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Protecting network infrastructures from increasingly complex cyberthreats requires the use of intrusion 

detection systems, or IDSs. However, because of changing attack patterns and high data dimensionality, 

it is still difficult to differentiate between malicious and benign network activity. In order to improve IDS 

performance, this study critically evaluates six popular machine learning classifiers: Random Forest 

(RF), Gradient Boosting (GB), Decision Tree (DT), XGBoost (XGB), AdaBoost (AB), and K-Nearest 

Neighbors (KNN). Two sophisticated hyperparameter tuning methods, Grid Search (GS) and the Emperor 

Penguin Optimization Algorithm (EPOA), were used to increase predictive accuracy and model 

robustness. With accuracy, precision, recall, and F1-score values of 0.9997, 0.9898, 0.9999, and 0.9948, 

respectively, the optimized Gradient Boosting (EPOA-GB) model outperformed the others. Important 

contributing features were also found using SHAP-based interpretability analysis, which provided 

insightful information about the classification procedure. The models became more scalable for 

deployment when Principal Component Analysis (PCA) was used to reduce dimensionality, improving 

generalization and computational efficiency. These results show how well ensemble classifiers and 

intelligent optimization work together to reduce false alarms, a crucial requirement for real-time intrusion 

detection. This work provides practical guidelines for implementing high-performance IDSs and 

highlights the importance of future validation across diverse datasets and deployment environments to 

ensure robustness and adaptability in real-world cybersecurity scenarios. 

Povzetek: Študija primerja šest klasifikatorjev IDS ter z EPOA-optimizacijo nastavi Gradient Boosting. 

EPOA-GB na CIC-IDS-2017 doseže najboljše rezultate, uporabi PCA in SHAP, zmanjša lažne alarme. 

 

1 Introduction 
In recent years, cybersecurity has gained significant 

attention owing to the increasing reliance on digital 

infrastructure and the sharp rise in sophisticated 

cyberattacks. These attacks, ranging from disruptions in 

electrical grids to advanced assaults on SCADA systems 

and high-profile incidents like the Stuxnet virus targeting 

nuclear facilities [1], pose severe threats to national 

security, critical infrastructure, and private enterprises. 

The financial and operational consequences of such 

attacks are often catastrophic, emphasizing the urgent 

need for advanced security mechanisms. 

Intrusion detection systems (IDSs) serve as a vital line 

of defense in network security, enabling the identification 

of both ongoing intrusions and previously compromised 

systems. An IDS, implemented as either hardware or 

software, monitors network or system traffic and triggers 

alerts upon detecting suspicious patterns [2], [3]. 

Depending on design, IDSs can be categorized based on 

data collection methods (e.g., host-based, network-based), 

deployment strategy (e.g., centralized, hybrid), or 

detection technique (e.g., signature-based, anomaly-

based, or hybrid) [4], [5], [6]. 

 

However, traditional IDS solutions, such as signature-

based and rule-driven systems, struggle to keep pace with 

the dynamic landscape of cybersecurity threats, 

particularly zero-day exploits and advanced persistent 

threats (APTs). These conventional systems lack 

adaptability and often produce high false-positive rates 

when facing novel attack patterns. This growing 

complexity, along with the exponential increase in 

network traffic, highlights the need for intelligent, 

scalable, and real-time detection frameworks. 

In response, machine learning (ML)-based IDSs have 

emerged as a powerful alternative, leveraging data-driven 

algorithms to detect anomalies, learn from evolving 

threats, and generate accurate predictions with minimal 

human intervention. ML methods not only enhance 

detection accuracy but also offer flexibility and 

automation in processing large-scale network data. As 

such, ML-integrated IDSs represent a promising direction 

in modern cybersecurity. Several recent studies have 

explored this paradigm, aiming to optimize intrusion 

detection in terms of accuracy, efficiency, and 

interpretability [7], [8], [9], [10], [11]. To illustrate the 

current landscape and identify research gaps, Table 1 

summarizes a comparison of key works applying ML 

models for IDS development. 
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Table 1: Overview of the related works. 

Ref. Dataset Best Model Accura

cy 

Other Metrics Gaps/Limitations 

[12] CIVEMSA-2020 Deep Neural 

Network (DNN) 

0.9978 - No hyperparameter 

optimization; unclear on 

overfitting and interpretability 

[13] Various (incl. 

KDD, CIC)–

comparative; 

primary on 

classic IDS) 

Decision Tree (DT) 0.9992 Precision, 

Geometric mean, F-

measure 

Limited to default parameters, 

no tuning optimization, lacks 

interpretability discussion 

[14] HONET 2020 

(Smart 

Communities) 

Instance-Based 

Learning algorithm 

(IBK) 

0.9982 Precision, Recall, F-

measure, Receiver 

Operating Curve 

(ROC) 

Small feature set used; no 

thorough hyperparameter 

tuning; only basic metrics 

[15] CICIDS-2017 Random Forest 

(RF) 

0.9986 Precision, Recall Features selected but no 

optimization algorithm for RF; 

no interpretability or false 

positive rate analysis 

[16] CIC-IDS 

(Canadian 

Institute of 

Cybersecurity) 

