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Protecting network infrastructures from increasingly complex cyberthreats requires the use of intrusion
detection systems, or IDSs. However, because of changing attack patterns and high data dimensionality,
it is still difficult to differentiate between malicious and benign network activity. In order to improve IDS
performance, this study critically evaluates six popular machine learning classifiers: Random Forest
(RF), Gradient Boosting (GB), Decision Tree (DT), XGBoost (XGB), AdaBoost (AB), and K-Nearest
Neighbors (KNN). Two sophisticated hyperparameter tuning methods, Grid Search (GS) and the Emperor
Penguin Optimization Algorithm (EPOA), were used to increase predictive accuracy and model
robustness. With accuracy, precision, recall, and F1-score values of 0.9997, 0.9898, 0.9999, and 0.9948,
respectively, the optimized Gradient Boosting (EPOA-GB) model outperformed the others. Important
contributing features were also found using SHAP-based interpretability analysis, which provided
insightful information about the classification procedure. The models became more scalable for
deployment when Principal Component Analysis (PCA) was used to reduce dimensionality, improving
generalization and computational efficiency. These results show how well ensemble classifiers and
intelligent optimization work together to reduce false alarms, a crucial requirement for real-time intrusion
detection. This work provides practical guidelines for implementing high-performance IDSs and
highlights the importance of future validation across diverse datasets and deployment environments to
ensure robustness and adaptability in real-world cybersecurity scenarios.

Povzetek: Studija primerja Sest klasifikatorjev IDS ter z EPOA-optimizacijo nastavi Gradient Boosting.
EPOA-GB na CIC-1DS-2017 doseze najboljse rezultate, uporabi PCA in SHAP, zmanjsa lazne alarme.

1 Introduction

In recent years, cybersecurity has gained significant
attention owing to the increasing reliance on digital
infrastructure and the sharp rise in sophisticated
cyberattacks. These attacks, ranging from disruptions in
electrical grids to advanced assaults on SCADA systems
and high-profile incidents like the Stuxnet virus targeting
nuclear facilities [1], pose severe threats to national
security, critical infrastructure, and private enterprises.
The financial and operational consequences of such
attacks are often catastrophic, emphasizing the urgent
need for advanced security mechanisms.

Intrusion detection systems (IDSs) serve as a vital line
of defense in network security, enabling the identification
of both ongoing intrusions and previously compromised
systems. An IDS, implemented as either hardware or
software, monitors network or system traffic and triggers
alerts upon detecting suspicious patterns [2], [3].
Depending on design, IDSs can be categorized based on
data collection methods (e.g., host-based, network-based),
deployment strategy (e.g., centralized, hybrid), or
detection technique (e.g., signature-based, anomaly-
based, or hybrid) [4], [5], [6].

However, traditional IDS solutions, such as signature-
based and rule-driven systems, struggle to keep pace with
the dynamic landscape of cybersecurity threats,
particularly zero-day exploits and advanced persistent
threats (APTs). These conventional systems lack
adaptability and often produce high false-positive rates
when facing novel attack patterns. This growing
complexity, along with the exponential increase in
network traffic, highlights the need for intelligent,
scalable, and real-time detection frameworks.

In response, machine learning (ML)-based IDSs have
emerged as a powerful alternative, leveraging data-driven
algorithms to detect anomalies, learn from evolving
threats, and generate accurate predictions with minimal
human intervention. ML methods not only enhance
detection accuracy but also offer flexibility and
automation in processing large-scale network data. As
such, ML-integrated 1DSs represent a promising direction
in modern cybersecurity. Several recent studies have
explored this paradigm, aiming to optimize intrusion
detection in terms of accuracy, efficiency, and
interpretability [7], [8], [9], [10], [11]. To illustrate the
current landscape and identify research gaps, Table 1
summarizes a comparison of key works applying ML
models for IDS development.
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Table 1: Overview of the related works.
Ref. Dataset Best Model Accura | Other Metrics Gaps/Limitations
cy
[12] CIVEMSA-2020 | Deep Neural | 0.9978 | - No hyperparameter
Network (DNN) optimization; unclear on
overfitting and interpretability

[13] Various  (incl. | Decision Tree (DT) | 0.9992 | Precision, Limited to default parameters,
KDD, CIC)- Geometric mean, F- | no tuning optimization, lacks
comparative; measure interpretability discussion
primary on
classic IDS)

[14] HONET 2020 | Instance-Based 0.9982 | Precision, Recall, F- | Small feature set used; no
(Smart Learning algorithm measure, Receiver | thorough hyperparameter
Communities) (IBK) Operating  Curve | tuning; only basic metrics

(ROC)
[15] CICIDS-2017 Random Forest | 0.9986 | Precision, Recall Features selected but no
(RF) optimization algorithm for RF;
no interpretability or false
positive rate analysis

[16] CIC-IDS Extreme Gradient | 0.9954 | - Lacks detailed tuning
(Canadian Boosting (XGB) description, interpretability, and
Institute of metrics beyond accuracy
Cybersecurity)

