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Supply chain demand forecasting is an important basis for enterprise decision-making, which can not only 

help optimize resource allocation, but also enhance the market competitiveness of enterprises. To improve 

the accuracy of supply chain demand forecasting, a combined forecasting model considering univariate 

and multivariate variables is designed and embedded. On the univariate prediction model, the study 

considers optimizing the parameters of the backpropagation neural network through an improved whale 

optimization algorithm. On the multivariate prediction model, the study combines improved particle 

swarm optimization algorithm, convolutional neural network, and long short-term memory network. The 

findings showed that the accuracy, root mean square error, time consumption, and maximum memory 

usage of the univariate prediction model were 98.05%, 1.03%, 61ms, and 10.85%, respectively, which 

were significantly better than the comparison model. The maximum accuracy of the multivariate 

prediction model was 98.51%, the minimum was 96.02%, and the maximum root mean square error was 

0.58. After embedded deployment, the maximum increase in time consumption of the combined prediction 

model was 47.76%, and the accuracy only decreased by 0.18%. The designed combination forecasting 

model has good performance and can provide model support for predicting supply chain demand. 

Povzetek: Kombinirani napovedni model IWOA-BPNN in IPSO-CNN-LSTM, zasnovan za vgradne AI 

platforme, omogoča bolj kvalitetno napoved povpraševanja v dobavni verigi kot modeli ARIMA, RF, SVM 

in standardni CNN-LSTM, saj dosega višjo TOčnost, manjše napake ter učinkovitejšo porabo časa in 

pomnilnika. 

 

1 Introduction 
In the context of global economic integration and deep 

integration of digital technology, supply chain 

management has become a key battlefield for companies 

to enhance their core competitiveness. As the "nerve 

centre" of supply chain management, the forecasting of 

demand in the supply chain has been demonstrated to exert 

a direct influence on the management of inventory, the 

planning of production and the scheduling of logistics 

within enterprises. In addition, it is also related to 

customer satisfaction and the rate of response of markets 

[1-2]. According to McKinsey research, accurate demand 

forecasting can reduce inventory costs for businesses by 

20%-30% and increase order fulfillment rates by 15%-

25% [3-4]. Therefore, it is necessary to improve the 

accuracy of Supply Chain Demand Forecasting (SCDF). 

With regard to the issue in question, the extant literature 

proposes a number of methodologies for analysis. These 

include the application of statistical models based on 

historical data, human experience and judgement, time 

series analysis, causal models, and machine learning 

algorithms [5]. In addition, many researchers have already 

explored this issue. 

 

Liu et al. developed a prediction model that integrates 

Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) algorithms to predict  

supply chain dynamics and address inventory 

optimization issues. The model was hyperparameter 

adjusted through Bayesian optimization. The findings 

denoted that this method could improve the operational 

efficiency and cost control effectiveness of enterprises [6]. 

Saad et al. developed a prediction algorithm that integrates 

an attention mechanism and bidirectional LSTM to 

precisely capture the dynamic fluctuations and patterns of 

supply chain logistics demand. This algorithm was trained 

through the utilization of the gradient descent method. 

Meanwhile, the study employed local outlier factors to 

remove outliers from the data. The findings demonstrated 

the efficacy of the algorithm in predicting demand within 

the supply chain logistics domain. Subsequent application 

of the algorithm resulted in an on-time delivery rate 

exceeding 95% on a monthly basis [7]. Zhang et al. 

developed a prediction method that utilizes the sequence-

to-sequence and attention mechanisms to forecast demand 

for environmentally friendly electronic products within 

supply chains. The method has been adapted to address the 

dynamic and complex demands of the environmental 
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protection market by incorporating an end-to-end multi-

step time prediction approach. Concurrently, the study 

utilized a linear regression approach founded on Huber 

Loss for the purpose of data processing. The findings 

demonstrated that the methodology outlined in this study 

exhibited superiority over conventional time series 

prediction models and machine learning regression 

models with regard to prediction accuracy [8]. Hasan et al. 

explored the feasibility of machine learning techniques in 

the field of SCDF, using five techniques including linear 

regression, elastic networks, random forests, multi-layer 

perceptron regressors, and extreme gradient boosting to 

comprehensively analyze a company's historical data. The 

results showed that linear regression was the most 

effective model with smaller errors [9]. 