Extreme Gradient 

Boosting (XGB) 

0.9954 - Lacks detailed tuning 

description, interpretability, and 

metrics beyond accuracy 

[11] Custom 5G IoT 

dataset 

Hybrid DNN + 

Feature 

Engineering 

0.9960 Recall, F1-measure, 

ROC AUC 

Focused on 5G-specific threats; 

lacks generalizability; limited 

optimization details 

[17] CIC-IDS-2017 

and CSE-CIC-

IDS-2018 

Hybrid CNN-

LSTM 

0.9730 Recall, Precision, 

F1, AUC 

Strong architecture but lacks 

interpretability analysis; tuning 

method not clearly described 

[18] UNSW-NB15 Bi-LSTM + 

Attention 

0.9800 Recall, F1 Score, 

False Positive Rate, 

False Negative 

Rate, t-test (p-value) 

 

Effective against specific 

scanning attacks, but not 

validated on broader benchmark 

datasets 

This 

study 

CIC-IDS-2017 Emperor Penguin 

Optimization 

Algorithm-

Gradient Boosting 

(EPOA-GB) 

0.9997 Precision, Recall, 

F1-Score, ROC 

AUC, PR AUC, Log 

loss, MCC, Cohen’s 

Kappa 

Addresses gaps in prior works, 

including hyperparameter 

optimization, interpretability 

(SHAP), robust validation, and 

comprehensive metrics 

 

This study introduces several key innovations to 

address the limitations commonly found in existing 

classification modeling approaches. While many prior 

works rely on default settings or manual hyperparameter 

tuning—such as in DNNs and DTs—we employ the 

Emperor Penguin Optimization Algorithm (EPOA) to 

automatically and efficiently tune the GB classifier, 

leading to improved model performance. Overfitting and 

robustness, often overlooked in previous studies, are 

explicitly addressed in our approach through the use of 

cross-validation and evaluation on held-out test datasets. 

Furthermore, to tackle the frequent lack of interpretability 

in traditional models, we incorporate SHAP (SHapley 

Additive exPlanations) and perform feature importance 

analysis to provide deeper insights into model behavior 

and feature contributions. Unlike prior research that 

typically reports limited metrics, our study offers a 

comprehensive performance evaluation by including 

accuracy, precision, recall, F1-score, and ROC AUC 

(Receiver Operating Characteristic-Area Under Curve), 

PR AUC (Precision-Recall-Area Under Curve), Log loss, 

Matthews Correlation Coefficient (MCC), Cohen’s 

Kappa. Finally, to enhance generalizability, we validate 

our approach on another state-of-the-art tuning model 

rather than relying on traditional benchmark models, 

demonstrating the robustness and wide applicability of our 

method. Collectively, these contributions represent a 

significant advancement over existing methods in terms of 

optimization, interpretability, evaluation, and 

generalizability. 

Therefore, the major novelty in the current work is in 

its overall approach toward enhancing IDS through 

integrating high-performance classification models with 

an advanced optimization algorithm. Unlike traditional 

IDS frameworks with static settings or basic tuning 

techniques, in this work, a new algorithm, the EPOA, is 

proposed for application in a dynamic hyperparameter 

optimization method for diverse models. The suggested 

https://www.sciencedirect.com/topics/computer-science/decision-trees
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method provides a secure and efficient mechanism for 

real-time implementation by systematically improving 

computational models. Moreover, the comparative 

analysis in the study not only compares model 

performance in individual terms but also identifies the 

transformational role played by EPOA in enhancing 

model efficiency, stability, and overall generalization 

performance. The main objectives of this work involve 

enhancing accuracy in detecting malicious and non-

malicious activities, minimizing false positive and false 

negative occurrences, and lessening computational 

expense in processing large networks. By combining 

these, this work proposes a new, flexible, and efficient IDS 

model with an outlook toward addressing evolving 

network security concerns. 

Hence, in order to guide the present study, the 

following key research questions have been posed: 1.  Can 

the proposed EPOA-GB significantly enhance the 

performance of a ML-based IDS, particularly in 

comparison to other conventional as well as state-of-the-

art tuning approaches? 2. Does integrating EPOA with 

Gradient Boosting improve model robustness and 

generalizability across the employed dataset? 

We hypothesize that EPOA-GB, as a bio-inspired 

metaheuristic algorithm, will outperform other applied 

tuning methods in identifying optimal hyperparameters, 

thereby boosting detection accuracy, reducing false 

positives, and improving the generalization of the IDS 

model. We further expect that model interpretability tools 

will provide actionable insights into the prediction 

process. To address these questions, our methodology 

includes (i) applying EPOA for automated 

hyperparameter optimization of the selected ML models, 

(ii) evaluating performance on benchmark dataset using 

cross-validation and a comprehensive set of metrics, and 

(iii) employing SHAP and feature importance analyses to 

interpret model predictions. Each step is designed to 

directly respond to the research questions and validate our 

hypotheses through the evaluation. 

This paper is organized into key sections addressing 

multiple aspects of the classification tasks. The 

methodology comes in Section 2, introducing the dataset, 

its sources, feature selection, model selection, an 

optimizer, and evaluation metrics. Section 3 covers model 

performance, including key observations, trends, and 

insights. Section 4 summarizes key results, explains their 

implications, and sets out avenues for future work. 