[11] Custom 5G loT | Hybrid DNN + | 0.9960 | Recall, F1-measure, | Focused on 5G-specific threats;
dataset Feature ROC AUC lacks generalizability; limited

Engineering optimization details

[17] CIC-1DS-2017 Hybrid CNN- | 0.9730 | Recall, Precision, | Strong architecture but lacks
and CSE-CIC- | LSTM F1, AUC interpretability analysis; tuning
IDS-2018 method not clearly described

[18] UNSW-NB15 Bi-LSTM + | 0.9800 | Recall, F1 Score, | Effective  against  specific

Attention False Positive Rate, | scanning attacks, but not
False Negative | validated on broader benchmark
Rate, t-test (p-value) | datasets
This CIC-1DS-2017 Emperor Penguin | 0.9997 | Precision, Recall, | Addresses gaps in prior works,
study Optimization F1-Score, ROC | including hyperparameter
Algorithm- AUC, PR AUC, Log | optimization, interpretability
Gradient Boosting loss, MCC, Cohen’s | (SHAP), robust validation, and
(EPOA-GB) Kappa comprehensive metrics

This study introduces several key innovations to
address the limitations commonly found in existing
classification modeling approaches. While many prior
works rely on default settings or manual hyperparameter
tuning—such as in DNNs and DTs—we employ the
Emperor Penguin Optimization Algorithm (EPOA) to
automatically and efficiently tune the GB classifier,
leading to improved model performance. Overfitting and
robustness, often overlooked in previous studies, are
explicitly addressed in our approach through the use of
cross-validation and evaluation on held-out test datasets.
Furthermore, to tackle the frequent lack of interpretability
in traditional models, we incorporate SHAP (SHapley
Additive exPlanations) and perform feature importance
analysis to provide deeper insights into model behavior
and feature contributions. Unlike prior research that
typically reports limited metrics, our study offers a
comprehensive performance evaluation by including
accuracy, precision, recall, Fl-score, and ROC AUC

(Receiver Operating Characteristic-Area Under Curve),
PR AUC (Precision-Recall-Area Under Curve), Log loss,
Matthews Correlation Coefficient (MCC), Cohen’s
Kappa. Finally, to enhance generalizability, we validate
our approach on another state-of-the-art tuning model
rather than relying on traditional benchmark models,
demonstrating the robustness and wide applicability of our
method. Collectively, these contributions represent a
significant advancement over existing methods in terms of
optimization, interpretability, evaluation, and
generalizability.

Therefore, the major novelty in the current work is in
its overall approach toward enhancing IDS through
integrating high-performance classification models with
an advanced optimization algorithm. Unlike traditional
IDS frameworks with static settings or basic tuning
techniques, in this work, a new algorithm, the EPOA, is
proposed for application in a dynamic hyperparameter
optimization method for diverse models. The suggested
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method provides a secure and efficient mechanism for
real-time implementation by systematically improving
computational models. Moreover, the comparative
analysis in the study not only compares model
performance in individual terms but also identifies the
transformational role played by EPOA in enhancing
model efficiency, stability, and overall generalization
performance. The main objectives of this work involve
enhancing accuracy in detecting malicious and non-
malicious activities, minimizing false positive and false
negative occurrences, and lessening computational
expense in processing large networks. By combining
these, this work proposes a new, flexible, and efficient IDS
model with an outlook toward addressing evolving
network security concerns.

Hence, in order to guide the present study, the
following key research questions have been posed: 1. Can
the proposed EPOA-GB significantly enhance the
performance of a ML-based IDS, particularly in
comparison to other conventional as well as state-of-the-
art tuning approaches? 2. Does integrating EPOA with
Gradient Boosting improve model robustness and
generalizability across the employed dataset?

We hypothesize that EPOA-GB, as a bio-inspired
metaheuristic algorithm, will outperform other applied
tuning methods in identifying optimal hyperparameters,
thereby boosting detection accuracy, reducing false
positives, and improving the generalization of the IDS
model. We further expect that model interpretability tools
will provide actionable insights into the prediction
process. To address these questions, our methodology
includes (i) applying EPOA for automated
hyperparameter optimization of the selected ML models,
(ii) evaluating performance on benchmark dataset using
cross-validation and a comprehensive set of metrics, and
(iii) employing SHAP and feature importance analyses to
interpret model predictions. Each step is designed to
directly respond to the research questions and validate our
hypotheses through the evaluation.

This paper is organized into key sections addressing
multiple aspects of the classification tasks. The
methodology comes in Section 2, introducing the dataset,
its sources, feature selection, model selection, an
optimizer, and evaluation metrics. Section 3 covers model
performance, including key observations, trends, and
insights. Section 4 summarizes key results, explains their
implications, and sets out avenues for future work.