However, current research and methods also have 

certain problems, such as the susceptibility of human 

experience judgments to individual cognitive biases, and 

the high computational cost of machine learning 

algorithms. To improve the accuracy of SCDF, a 

Univariate Prediction Model (UPM) considering 

Backpropagation Neural Network (BPNN) parameter 

optimization and a Multivariate Prediction Model (MPM) 

based on CNN and LSTM were designed and deployed as 

a combined prediction model on an embedded Artificial 

Intelligence (AI) platform. The research aims to improve 

the accuracy of SCDF, help enterprises plan inventory 

levels reasonably, avoid excessive inventory backlog or 

stockouts, and thereby reduce inventory holding costs and 

stockout costs. The research innovation combines the 

Improved Whale Optimization Algorithm (IWOA) and 

BPNN to improve prediction accuracy, reduce model time 

consumption, and ultimately lower the computational cost 

of the model [10]. 

 

2 Methods and materials 
To predict supply chain demand, a combined 

forecasting model including UPM and MPM is designed 

starting from sales data. To improve the inference speed 

of the combined prediction model, it is quantitatively 

optimized and deployed on an embedded AI platform. 

 

2.1 Construction of a univariate prediction 

model considering BPNN parameter 

optimization 
E-commerce sales data is an important basis for 

SCDF. To predict supply chain demand, a combined 

forecasting model is designed considering the 

characteristics of e-commerce and retail sales data. 

Moreover, the combined prediction model includes a 

UPM based on BPNN parameter optimization and an 

MPM based on CNN-LSTM. To enable high-speed model 

inference of the research and design combination 

prediction model, it is deployed on an embedded AI 

platform. When constructing a UPM, time series data is 

used and normalized to raise the model's prediction 

accuracy. The expression of normalization processing is 

shown in equation (1) [11]. 
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B
B

A A
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In equation (1), BA
 
indicates the normalized data 

value, and 
BA

 
represents the B th original data. 

maxA
 
and 

minA
 
refer to the max and mini values of the original data, 

respectively. BPNN is a neural network based on error BP 

algorithm, which has the advantages of strong nonlinear 

mapping ability, adaptability, generalization ability, and 

easy implementation. Compared with other traditional 

time series prediction methods, it has higher prediction 

accuracy [12-13]. Therefore, the study uses it as the basis 

for UPMs. However, the initial weights and thresholds of 

the BPNN can affect the convergence speed and results of 

the algorithm. Therefore, to better utilize the role of 

BPNN, an IWOA is designed to optimize its parameters. 

The advantage of the WOA is its fast convergence speed, 

few parameters, and ease of adjustment, but it is also prone 

to getting stuck in local optima [14]. Therefore, the study 

makes three improvements to it. Improvement one is to 

introduce Circle mapping to strengthen the diversity of the 

initial population. Meanwhile, to make the chaotic value 

distribution of the Circle map more uniform, slight 

adjustments are made to it, and the adjusted Circle map is 

shown in equation (2). 
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In equation (2), 
1DC +  

represents the next chaotic 

variable value after mapping, and 
DC

 
is the current 

chaotic variable value. D  means the dimension of the 

solution, which is the number of problem variables. 

( )mod ,1
 
represents modulo operation. The second 

improvement is to introduce adaptive inertia weight E  to 

dynamically adjust the global and local search capabilities 

of the algorithm. The expression of E  is shown in 

equation (3). 
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In equation (3), t  denotes the current amount of 

iterations, and 
maxt  refers to the max amount of iterations. 

At this point, the position update expression of the WOA 

is shown in equation (4). 
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In equation (4), ( 1)F G +  represents the position 

update vector at time 1G + , and *( )F G
 
is the position 

vector of the optimal whale individual at time G . H  
represents the coefficient vector, and J  represents the 

random probability. K  is a random vector, eJK

 is a spiral 

equation. I  represents the distance between the current 

whale and its prey, while I  denotes the distance vector 

between the individual whale and its optimal position. The 

third improvement is the introduction of Levy flight 
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strategy to balance local search and global search, thereby 

avoiding falling into local optima. The probability density 

function ( )Levy L
 
expression of Levy's flight strategy is 

shown in equation (5) [15]. 

( )
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In equation (5), L  represents the step size variable, 

and L  is the shape control parameter. N  and P  are 

integral variables and decay rate control parameters, 

respectively. dN  is the derivative of N . The expression 

of Levy's flight random step size ( )Levy M
 
is shown in 

equation (6). 
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In equation (6), both R  and Q
 
represent random 

variables. After updating the position in WOA, the study 

uses Levy flight to update the position again, and the 

expression is denoted in equation (7). 

( 1) ( ) Levy( )F G F G S M+ = +                       (7) 

In equation (7),   represents dot product operation. 

