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Early detection and accurate classification of brain tumors from MRI scans remain critical challenges in
modern healthcare. This paper develops a novel hybrid approach that leverages Tuna Swarm Optimiza-
tion (TSO) to optimize ensemble weights in a weighted soft voting framework for brain tumor classifica-
tion. Our methodology applies TSO specifically to optimize the contribution weights of four pretrained
Convolutional Neural Network architectures (InceptionV3, ResNet152V2, ResNet50V2, and Xception) in
an ensemble framework. TSO, inspired by the collective hunting behavior of tuna fish, offers superior
exploration capabilities and faster convergence than traditional optimization algorithms for weight opti-
mization, while weighted soft voting enables probability-based integration of diverse model predictions.
The proposed approach was trained and tested using a comprehensive dataset of 7,023 MRI images from
the Nickparvar dataset, classifying brain scans into four classes: healthy, gliomas, pituitary tumors, and
meningiomas. Transfer learning with fine-tuning was applied to the four pretrained CNN models, with TSO
dynamically adjusting the ensemble contribution weights through spiral and parabolic foraging behaviors
to minimize classification error. The weighted soft voting mechanism then combined these TSO-optimized
weights with probability distributions to produce robust predictions. This hybrid TSO-optimized ensem-
ble approach achieved a validation accuracy of 99.92% and F1-score of 99.92%, superior to all individual
models (best individual: ResNet50V2 at 99.69%) and conventional soft voting ensemble methods (99.85%,).
The optimized weight distribution prioritized ResNet50V2 (0.456) and Xception (0.342), demonstrating the
algorithm's ability to identify complementary model strengths. The improved performance and computa-
tional efficiency of the proposed framework position it as a promising clinical decision support tool for
accelerating diagnosis processes and enhancing treatment planning in brain tumor assessment

Povzetek: Za klasifikacijo mozganskih tumorjev iz MRI slik je razvit hibridni model, ki zdruzuje utezeno
mehko glasovanje ve¢ vnaprej naucenih konvolucijskih mrez (InceptionV3, ResNet152V2, ResNet50V2,
Xception) z optimizacijo utezi prek algoritma Tuna Swarm Optimization (TSO). TSO, navdihnjen z rojnim
lovljenjem tun, dinamicno doloca prispevne utezi posameznih mrez v procesu odlocanja in s tem izboljsa
zanesljivost klasifikacije. Sistem ohranja verjetnostne porazdelitve napovedi, kar omogoca natancno in

stabilno razvrséanje v Stiri razrede (zdravi, gliomi, meningiomi, hipofizni tumoryji).

1 Introduction

Brain tumors represent one of the most challenging and life-
threatening conditions in modern medicine, with global in-
cidence rates steadily increasing over the past decades. The
world health organization reports that central nervous sys-
tem tumors account for approximately 2% of all cancers,
with an estimated 300,000 new cases diagnosed annually
worldwide [[I]]. Early and accurate detection of brain tumors
is crucial for effective treatment planning and improving
patient outcomes [2].

Magnetic resonance imaging (MRI) has emerged as the

gold standard for brain tumor diagnosis, offering superior
soft tissue contrast and non-invasive examination capabili-
ties [3]. However, the manual interpretation of MRI scans
presents several significant challenges. First, the process
is time-consuming and subject to inter-observer variability,
potentially leading to diagnostic inconsistencies [4]. Sec-
ond, the complex nature of brain tumors, with their varying
shapes, sizes, and locations, makes accurate classification
particularly challenging, even for experienced radiologists

(5].

Recent advances in artificial intelligence and deep learn-
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ing have shown promising results in automated tumor clas-
sification from MRI scans. CNNs have demonstrated re-
markable success in feature extraction and classification
tasks [6]. However, single model approaches often struggle
with the inherent complexity and variability of brain tumor
imaging data [[7]. This limitation has led to increased inter-
est in voting ensemble learning methods, which combine
multiple models to achieve more robust and accurate clas-
sifications [§].

While voting ensemble methods show promise, a critical
challenge lies in determining optimal weights for individ-
ual models within the ensemble [9]. Traditional approaches
often use fixed or manually tuned weights, which may not
capture the full potential of the ensemble. Additionally,
existing optimization methods frequently suffer from local
optima trapping and slow convergence rates [|L0].

This research proposes a novel hybrid approach combin-
ing TSO with a weighted soft voting ensemble for brain tu-
mor classification. The motivation for this approach stems
from three critical limitations in existing methods: (1) tra-
ditional ensemble approaches use fixed or manually tuned
weights that cannot adapt to model complementarity, (2)
existing optimization methods primarily focus on feature
extraction rather than decision-level fusion, and (3) med-
ical applications require both high accuracy and reliable
performance, necessitating systematic weight optimization.
TSO, inspired by the collective behavior of tuna fish [[11],
offers enhanced exploration-exploitation balance compared
to conventional optimization algorithms. Our approach
uniquely applies TSO to optimize ensemble weights at the
decision level, preserving probability information critical
for medical uncertainty quantification.

The main contributions of this study include: (1) devel-
oping a novel TSO-based weight optimization framework
for ensemble learning in medical image classification, (2)
implementing adaptive weighted soft voting that preserves
probability distributions for clinical decision support, and
(3) demonstrating superior performance (99.92% accuracy)
with efficient computational requirements suitable for clin-
ical deployment.

The remainder of this paper is organized as follows: Sec-
tion Pl reviews related work in brain tumor classification and
ensemble learning. Section [ details our proposed TSO-
optimized weighted soft voting methodology. Section H de-
scribes the experimental setup and evaluation metrics, Sec-
tions [, | presents and discusses results, and Section ] con-
cludes with future research directions.

2 Related work

The classification of brain tumors using advanced machine
learning and optimization techniques has evolved signifi-
cantly in recent years, progressing from single-model ap-
proaches to sophisticated ensemble systems. This evolution
reflects the ongoing challenge of accurately identifying and
classifying tumor types from MRI data, which requires both
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precise feature extraction and robust classification capabil-
ities.