Informatica 49 (2025) 371-388 373

2 Methodology

An efficient IDS requires methodical development,
beginning with the data preparation and concluding with
model evaluation. ML models serve as a powerful tool for
discovering cyberattacks through a mechanism of training
on network traffic information. A sequential process for
network intrusion detection via ML models using CIC-
IDS (Canadian Institute for Cybersecurity) data is
presented in Figure 1. Initially, the objective is
determined, and then feature extraction and partitioning of
70:30 training and testing sets for a relevant dataset
follow. The six models, namely Random Forest (RF),
Gradient Boosting (GB), Decision Tree (DT), XGBoost
(XGB), AdaBoost (AB), and K-Nearest Neighbors
(KNN), are deployed to the classification issue. For
enhancing performance, the models’ hyperparameters are
tuned with EPOA, a high-performance algorithm inspired
by penguins’ foraging behavior in a real environment.
Lastly, model evaluation is performed to choose the best-
performing classifier.

It is worth mentioning that, the choice of ML models
in this study is theoretically motivated by their
complementary strengths in handling various challenges
intrinsic to intrusion detection tasks, such as high-
dimensional feature spaces, imbalanced data, and the need
for generalization under noisy conditions. RF was selected
for its ensemble architecture and robustness to overfitting,
especially in large and noisy datasets. DTs provide
interpretability and serve as a baseline, while GB and
XGB offer superior accuracy by focusing on correcting
prior errors in a sequential manner, making them suitable
for complex intrusion patterns. AdaBoost was chosen for
its ability to minimize bias through weight adjustment, and
KNN was involved owing to its non-parametric, instance-
based nature which offers a contrasting learning paradigm
that can benefit small or local pattern detection. Moreover,
the selection of the EPOA for hyperparameter tuning is
grounded in its demonstrated success as a metaheuristic
optimizer in solving nonlinear, high-dimensional
problems. Its swarm-intelligence-inspired mechanism
offers a balance between global exploration and local
exploitation, which is critical for fine-tuning complex
models. Compared to traditional grid or random search
approaches, EPOA improves convergence to optimal
hyperparameter configurations, thereby enhancing model
stability and predictive accuracy in IDS tasks.
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Figure 1: Visual presentation of the research framework.

2.1 Dataset

The CIC-1DS-2017 dataset used in this study was sourced
from [19]. This dataset is rich in network flow data,
capturing essential attributes that make it a valuable
resource for cybersecurity research and intrusion detection
system (IDS) development. Prior to applying ML models,
the dataset undergoes a comprehensive preprocessing
pipeline. This includes handling missing values to avoid
bias during model training and encoding categorical
features to ensure compatibility with various algorithms.
Numerical features are standardized to bring them to a
common scale, which is essential for the performance of
most ML  models. Following standardization,
dimensionality reduction is performed using Principal
Component Analysis (PCA), reducing the feature space to
20 principal components while preserving most of the
dataset’s variance. This step enhances computational
efficiency, mitigates the risk of overfitting, and improves
the model’s generalization ability on unseen data. Figure
2 shows the PCA feature loadings heatmap generated to
visualize the correlation between network flow features
and principal components, facilitating dimensionality
reduction for improved model performance. And, Figure
3 demonstrates the PCA variance plot employed to
determine the number of components needed to retain
90% of the data’s wvariance, guiding effective
dimensionality reduction.

Additionally, a key data-cleaning step involves
removing unnecessary spaces from column names to
maintain consistency throughout the dataset. To ensure the
reliability and robustness of model evaluation, k-fold
cross-validation is employed, allowing the models to be
trained and validated across multiple data splits. This
approach not only prevents overfitting but also provides a
more accurate estimate of model performance.

After that, the target variable and input variables are
specified. The target variable is then converted into four
classes, where BENIGN maps to 0 and Web Attack —
Brute Force, Web Attack — XSS, and Web Attack — SQL
Injection labels are respectively mapped to 1, 2, 3. This
classification framework simplifies the detection problem
for models by targeting either normal or abnormal
behaviors. A bar chart in Figure 4 illustrates that benign
traffic comprises the majority of the dataset, with
significantly fewer instances of web attacks such as brute
force, XSS, and SQL injection.

The cleaned data is then divided into test (30%) and
training (70%) sets in preparation for model training. This
way, the model will be evaluated on unseen data; hence, it
can be tested for its generalization capability. Moreover,
the features are standardized using Standard Scaler; this
normalizes the data, making it suitable for ML models.
With the completion of these preprocessing steps, this
dataset is now ready for training high-performance models
for network intrusion detection, furthering cybersecurity
research.
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Figure 2: PCA feature loadings heatmap showing correlations between network flow features and principal
components.
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Figure 3: Explained and cumulative variance of principal components from PCA for dimensionality reduction.
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Figure 4: Bar chart showing the frequency distribution

of web attack types, highlighting the dominance of benign

traffic.

2.2 Model selection

2.2.1 Random Forest

Random Forest (RF) is an ensemble learning model that
constructs many decision trees and aggregates them to
make a prediction, enhancing predictive accuracy and
minimizing overfitting. Initially, Breiman [20] developed
RF by training numerous decision trees over a range of
bootstrapped datasets, utilizing bagging and feature
selection at each split on a random basis. Each tree
classifies a new case individually, and the final
classification is generated through a vote over all trees in
a majority vote style. This helps in generalization and

strengthening, making RF a strong tool for handling large
and noisy datasets (see [20, 21]).