S  is the step size factor. The main process of the IWOA 

is denoted in Figure 1. 
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Figure 1: The main process of IWOA 

 

From Figure 1, the main process of the IWOA 

includes initializing the population through Circle chaotic 

mapping, updating individual positions using Levy flight, 

determining whether the max amount of iterations has 

been reached, and updating parameters. The employment 

of the IWOA facilitates the optimization of the initial 

weights and thresholds of the BPNN, thereby enhancing 

its predictive efficacy. The IWOA-BPNN’s main process 

is denoted in Figure 2. 
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Figure 2: The main process of IWOA-BPNN 

 

From Figure 2, the main process of IWOA-BPNN 

includes clarifying the topology structure of BPNN, 

encoding initial weights and thresholds, calculating 

fitness, obtaining and saving the optimal initial weight and 

threshold combination, and constructing BPNN based on 

the optimal parameter combination. After constructing a 

UPM based on optimal initial weights and thresholds 

using BPNN, the supply chain needs can be predicted 

based on normalized time series data. The pseudo-code of 

the IWOA-BPNN is shown in Figure 3. 
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Initialize BPNN structure and parameters.

Generate initial population via Circle mapping.

Evaluate fitness of each individual.

for each iteration to MaxIter do

    for each individual in population do

        if condition met then

            Update position using Levy flight.

        else

            Update position based on fitness.

        end if

    end for

    Update global optimal individual.

end for

Train BPNN with optimal weights and thresholds from 

IWOA.

Return trained BPNN model.
 

Figure 3: Pseudo-code of IWOA-BPNN 

 

From Figure 3, the pseudo-code of the IWOA-BPNN 

clearly presents the core process of the IWOA-BPNN. 

First, the BPNN structure and parameters are initialized, 

and then the initial population is generated by Circle 

mapping and its fitness is evaluated. Subsequently, it 

enters the iteration loop, where in each iteration, based on 

conditional judgment, the individual position is updated 

using Levy flight or fitness based methods, and the global 

optimal individual is updated. Finally, the weights and 

thresholds optimized by IWOA are used to train BPNN, 

resulting in a well-trained model. 

 

2.2 Construction of multivariate prediction 

model considering CNN-LSTM model 
To predict supply chain demand, a UPM is designed 

for the combination forecasting model. Due to the non-

stationary nature of e-commerce sales data and the 

presence of multiple variables (such as advertising 

investment, promotion strategies, etc.) that affect sales 

data, single variable prediction may not be accurate 

enough. To improve the accuracy of SCDF, an MPM 

based on CNN-LSTM model is studied and designed. 

Before constructing the prediction model, data 

preprocessing is necessary. In terms of missing values, the 

study uses the median to fill in. On outliers, the study 

directly removes them. To improve the processing speed 

of the model, the data is normalized and utilized as input 

for the MPM. Due to the non-stationary nature of sales 

value time series data, the study also uses natural 

logarithm to transform the data, to remove its non 

stationarity and facilitate subsequent feature acquisition. 

In addition, the study applies Pearson correlation 

coefficient to analyze the correlation between different 

features. After processing the data, the study constructs a 

CNN-LSTM prediction model, and the model’s main 

process is denoted in Figure 4. 
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Outlier handling
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Exclusive hot encoding
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Input layerCNNLSTMOutput  
Figure 4: The main process of CNN-LSTM 

prediction model 

 

From Figure 4, the CNN-LSTM prediction model 

requires input of sales revenue and its influencing variable 

data, and feature engineering construction of this data, 

including outlier handling, correlation analysis, and 

feature smoothing. The processed features will enter the 

input layer and obtain data features through the CNN 

layer. Afterwards, sequence prediction is achieved 

through an LSTM layer, and prediction data is output 

through a fully connected layer. CNN is a deep neural 

network mainly composed of convolutional layers, 

pooling layers, activation functions, and fully connected 

layers. It can not only automatically learn local features in 

input data, but also achieve multi-layer feature extraction 

[16-17]. In CNN, causal padding is used to ensure that 

only the input data of the current and previous time steps 

are used when calculating the output of the current time 

step, without considering the data of future time steps, to 

maintain the causal relationship of the time series. In 

CNN, the activation function used in the study is Sigmoid, 

which is expressed as equation (8). 

U

1

1 e
 Sigmoid =

+
                            (8) 

In equation (8), U  represents the input value of the 

function. LSTM is a special type of recurrent neural 

network that can not only capture the dependencies of long 

time intervals in time series, but also dynamically adjust 

the flow and storage of information. LSTM is made up of 

a forgetting gate, an inputting gate, and an outputting gate, 

and it updates the feature information of the hidden layer 

through the forget gate [18-19]. In LSTM, the expression 

of the hidden layer V
 
step state 

VW
 
is shown in equation 

(9). 

( )1V VVW f XY ZW −= +                             (9) 

In equation (9), ( )f 
 
represents the nonlinear 

activation function. X
 
means the connection matrix of 

the input layer. 
VY

 
represents the input of step 

VY . Z  is 

the weight matrix from the previous hidden layer to the 

next hidden layer. 
1VW −  

represents the state of the hidden 

layer at the previous moment. The expression of the output 

VO
 
at step V

 
is shown in equation (10). 

