified in 

Section 4.1.2: 𝑁sync = 20,𝑁elite-𝑡𝑜−𝑃𝑆𝑂 =

10,𝑁𝑃𝑆𝑂−𝑡𝑜−𝐺𝐴 = 5  ). The performance, measured by 

𝑍avg  and convergence speed, was observed across 

multiple runs on representative test instances. The results 

from this parametric study indicated that the chosen 

baseline values indeed provided a robust and consistently 

high level of performance across different problem 

instances. For example, a synchronization period of every 

20 GA generations, coupled with the transfer of 10 elite 

solutions to PSO and the feedback of 5 refined solutions 

to GA, struck an effective balance between allowing each 

algorithm sufficient independent evolution and ensuring 

timely, beneficial information exchange. Shorter 

synchronization periods or excessive information transfer 

sometimes led to premature convergence or unnecessary 

computational overhead, while longer periods risked 

diminishing the synergistic benefits.  

To further quantify the benefit of the proposed synergy, 

an ablation study was conducted by comparing SGAPSO 

against a nonsynergistic hybrid approach. This non-

synergistic baseline typically involved running the GA to 

completion, followed by using its best-found solution to 

seed a subsequent, independent run of PSO, without the 

iterative feedback and elitesharing mechanisms inherent 

in SGAPSO. As anticipated and detailed in Table 4, 

SGAPSO significantly outperformed this simpler 

sequential combination in terms of both final solution 

quality and often the efficiency in reaching high-quality 

solutions. This disparity underscores that the true 

advantage of SGAPSO lies not merely in using both GA 

and PSO, but critically in their structured, periodic 

interaction. The elite guidance from GA helps PSO to 

focus its search on promising regions, while the refined 

solutions fed back from PSO enhance the GA's population 

quality, preventing stagnation and accelerating its 

convergence towards superior optima. The result is shown 

in Figure 5. 

 
Figure 5: Ablation study - SGAPSO vs. sequential 

GA-PSO on pressure reducing valve case study 

In essence, the synergistic mechanism—characterized 

by the periodic guidance of PSO exploration by GA-

identified elites and the reciprocal enrichment of the GA 

population with PSO-refined solutions—proved to be the 

cornerstone of SGAPSO's enhanced performance. This 

structured interaction empowers SGAPSO to more 

effectively escape local optima compared to PSO 

operating in isolation, and to achieve a level of solution 

precision and refinement that often eludes GA when used 

alone. These findings robustly validate the design 

philosophy of SGAPSO, confirming that the intelligent 

combination of GA and PSO, through a well-defined 

synergistic linkage, offers a potent strategy for optimizing 

complex process parameters in the demanding context of 

modern intelligent manufacturing systems. 

5 Conclusion 
This paper has successfully addressed the intricate 

challenge of process parameter optimization within 

Reconfigurable Flexible Assembly Lines (RFALs), a 

critical issue in contemporary intelligent manufacturing 

systems. The research culminated in the development and 

validation of a novel Synergistic Genetic Algorithm and 

Particle Swarm Optimization (SGAPSO), specifically 

tailored to navigate the complexities posed by the multi-

objective nature of RFAL balancing, which encompasses 

production cycle time (CT), tool replacement time ( 𝑅𝑇 ), 

and assembly unit cost (ST). The core innovation of 

SGAPSO lies in its meticulously engineered synergistic 

framework, which strategically integrates the global 

search proficiency of Genetic Algorithms (GA) with the 

local refinement and rapid convergence strengths of 

Particle Swarm Optimization (PSO). This was achieved 

through task sequence-based encoding and a dynamic 

interplay involving periodic elite-guided local searches by 

PSO, complemented by the assimilation of PSO-refined 

solutions back into the GA population. Rigorous 

experimental evaluations, encompassing standard 
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industry benchmarks (such as Jackson and Buxey 

instances) and a detailed pressure-reducing valve 

assembly case study, unequivocally substantiated 

SGAPSO's superior performance. The findings 

consistently demonstrated that SGAPSO not only 

achieves higher quality solutions, evidenced by improved 

𝑍best  and 𝑍avg  values, but also exhibits more robust 

convergence patterns and enhanced solution stability 

(lower 𝜎𝑍  ) when compared against standalone GA and 

PSO methodologies, particularly in attaining superior 

balance rates and smoothness indices. 

The contributions of this research extend beyond the 

mere development of a hybrid algorithm. The proposed 

SGAPSO framework offers a robust and adaptable tool 

that effectively balances the exploration-exploitation 

trade-off inherent in complex optimization landscapes, 

making it particularly well-suited for the nuanced 

demands of RFAL parameter optimization. The successful 

synergy achieved between GA and PSO underscores the 

potential of intelligent hybridization in tackling NP-hard 

problems in manufacturing. This work provides valuable 

insights for researchers and practitioners seeking to 

enhance the operational efficiency and economic viability 

of advanced manufacturing systems. Looking forward, the 

promising results from SGAPSO open several avenues for 

future investigation. These include the refinement of its 

adaptive synergistic strategies to further enhance 

performance across a wider array of problem instances, 

the extension of its application to address dynamic 

scheduling and real-time reconfiguration challenges in 

RFALs, and the incorporation of stochastic elements, such 

as equipment reliability and processing time variability, to 

create even more resilient and practically applicable 

optimization models for the next generation of intelligent 

manufacturing. 
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