2 Methodology 
An efficient IDS requires methodical development, 

beginning with the data preparation and concluding with 

model evaluation. ML models serve as a powerful tool for 

discovering cyberattacks through a mechanism of training 

on network traffic information. A sequential process for 

network intrusion detection via ML models using CIC-

IDS (Canadian Institute for Cybersecurity) data is 

presented in Figure 1. Initially, the objective is 

determined, and then feature extraction and partitioning of 

70:30 training and testing sets for a relevant dataset 

follow. The six models, namely Random Forest (RF), 

Gradient Boosting (GB), Decision Tree (DT), XGBoost 

(XGB), AdaBoost (AB), and K-Nearest Neighbors 

(KNN), are deployed to the classification issue. For 

enhancing performance, the models’ hyperparameters are 

tuned with EPOA, a high-performance algorithm inspired 

by penguins’ foraging behavior in a real environment. 

Lastly, model evaluation is performed to choose the best-

performing classifier. 

It is worth mentioning that, the choice of ML models 

in this study is theoretically motivated by their 

complementary strengths in handling various challenges 

intrinsic to intrusion detection tasks, such as high-

dimensional feature spaces, imbalanced data, and the need 

for generalization under noisy conditions. RF was selected 

for its ensemble architecture and robustness to overfitting, 

especially in large and noisy datasets. DTs provide 

interpretability and serve as a baseline, while GB and 

XGB offer superior accuracy by focusing on correcting 

prior errors in a sequential manner, making them suitable 

for complex intrusion patterns. AdaBoost was chosen for 

its ability to minimize bias through weight adjustment, and 

KNN was involved owing to its non-parametric, instance-

based nature which offers a contrasting learning paradigm 

that can benefit small or local pattern detection. Moreover, 

the selection of the EPOA for hyperparameter tuning is 

grounded in its demonstrated success as a metaheuristic 

optimizer in solving nonlinear, high-dimensional 

problems. Its swarm-intelligence-inspired mechanism 

offers a balance between global exploration and local 

exploitation, which is critical for fine-tuning complex 

models. Compared to traditional grid or random search 

approaches, EPOA improves convergence to optimal 

hyperparameter configurations, thereby enhancing model 

stability and predictive accuracy in IDS tasks. 
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Figure 1: Visual presentation of the research framework. 

2.1 Dataset 

The CIC-IDS-2017 dataset used in this study was sourced 

from [19]. This dataset is rich in network flow data, 

capturing essential attributes that make it a valuable 

resource for cybersecurity research and intrusion detection 

system (IDS) development. Prior to applying ML models, 

the dataset undergoes a comprehensive preprocessing 

pipeline. This includes handling missing values to avoid 

bias during model training and encoding categorical 

features to ensure compatibility with various algorithms. 

Numerical features are standardized to bring them to a 

common scale, which is essential for the performance of 

most ML models. Following standardization, 

dimensionality reduction is performed using Principal 

Component Analysis (PCA), reducing the feature space to 

20 principal components while preserving most of the 

dataset’s variance. This step enhances computational 

efficiency, mitigates the risk of overfitting, and improves 

the model’s generalization ability on unseen data. Figure 

2 shows the PCA feature loadings heatmap generated to 

visualize the correlation between network flow features 

and principal components, facilitating dimensionality 

reduction for improved model performance. And, Figure 

3 demonstrates the PCA variance plot employed to 

determine the number of components needed to retain 

90% of the data’s variance, guiding effective 

dimensionality reduction. 

Additionally, a key data-cleaning step involves 

removing unnecessary spaces from column names to 

maintain consistency throughout the dataset. To ensure the 

reliability and robustness of model evaluation, k-fold 

cross-validation is employed, allowing the models to be 

trained and validated across multiple data splits. This 

approach not only prevents overfitting but also provides a 

more accurate estimate of model performance. 

After that, the target variable and input variables are 

specified. The target variable is then converted into four 

classes, where BENIGN maps to 0 and Web Attack – 

Brute Force, Web Attack – XSS, and Web Attack – SQL 

Injection labels are respectively mapped to 1, 2, 3. This 

classification framework simplifies the detection problem 

for models by targeting either normal or abnormal 

behaviors. A bar chart in Figure 4 illustrates that benign 

traffic comprises the majority of the dataset, with 

significantly fewer instances of web attacks such as brute 

force, XSS, and SQL injection. 

The cleaned data is then divided into test (30%) and 

training (70%) sets in preparation for model training. This 

way, the model will be evaluated on unseen data; hence, it 

can be tested for its generalization capability. Moreover, 

the features are standardized using Standard Scaler; this 

normalizes the data, making it suitable for ML models. 

With the completion of these preprocessing steps, this 

dataset is now ready for training high-performance models 

for network intrusion detection, furthering cybersecurity 

research. 
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Figure 2: PCA feature loadings heatmap showing correlations between network flow features and principal 

components. 
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Figure 3: Explained and cumulative variance of principal components from PCA for dimensionality reduction. 