( )*V VO a b W=                             (10) 

In equation (10), a  represents the activation 

function, and b  means the weight matrix of the output 

layer. However, the selection of parameters such as 
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learning rate and hidden layers in CNN-LSTM models can 

affect the performance of the model. To find the best 

parameters for the CNN-LSTM model, an Improved 

Particle Swarm Optimization (IPSO) algorithm is created. 

PSO algorithm is a swarm intelligence optimization 

algorithm with advantages such as simplicity and ease of 

implementation. It is widely used in engineering 

optimization and machine learning parameter tuning fields 

[20]. However, the performance of PSO algorithm relies 

heavily on the initial particle swarm quality and is prone 

to getting stuck in local optima. Therefore, the study 

makes four improvements to the PSO algorithm. 

Improvement one is to combine Sobol sequence and 

K-means clustering to make the initial population 

distribution of PSO more uniform. The Sobol sequence is 

a low-variance sequence. This means that it can generate 

sample points that are spread evenly across a high number 

of dimensions. The study uses a Sobol sequence generator 

to create a sample pool, evaluates and sorts the fitness of 

the samples, and then analyzes the sorted samples using 

K-means clustering. The second improvement is to 

introduce non-linear inertia weight d  to balance the 

exploration and development capabilities of the algorithm 

in different periods. The expression of d  is shown in 

equation (11). 
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In equation (11), 
maxd

 
and 

mind
 
represent the max 

and mini-inertia weight values, respectively. Improvement 

three is to introduce an inertia weight direction adaptive 

change strategy to balance the global and local search 

capabilities of PSO and overcome the problem of local 

optima. The key to this strategy is the inertia direction 

change coefficient 
hg , which is expressed as equation 

(12). 
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In equation (12), h  represents the particle number, 

rand  represents the random number within the range, 

( )h

tj m
 
and ( )1t

hj m −

 
represent the fitness values of 

particle h  at the t th and 1t − th iterations, respectively. 

Under this strategy, the update of particle velocity is 

denoted in equation (13). 
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In equation (13), 
t

hqv
 
and 

1t

hqv −

 
denote the velocities 

of the h th particle in the q
th 

dimension at the t th and 

1t − th iterations, respectively, while 
1x

 
and 

2x
 
indicate 

the individual learning factor and social learning factor, 

respectively. 
1y

 
and 

2y
 
are both random numbers, and 

1

 

t

best hq −

−  
and 

1

 

t

best hq −

−  
are the individual and global 

optimal positions in the 1t − th iteration, respectively. 
1t

hqm −

 
is the position of the h th particle in the q

th 

dimension at the 1t − th iteration. The fourth 

improvement is the introduction of an adaptive 

hierarchical learning strategy to enhance the PSO 

optimization capability. This strategy requires dividing it 

into three layers based on particle fitness ranking and 

adopting different learning strategies for each layer. The 

main process of IPSO algorithm is denoted in Figure 5. 
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Figure 5: The main process of IPSO algorithm 

 

From Figure 5, the main process of the IPSO 

algorithm involves particle swarm initialization based on 

Sobol sequences and K-means clustering, population 

stratification, particle fitness calculation, and adaptive 

change of inertia weight direction. Through IPSO, 

important parameters of CNN-LSTM can be optimized to 

raise the effectiveness of the prediction model. The main 

process of IPSO-CNN-LSTM is denoted in Figure 6. 
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Figure 6: The main process of IPSO-CNN-LSTM 

 

From Figure 6, the IPSO-CNN-LSTM prediction 

model is mainly divided into three parts: data processing, 

IPSO parameter optimization, and CNN-LSTM model 

training and prediction. Based on the prediction model 

after parameter optimization, the study is able to provide 

better prediction of supply chain demand. The pseudo-

code of the IPSO-CNN-LSTM prediction model is shown 

in Figure 7. 
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Initialize BPNN structure and parameters.

Generate initial population via Circle mapping.

Evaluate fitness of each individual.

for each iteration to MaxIter do

    for each individual in population do

        if condition met then

            Update position using Levy flight.

        else

            Update position based on fitness.

        end if

    end for

    Update global optimal individual.

end for

Train BPNN with optimal weights and thresholds from 

IWOA.

Return trained BPNN model.
 

Figure 7: Pseudo-code for IPSO-CNN-LSTM 

prediction model 

From Figure 7, the pseudo-code fully demonstrates 

the key process of the IPSO-CNN-LSTM prediction 

model. First, the structure of the CNN-LSTM model is 

initialized, and then the initial population is generated and 

evaluated for fitness based on Sobol sequences and K-

means clustering. During the iteration process, adaptive 

strategies are used to update individual speed and position, 

continuously adjusting the global optimal individual. 