Early approaches to brain tumor classification focused
primarily on custom CNN architectures designed specifi-
cally for medical imaging challenges. Authors in [[12] de-
veloped a hybrid model integrating iResNet (enhanced with
attention layers and dense connections) and Vision Trans-
formers (ViTs) for brain tumor classification, combining lo-
cal feature extraction and global contextual analysis. Eval-
uated on Figshare brain tumor MRI dataset of 3,064 im-
ages, the model achieved 99.2% accuracy and 99.06% F1-
Score, surpassing InceptionV3 ResNet, and DenseNet.The
researchers in [|13] enhanced brain tumor classification by
augmenting five pre-trained deep learning models (CNN,
ResNet101, InceptionV3, VGG16, VGG19) using rotation,
scaling, and flipping techniques on MRI images from a
Kaggle dataset (3,264 images, expanded to 4,480 sam-
ples through augmentation). Their CNN model achieved
95.75% accuracy and 95% F1-Score, while transfer learn-
ing with InceptionV3 yielded 97.5% accuracy and 97% F1-
Score, and ResNet101 reached 97.25% accuracy with 97%
F1-Score.”. Authors in [[14] combined VGG19 with Type-2
Fuzzy Logic for image enhancement and brain tumor clas-
sification using MRI images from the Br35H dataset (3000
images: 1500 tumor/1500 non-tumor, with geometric aug-
mentation including scaling [0.9-1.3] and +10° rotation).
Their model achieved 99% test accuracy, 99.91% F1-Score,
and 99.67% sensitivity/specificity.

Transfer learning emerged as a powerful alternative to
custom architectures, offering more efficient training and
potentially better generalization. Deep transfer learning
techniques were introduced in [[15] for brain tumor clas-
sification using an EfficientNet-based model trained on
T1-weighted CE MRI images from Figshare dataset. The
approach incorporated transfer learning, data augmenta-
tion, and architectural reconfiguration of EfficientNet vari-
ants (BO-B7). EfficientNetB3 achieved the highest per-
formance with 99.69% accuracy and a 99.62% F1-score.
Preprocessing steps included resizing, filtering, and nor-
malization, while evaluation was conducted using 10-
fold cross-validation. Authors in [|16] proposed a hybrid
model for brain tumor classification using GoogLeNet with
SVM and fine-tuning. They trained on Figshare dataset.
The GoogLeNet + SVM model achieved 98.1% accuracy,
outperforming the fine-tuned GoogLeNet model (93.1%).
As shown in []17], a transfer learning-based approach
for brain tumor classification using six pre-trained CNN
models (Xception, MobileNetV2, InceptionV3, ResNet50,
VGG16, DenseNetl21) can be highly effective. They
trained on Kaggle Nickparvar MRI dataset with 7,023 im-
ages, categorized into glioma, meningioma, pituitary, and
healthy. Xception achieved the highest accuracy and F1-
Score respectively (98.73%, 95.29%), outperforming other
models.

Recognizing the limitations of single-model approaches,
researchers increasingly turned to ensemble techniques to
improve classification reliability. It was demonstrated in
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[IL8] that an ensemble deep learning model (EDCNN) com-
bining Shallow CNN (SCNN) and VGG16 could effec-
tively classify brain tumors. Trained on the Figshare MRI
dataset (3,064 images, augmented to 9,000), the model clas-
sified glioma, meningioma, and pituitary tumors. EDCNN
achieved 97.77% accuracy and 97.47 F1-Score, outper-
forming SCNN (77.96%) and VGG16 (95%). The research
presented in [[19] demonstrates a hybrid CNN-LSTM model
for brain tumor classification using MRI images. Trained
on a Kaggle MRI dataset (253 images), the model com-
bined CNN for feature extraction and LSTM for sequence
learning. CNN alone achieved 98.6% accuracy, while the
CNN-LSTM model improved accuracy to 99.1% and F1-
Score to 99.0%. Authors in [20] proposed an ensemble
of CNNs combining DenseNetl169, EfficientNetB0, and
ResNet50 for brain tumor classification. Trained on Kag-
gle Nickparvar dataset, the model used majority voting for
classification, achieving 92% accuracy and 91% F1-Score.
Reference [21] presents a two-stage feature-level ensemble
model for brain tumor classification using five pretrained
CNNs and a custom CNN. Trained on three MRI datasets
(10,620 images total), the model used PCA for feature fu-
sion and Softmax for classification, achieving 99.76% ac-
curacy on individual datasets and 98.96% on the merged
dataset. Evidence from [22] shows an ensemble learning
approach for brain tumor classification, using deep fea-
ture extraction from 13 pre-trained CNN models and clas-
sification with multiple classifiers. Trained on three MRI
datasets, the model achieved 98.1% accuracy for binary
classification and 97.8% for multi-class classification.

To address the limitations of static model combinations,
researchers began incorporating optimization algorithms
into brain tumor classification frameworks. The work in
[23] introduced a hybrid deep learning model for brain
tumor detection using PSO for segmentation and CNN
for classification. Trained on BRATS datasets, the model
achieved 98.11%-98.25% Dice scores for segmentation and
99.0% classification accuracy. As described in [24], an en-
semble deep learning model (BT-ViTEff) for brain tumor
classification combined Vision Transformers (ViT v2) and
EfficientNet-V2 with genetic algorithm-based weight se-
lection. Trained on a Kaggle dataset, the ensemble model
achieved 96.09% accuracy and 96.16% F1-Score, outper-
forming ViT (87.90%) and EfficientNet-V2 (93.95%). Re-
searchers in [25] proposed a hybrid deep learning frame-
work for brain tumor classification using Bayesian opti-
mization and a Quantum Theory-based Marine Predator Al-
gorithm (QTbMPA). The method employs a sparse autoen-
coder for data augmentation, fine-tunes EfficientNetB0 and
InceptionResNetV2 models, and fuses optimized features.
Evaluated on the Figshare dataset, the framework achieves
99.80% accuracy and a 99.83% F1-score. Results from [26]
indicate a CNN-based deep learning model optimized us-
ing Bayesian Optimization for brain tumor classification.
Trained on the Figshare MRI dataset, the optimized CNN
achieved 98.70% accuracy and 98.66% F1-Score, outper-
forming multiple models. The approach in [27] utilized a

Informatica 49 (2025) 433-448 435

hybrid PSO-SVM model for brain tumor classification us-
ing MRI images from BRATS dataset. PSO was used for
feature selection, improving classification efficiency, while
SVM was used for tumor classification. The PSO-SVM
model achieved 95.23% accuracy.

While these approaches demonstrate significant ad-
vancements in brain tumor classification, most existing
methods still face challenges in optimally combining multi-
ple models for enhanced performance. Specifically, the lit-
erature reveals a gap in dynamically optimizing ensemble
weights to adapt to the complex characteristics of brain tu-
mor MRI data. Our work addresses this limitation by intro-
ducing a novel hybrid framework that uniquely integrates
TSO with weighted soft voting ensemble techniques, offer-
ing a more adaptive and robust solution for clinical brain
tumor classification.