 

Figure 4: Bar chart showing the frequency distribution of web attack types, highlighting the dominance of benign 

traffic.

2.2 Model selection 

2.2.1 Random Forest 

Random Forest (RF) is an ensemble learning model that 

constructs many decision trees and aggregates them to 

make a prediction, enhancing predictive accuracy and 

minimizing overfitting. Initially, Breiman [20] developed 

RF by training numerous decision trees over a range of 

bootstrapped datasets, utilizing bagging and feature 

selection at each split on a random basis. Each tree 

classifies a new case individually, and the final 

classification is generated through a vote over all trees in 

a majority vote style. This helps in generalization and 

strengthening, making RF a strong tool for handling large 

and noisy datasets (see [20, 21]). 

2.2.2 Gradient boosting 

GB is another strong ensemble learner model that 

constructs predictive models sequentially, with each 

model optimized for performance through the 

improvement of preceding model errors. It was first 

proposed by Friedman [23] as an expansion of boosting 

algorithms. GB trains weak learners, in most cases DTs, 

in a sequential manner, with each successive tree 

attempting to minimize the residuals of its predecessor 

through gradient descent. In contrast to RF, whose trees 

are constructed individually, trees in GB are constructed 
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iteratively, with weights tuned to minimize bias and 

maximize accuracy (see [24]). This produces a very 

powerful model that can handle intricate patterns; 

however, it requires careful adjustment to avoid 

overfitting. 

2.2.3 Decision Tree 

DT is a supervised learner model that distinguishes data 

into hierarchical branches regarding feature values and 

ends in a predicted class label. By applying measures such 

as Gini impurity or information gain (based on entropy), 

the model builds a tree by choosing the most informative 

feature at each node. It recursively divides the data to a 

point when it reaches a leaf with a high level of purity, at 

which point classification occurs (see  [25], [26]). DTs 

have simple interpretability and computational efficiency 

but suffer from overfitting, and pruning can counteract 

this. 

2.2.4 Extreme Gradient Boosting 

XGB, also called XGBoost, is a high-performance ML 

model that maximizes the efficiency, accuracy, and 

overall performance of traditional gradient boosting 

algorithms. XGB, developed by Chen and Guestrin [27], 

gained widespread acceptance in data science 

competitions and real-world implementation. XGB builds 

an ensemble model sequentially, with each new tree fitting 

in a direction that corrects residuals of preceding trees 

with gradient-boosted trees via gradient descent 

optimization. It offers important enhancements, including 

parallel computing, tree pruning, and regularization 

parameters for overfitting avoidance, which result in a 

quicker and more scalable approach. XGB is also efficient 

in dealing with missing values and can work with sparse 

data and is therefore ideal for sophisticated classification 

scenarios (see [27, 28]). 

2.2.5 Adaptive Boosting 

AB is a pioneer model in ensemble learning that takes 

several weak classifiers and forms a strong predictive 

model out of them. AB was developed by Freund and 

Schapire [30] as a refinement of boosting algorithms. The 

AB model iteratively trains weak learners on the training 

set, adjusting their weights according to classification 

errors. Misclassified cases receive increased weights in 

subsequent iterations, forcing the model to pay attention 

to challenging cases. Final classification is performed via 

a weighted vote of all weak classifiers. AB is flexible, 

simple, and can minimize bias with interpretability; 

however, it is not robust when dealing with outliers and 

noisy data (see [30, 31]). 

2.2.6 K-Nearest Neighbors 

KNN is a simple yet effective supervised learning 

approach, generating labels for classes through a similar-

data point comparison. Initially, Fix [33] developed it as a 

non-parametric model for pattern classification. KNN 

operates through the computation of the distance of a 

query point from all training samples in a dataset. It then 

assigns a label to a new instance based on the most 

frequent label among its KNNs. Unlike most methods, 

KNN doesn't require explicit training; instead, it stores all 

training samples and compares them to new cases, making 

it a lazy learner algorithm. While it is efficient and simple 

for small datasets, it becomes computationally expensive 

for large datasets, as it requires distance calculations for 

each new prediction (see [33, 34]). 

2.3 Optimization algorithm 

Optimization algorithms serve as a basis for ML, and 

through them, model performance can be optimized. Such 

algorithms gain inspiration from many mathematical laws 

and processes in nature and work towards resolving 

complex optimization problems in many fields. The 

Emperor Penguin Optimization Algorithm (EPOA) [36] is 

one of the best nature-inspired algorithms for nonlinear 

and multidimensional problem solving; Figure 5 shows its 

conceptual workflow.  

The emperor penguin optimizer is a metaheuristic 

algorithm inspired by emperor penguins' huddling 

behavior for survival in the extreme conditions of the 

Antarctic. It is proposed as a swarm intelligence approach 

and simulates the dynamic thermal control manner in 

which penguins form dense, regulated groups to maintain 

warmth. In optimization cases, this turns into candidate 

solutions (penguins) moving toward the best solution 

(warmest area) by modifying their positions according to 

temperature (fitness value). Exploration (random search 

for the diversity of solutions) and exploitation (refinement 

of a potential solution) are balanced through the 

simulation of penguins’ movement behavior (see [37]). In 

this work, EPOA was successfully applied for 

hyperparameter tuning in all ML models, including RF, 

GB, DT, XGB, AB, and KNN, enhancing their accuracy 

and performance. 