2.2.2 Gradient boosting

GB is another strong ensemble learner model that
constructs predictive models sequentially, with each
model optimized for performance through the
improvement of preceding model errors. It was first
proposed by Friedman [23] as an expansion of boosting
algorithms. GB trains weak learners, in most cases DTS,
in a sequential manner, with each successive tree
attempting to minimize the residuals of its predecessor
through gradient descent. In contrast to RF, whose trees
are constructed individually, trees in GB are constructed
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iteratively, with weights tuned to minimize bias and
maximize accuracy (see [24]). This produces a very
powerful model that can handle intricate patterns;
however, it requires careful adjustment to avoid
overfitting.

2.2.3 Decision Tree

DT is a supervised learner model that distinguishes data
into hierarchical branches regarding feature values and
ends in a predicted class label. By applying measures such
as Gini impurity or information gain (based on entropy),
the model builds a tree by choosing the most informative
feature at each node. It recursively divides the data to a
point when it reaches a leaf with a high level of purity, at
which point classification occurs (see [25], [26]). DTs
have simple interpretability and computational efficiency
but suffer from overfitting, and pruning can counteract
this.

2.2.4 Extreme Gradient Boosting

XGB, also called XGBoost, is a high-performance ML
model that maximizes the efficiency, accuracy, and
overall performance of traditional gradient boosting
algorithms. XGB, developed by Chen and Guestrin [27],
gained widespread acceptance in data science
competitions and real-world implementation. XGB builds
an ensemble model sequentially, with each new tree fitting
in a direction that corrects residuals of preceding trees
with gradient-boosted trees via gradient descent
optimization. It offers important enhancements, including
parallel computing, tree pruning, and regularization
parameters for overfitting avoidance, which result in a
quicker and more scalable approach. XGB is also efficient
in dealing with missing values and can work with sparse
data and is therefore ideal for sophisticated classification
scenarios (see [27, 28]).

2.2.5 Adaptive Boosting

AB is a pioneer model in ensemble learning that takes
several weak classifiers and forms a strong predictive
model out of them. AB was developed by Freund and
Schapire [30] as a refinement of boosting algorithms. The
AB model iteratively trains weak learners on the training
set, adjusting their weights according to classification
errors. Misclassified cases receive increased weights in
subsequent iterations, forcing the model to pay attention
to challenging cases. Final classification is performed via
a weighted vote of all weak classifiers. AB is flexible,
simple, and can minimize bias with interpretability;
however, it is not robust when dealing with outliers and
noisy data (see [30, 31]).
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2.2.6 K-Nearest Neighbors

KNN is a simple yet effective supervised learning
approach, generating labels for classes through a similar-
data point comparison. Initially, Fix [33] developed it as a
non-parametric model for pattern classification. KNN
operates through the computation of the distance of a
query point from all training samples in a dataset. It then
assigns a label to a new instance based on the most
frequent label among its KNNs. Unlike most methods,
KNN doesn't require explicit training; instead, it stores all
training samples and compares them to new cases, making
it a lazy learner algorithm. While it is efficient and simple
for small datasets, it becomes computationally expensive
for large datasets, as it requires distance calculations for
each new prediction (see [33, 34]).

2.3 Optimization algorithm

Optimization algorithms serve as a basis for ML, and
through them, model performance can be optimized. Such
algorithms gain inspiration from many mathematical laws
and processes in nature and work towards resolving
complex optimization problems in many fields. The
Emperor Penguin Optimization Algorithm (EPOA) [36] is
one of the best nature-inspired algorithms for nonlinear
and multidimensional problem solving; Figure 5 shows its
conceptual workflow.

The emperor penguin optimizer is a metaheuristic
algorithm inspired by emperor penguins' huddling
behavior for survival in the extreme conditions of the
Antarctic. It is proposed as a swarm intelligence approach
and simulates the dynamic thermal control manner in
which penguins form dense, regulated groups to maintain
warmth. In optimization cases, this turns into candidate
solutions (penguins) moving toward the best solution
(warmest area) by modifying their positions according to
temperature (fitness value). Exploration (random search
for the diversity of solutions) and exploitation (refinement
of a potential solution) are balanced through the
simulation of penguins’ movement behavior (see [37]). In
this work, EPOA was successfully applied for
hyperparameter tuning in all ML models, including RF,
GB, DT, XGB, AB, and KNN, enhancing their accuracy
and performance.

In addition to EPOA, Grid Search (GS) was applied
as a baseline hyperparameter tuning method to benchmark
optimization efficiency. The hyperparameters of all
chosen models were optimized using both EPOA and GS,
as detailed in Tables 2 and 3, respectively. The
comparison shows that while EPOA consistently achieved
high-performing configurations across all models, it also
required the same iterations, but generally higher runtime
than GS.
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Figure 5: An example workflow of the GB model’s hyperparameter tuning process using EPOA.

Table 2: The applied models’ hyperparameter tuning using EPOA.