Finally, the IPSO optimized parameters are used to train 

the CNN-LSTM model, resulting in an accurate prediction 

model. 

A combination forecasting model for SCDF is 

designed. To improve the portability of the combined 

prediction model and reduce its cost and power 

consumption, an embedded design is studied. In the 

training of the model, two methods are adopted: model 

quantification and algorithm optimization to obtain a 

model that is more suitable for embedded AI platforms. In 

addition, the study selects NVIDIA Jetson TX2 as the 

embedded AI platform for deploying the combined 

prediction model. The NVIDIA Jetson TX2 has powerful 

computing and AI inference capabilities and low hardware 

costs. In the model quantization optimization, the 

NVIDIA inference acceleration scheme TensorRT is 

adopted. The TensorRT optimization process is shown in 

Figure 8. 

Create 
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network

Analysis 

model 

Create TensorRT 

tensor

Serialization 

engine

Deserialization engineCreate run and up/down dataData operation
 

Figure 8: The optimization process of TensorRT 

 

From Figure 8, the TensorRT optimization process 

mainly includes creating builders, creating TensorRT 

tensors, and creating runs and upper and lower data. In 

addition, TensorRT can also perform memory 

management on models to optimize their structure, 

making them better suited for embedded AI platforms and 

improving inference speed. The embedded design of the 

supply chain demand combination prediction model can 

improve the prediction speed and efficiency of the model. 

 

3 Results 
To assess the effect of the research-designed 

prediction model, the experimental environment and 

apparatus were described, and the data used in the 

experiment were set. In addition, the study also selected 

comparative models and analyzed them based on 

indicators such as prediction accuracy and error. 

3.1 Performance verification of parameter 

optimization prediction model based on 

BPNN 
To validate the performance of a single factor 

prediction model based on BPNN parameter optimization, 

the study selected the monthly demand (sales data) of 

learning supplies in an e-commerce mall from January 

2020 to December 2024 for empirical analysis, and 

preprocessed the obtained data. "Learning supplies" 

included various stationery items such as paper, pens, and 

notebooks, as well as commonly used learning tools for 

students such as calculators and folders. In addition, the 

study selected two test functions from the CEC2013 test 

function set to validate the performance of the IWOA, 

namely the unimodal function f4 and the multimodal 

function f18 [21]. The CEC2013 test function set is a 

benchmark function set widely used for optimizing 

algorithm performance evaluation, including 28 different 

types of functions, including unimodal functions, 

multimodal functions, and combination functions, used to 

simulate various complex optimization problems. Among 

them, unimodal functions such as spherical functions are 

used to test algorithm convergence speed, multimodal 

functions such as cross benchmark functions are used to 

evaluate algorithm exploration ability, and combination 

functions further increase complexity through translation, 

rotation, and other operations. It is widely used in research 

fields such as intelligent optimization algorithms, large-

scale optimization problem solving, and algorithm 

improvement innovation, providing a standardized and 

challenging testing platform for the research and 

development of optimization algorithms. Meanwhile, 

WOA, Sparrow Search Algorithm (SSA), Seagull 

Optimization Algorithm (SOA), and Grey Wolf 

Optimization (GWO) were also selected for comparison. 

The population size of these comparative models was 40, 

the maximum iteration number was 400, and the spiral 

update parameter of WOA was 1.5, with a convergence 

factor of 2. In addition, the discoverer ratio of SSA was 

0.2, and the number of seagulls and inertia weight of SOA 

were 40 and 0.5, respectively. The operating system used 

in the study was Windows 10, and the central processing 

unit was Intel Core i5-13500. In terms of prediction 

models, the study selected BPNN, Auto-Regression 

Integrated Moving Average (ARIMA), Random Forest 

(RF), WOA-BPNN, and a combination model 1 that 

combines Support Vector Machine (SVM) regression and 

LSTM for comparison. The population size of the IWOA 

was 40, the max amount of iterations was 400, and the 
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learning rate of the BPNN was 0.02. The comparison of 

the average values of different algorithms under different 

test functions is denoted in Table 1. 