2.1 Comparative analysis of state-of-the-art
methods

Table [I| compares brain tumor classification methods cate-
gorized by approach type (single models, ensemble learn-
ing, and optimization-enhanced frameworks), providing
comprehensive performance metrics and technical speci-
fications. Analysis of these methods reveals critical lim-
itations in current methodologies. Single model methods
achieve up to 99.69% accuracy [[15] but vary significantly
across datasets, indicating dataset-specific rather than gen-
eralizable optimization. Ensemble approaches show incon-
sistent results: simple voting mechanisms underperform in-
dividual models (92% vs 98.73% on Nickparvar dataset
[20, 17]), while feature-level fusion methods [21]] reach
99.76% accuracy but discard probability information and
increase computational cost. Optimization-enhanced meth-
ods focus on feature selection [23, 27] rather than decision-
level fusion and use algorithms (PSO, GA) with limited
exploration-exploitation balance [24]. Our TSO-optimized
weighted soft voting ensemble applies dynamic weight op-
timization to decision-level fusion, preserving probability
information and achieving 99.92% accuracy and F1-score.
This approach demonstrates the potential of Tuna Swarm
Optimization for ensemble weight optimization in medi-
cal image classification, showing computational efficiency
suitable for future clinical applications.

3 Materials and methods

This study aims to optimize CNN ensemble weights using
TSO algorithm to maximize classification accuracy on a
4-class MRI brain tumor dataset. Our methodology oper-
ates on individual 2D MRI slices using slice-based anal-
ysis rather than full 3D volumetric processing, address-
ing the limitation of fixed weights in traditional ensem-
ble methods through metaheuristic optimization applied di-
rectly to decision-level fusion. While this 2D approach
enables efficient computational processing and leverages
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Table 1: Comparison with state-of-the-art brain tumor classification methods

Reference \ Method/Technique | Dataset | Size | Accuracy (%) [ F1-Score (%)
Single Model Approaches
Jaffar [[12] iResNet + Vision Transformers Figshare 3,064 99.20 99.06
Dihin et al. [|14] VGGI19 + Type-2 Fuzzy Logic Br35H 3,000 99.00 99.91
Islam et al. [|]19] EfficientNetB3 + Transfer Learning Figshare 3,064 99.69 99.62
Rasool et al. [[L6] GoogLeNet + SVM Figshare 3,064 98.10 -
Disci et al. [[17] Xception (Transfer Learning) Nickparvar | 7,023 98.73 95.29
InceptionV3 (Transfer Learning) 97.50 97.00
Ullah et a. [|13] ResNet101 (Transfer Learning) Kaggle 4,480 97.25 97.00
Custom CNN 95.75 95.00
Ensemble Learning Approaches
Aurna et al. [21] Two-stage Feature Ensemble 3 Datasets | 10,620 99.76 -
Alsubai et al. [[19] CNN-LSTM Hybrid Kaggle 253 99.10 99.00
Kang et al. [22] 13 Pre-trained CNNs Ensemble 3 Datasets var. 98.10 -
Patil et al. []18] EDCNN (SCNN + VGG16) Figshare 9,000 97.77 97.47
Saeed et al. [20] DenseNet + EfficientNet + ResNet | Nickparvar | 7,023 92.00 91.00
Optimization-Enhanced Methods
Ullah et al. [25] Bayesian + QTbMPA Figshare 3,064 99.80 99.83
Alietal. [23] PSO + CNN BRATS 285 99.00 -
AitAmou et al. [26] Bayesian Optimization + CNN Figshare 3,064 98.70 98.66
Gasmi et al. [24] GA + ViT + EfficientNet-V2 Kaggle 4478 96.09 96.16
Kumar et al. [27] PSO-SVM BRATS-215 354 95.23 -
Proposed Method
Our work |  TSO + Weighted Soft Voting [ Nickparvar | 7,023 | 99.92 ‘ 99.92

Note: Some FI-scores are not reported in original studies (-). QTbMPA: Quantum Theory-based Marine Predator Algorithm. var.

to 3064 images)

well-established CNN architectures with existing transfer
learning frameworks, it may not capture spatial relation-
ships across consecutive slices that 3D volumetric analy-
sis could provide. The choice balances computational fea-
sibility with diagnostic performance, preserving probabil-
ity information while achieving optimal weight distribution
suitable for clinical deployment scenarios where processing
speed and resource efficiency are critical considerations.

3.1 Dataset

This study uses an open-source brain tumor dataset cre-
ated by Masoud Nickparvar [28] and obtained from Kag-
gle, which combines three sources of data: Figshare [29],
Sartaj [30], and Br35H [31], with a total of 7,023 brain
MRI images. The dataset consists of four well-balanced
classes: healthy (2,000 images), glioma (1,621 images),
meningioma (1,645 images), and pituitary tumors (1,757
images). This relatively equilibrated distribution across
classes helps mitigate bias in the model training process.
For reproducibility, the dataset split employed stratified
sampling with fixed random seed (SEED = 42), resulting
in a training set of 5,712 images and validation set of 1,311
images (18.7% of total dataset) to assess performance on
unseen data, ensuring robust evaluation of generalizability.
The exact distribution maintains class balance across both

: varying sizes (253

sets as detailed in Table .

Table 2: Dataset distribution and split details

Class Total | Train Valid
Glioma 1,621 1,321 300
Meningioma | 1,645 1,339 306
Healthy 2,000 1,595 405
Pituitary 1,757 1,457 300
Total 7,023 | 5,712 1,311
Split % 100% | 81.3% | 18.7%

To provide a visual overview, Figure |l| presents sample
MRI images from each of the four classes. This helps il-
lustrate the typical appearance of each tumor type in the
dataset.
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Meningiomas Pituitary

Figure 1: Selected brain tumor MRI scans from the dataset

3.2 Preprocessing and data augmentation

In the preprocessing stage, images were resized accord-
ing to the input requirements of each pre-trained model:
224 x 224 pixels for ResNet152V2 and ResNet50V2, and
299 x 299 pixels for Xception and InceptionV3. This
resizing optimized memory usage and accelerated model
training while preserving diagnostic integrity. To enhance
model generalization and mitigate overfitting, data aug-
mentation was applied using Keras’ ImageDataGenerator
class [32]. Transformations included random rotations
(£15°), translations (+£10% width/height), shear distor-
tions (0.1), zooming (0.2), and horizontal flipping. The
nearest fill mode was used to maintain pixel consistency.
Table B summarizes the augmentation parameters used in
our approach.