In addition to EPOA, Grid Search (GS) was applied 

as a baseline hyperparameter tuning method to benchmark 

optimization efficiency. The hyperparameters of all 

chosen models were optimized using both EPOA and GS, 

as detailed in Tables 2 and 3, respectively. The 

comparison shows that while EPOA consistently achieved 

high-performing configurations across all models, it also 

required the same iterations, but generally higher runtime 

than GS.
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Figure 5: An example workflow of the GB model’s hyperparameter tuning process using EPOA. 

Table 2: The applied models’ hyperparameter tuning using EPOA. 

 EPOA-RF EPOA-GB EPOA-DT EPOA-XGB EPOA-AB EPOA-KNN 

N estimators 100 100 - 100 100 - 

Min samples split 2 - 2 - - - 

Min samples leaf 1 - 1 - - - 

Max depth None 3 None 3  - 

Learning rate - 0.1 - 0.1 0.1 - 

Subsample  - - - 0.7  - 

Colsample bytree - - - 0.7  - 

Weights  - - - -  Uniform 

P  - - - -  2 

N neighbors - - - -  5 

Runtime (sec) 10206.15 100361.13 1002.1 2010.57 15009.47 10209.86 

Iteration 30 30 30 30 30 30 

Table 3: The applied models’ hyperparameter tuning using Grid Search (GS). 

 GS-RF GS-GB GS-DT GS-XGB GS-AB GS-KNN 

Max depth 7 5 3 12 - - 

Min samples leaf 1 - 8 - - - 

Min samples split 3 8 8 - - - 

N estimators  65 300 - 229 271 - 

Learning rate - 0.0653 - 0.0443 0.4729 - 

Colsample bytree - - - 0.8997 - - 

Subsample  - - - 0.9519 - - 

N neighbors - - - - 25 - 

P  - - - - 1 - 

Weights  - - - - Distance - 

Runtime (sec) 90.8311 980.4113 8.7119 15.5305 114.8171 93.5015 

Iteration 30 30 30 30 30 30 

2.4 Evaluation Indicators 

The effectiveness of ML models in identifying network 

intrusions is evaluated using a variety of statistical testing 

indicators. Comparing and evaluating a model through 

several factors helps in planning improvements and 

comparisons. Figure 6 depicts a selection of key 

evaluation statistics for application in classification 

scenarios. They involve the F1-score, which sets a balance 

between precision and recall; Cohen’s Kappa, which is an 
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agreement between two raters that considers chance; 

recall, which measures how well the scheme detects 

positive cases; and Log loss, which evaluates the accuracy 

of probabilistic predictions. In addition, accuracy 

measures overall model correctness; the Matthews 

Correlation Coefficient (MCC) provides a balanced 

performance even in unbalanced datasets, and the 

proportion of correctly positive instances detected is 

measured through precision. 

 

Figure 6: The formal description of several key indicators.

Other important evaluation indicators, apart from 

metrics in Figure 6, include PR AUC (Precision-Recall-

Area Under Curve) and ROC AUC (Receiver Operating 

Characteristic-Area Under Curve). The ROC curves are 

plots of the true positive (TP) rate against the false positive 

(FP) rate at diverse threshold levels, which is an indicator 

of how well a model can differentiate between classes. 

Better differentiation between benign and attack traffic is 

shown by a higher ROC AUC value, which lowers the 

possibility of false negatives (FNs). On the other hand, the 

PR AUC gives the usability of a model under conditions 

where the detection of TP cases is highly desirable, while 

that of the FP is kept at a minimal value. This indicator is 

particularly applicable for unbalanced datasets, as it 

addresses the trade-off between precision and recall rather 

than considering true negatives (TNs). The predictive 

power, resilience, and general efficacy of each model in 

differentiating between benign and malicious network 

traffic are all verified through these indicators. 

3 Results and discussion 

3.1 Model comparison 

In comparing and contrasting the employed models for 

network intrusion detection, a careful analysis was 

performed with several performance factors considered. 

Confusion matrices in Figure 7 present each model’s 

classification output, indicating its capability to 

differentiate between benign and three types of attack 

traffic. In this figure, the target variable is categorized into 

four classes, with Benign labeled as 0, and Web Attack – 

Brute Force, Web Attack – XSS, and Web Attack – SQL 

Injection labeled as 1, 2, and 3, respectively.  

The EPOA-RF model shows excellent performance, 

correctly classifying 33602 benign samples with only 9 

misclassifications. All Brute Force and XSS attacks are 

correctly identified, while only one SQL Injection sample 

is misclassified. This reflects high precision and recall 

across all classes, especially the minority attack types. 

EPOA-GB performs similarly well, with 33601 benign 

samples correctly predicted and only 10 errors. It obtains 

satisfactory classification for all attack categories—Brute 

Force, XSS, and SQL Injection—indicating strength in 

handling both majority and minority classes. The EPOA-

DT model correctly identifies all Brute Force and XSS 

samples and 129 out of 130 SQL Injection cases. It 

classifies 33602 benign samples accurately, with 9 minor 

misclassifications. The results highlight reliable 

performance across all classes, similar to RF and GB. 