EPOA-RF EPOA-GB | EPOA-DT | EPOA-XGB | EPOA-AB EPOA-KNN
N estimators 100 100 - 100 100 -
Min samples split | 2 - 2 - - -
Min samples leaf 1 - 1 - - -
Max depth None 3 None 3 -
Learning rate - 0.1 - 0.1 0.1 -
Subsample - - - 0.7 -
Colsample bytree | - - - 0.7 -
Weights - - - - Uniform
P - - - - 2
N neighbors - - - - 5
Runtime (sec) 10206.15 100361.13 | 1002.1 2010.57 15009.47 10209.86
Iteration 30 30 30 30 30 30
Table 3: The applied models’ hyperparameter tuning using Grid Search (GS).
GS-RF GS-GB GS-DT GS-XGB GS-AB GS-KNN
Max depth 7 5 3 12 - -
Min samples leaf 1 - 8 - - -
Min samples split | 3 8 8 - - -
N estimators 65 300 - 229 271 -
Learning rate - 0.0653 - 0.0443 0.4729 -
Colsample bytree | - - - 0.8997 - -
Subsample - - - 0.9519 - -
N neighbors - - - - 25 -
P - - - - 1 -
Weights - - - - Distance -
Runtime (sec) 90.8311 980.4113 8.7119 15.5305 114.8171 93.5015
Iteration 30 30 30 30 30 30
2.4 Evaluation Indicators several factors helps in planning improvements and

comparisons. Figure 6 depicts a selection of key
evaluation statistics for application in classification
scenarios. They involve the F1-score, which sets a balance
between precision and recall; Cohen’s Kappa, which is an

The effectiveness of ML models in identifying network
intrusions is evaluated using a variety of statistical testing
indicators. Comparing and evaluating a model through
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agreement between two raters that considers chance;
recall, which measures how well the scheme detects
positive cases; and Log loss, which evaluates the accuracy
of probabilistic predictions. In addition, accuracy
measures overall model correctness; the Matthews
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Correlation Coefficient (MCC) provides a balanced
performance even in unbalanced datasets, and the
proportion of correctly positive instances detected is
measured through precision.
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Figure 6: The formal description of several key indicators.

Other important evaluation indicators, apart from
metrics in Figure 6, include PR AUC (Precision-Recall-
Area Under Curve) and ROC AUC (Receiver Operating
Characteristic-Area Under Curve). The ROC curves are
plots of the true positive (TP) rate against the false positive
(FP) rate at diverse threshold levels, which is an indicator
of how well a model can differentiate between classes.
Better differentiation between benign and attack traffic is
shown by a higher ROC AUC value, which lowers the
possibility of false negatives (FNs). On the other hand, the
PR AUC gives the usability of a model under conditions
where the detection of TP cases is highly desirable, while
that of the FP is kept at a minimal value. This indicator is
particularly applicable for unbalanced datasets, as it
addresses the trade-off between precision and recall rather
than considering true negatives (TNs). The predictive
power, resilience, and general efficacy of each model in
differentiating between benign and malicious network
traffic are all verified through these indicators.

3 Results and discussion

3.1 Model comparison

In comparing and contrasting the employed models for
network intrusion detection, a careful analysis was
performed with several performance factors considered.
Confusion matrices in Figure 7 present each model’s
classification output, indicating its capability to
differentiate between benign and three types of attack

traffic. In this figure, the target variable is categorized into
four classes, with Benign labeled as 0, and Web Attack —
Brute Force, Web Attack — XSS, and Web Attack — SQL
Injection labeled as 1, 2, and 3, respectively.

The EPOA-RF model shows excellent performance,
correctly classifying 33602 benign samples with only 9
misclassifications. All Brute Force and XSS attacks are
correctly identified, while only one SQL Injection sample
is misclassified. This reflects high precision and recall
across all classes, especially the minority attack types.
EPOA-GB performs similarly well, with 33601 benign
samples correctly predicted and only 10 errors. It obtains
satisfactory classification for all attack categories—Brute
Force, XSS, and SQL Injection—indicating strength in
handling both majority and minority classes. The EPOA-
DT model correctly identifies all Brute Force and XSS
samples and 129 out of 130 SQL Injection cases. It
classifies 33602 benign samples accurately, with 9 minor
misclassifications. The results highlight reliable
performance across all classes, similar to RF and GB.
While EPOA-XGB accurately classifies all attack
categories, it shows slightly higher misclassification in the
benign class, with 20 errors out of 33611 samples. Despite
this, it maintains adequate detection for Brute Force, XSS,
and SQL Injection attacks, confirming its strength in
minority class recognition. The EPOA-AB model shows
more errors in predicting class 0, with 20 misclassified
instances. While class 1 is predicted without error, there
are two instances of class 0 predicted as class 3. Although