Table 3: Data augmentation parameters

Augmentation Value Description
Rotation Range +15° Random' tmage
rotation
Width/Height o Horizontal/vertical
Shift +10% translation
Shear Range 0.1 Shegr dlSt.OI‘tIOIl
intensity
Zoom Range 0.2 Random zoom
Horizontal Flip | Enabled Random 1§ft—r1ght
flipping
Fill Mode nearest Pixel fill strategy

3.3 Transfer learning and fine-tuning

In our approach, we incorporated transfer learning us-
ing four pre-trained CNNs: ResNet50V2, ResNetl152V2,
Xception, and InceptionV3. To adapt these models to our
specific task, we removed their top layers and designed a
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new architecture comprising Global Average Pooling, fol-
lowed by a dense layer with 512 neurons (ReLU activa-
tion, he normal initialization), a dropout layer (rate: 0.3),
and a four-neuron output layer with softmax activation cor-
responding to the tumor classes. To ensure optimal per-
formance, we conducted empirical validation on key ar-
chitectural choices. Specifically, we tested different con-
figurations for the number of neurons (256, 512, 1024),
weight initialization methods (glorot uniform, he normal),
and dropout rates (0.2, 0.3, 0.5). Our experiments demon-
strated that 512 neurons provided the best trade-off between
model complexity and generalization, effectively prevent-
ing both underfitting and overfitting. The he normal ini-
tialization consistently led to faster convergence and sta-
ble training, while a dropout rate of 0.3 effectively reduced
overfitting without significantly impacting model perfor-
mance. Similarly, to determine the most effective freezing
strategy, we evaluated different layer-freezing levels (10%,
15%, and 20%) and found that freezing the first 15% of lay-
ers resulted in the optimal trade-off between retaining pre-
trained feature extraction and allowing the model to adapt
to brain tumor classification. This systematic approach en-
sured that all hyperparameters were selected based on em-
pirical evidence rather than arbitrary decisions, thereby op-
timizing model performance for the given task.

3.4 Tuna Swarm Optimization (TSO)

The TSO algorithm is a metaheuristic inspired by the col-
lective hunting behavior of tuna fish, offering superior ex-
ploration capabilities and faster convergence compared to
traditional optimization algorithms [[11].

The TSO algorithm operates through several key mecha-
nisms that mimic natural tuna hunting behaviors. The main
components of TSO are described as follows:

1. Initialization: The initial positions of the tuna are
randomly generated within the search space:

X;=rand- (ub—1)+1, i=12....,NP (1)
where ub and b define the boundary constraints, and N P
is the population size.

2. Spiral foraging: Tuna fish generate spiral zones
around their prey, with each tuna following the one ahead.
The mathematical representation is:

ag - (leest + 5 : |leest - X’“)

+ag - X, i=1
Xf-‘rl - t t t (2)
aq - (Xbest + ﬁ : |Xbest - Xi |)
tas - XE, i>1

where a;; and aip are adaptive coefficients that balance ex-
ploration and exploitation.

3. Adaptive search strategy: TSO adapts its search be-
havior to ensure proper exploration-to-exploitation transi-
tion:
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Figure 2: Architecture of the optimized ensemble model

X! 4 (exploration) ifrand > ﬁ

Target = 3)

X (exploitation) otherwise

This mechanism ensures that early iterations favor explo-
ration while later iterations focus on exploitation around the
best-found solutions.

4. Parabolic foraging: Tuna fish perform hunting while
following parabolic trajectories around their prey:

Xlgest + rand - (leest - th)
Xt = +TF -p*- (Xl — X!, rand <0.5
TF-p?- X!, rand > 0.5
“)

where T'F is a decreasing factor and p controls the parabolic
trajectory shape.

3.5 Soft voting ensemble

Soft voting, also known as weighted probability averaging,
is an ensemble learning technique that combines predic-
tions from multiple classifiers by considering the probabil-
ity distributions of their outputs rather than just their final
class labels [33]. In our approach, as shown in Figure [,
each base classifier in the ensemble produces a probabil-
ity distribution across the target classes for each input sam-
ple. These probability scores are then weighted according
to the optimized coefficients determined by the TSO algo-
rithm before being averaged to produce the final prediction.

The final predicted class g for a given input sample z is
computed as follows:

M
7y = argmaxZwi pz(x),
j 4
i=1

®)

Where M represents the total number of classifiers in the
ensemble, w; is the weight assigned to the it" classifier,
which is optimized by the TSO algorithm, and p] () is the
probability assigned by the i*" classifier to class j for the
input . To ensure that the weighted probabilities form a
valid probability distribution, the weights are normalized
according to:

M
Z w; =1, (6)
i=1

This normalization ensures that the final combined prob-
abilities remain within a valid range and accurately repre-
sent the confidence levels of the ensemble.

3.6 TSO-based algorithm for weight
optimization

To address the research objective of optimizing ensem-
ble weights for maximum classification accuracy, we ap-
ply TSO in a 4-dimensional weight space where each di-
mension represents a pretrained CNN model’s contribution.
This approach follows a systematic two-phase methodol-
ogy designed to ensure computational efficiency and opti-
mal ensemble performance while maintaining reproducibil-

ity.
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Phase 1 - CNN training: Each CNN model (Incep-
tionV3, ResNet152V2, ResNet50V2, Xception) is trained
independently for 50 epochs using transfer learning and
fine-tuning as described in section B.3. Once training is
complete, all CNN parameters are permanently frozen and
saved.

Phase 2 - Ensemble optimization: The TSO algorithm
runs for 50 iterations to optimize only the ensemble weights
using the pretrained CNN models from Phase 1. The pro-
cess begins with 100 tuna, each initialized with a random
weight vector constrained to sum to 1. The tuna explore the
search space using spiral foraging (exploitation) to refine
promising solutions and parabolic foraging (exploration) to
avoid local optima.

The fitness function, defined as Log Loss (cross-entropy
loss), evaluates the divergence between true labels and
the weighted probability predictions from each pretrained
model, as shown in the ensemble architecture of Figure
B Log Loss was selected for its ability to penalize in-
correct high-confidence predictions, improving probability
calibration and generalization.