While EPOA-XGB accurately classifies all attack 

categories, it shows slightly higher misclassification in the 

benign class, with 20 errors out of 33611 samples. Despite 

this, it maintains adequate detection for Brute Force, XSS, 

and SQL Injection attacks, confirming its strength in 

minority class recognition. The EPOA-AB model shows 

more errors in predicting class 0, with 20 misclassified 

instances. While class 1 is predicted without error, there 

are two instances of class 0 predicted as class 3. Although 
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generally strong, the model is slightly more prone to false 

positives compared to RF and DT. The KNN model 

mirrors AB’s pattern, with 17 instances of class 0 

misclassified and 3 as class 3. It performs properly for 

class 1 and class 2. Like AB, it achieves good overall 

accuracy but is less robust for the majority class than RF 

and DT. These observations provide insight into both data 

limitations (e.g., class imbalance and feature similarity) 

and model sensitivity. 

 

  
(a) EPOA-RF (b) EPOA-GB 

  
(c) EPOA-DT (d) EPOA-XGB 

  
(e) EPOA-AB (f) EPOA-KNN 

Figure 7: Confusion matrices for the applied hybrid models’ prediction, including (a) EPOA-RF, (b) EPOA-GB, (c) 

EPOA-DT, (d) EPOA-XGB, (e) EPOA-AB, and (f) EPOA-KNN. 
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Moreover, the following analysis explicitly 

differentiates between ROC AUC and PR AUC metrics, 

highlighting the critical importance of PR AUC in 

intrusion detection scenarios due to its sensitivity to class 

imbalance and its direct reflection of the models’ ability to 

maintain precision in identifying attack instances. 

Figure 8 shows the ROC curves of various models 

applied to network intrusion detection with their 

performance on the test dataset. According to this figure, 

the EPOA-RF and EPOA-GB hybrid models exhibit an 

optimal performance with an AUC of above 0.97, 

considering all classes. This suitable score reflects that the 

benign and attack network traffic can be appropriately 

differentiated without misclassification during the test, 

representing the high predictive performance of such 

models. Also, EPOA-DT, EPOA-XGB, and EPOA-AB 

are performing optimally as well, as shown by their high 

AUC values above 0.87 for class 2, and AUC values above 

0.94 for the other classes. The corresponding ROC curves 

of these models ascend nearly vertically to True Positive 

Rate (TPR) = 0.999 at False Positive Rate (FPR) close to 

0, further establishing their dependability on cybersecurity 

applications. On the other hand, while the AUC values are 

very high in these models, showing their great 

discrimination power, the respective values of EPOA-

KNN stand a little bit behind the others. Its ROC curve is 

lower with 0.75 for class 2, indicating some minor chance 

of misclassifications at particular thresholds.

  
(a) EPOA-RF (b) EPOA-GB 

  
(c) EPOA-DT (d) EPOA-XGB 
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(e) EPOA-AB (f) EPOA-KNN 

Figure 8: ROC curves for the applied hybrid models, including (a) EPOA-RF, (b) EPOA-GB, (c) EPOA-DT, (d) 

EPOA-XGB, (e) EPOA-AB, and (f) EPOA-KNN

The Precision-Recall (PR) curves for all the models 

over the testing dataset have been displayed in Figure 9, 

with a critical examination of each model’s performance 

in having high precision and high recall for network 

intrusion detection. Based on this figure, the AUC values 

of the PR curve of EPOA-GB, EPOA-RF, and EPOA-DT 

are all close to adequate performance above 0.99. They 

maintain consistently high precision at any recall value, 

proving that such models can effectively detect intrusion 

with negligible additional FPs. These experiments confirm 

not only high accuracy but also reliable and strong 

performance in real-world cybersecurity scenarios. The 

EPOA-KNN and EPOA-XGB perform moderately, with a 

value for PR AUC close to 0.98, marginally less but still 

high in effectiveness. However, EPOA-AB reaches a 

value for a PR AUC of 0.97, signifying a minor drop in 

accuracy at certain recall values. 

  
(a) EPOA-RF (b) EPOA-GB 

  
(c) EPOA-DT (d) EPOA-XGB 
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(e) EPOA-AB (f) EPOA-KNN 

Figure 9: PR curves for the applied hybrid models, including (a) EPOA-RF, (b) EPOA-GB, (c) EPOA-DT, (d) EPOA-

XGB, (e) EPOA-AB, and (f) EPOA-KNN

Table 4 presents the performance metrics of the 

applied hybrid models tuned using EPOA on both train 

and test. Evaluated on the test dataset, all models exhibited 

outstanding classification performance, with test 

accuracies exceeding 0.9994. Among them, the EPOA-

GB model demonstrated the best overall performance, 

achieving a test accuracy of 0.9997, F1-score of 0.9948, 

ROC AUC of 0.9999, and the highest Cohen’s Kappa 

value of 0.9885. Additionally, EPOA-GB had the lower 

Log Loss (0.0050) among most of the models, indicating 

both high confidence and low prediction error. These 

results highlight the effectiveness of EPOA in achieving 

near-perfect classification performance, with EPOA-GB 

standing out as the most robust model under this tuning 

approach. 