380 Informatica 49 (2025) 371-388

generally strong, the model is slightly more prone to false
positives compared to RF and DT. The KNN model
mirrors AB’s pattern, with 17 instances of class 0
misclassified and 3 as class 3. It performs properly for
class 1 and class 2. Like AB, it achieves good overall
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accuracy but is less robust for the majority class than RF
and DT. These observations provide insight into both data
limitations (e.g., class imbalance and feature similarity)

and model sensitivity.
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Figure 7: Confusion matrices for the applied hybrid models’ prediction, including (a) EPOA-RF, (b) EPOA-GB, (c)
EPOA-DT, (d) EPOA-XGB, (e) EPOA-AB, and (f) EPOA-KNN.
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Moreover, the following analysis explicitly
differentiates between ROC AUC and PR AUC metrics,
highlighting the critical importance of PR AUC in
intrusion detection scenarios due to its sensitivity to class
imbalance and its direct reflection of the models’ ability to
maintain precision in identifying attack instances.

Figure 8 shows the ROC curves of various models
applied to network intrusion detection with their
performance on the test dataset. According to this figure,
the EPOA-RF and EPOA-GB hybrid models exhibit an
optimal performance with an AUC of above 0.97,
considering all classes. This suitable score reflects that the
benign and attack network traffic can be appropriately
differentiated without misclassification during the test,
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representing the high predictive performance of such
models. Also, EPOA-DT, EPOA-XGB, and EPOA-AB
are performing optimally as well, as shown by their high
AUC values above 0.87 for class 2, and AUC values above
0.94 for the other classes. The corresponding ROC curves
of these models ascend nearly vertically to True Positive
Rate (TPR) = 0.999 at False Positive Rate (FPR) close to
0, further establishing their dependability on cybersecurity
applications. On the other hand, while the AUC values are
very high in these models, showing their great
discrimination power, the respective values of EPOA-
KNN stand a little bit behind the others. Its ROC curve is
lower with 0.75 for class 2, indicating some minor chance
of misclassifications at particular thresholds.

1.0+ 7
.
~
-
-
-
L
e
0.8 is
e
-
.
,
"
3 -~
& 0.6 -~
.
g P
=4 L
@ -
£
g -
= 0.4 s
-
/
L
/
L
,
-
-
L
0.2 ma
P —— Class 0 (AUC = 0.99)
-
’,' Class 1 (AUC = 0.99)
L —— Class 2 (AUC = 0.98)
e = Class 3 (AUC = 0.99)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
1.0
.
e
-
-
-
-
-
-
-
0.8 o
e
-
-
-
.
L~
< 0.6 o
.
Y -
= R
@ -
& e
g -
F 0.4 e
.
-
-
-
-
"
L
,
L
0.2 P
e —— Class 0 (AUC = 0.99)
.
‘,' Class 1 (AUC = 0.99)
’;' = Class 2 (AUC = 0.87)
i —— Class 3 (AUC = 0.97)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(d) EPOA-XGB



382  Informatica 49 (2025) 371-388

1.0 11
L’
-
7
L
o
"
0.8 o
.
e
L
L~
< 0.6 S
.
g
g -
& e
g -
= 0.4 ~
L
L
o
-
-
L
0.2 P
i —— Class 0 (AUC = 0.99)
.
‘,’ Class 1 (AUC = 0.99)
L —— Class 2 (AUC = 0.87)
L —— Class 3 (AUC = 0.94)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

L. Qin

1.0 4~

0.8

True Positive Rate
o
o
)

o
kS
s

0.2 P

e —— Class 0 (AUC = 0.99)

.

‘,’ Class 1 (AUC = 0.99)

Pl —— Class 2 (AUC = 0.75)

L —— Class 3 (AUC = 0.92)

0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(f) EPOA-KNN

Figure 8: ROC curves for the applied hybrid models, including (a) EPOA-RF, (b) EPOA-GB, (c) EPOA-DT, (d)
EPOA-XGB, (e) EPOA-AB, and (f) EPOA-KNN

The Precision-Recall (PR) curves for all the models
over the testing dataset have been displayed in Figure 9,
with a critical examination of each model’s performance
in having high precision and high recall for network
intrusion detection. Based on this figure, the AUC values
of the PR curve of EPOA-GB, EPOA-RF, and EPOA-DT
are all close to adequate performance above 0.99. They
maintain consistently high precision at any recall value,
proving that such models can effectively detect intrusion
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with negligible additional FPs. These experiments confirm
not only high accuracy but also reliable and strong
performance in real-world cybersecurity scenarios. The
EPOA-KNN and EPOA-XGB perform moderately, with a
value for PR AUC close to 0.98, marginally less but still
high in effectiveness. However, EPOA-AB reaches a
value for a PR AUC of 0.97, signifying a minor drop in
accuracy at certain recall values.
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Figure 9: PR curves for the applied hybrid models, including (a) EPOA-RF, (b) EPOA-GB, (c) EPOA-DT, (d) EPOA-
XGB, (e) EPOA-AB, and (f) EPOA-KNN

Table 4 presents the performance metrics of the
applied hybrid models tuned using EPOA on both train
and test. Evaluated on the test dataset, all models exhibited
outstanding classification performance, with test
accuracies exceeding 0.9994. Among them, the EPOA-
GB model demonstrated the best overall performance,
achieving a test accuracy of 0.9997, F1-score of 0.9948,
ROC AUC of 0.9999, and the highest Cohen’s Kappa
value of 0.9885. Additionally, EPOA-GB had the lower
Log Loss (0.0050) among most of the models, indicating
both high confidence and low prediction error. These
results highlight the effectiveness of EPOA in achieving
near-perfect classification performance, with EPOA-GB
standing out as the most robust model under this tuning
approach.