Empirical validation determined 100 tuna as the optimal
population size, balancing search diversity and computa-
tional efficiency. A maximum of 50 iterations was allo-
cated to ensure sufficient exploration capacity without ex-
cessive computational overhead.

The algorithm updates tuna positions based on the best
global solution and neighboring tuna, progressively refin-
ing weight values (w; — wy). Following the original TSO
paper [[L1]], the parameters ¢ = 0.7 and z = 0.05 are used
to balance exploration and exploitation. These optimized
weights are then applied in the weighted soft voting stage
for final tumor classification, as depicted in the right por-
tion of Figure P.

4 Experiments

4.1 Experimental design rationale

Our experimental design directly addresses the stated re-
search objective through four evaluation components: (1)
Individual model assessment establishes baseline perfor-
mance for comparison and validates transfer learning ef-
fectiveness, (2) Ablation study demonstrates the necessity
of systematic optimization by comparing TSO against fixed
weights, random weights, and manual tuning, (3) Conver-
gence analysis validates TSO’s efficiency in finding opti-
mal weight distributions, and (4) Computational efficiency
evaluation confirms clinical deployment viability through
minimal overhead analysis.

4.2 Evaluation metrics

The performance evaluation of our proposed approach re-
lies on a comprehensive set of quantitative metrics to as-
sess its diagnostic capabilities. Accuracy (Equation 7) is the
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Table 4: TSO parameters
Category Parameter Value
Popu.lation 100
Size
. Maximum
Algorithm . . 50
iterations
Attraction
coefficient (a) 0.7 (Default)
Movement z=0.05
coefficient (z) (Default)
Search Space [0, 1]
Objective
Fanction Log Loss
Problem Variable Type | Continuous
Constraints Sw;=1
MEALPY
Framework 3:0.1
Implementation Tensorflow
2.18.0

primary metric, reflecting the overall correctness in classi-
fying tumor types within the validation dataset. Precision
(Equation ) measures the classifier’s ability to minimize
false positives, a critical factor in clinical settings to pre-
vent misdiagnosis. Conversely, recall (Equation f) quanti-
fies the model’s effectiveness in correctly identifying actual
tumor cases, which is essential in medical diagnosis to min-
imize false negatives. The Fl-score (Equation [L0), as the
harmonic mean of precision and recall, ensures balanced
performance across tumor classes. These collective metrics
validate the reliability of our model for clinical applications
in brain tumor diagnosis [34].

Accuracy = IP+1TN (7)
Y = TP Y TN+ FP 1 FN
.. TP
PreCISlon = m (8)
TP
Recall = ————— 9
T TPYEN ©)

2 x Precision x Recall
F1S = 10
core Precision + Recall (10)

4.3 Hyperparameters

Our hybrid model was implemented using the TSO algo-
rithm for weight optimization, combined with a weighted
soft voting ensemble of pretrained CNNs models. The key
parameters of our implementation, including the TSO pop-
ulation size, maximum iterations, and boundary constraints,
are shown in Table [, along with the deep learning param-
eters such as batch size, number of epochs, early stopping
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criteria, and learning rate adjustments, which are presented
in Table B.

Table 5: Core model architecture and training parameters

Category Parameter Value
Xception,
InceptionV3,
Base Models ResI\II)e 50V2.
Architecture ResNet152V2
299 x 299
(Xception/
Input Size InceptionV3),
224 x 224
(ResNets)
Dense Units 512
Batch Size 32
Training Epochs 50
Optimizer Adamax
Base LR le-3
Dropout 0.3
Regularization Class Weights Inverse
frequency
LR Reduction Fac.tor: 0.2,
Patience: 5
Earl .
Optimization Stoppi};g Patience: 7
Precision FP16

4.4 Environment

All experiments were conducted on an Intel Core 19-12000F
processor with 64GB RAM, accelerated using NVIDIA
RTX 3090 (24GB VRAM). Implementation used Tensor-
Flow 2.18 and MEALPY 3.0.1 [35] frameworks on Ubuntu
22.04. Training specifications and computational require-
ments are detailed in Table [.

For reproducibility purposes, fixed random seed (SEED
= 42) was used across NumPy, TensorFlow, and data shuf-

Table 6: Computational requirements and training specifi-
cations

Model Training Peak Memory
Time (min) (MB)

Xception 16.8 573

InceptionV3 17.5 605

ResNet152V2 16.2 1635

ResNet50V2 9.7 656

TSO 0.037 3990

Note: TSO optimization time represents ensemble weight optimization
phase (2.22 seconds = 0.037 minutes)
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fling procedures.

5 Results

The experimental results are organized to systematically
validate our research objective. Section [5.]| establishes in-
dividual model baselines, Section 5.2-5.4 analyze model
behavior patterns, Section 5.3 demonstrates ensemble su-
periority, Section .4 positions our work within the broader
literature, and Section B.7 validates optimization necessity
through ablation study. Section B.§ confirms TSO effi-
ciency and convergence behavior, directly addressing the
computational viability component of our research goal.

5.1 Individual model performance

Our study evaluated the performance of four state-of-the-
art CNN architectures for brain tumor classification: Incep-
tionV3, ResNet152V2, ResNet50V2, and Xception. Table
[ presents the performance metrics of these individual mod-
els.

Table 7: Individual model performance

Model Acc Prec Rec F1
InceptionV3 | 99.39 | 99.40 | 99.34 | 99.34
ResNetl152V2 | 99.62 | 99.59 | 99.58 | 99.59
ResNet50V2 | 99.69 | 99.69 | 99.67 | 99.68
Xception 99.16 | 99.16 | 99.09 | 99.09

Note: All values are in percentages. Acc. = Accuracy, Prec. = Precision,
Rec. = Recall, Fl1. = Fl-score (Macro-averaged)

Among the individual models, ResNet50V2 demon-
strated the highest performance, with an accuracy of
99.69% and an Fl-score of 99.68%, followed closely
by ResNet152V2. Both InceptionV3 and Xception also
showed excellent performance, with accuracies exceeding
99%, indicating the high efficacy of CNN architectures in
brain tumor classification.