Table 5 illustrates the performance of the hybrid 

models tuned using Grid Search (GS) on both train and 

test. Based on the test dataset, although the models 

achieved generally high accuracies above 0.994, their 

performance metrics—particularly precision, recall, and 

F1-score—were significantly lower than their EPOA-

tuned counterparts. The GS-GB model emerged as the best 

among the GS-tuned models, with the highest test 

accuracy of 0.9961 and a relatively balanced F1-score of 

0.5432, ROC AUC of 0.9904, and Cohen’s Kappa of 

0.8481. However, compared to EPOA-GB, the GS-GB 

model had higher Log loss (0.0138) and considerably 

lower precision and recall, indicating reduced reliability 

and robustness. These findings reinforce the superiority of 

EPOA in both predictive performance and optimization 

efficiency.

Table 4: Statistical results of the hybrid models tuned by EPOA. 

 Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 

ROC 

AUC 

PR 

AUC 

Log 

loss 

MCC Cohen’

s 

Kappa 

Runtime 

(sec) 

Train 

EPOA-RF 0.9999 0.9999 

0.999

9 

0.999

9 

0.999

9 

0.999

9 

0.000

0 

0.999

9 0.9999 

10206.15 

EPOA-GB 0.9999 0.9999 

0.996

5 

0.998

2 

0.996

8 

0.996

5 

0.001

0 

0.996

2 0.9962 

100361.1

3 

EPOA-DT 0.9999 0.9963 

0.999

9 

0.998

1 

0.999

9 

0.996

8 

0.000

1 

0.997

1 0.9971 

1002.1 

EPOA-

XGB 0.9999 0.9990 

0.997

2 

0.998

1 

0.997

6 

0.996

7 

0.003

0 

0.996

2 0.9962 

2010.57 

EPOA-AB 0.9998 0.9915 

0.999

9 

0.995

7 

0.999

9 

0.992

3 

0.000

6 

0.991

4 0.9914 

15009.47 

EPOA-

KNN 0.9998 0.9907 

0.999

9 

0.995

3 

0.999

9 

0.990

6 

0.000

3 

0.991

4 0.9914 

10209.86 

Test 

EPOA-RF 0.9997 0.9908 

0.998

0 

0.994

4 

0.998

6 

0.991

9 

0.002

0 

0.988

6 0.9885 

10206.15 

EPOA-GB 0.9997 0.9898 

0.999

9 

0.994

8 

0.999

9 

0.992

4 

0.005

0 

0.988

6 0.9885 

100361.1

3 
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EPOA-DT 0.9997 0.9894 

0.998

0 

0.993

7 

0.997

6 

0.991

0 

0.011

0 

0.988

6 0.9885 

1002.1 

EPOA-

XGB 0.9994 0.9760 

0.999

9 

0.987

6 

0.999

9 

0.979

9 

0.002

0 

0.977

6 0.9773 

2010.57 

EPOA-AB 0.9994 0.9821 

0.999

9 

0.990

8 

0.999

8 

0.974

6 

0.419

0 

0.977

6 0.9773 

15009.47 

EPOA-

KNN 0.9994 0.9810 

0.999

9 

0.990

2 

0.999

8 

0.983

6 

0.419

0 

0.977

6 0.9773 

10209.86 

Table 5: Statistical results of the hybrid models tuned by Grid Search (GS). 

 Accurac

y 

Precisio

n 

Recal

l 

F1 

Score 

ROC 

AUC 

PR 

AUC 

Log 

loss 

MCC Cohen’

s 

Kappa 

Runtime 

(sec) 

Train  

GS-RF 0.9999 0.9999 

0.999

9 0.9999 

0.999

9 

0.999

9 0.0021 

0.999

9 0.9999 90.8311 

GS-GB 0.9973 0.9079 

0.843

3 0.8532 

0.999

6 

0.999

3 0.0059 

0.895

2 0.8950 980.4113 

GS-DT 0.9999 0.9999 

0.999

9 0.9999 

0.999

9 

0.999

9 2.2E-6 

0.999

9 0.9999 8.7119 

GS-XGB 0.9955 0.6705 

0.500

5 0.4670 

0.998

9 

0.963

6 0.0107 

0.819

1 0.8185 15.5305 

GS-AB 0.9942 0.4133 

0.450

3 0.4300 

0.992

7 

0.917

8 1.1639 

0.753

5 0.7500 114.8171 

GS-KNN 0.9971 0.8764 

0.655

1 0.6946 

0.999

4 

0.986

3 0.0059 

0.883

3 0.8833 93.5015 

Test  

GS-RF 0.9954 0.5427 

0.542

0 0.5418 

0.975

7 

0.982

8 0.0125 

0.820

2 0.8201 90.8311 

GS-GB 0.9961 0.5631 

0.541

0 0.5432 

0.990

4 

0.983

4 0.0138 

0.848

2 0.8481 980.4113 

GS-DT 0.9952 0.5424 

0.557

8 0.5478 

0.776

3 

0.963

8 0.1747 

0.814

0 0.8139 8.7119 

GS-XGB 0.9960 0.6860 

0.512

7 0.4973 

0.995

6 

0.938

4 0.0116 

0.844

6 0.8442 15.5305 

GS-AB 0.9945 0.4295 

0.449

1 0.4388 

0.982

3 

0.904

4 1.1642 

0.770

5 0.7657 114.8171 

GS-KNN 0.9957 0.5469 

0.542

8 0.5444 

0.901

4 

0.953

0 0.0268 

0.833

9 0.8339 93.5015 

3.2 Sensitivity analysis 

Figure 10 demonstrates SHAP summary of input features’ 