Table 5 illustrates the performance of the hybrid
models tuned using Grid Search (GS) on both train and
test. Based on the test dataset, although the models
achieved generally high accuracies above 0.994, their
performance metrics—particularly precision, recall, and
F1-score—were significantly lower than their EPOA-
tuned counterparts. The GS-GB model emerged as the best
among the GS-tuned models, with the highest test
accuracy of 0.9961 and a relatively balanced F1-score of
0.5432, ROC AUC of 0.9904, and Cohen’s Kappa of
0.8481. However, compared to EPOA-GB, the GS-GB
model had higher Log loss (0.0138) and considerably
lower precision and recall, indicating reduced reliability
and robustness. These findings reinforce the superiority of
EPOA in both predictive performance and optimization
efficiency.

Table 4: Statistical results of the hybrid models tuned by EPOA.

Accurac | Precisio | Recal | F1 ROC | PR Log MCC | Cohen’ | Runtime
y n | Score | AUC | AUC | loss S (sec)
Kappa
Train
0.999 | 0.999 | 0.999 | 0.999 | 0.000 | 0.999 10206.15
EPOA-RF 0.9999 0.9999 9 9 9 9 0 9 0.9999
0.996 | 0.998 | 0.996 | 0.996 | 0.001 | 0.996 100361.1
EPOA-GB | 0.9999 0.9999 5 2 8 5 0 2 0.9962 |3
0.999 | 0.998 | 0.999 | 0.996 | 0.000 | 0.997 1002.1
EPOA-DT | 0.9999 0.9963 9 1 9 8 1 1 0.9971
EPOA- 0.997 | 0.998 | 0.997 | 0.996 | 0.003 | 0.996 2010.57
XGB 0.9999 0.9990 2 1 6 7 0 2 0.9962
0.999 | 0.995 | 0.999 | 0.992 | 0.000 | 0.991 15009.47
EPOA-AB | 0.9998 0.9915 9 7 9 3 6 4 0.9914
EPOA- 0.999 | 0.995 | 0.999 | 0.990 | 0.000 | 0.991 10209.86
KNN 0.9998 0.9907 9 3 9 6 3 4 0.9914
Test
0.998 | 0.994 | 0.998 | 0.991 | 0.002 | 0.988 10206.15
EPOA-RF 0.9997 0.9908 0 4 6 9 0 6 0.9885
0.999 | 0.994 | 0.999 | 0.992 | 0.005 | 0.988 100361.1
EPOA-GB | 0.9997 0.9898 9 8 9 4 0 6 09885 |3
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0.998 | 0.993 | 0.997 | 0.991 | 0.011 | 0.988 1002.1
EPOA-DT | 0.9997 0.9894 0 7 6 0 0 6 0.9885
EPOA- 0.999 | 0.987 | 0.999 | 0.979 | 0.002 | 0.977 2010.57
XGB 0.9994 0.9760 9 6 9 9 0 6 0.9773
0.999 | 0.990 | 0.999 | 0.974 | 0.419 | 0.977 15009.47
EPOA-AB | 0.9994 0.9821 9 8 8 6 0 6 0.9773
EPOA- 0.999 | 0.990 | 0.999 | 0.983 | 0.419 | 0.977 10209.86
KNN 0.9994 0.9810 9 2 8 6 0 6 0.9773
Table 5: Statistical results of the hybrid models tuned by Grid Search (GS).
Accurac  Precisio Recal F1 ROC PR Log MCC Cohen’ Runtime
y n | Score  AUC AUC loss S (sec)
Kappa
Train
0.999 0.999 0.999 0.999
GS-RF 0.9999 0.9999 9 0.9999 9 9 0.0021 9 0.9999  90.8311
0.843 0.999 0.999 0.895
GS-GB 0.9973 0.9079 3 0.8532 6 3 0.0059 2 0.8950  980.4113
0.999 0.999 0.999 0.999
GS-DT 0.9999 0.9999 9 0.9999 9 9 22E-6 9 0.9999  8.7119
0.500 0.998 0.963 0.819
GS-XGB  0.9955 0.6705 5 0.4670 9 6 0.0107 1 0.8185  15.5305
0.450 0.992 0.917 0.753
GS-AB 0.9942 0.4133 3 0.4300 7 8 1.1639 5 0.7500  114.8171
0.655 0.999 0.986 0.883
GS-KNN  0.9971 0.8764 1 0.6946 4 3 0.0059 3 0.8833  93.5015
Test
0.542 0.975 0.982 0.820
GS-RF 0.9954 0.5427 0 0.5418 7 8 0.0125 2 0.8201  90.8311
0.541 0.990 0.983 0.848
GS-GB 0.9961 0.5631 0 05432 4 4 0.0138 2 0.8481  980.4113
0.557 0.776  0.963 0.814
GS-DT 0.9952 0.5424 8 0.5478 3 8 0.1747 0 0.8139  8.7119
0.512 0.995 0.938 0.844
GS-XGB  0.9960 0.6860 7 0.4973 6 4 0.0116 6 0.8442  15.5305
0.449 0.982 0.904 0.770
GS-AB 0.9945 0.4295 1 0.4388 3 4 11642 5 0.7657  114.8171
0.542 0.901 0.953 0.833
GS-KNN  0.9957 0.5469 8 0.5444 4 0 0.0268 9 0.8339  93.5015