5.2 Per-class performance analysis

Detailed classification reports for each model reveal their
performance across the four tumor classes: glioma, menin-
gioma, healthy, and pituitary. All models exhibited ex-
ceptional performance in detecting healthy cases, consis-
tently achieving perfect precision and recall. ResNet50V2
demonstrated outstanding precision for glioma (100%) and
pituitary (100%) tumors, with slightly lower but still im-
pressive precision for meningioma (99.03%). Similarly,
ResNet152V2 achieved perfect precision for glioma and
healthy categories.
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5.3 Confusion matrices analysis

To provide a comprehensive visual representation of our
models’ classification performance, confusion matrices for
each individual model and the ensemble approach are pre-
sented in Figure B. The confusion matrices illustrate the
classification patterns of each model. InceptionV3 (Fig-
ure Bla) showed the most misclassifications, with 2 glioma
samples incorrectly classified, 6 meningioma samples mis-
classified, and no errors for the healthy class. Xception
(Figure Bd) had 4 glioma samples misclassified as menin-
gioma and 5 meningioma samples misclassified as pitu-
itary. ResNet50V2 (Figure Blc) and ResNet152V2 (Figure
Bb) exhibited fewer misclassifications overall, particularly
with perfect classification of healthy samples.

True Label
True Label

True Label
True Label

Predicted Label (d)

400

True Label
True Label

Predicted Label (f)

Predicted Label  (e)

Figure 3: Confusion matrices: (a) InceptionV3; (b)
ResNet152V2; (c) ResNetS0V2; (d) Xception; (e) Soft Vot-
ing; (f) Proposed model

The most significant improvement is observed in the
weighted soft voting ensemble approach (Figure Bf), which
misclassified only one glioma sample as meningioma
while achieving perfect classification for all other sam-
ples. This demonstrates the effectiveness of our TSO-
optimized weighting strategy in leveraging the complemen-
tary strengths of individual models.
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5.4 Training performance analysis

The training and validation curves for selected models are
presented in Figure f, showing the progression of loss and
accuracy during the training process. The loss and accu-
racy curves demonstrate consistent convergence patterns
across all models. For InceptionV3 (Figures Ha), the ini-
tial training loss was higher (approximately 0.45) com-
pared to Xception (approximately 0.5), but both models
converged to similar final loss values below 0.05. The accu-
racy curves show that validation accuracy quickly reached
above 90% within the first few epochs and continued to im-
prove steadily, eventually exceeding 99% for all models.

Notably, there is minimal divergence between training
and validation curves in the later epochs, indicating that
the models did not suffer from significant overfitting. This
can be attributed to the effective regularization strategies
employed, including dropout and data augmentation. The
convergence patterns also suggest that the selected learn-
ing rates and optimization strategies were appropriate for
this classification.

5.5 Ensemble learning results

The key innovation of our study was the implementation
of ensemble learning techniques, specifically soft voting
and weighted soft voting, optimized using the TSO algo-
rithm. The results presented in Table § demonstrate that
both ensemble methods significantly outperformed individ-
ual models. Standard soft voting achieved an impressive
accuracy of 99.85% and an F1-score of 99.84%. However,
our proposed weighted soft voting approach, with weights
optimized using TSO, further improved the performance to
an accuracy of 99.92% and an F1-score of 99.92%, repre-
senting state-of-the-art performance for brain tumor classi-
fication.

Table 8: Performance comparison between individual mod-
els and ensemble approaches

Model Acc. (%) | Fl-score (%)
InceptionV3 99.39 99.37
ResNet152V2 99.62 99.59
ResNet50V2 99.69 99.68
Xception 99.16 99.09
Soft voting 99.85 99.84
Proposed model 99.92 99.92

Note: Acc. = Accuracy, Fl-score (Macro-averaged)

The optimized weight distribution determined by TSO is
shown in Table J. TSO achieved this optimal weight con-
figuration in 2.22 seconds with the optimal solution iden-
tified at epoch 6 (0.28 seconds). This weighting clearly
prioritizes the two best-performing models (ResNet50V2
at 45.6% and Xception at 34.2%), while still leveraging the
complementary strengths of ResNet152V2 (13.3%) and In-
ceptionV3 (6.9%) to enhance overall classification perfor-
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5.6 Comparison with existing studies

To contextualize our findings, we compared our proposed
model with recent state-of-the-art approaches for brain tu-
mor classification, as shown in Table [[0. Our proposed
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Table 9: TSO-optimized weight distribution and perfor-
mance metrics
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Table 11: Ablation study: Comprehensive comparison of
ensemble weight determination methods

CNN Model Optil.nized Relative Contribution Method Accuracy (%) Time (s) Trials
Weight (%) Fixed Equal
InceptionV3 0.069 6.9 Weights 99.85 - !
ResNet152V2 0.133 13.3 Random 99.58 + 0.05 (max: 0.07 100
ResNet50V2 0.456 45.6 Weights 99.77) ’
Xception 0.342 34.2 Grid Search 99.85 0.14 286
Total 1.000 100.0 TSO (Ours) 99.92 0.28 1

model achieved the highest accuracy (99.92%) among all
compared studies, surpassing the performance of recent
works by Ullah et al. [25] (99.80%) and Aurna et al. [21]
(99.76%). Notably, our model achieved this superior per-
formance while classifying four distinct tumor categories,
demonstrating its robustness and clinical utility.

Table 10: Comparison with existing studies

Study Year | Dataset Acc
Jaffar [[12] 2020 | Figshare 99.68
Ali et al. [23] 2022 | BRATS 99.00
Alsabai et al. [[19] | 2022 | Kaggle 99.10
Aurna et al. [21]] 2022 | 3 dataset 99.76
Amou et al. [26] 2022 | Figshare 98.70
Rasool et al. [[16] 2022 | Figshare 98.10
Islam et al. [[15] 2024 | Figshare 99.69
Ullah et al. [25] 2024 | Figshare 99.80
Disci et al. [[17] 2025 | Nickparvar 98.73
Dihin et al. [[14] 2025 | Br35H 99.00
Our Work 2025 | Nickparvar 99.92

Note: Acc. = Accuracy (%). Studies listed chronologically from 2020-
2025

5.7 Ablation study: validation of
optimization process

To validate the necessity and effectiveness of our TSO op-
timization approach, we conducted a comprehensive abla-
tion study comparing four ensemble weight determination
strategies as shown in Table [L1.

Systematic grid search serves as our manually tuned
weights approach [38], testing 286 weight combinations
with 0.1 step increments and achieved 99.85% accuracy.
Even the best random configuration reached only 99.77%,
highlighting the unpredictable nature of random approaches
for clinical applications requiring consistent performance.