impact on the hybrid models’ output. According to this 

figure, the hybrid models’ SHAP values range from -0.004 

to +0.003. The EPOA-RF and EPOA-AB models show the 

lowest variability and features’ impact among the other 

models, explaining lower interpretability or weaker 

feature separation compared to other models. The SHAP 

values for these models are relatively small, indicating that 

the individual feature contributions to the output are 

subtle. 

     The EPOA-GB model, on the other hand, demonstrates 

the highest variability and feature impact among the other 

models. Flow IAT Max, Active Max, and Packet Length 

Mean are the most significant features. Their wide SHAP 

value ranges show that EPOA-GB is highly sensitive to 

changes in these key features and it utilizes these 

characteristics, making it well-suited for complex, 

nonlinear data patterns. Therefore, the strong influence of 

a few dominant features supports GB’s reputation for high 

accuracy and interpretability through clear feature 

attributions. 

EPOA-XGB shows the next higher variability and 

feature impact. The most impactful features include 

Average Packet Size and Destination Port. The SHAP 

value spread here is broader than in the EPOA-RF and 

EPOA-AB plots, showing clearer separation of feature 

contributions. The EPOA-KNN and EPOA-DT models 

also appear relatively high in their SHAP values’ 

variability, suggesting that these models’ decisions are 

moderately sensitive to changes in a few dominant 

features and indicating more decisive rule-based splits. 
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EPOA-AB EPOA-KNN 

Figure 10: SHAP summary of input features’ impact on the employed hybrid models’ output. 

4 Conclusion 
In order to improve the efficiency of Intrusion Detection 

Systems (IDSs) in differentiating between malicious and 

benign network activity, this study provided a thorough 

evaluation of a number of ML classifiers. One of the main 

contributions is the use of sophisticated hyperparameter 

optimization methods, specifically the Emperor Penguin 

Optimization Algorithm (EPOA) and Grid Search (GS), to 

improve the predictive performance of six selected 

classifiers: Random Forest (RF), Gradient Boosting (GB), 

Decision Tree (DT), XGBoost (XGB), AdaBoost (AB), 

and K-Nearest Neighbors (KNN). With the highest testing 

accuracy, precision, recall, and F1-score values of 0.9997, 

0.9898, 0.9999, and 0.9948, respectively, the optimized 

models—EPOA-GB in particular—showed exceptional 

classification abilities. SHAP-based feature importance 

analysis was carried out to promote model transparency by 

identifying crucial network attributes affecting 

classification and providing interpretability into the 

decision-making process. These insights can help 

cybersecurity experts improve monitoring rules and 

prioritization strategies by revealing which traffic features 

are most suggestive of threats. 

Practically speaking, the results highlight how 

effective it is to combine intelligent optimization with 

powerful ensemble classifiers to enhance detection 

performance while reducing false alarms, which is an 

essential prerequisite for real-time intrusion response 

systems. Additionally, the application of PCA for 

dimensionality reduction enhanced the approach’s 

scalability by improving generalization and lowering 

computational load. 

It is necessary to recognize a few limitations, though. 

First, the evaluation was limited to a single dataset, which 

might not fully represent the variety of contemporary or 

developing cyberattack techniques, even though there was 

strong within-dataset generalization. Second, real-world 

traffic frequently contains previously unseen anomalies 

that could test the robustness of the model, even though 

retraining and testing on unseen splits were done to 

evaluate generalizability. Third, even though EPOA 

works well, it has a significant computational overhead 

during training, which might restrict its direct use in 

environments with limited resources or real-time 

deployment. 

Future studies should validate the suggested models 

on more benchmark datasets, like UNSW-NB15 and 

TON_IoT, to evaluate their resilience across a range of 

network conditions and attack types in order to overcome 

these drawbacks and facilitate real-world implementation. 

To lessen latency and computational load during live 

deployment, integration with edge computing 

environments, real-time streaming frameworks, and 

lightweight optimization techniques is also advised. 

Moreover, hybrid models that combine evolutionary 

optimization and deep learning can be investigated to 

capture intricate attack behaviors while preserving 

flexibility. 

In conclusion, this study demonstrates that combining 

strong ML models with sophisticated optimization can 

greatly improve IDS performance. Continuous evaluation 

in dynamic and heterogeneous environments is crucial for 

practical adoption, as are attempts to strike a balance 

between model accuracy, interpretability, and efficiency 

for cybersecurity applications in the real world. 
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