 

 

 

 

 

Table 1: Comparison of average values of different algorithms under different test functions 

Algorithm 

Unimodal function f4 

Amount of experiments 

1 2 3 4 5 6 7 
SSA 3.71×103 2.38×103 2.98×103 2.81×103 3.10×103 3.10×103 2.59×103 
SOA 1.96×103 2.07×103 2.30×103 2.55×103 1.98×103 1.88×103 2.62×103 

GWO 1.63×103 2.05×103 1.44×103 1.59×103 1.52×103 1.81×103 1.91×103 

WOA 1.41×103 1.37×103 1.33×103 1.26×103 1.43×103 1.34×103 1.42×103 
IWOA 

(manuscript) 
0.22×103 0.27×103 0.30×103 0.33×103 0.25×103 0.21×103 0.26×103 

Algorithm 

Multimodal f18 

Amount of experiments 

1 2 3 4 5 6 7 

SSA 2.43×102 2.51×102 1.94×102 2.44×102 2.35×102 2.29×102 1.77×102 

SOA 2.56×102 1.18×102 2.37×102 1.86×102 1.87×102 1.77×102 1.74×102 

GWO 1.56×102 1.90×102 1.16×102 1.38×102 1.92×102 1.53×102 2.19×102 

WOA 1.46×102 1.26×102 1.37×102 1.54×102 1.20×102 1.01×102 1.10×102 
IWOA 

(manuscript) 
0.32×102 0.28×102 0.34×102 0.26×102 0.29×102 0.28×102 0.25×102 

From Table 1, under the unimodal function f4 and 

multimodal function f18, the average values of the IWOA 

were significantly lower than those of the comparison 

algorithm. For example, under the unimodal function f4, 

the average values of the IWOA were all below 1.0×103, 

while the average values of SSA, SOA, GWO, and WOA 

were significantly greater than 1.0×103. This indicates that 

the IWOA has better optimization ability and stability 

under both test functions, and can better optimize the 

initial weights and thresholds of the BPNN. This may be 

because the IWOA introduces Circle chaotic mapping, 

adaptive inertia weight, and Levy flight strategy, which 

improves the algorithm's global search ability, local 

optimization ability, and ability to escape from local 

optima, thereby achieving better results in the 

optimization of unimodal and multimodal functions. The 

comparison of prediction accuracy and Root Mean Square 

Error (RMSE) of different UPMs is shown in Figure 9. 
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Figure 9: Comparison of prediction accuracy and RMSE of different univariate prediction models 

 

From Figure 9 (a), in terms of comparison of 

prediction accuracy, the max value of the IWOA-BPNN 

model was 98.05%, and the mini value was 95.27%. The 

maximum prediction accuracy of BPNN, ARIMA, RF, 

and combination model 1 were 85.14%, 82.09%, 85.37%, 

and 92.68%, respectively, all of which were less than 

98.05%. From Figure 9 (b), in the comparison of RMSE, 

the IWOA-BPNN model designed in the study had the 

smaller error, followed by the combination model 1. In 

terms of specific values, the maximum RMSE of the 

IWOA-BPNN model was 1.03 and the minimum was 

0.25, which was much lower than the comparison model. 

This indicates that the IWOA-BPNN model designed for 

research can make more accurate predictions of supply 

chain demand. The comparison of time consumption and 

memory usage of different UPMs is shown in Figure 10. 
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Figure 10: Comparison of time consumption and memory usage of different univariate prediction models 

 

As shown in Figure 10 (a), in terms of time 

consumption comparison, the max values of the IWOA-

BPNN model and the four comparison models were 61ms, 

129ms, 132ms, 108ms, and 95ms, respectively. The time 

consumption of the IWOA-BPNN model was greatly 

lower than that of the comparison model. From Figure 10 

(b), the IWOA-BPNN model performed better in terms of 

memory usage, with a max value of 10.85% and a mini 

value of 6.03%. Overall, the IWOA-BPNN model has 

lower time and memory consumption and better 

performance. To further validate the performance of the 

IWOA-BPNN model, the study selected Mean Absolute 

Error (MAE) and inference delay metrics. The comparison 

of MAE and inference delay for different models is shown 

in Table 2. 

 

Table 2: Comparison of MAE and inference delay among different models 

Algorithm 

MAE Inference delay/ms 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

BPNN 2.440 1.746 1.894 2.362 1.723 13.75 15.80 16.51 16.27 13.30 

ARIMA 3.201 3.188 3.483 3.089 2.986 20.79 20.76 20.29 18.30 16.27 

RF 2.236 2.080 2.017 2.783 2.104 14.67 16.43 18.29 16.83 15.45 

Combination model 1 1.875 1.155 1.212 1.173 1.740 9.06 8.15 7.41 11.66 8.35 

IWOA-BPNN 0.307 0.681 0.914 0.359 0.799 2.82 4.02 3.10 4.53 4.34 

From Table 2, the proposed IWOA-BPNN model 

outperformed other compared algorithms in terms of MAE 

and inference delay. Specifically, the average MAE of the 

IWOA-BP neural network model was 0.612, while the 

average MAE of the BPNN model, ARIMA, RF, and 

combination model 1 were 2.033, 3.189, 2.244, and 1.431, 

respectively. The MAE of the IWOA-BPNN model was 

the smallest, indicating that its prediction error was the 

smallest and its stability was high, which could more 

accurately predict supply chain demand. In addition, in 

terms of inference delay, the IWOA-BPNN model had 

significantly lower values than other models, indicating 

that its inference efficiency was higher and could meet the 

high real-time requirements of supply chain prediction 

scenarios. 