Systematic grid search serves as our manually tuned
weights approach, testing 286 weight combinations with
0.1 step increments and achieved 99.85% accuracy. De-
spite this comprehensive manual enumeration of all valid
weight distributions, grid search converged to the same per-
formance as simple equal weighting, demonstrating that

Note: +0.05% represents random weights standard deviation (Std Dev)
across 100 trials

brute-force manual optimization without intelligent guid-
ance fails to discover superior weight distributions, validat-
ing the necessity of metaheuristic approaches for ensemble
weight optimization.

Our TSO approach consistently achieves 99.92% accu-
racy in 0.28 seconds, outperforming all alternative meth-
ods with improvements of 0.07% over fixed/grid search
methods and 0.34% over random average. While these
improvements appear modest in absolute terms, the key
advantage lies in TSO’s consistency: it reliably achieves
optimal performance in every execution, unlike random
methods which show significant variability (99.39-99.77%
range across trials).

The critical finding is not the magnitude of improvement,
but the reliability of optimization. TSO guarantees consis-
tent optimal performance, while alternative methods either
provide suboptimal results (random, grid search) or require
extensive manual tuning. For clinical deployment scenar-
ios where consistent diagnostic performance is essential,
TSO’s ability to systematically identify the best weight con-
figuration represents a significant practical advantage over
alternative approaches.

5.8 TSO optimization analysis and
convergence validation

Figure | demonstrates the TSO convergence behavior
across 50 iterations, showing remarkable efficiency with
optimal solution identification within the first 6 epochs
(0.28 seconds) out of the maximum 50 iterations allocated,
demonstrating rapid convergence and exceptional algorith-
mic efficiency. The algorithm required only 12% of the
available iterations to reach optimal performance, with con-
sistent stability thereafter, validating TSO’s effectiveness in
navigating the ensemble weight optimization landscape.

Figure B illustrates the final optimized weight distribu-
tion, clearly showing TSO’s intelligent strategy of priori-
tizing the best-performing individual models (ResNet50V2
and Xception) while appropriately weighting complemen-
tary architectures. This distribution differs significantly
from equal weighting, validating the necessity of system-
atic optimization.

The optimization process demonstrates exceptional com-
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Figure 5: TSO convergence curve

putational efficiency, requiring only 2.22 seconds for com-
plete optimization, making TSO highly suitable for real-
time clinical deployment scenarios. The rapid convergence
to optimal solutions within 6 iterations, combined with min-
imal computational requirements, confirms TSO’s practical
viability for clinical applications where both accuracy and
speed are critical requirements.

0.5
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0.342

0.133

0.1 0.069

0.0 InceptionV3 ResNetl52V2 ResNet50V2

Model

Xception

Figure 6: Optimized ensemble weights distribution

6 Discussion

Our experimental results systematically validate the re-
search objective of achieving maximum classification ac-
curacy through TSO-optimized ensemble weights. The fol-
lowing analysis demonstrates how each component con-
tributes to this goal while addressing clinical deployment
requirements.

6.1 Quantitative performance analysis

Quantitatively, while individual CNN models achieved im-
pressive metrics (ResNet50V2: 99.69% accuracy, 99.68%
Fl-score; ResNet152V2: 99.62% accuracy, 99.59% F1-
score; InceptionV3: 99.39% accuracy, 99.37% F1-score;
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Xception: 99.16% accuracy, 99.09% F1-score), our TSO-
optimized ensemble significantly reduced error rates from
0.31% to 0.08%, achieving 99.92% accuracy and F1-score.
This is further evidenced by near-perfect confusion matrix
results showing only a single misclassification.

6.2 Analysis of weight distribution

The TSO algorithm converged on an optimal weight dis-
tribution prioritizing ResNet50V2 (0.456) and Xception
(0.342), with smaller contributions from ResNet152V2
(0.133) and InceptionV3 (0.069). This distribution reveals
that complementary error patterns between models were
more valuable than individual performance metrics alone.
The algorithm effectively identified which models provided
unique classification capabilities for particular tumor sub-
types, leveraging these strengths in the ensemble.

6.3 Comparison with state-of-the-art
approaches

Our comparative analysis evaluates our TSO-optimized
weighted soft voting approach against ten recent state-of-
the-art methods in brain tumor classification, as summa-
rized in Table [[0. These works were selected based on:
(1) recency (published 2020-2025), (2) relevance to MRI-
based brain tumor classification, (3) high performance
(>98% accuracy), and (4) diversity of methodological ap-
proaches.

Among these approaches, Ullah et al. [25] achieved
99.80% accuracy using a hybrid framework combining
Bayesian optimization with a Quantum Theory-based Ma-
rine Predator Algorithm on the Figshare dataset (3,064 im-
ages). Their approach differs from ours in using feature-
level fusion rather than decision-level ensemble techniques.
Aurna et al. [21]] reported 99.76% accuracy through a two-
stage feature-level ensemble across three datasets (10,620
images total), employing PCA for dimensionality reduc-
tion. In contrast, our approach maintains original feature
spaces and optimizes at the decision level. Islam et al. [[15]
achieved 99.69% using EfficientNet with transfer learning
on the Figshare dataset, focusing on architectural reconfig-
uration rather than ensemble strategies.

While these approaches demonstrated impressive perfor-
mance, as shown in Table , our method achieves supe-
rior results (99.92%) on a large, diverse dataset (7,023 im-
ages) while classifying four distinct categories. Unlike pre-
vious works that use fixed ensemble weights or feature-
level fusion, our TSO-optimized approach dynamically ad-
justs contribution weights based on complementary model
strengths, reducing error rates by 0.23%. Our work lever-
ages swarm intelligence specifically for ensemble weight
optimization rather than feature extraction or architectural
design, representing a novel direction in medical image
classification.

The superior performance of our approach stems from
two key innovations. First, TSO’s spiral and parabolic for-
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aging behaviors provide more effective exploration of the
weight space compared to PSO’s velocity-based updates or
GA'’s crossover operations, enabling discovery of optimal
weight combinations that traditional algorithms miss. Sec-
ond, our decision-level fusion preserves probability distri-
butions from individual models, allowing the ensemble to
leverage uncertainty information that feature-level fusion
methods discard, resulting in more robust classification de-
cisions.

6.4 Why TSO-Optimized ensemble
outperforms alternatives

The performance gain (99.92% vs 99.80% best alternative)
results from addressing three critical limitations in exist-
ing approaches: (1) Fixed ensemble weights cannot adapt
to model complementarity, while TSO dynamically dis-
covers optimal weight distributions (ResNet50V2: 45.6%,
Xception: 34.2%), (2) Feature-level fusion loses probabil-
ity information essential for medical uncertainty quantifi-
cation, whereas our weighted soft voting preserves these
distributions, and (3) Traditional optimization algorithms
(PSO, GA) exhibit limited exploration-exploitation bal-
ance in high-dimensional weight spaces, while TSO’s tuna-
inspired behaviors enable more effective search strategies.