3.2 Sensitivity analysis

Figure 10 demonstrates SHAP summary of input features’
impact on the hybrid models’ output. According to this
figure, the hybrid models’ SHAP values range from -0.004
to +0.003. The EPOA-RF and EPOA-AB models show the
lowest variability and features’ impact among the other
models, explaining lower interpretability or weaker
feature separation compared to other models. The SHAP
values for these models are relatively small, indicating that
the individual feature contributions to the output are
subtle.

The EPOA-GB model, on the other hand, demonstrates
the highest variability and feature impact among the other
models. Flow IAT Max, Active Max, and Packet Length
Mean are the most significant features. Their wide SHAP
value ranges show that EPOA-GB is highly sensitive to

changes in these key features and it utilizes these
characteristics, making it well-suited for complex,
nonlinear data patterns. Therefore, the strong influence of
a few dominant features supports GB’s reputation for high
accuracy and interpretability through clear feature
attributions.

EPOA-XGB shows the next higher variability and
feature impact. The most impactful features include
Average Packet Size and Destination Port. The SHAP
value spread here is broader than in the EPOA-RF and
EPOA-AB plots, showing clearer separation of feature
contributions. The EPOA-KNN and EPOA-DT models
also appear relatively high in their SHAP values’
variability, suggesting that these models’ decisions are
moderately sensitive to changes in a few dominant
features and indicating more decisive rule-based splits.
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Figure 10: SHAP summary of input features’ impact on the employed hybrid models’ output.

4 Conclusion

In order to improve the efficiency of Intrusion Detection
Systems (IDSs) in differentiating between malicious and
benign network activity, this study provided a thorough
evaluation of a number of ML classifiers. One of the main
contributions is the use of sophisticated hyperparameter
optimization methods, specifically the Emperor Penguin
Optimization Algorithm (EPOA) and Grid Search (GS), to
improve the predictive performance of six selected
classifiers: Random Forest (RF), Gradient Boosting (GB),
Decision Tree (DT), XGBoost (XGB), AdaBoost (AB),
and K-Nearest Neighbors (KNN). With the highest testing
accuracy, precision, recall, and F1-score values of 0.9997,
0.9898, 0.9999, and 0.9948, respectively, the optimized
models—EPOA-GB in particular—showed exceptional
classification abilities. SHAP-based feature importance
analysis was carried out to promote model transparency by
identifying  crucial network attributes  affecting
classification and providing interpretability into the
decision-making process. These insights can help
cybersecurity experts improve monitoring rules and
prioritization strategies by revealing which traffic features
are most suggestive of threats.

Practically speaking, the results highlight how
effective it is to combine intelligent optimization with
powerful ensemble classifiers to enhance detection
performance while reducing false alarms, which is an
essential prerequisite for real-time intrusion response
systems. Additionally, the application of PCA for
dimensionality reduction enhanced the approach’s
scalability by improving generalization and lowering
computational load.

It is necessary to recognize a few limitations, though.
First, the evaluation was limited to a single dataset, which

might not fully represent the variety of contemporary or
developing cyberattack techniques, even though there was
strong within-dataset generalization. Second, real-world
traffic frequently contains previously unseen anomalies
that could test the robustness of the model, even though
retraining and testing on unseen splits were done to
evaluate generalizability. Third, even though EPOA
works well, it has a significant computational overhead
during training, which might restrict its direct use in
environments with limited resources or real-time
deployment.

Future studies should validate the suggested models
on more benchmark datasets, like UNSW-NB15 and
TON_IoT, to evaluate their resilience across a range of
network conditions and attack types in order to overcome
these drawbacks and facilitate real-world implementation.
To lessen latency and computational load during live
deployment, integration with edge computing
environments, real-time streaming frameworks, and
lightweight optimization techniques is also advised.
Moreover, hybrid models that combine evolutionary
optimization and deep learning can be investigated to
capture intricate attack behaviors while preserving
flexibility.

In conclusion, this study demonstrates that combining
strong ML models with sophisticated optimization can
greatly improve IDS performance. Continuous evaluation
in dynamic and heterogeneous environments is crucial for
practical adoption, as are attempts to strike a balance
between model accuracy, interpretability, and efficiency
for cybersecurity applications in the real world.
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