 

3.2 Performance validation of multivariate 

prediction model considering CNN-LSTM 
To validate the effect of the MPM based on CNN-

LSTM, the same operating system and central processing 

unit were used, and the NVIDIA Jetson TX2 embedded AI 

platform was configured. The study selected the sales 

volume of daily necessities in a certain shopping mall 

from January 2020 to December 2024 for analysis, 

preprocessed it, and analyzed the correlation coefficients 

between features. "Daily necessities" encompassed 

essential items for daily life, such as food, cleaning 

supplies, and personal care products. Since these 

correlation coefficients were not high, there was no need 

to further reduce their dimensionality. In addition, 

advertising investment was measured by the total budget 

of advertising activities, in units of yuan, and was obtained 

by summarizing the amount of advertising invested by 

enterprises in different advertising channels (such as 

television, internet, newspapers, etc.). The promotional 

strategy quantified the intensity of promotional activities, 

using discount intensity as an example, expressed as the 

ratio of the discounted price to the original price. Other 

influencing variables such as social media popularity were 

quantified by the search volume of relevant keywords or 

topic popularity, while market trends were quantified by 

referring to trend indicators in market research reports or 

industry analysis articles. In the validation of the IPSO 

algorithm, the same testing function was used, and PSO, 

Genetic Algorithm (GA), WOA, and a combination model 

2 combining GA and BPNN were selected for comparison. 

In terms of prediction models, CNN-LSTM, SVM, PSO-

CNN-LSTM, and a combination model 3 combining PSO 

and extreme gradient boosting were selected for 

comparison. The optimizer of the model was Adam, the 

learning factor of PSO was 1.5, the particle swarm size 

was 40, and the dimension was 30. To improve the 

transparency and practicality of the model, the SHapley 

Additive exPlans (SHAP) technology was introduced in 



Construction and Validation of a Supply Chain Demand Forecasting… Informatica 49 (2025) 203–214 211 

the study. SHAP values can quantify the contribution of 

each feature to the prediction results, helping to identify 

the factors that have the greatest impact on demand 

forecasting. The SHAP values of different variables are 

shown in Table 3. 

 

Table 3: SHAP values of different variables 
Characteristic variable SHAP value Characteristic variable SHAP value 

Sales volume 0.45 Store sales personnel 0.08 

WeChat push frequency 0.15 Store poster display 0.05 

Local TV advertising 

investment 
0.25 

Store promotion 

events_specific 
0.30 

Online advertising 

investment 
0.20 \ \ 

From Table 3, sales volume had the greatest 

contribution to SCDF, with an SHAP value as high as 0.45. 

The store promotion event was followed by the special 

event, with an SHAP value of 0.30. These two are key 

factors that affect demand forecasting. The positive 

impact of local TV advertising investment (0.25) and 

online advertising investment (0.20) on demand should 

not be underestimated. In contrast, although WeChat push 

frequency (0.15), store sales personnel (0.08), and store 

poster display (0.05) had some impact, they were 

relatively small. If enterprises want to improve prediction 

accuracy, they can focus on data collection and analysis in 

sales, store promotions, and advertising investment. The 

standard deviation comparison of different algorithms 

under different test functions is shown in Table 4. 

 

Table 4: Comparison of standard deviations of different algorithms under different test functions 

Algorithm 

Unimodal function f4 

Amount of experiments 

1 2 3 4 5 6 7 

PSO 3.96×103 3.82×103 3.99×103 3.94×103 3.72×103 3.61×103 3.59×103 

GA 2.50×103 3.27×103 2.95×103 2.92×103 2.87×103 2.74×103 2.76×103 

WOA 2.76×103 2.25×103 2.37×103 2.95×103 2.35×103 2.01×103 2.81×103 
Combination 

model 2 
1.47×103 1.92×103 1.79×103 1.16×103 1.97×103 1.53×103 1.10×103 

IPSO (manuscript) 0.85×103 0.82×103 0.80×103 0.77×103 0.81×103 0.80×103 0.76×103 

Algorithm 

Multimodal f18 

Amount of experiments 

1 2 3 4 5 6 7 

PSO 5.72×101 6.45×101 5.55×101 5.86×101 5.63×101 5.93×101 6.08×101 

GA 4.57×101 4.61×101 4.52×101 4.88×101 4.60×101 5.38×101 4.51×101 

WOA 3.79×101 4.06×101 4.12×101 3.91×101 3.98×101 4.47×101 4.19×101 
Combination 

model 2 
2.25×101 2.22×101 1.59×101 1.98×101 1.93×101 1.60×101 1.71×101 

IPSO (manuscript) 0.14×101 0.15×101 0.12×101 0.14×101 0.13×101 0.16×101 0.11×101 

From Table 4, the standard deviation of IPSO 

algorithm was significantly lower than that of the 

comparison algorithm under unimodal f4 and multimodal 

f18. For example, under the multimodal function f18, the 

standard deviation values of the IPSO algorithm were all 

below 1.0×101, while the comparison algorithms were all 

above 1.0×101. This indicates that the optimization results 

of IPSO algorithm have higher stability and reliability. 