6.5 Clinical significance

The clinical significance of these improvements is substan-
tial. The achieved 99.92% accuracy represents a mean-
ingful advance in automated brain tumor classification that
could enhance diagnostic support systems. Perfect re-
call for healthy cases eliminates false positives that could
lead to unnecessary invasive procedures and psychologi-
cal distress. Accurate differentiation between tumor classes
(glioma, meningioma, and pituitary) directly impacts surgi-
cal planning, radiation therapy protocols, and chemother-
apy selection, potentially improving treatment outcomes
and reducing healthcare costs.

6.6 Methodological advantages

The methodological novelty of our approach compared to
existing works lies in several key aspects. First, while
previous ensemble methods (e.g., [20, 21, 22]) use ei-
ther fixed weights or manually tuned contributions, our
TSO algorithm dynamically optimizes weights based on
model complementarity. Second, unlike optimization ap-
proaches that focus on feature selection or segmentation
(e.g., [23, 27, 36]), we apply optimization directly to the
ensemble decision fusion process. Third, our weighted
soft voting technique integrates probability distributions
rather than hard decisions, preserving uncertainty infor-
mation critical in medical diagnostics. Finally, the TSO
algorithm’s spiral and parabolic behaviors offer superior
exploration-exploitation balance compared to other meta-

Informatica 49 (2025) 433-448 445

heuristics used in medical imaging, such as PSO [27], ge-
netic algorithms [24], or whale optimization [36].

6.7 Ablation study validation and
optimization necessity

The comprehensive ablation study validates the neces-
sity and effectiveness of our TSO optimization approach.
The systematic comparison demonstrates that TSO con-
sistently achieves optimal performance (99.92%) while
simpler alternatives either achieve baseline performance
(fixed-weight: 99.85%, manual tuning: 99.85%) or exhibit
significant variability (random weights: 99.39-99.77% typ-
ical range).

The key insight is that while random sampling occasion-
ally reaches optimal performance through fortunate config-
urations, it typically underperforms with substantial vari-
ability across experimental runs. TSO’s consistent achieve-
ment of 99.92% accuracy, compared to random methods’
variable performance (99.39-99.77%), demonstrates that
reliable optimal performance requires intelligent systematic
optimization rather than manual tuning or random selec-
tion. This consistency is paramount for clinical diagnostic
applications where reliability and predictable performance
directly impact patient care outcomes.

These findings align with established optimization the-
ory, where intelligent search algorithms outperform ex-
haustive enumeration in high-dimensional spaces [37]. The
failure of grid search despite extensive evaluation (286
combinations) demonstrates that ensemble weight opti-
mization requires exploration strategies that can navigate
complex fitness landscapes efficiently, rather than brute-
force approaches that may converge to local optima. The
superior and consistent performance of TSO over both ran-
dom sampling and systematic grid search validates the ne-
cessity of biologically-inspired metaheuristic algorithms
for ensemble weight determination.

This has broader implications for ensemble learning in
medical imaging, suggesting that metaheuristic optimiza-
tion should be preferred over traditional manual tuning ap-
proaches when developing diagnostic support systems. The
combination of optimal accuracy and computational relia-
bility positions intelligent optimization methods as essen-
tial tools for clinical deployment scenarios requiring both
performance and consistency.

6.8 Computational efficiency and clinical
deployment validation

The convergence analysis (Figure B) reveals TSO’s ex-
ceptional efficiency, achieving optimal performance within
0.28 seconds at epoch 6. The complete optimization pro-
cess requires only 2.22 seconds, demonstrating exceptional
computational efficiency. This rapid convergence to op-
timal solutions, combined with minimal computational re-
quirements, validates TSO’s suitability for real-time clini-
cal deployment where both accuracy and speed are critical
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requirements.

The weight distribution analysis (Figure @) provides in-
sights into TSO’s intelligent optimization strategy, demon-
strating clear preference for models with complementary
strengths rather than uniform contribution. This strategic
weight allocation explains the superior ensemble perfor-
mance and validates the necessity of systematic optimiza-
tion over simple averaging approaches.

6.9 Limitations

Our study has several limitations that should be acknowl-
edged. The methodology operates on individual 2D MRI
slices rather than leveraging full 3D volumetric informa-
tion, potentially missing spatial relationships across con-
secutive slices and volumetric tumor characteristics. Ad-
ditionally, the study relies on a single dataset source (Nick-
parvar), which may limit generalizability across differ-
ent clinical settings and MRI protocols. Furthermore, the
framework focuses on single MRI sequences without incor-
porating multi-modal imaging data (T1, T2, FLAIR) that
could provide complementary diagnostic information, and
performance evaluation is conducted on retrospective data
without real-world clinical deployment validation or direct
radiologist comparison studies.

7 Conclusion

Our study demonstrates that TSO-optimized weighted soft
voting substantially improves brain tumor classification
performance compared to individual CNN models and
conventional ensemble approaches. The proposed model
achieved state-of-the-art accuracy of 99.92% in classifying
four brain tumor classes, surpassing existing methods. The
optimal weight distribution identified by TSO highlights
the complementary nature of different CNN architectures
in capturing diverse tumor characteristics.

The rapid convergence (optimal solution in 0.28 seconds)
and exceptional computational efficiency demonstrate the
practical viability for real-time clinical applications. These
findings indicate that our approach has the potential to serve
as a valuable clinical decision support tool for neuroradiol-
ogists, potentially improving diagnostic accuracy and effi-
ciency in brain tumor assessment.

Future research directions include several promising av-
enues for enhancing the methodology and clinical appli-
cability. First, extending the approach to 3D volumetric
analysis could capture spatial relationships across consecu-
tive MRI slices, potentially improving classification accu-
racy by leveraging volumetric tumor characteristics. Sec-
ond, integration of multi-modal MRI sequences (T1, T2,
FLAIR, Tl1-contrast) could provide complementary diag-
nostic information and enhance robustness across differ-
ent imaging protocols. Third, external validation across di-
verse clinical datasets from multiple institutions is essential
to demonstrate generalizability and clinical utility. Fourth,
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real-world deployment studies with direct radiologist per-
formance comparisons would validate the system’s effec-
tiveness in clinical workflows.
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