This may be because the IPSO algorithm has improved the 

initialization strategy by introducing nonlinear inertia 

weights and inertia weight direction adaptive change 

strategies. The accuracy and RMSE comparison of 

different MPMs are shown in Figure 11. 
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Figure 11: Comparison of accuracy and RMSE of different multivariate prediction models 
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According to Figure 11 (a), the maximum prediction 

accuracy of the IPSO-CNN-LSTM model was 98.51%, 

and the minimum was 96.02%. The maximum prediction 

accuracies of CNN-LSTM, SVM, PSO-CNN-LSTM, and 

combination model 3 were 90.55%, 84.25%, 92.75%, and 

94.69%, respectively, all of which were less than 98.51%. 

According to Figure 11 (b), the IPSO-CNN-LSTM model 

had a smaller RMSE, with maximum RMSE values of 

0.58, 1.59, 2.38, 1.37, and 1.15 compared to the four 

comparison methods. The IPSO-CNN-LSTM model 

performed better. The comparison of time consumption 

and accuracy before and after embedding the IPSO-CNN-

LSTM model is shown in Figure 12. 

 

0

40

80

120

140

160

T
im

e 
co

ns
um

pt
io

n/
m

s

Model

1

(a) Comparison of time consumption before 

and after embedding

2 3 4 5

20

60

100

1:CNN-LSTM 2:SVM

3:PSO-CNN-LSTM

5:IPSO-CNN-LSTM

4:Combination model 3

Before embedding After embedding

60

70

80

90

95

100

A
cc

ur
ac

y/
%

Model

1

(b) Comparison of accuracy before and after 

embedding

2 3 4 5

65

75

85

1:CNN-LSTM 2:SVM

3:PSO-CNN-LSTM

5:IPSO-CNN-LSTM

4:Combination model 3

Before embedding After embedding

 
Figure 12: Comparison of time consumption and accuracy before and after embedding IPSO-CNN-LSTM model 

 

According to Figure 12 (a), in terms of time 

consumption, the maximum values before and after 

embedding the IPSO-CNN-LSTM model were 67ms and 

35ms, respectively, with an improvement ratio of 47.76% 

between the two. According to Figure 12 (b), the 

maximum difference in accuracy between the IPSO-CNN-

LSTM model before and after embedding was 0.18%. 

Deploying the combination prediction model on an 

embedded AI platform could reduce the model's time 

consumption with only a 0.18% decrease in accuracy. 

 

4   Discussion and conclusion 
A combination prediction model was designed to 

improve the accuracy of SCDF, which includes an IWOA-

BPNN UPM and an IPSO-CNN-LSTM MPM. The 

findings denoted that under the unimodal function f4, the 

average values of the IWOA were all below 1.0×103, 

significantly lower than the comparison algorithms. 

Moreocver, the average value of the IWOA under the 

multimodal function f18 was also smaller. This indicated 

that the IWOA had better optimization ability and 

stability, and could better optimize the initial weights and 

thresholds of the BPNN. The max prediction accuracy of 

the UPM was 98.05%, which was 12.91%, 15.96%, 

12.68%, and 5.37% higher than the max values of the 

comparison model, respectively. This indicates that the 

model can make more accurate predictions of supply chain 

demand, and this may be due to its use of parameter 

combinations optimized by the IWOA. The standard 

deviation of IPSO algorithm under unimodal f4 and 

multimodal f18 was significantly lower than that of the 

comparison algorithm. The max prediction accuracy of the 

IPSO-CNN-LSTM model was 98.51%, which was 7.96%, 

14.26%, 5.76%, and 3.82% higher than the maximum 

values of CNN-LSTM, SVM, PSO-CNN-LSTM, and 

combination model 3, respectively. After deploying the 

combination prediction model on the embedded AI 

platform, its time consumption increased by a maximum 

of 47.76% without significantly affecting the model 

accuracy. Overall, the designed combination prediction 

model has good performance. However, the IPSO 

algorithm designed in this study shows a decline in 

performance when facing complex multimodal problems. 

Future research can further optimize it to enhance its 

ability to overcome local optima. 
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