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Traditional firewall systems use static rule sets, making them unsuitable for growing cyber threats and 

network circumstances. In this research, we automate firewall rule development and optimization using 

reinforcement learning (RL) to increase network security and reduce human setup. This paper introduces 

FireRL, a system that uses reinforcement learning to help make smart decisions about firewall rules by 

treating it like a Markov Decision Process, enabling an RL agent to learn good firewall rules from 

simulated network traffic. This proposed method utilizes the Deep Q-learning algorithm to balance 

throughput, latency, and threat mitigation via repeated improvement. Experiments are performed in 

benign and dangerous traffic situations. Firewalls outperform static firewalls because they quickly react 

to new threats and reduce false positives. Resistance to new attack vectors demonstrates the system's 

flexibility and resilience. This research concludes with a self-optimizing firewall approach that greatly 

lowers expert-led settings. FireRL's proactive and scalable RL-based defense is ideal for current 

cybersecurity. 

Povzetek: Članek združuje digitalne dvojčke, federativno učenje in blockchain v sistem za zaznavanje 

IoT groženj, ki izboljša varnost, zasebnost in učinkovitost. 

  

 

 

1 Introduction 
Cyberattacks are more numerous, sophisticated, 

and devastating than ever. As mission-critical systems 

like corporate networks, cloud platforms, and IoT 

ecosystems grow in size and complexity, digital 

infrastructure security becomes increasingly important. 

Network security depends on firewalls, which restrict 

incoming and outgoing data traffic based on rules. 

Modern attacks are nimble, sneaky, and unexpected, 

making conventional firewalls worthless. Such firewalls 

use static rule sets manually created by security 

specialists. Static rule-based systems are slow to adapt 

to new attack vectors, readily misconfigured, and lack 

contextual awareness for real-time behavior monitoring. 

[1] say Next Generation Firewalls (NGFWs) depend too 

much on static rules and human involvement to tackle 

dynamic cyber threats. This applies even with 

application-layer filtering and deep packet inspection in 

NGFWs. Since rules are harder to monitor and update 

in quickly changing settings, misconfiguration is more 

probable, resulting in security problems or network 

performance issues. 

Many individuals have presented solutions for 

classic firewall difficulties [2] demonstrated unexpected 

traffic conditions by modeling packet-filtering firewalls 

using neutrosophic Petri nets. This method is ordered 

and logical. Despite their theoretical validity, these 

models cannot learn and adapt. [3] suggested integrating 

firewalls with IDS to improve detection. This hybrid 

method detects risks better, but overly strict policy 

definitions remain. Security systems are changing 

rapidly owing to machine learning (ML) and artificial 

intelligence (AI). ML has performed well in Web 

Application Firewalls (WAFs). [4] detected online 

threats better than standard WAFs using feature 

engineering and supervised learning. [5] improved 

complicated web-based threat detection using deep 

learning. These models are passive detectors that do not 

create or improve firewall rules. 

The author investigated WAF anomaly detection 

using deep learning. Their technology can detect strange 

traffic patterns but can't adjust firewalls to attacks [6]. 

[7] also suggest automating virtualized firewall settings. 

Administrators can predefine templates, but their 

system can't automatically adjust to traffic 

circumstances. In IoT, adaptive, clever, and fast-

reacting security solutions are in demand. Without a 

flexible firewall, devices in these networks are easy prey 

for attackers due to their low processing capability.  [8] 
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highlighted the significance of segmentation and 

effective firewalling in safeguarding Internet of Things 

ecosystems. However, their solution is vulnerable to 

new threats since it is based on rule sets that human 

developed. This inquiry was also motivated by the 

increasing popularity of predictive security systems, 

which served as a source of inspiration. [9] provided a 

real-time anomaly detection technique for smart 

systems based on deep belief networks. This was done 

in acknowledgment that it is necessary to recognize 

outliers and potential threats because of the nature of the 

situation. The findings of their study indicate that 

learning algorithms, as opposed to static anomaly levels 

or preset signatures, should be used by firewalls to make 

prediction judgments. 

To address these issues, this paper proposes FireRL, 

a real-time firewall architecture that learns and decides. 

Key points of this work: 

 Design the proposed FireRL architecture to 

formalize firewall rule optimization in a reinforcement 

learning framework, enabling the agent to learn optimal 

tactics from its environment. 

 FireRL introduces intelligent, autonomous, and 

flexible policy generation, shifting firewall design away 

from static, expert-driven rule management. These 

advances enable next-generation cybersecurity systems 

that foresee, prevent, and react to threats. 

 Reward systems let the RL agent balance 

security enforcement (stopping malicious traffic) with 

performance measurements (latency, throughput). 

 The recommended architecture is more 

flexible, generates fewer false positives, and has greater 

generalization on network traffic like zero-day assaults 

and adversarial behaviors. 
 

2 Literature method 
 

Current cybersecurity frameworks indicate that 

automation, deep learning, and artificial intelligence 

improve firewall performance in many computer 

systems. Although their slow response time and 

restrictive architecture prevent them from keeping pace 

with evolving threats, traditional firewalls remain 

essential for network security. The literature reflects a 

rising trend toward smart hybrid solutions that are also 

policy-aware in response to these limitations. Table 1 

shows the comparative analysis of existing methods.

 

 

Table 1: Comparative analysis of existing methods 

 

Ref. No. Reference Approach Strengths Limitations 

[10] 

Ekhlas Kadhim 

Hamza et al. 

(2024) 

Used PPO, UCB, 

and Epsilon-Greedy 

RL algorithms for 

adaptive load 

balancing in 

publish/subscribe 

systems. 

Improved message 

delivery, reduced 

latency, and adaptive 

decision-making. 

PPO is resource-

intensive; UCB and 

Epsilon-Greedy may 

underperform in 

complex environments. 

[11] 
Sepczuk, M. 

(2023) 

Cyber Mimic 

Defense-Based 

WAF (CMD-

BWAF) 

Dynamic deception 

and mimicry to 

mislead attackers; 

real-time adaptability 

High complexity; 

increased resource 

consumption; sensitive 

to tuning 

[12] 
Rajasoundaran, S. 

et al. (2024) 

Energy-Proficient 

Firewall Policies for 

Wireless Networks 

Energy-saving 

techniques for 

resource-constrained 

devices 

Trade-off between 

energy efficiency and 

security strength; 

limited real-time 

learning 

[13] 
Lee, J. K. et al. 

(2024) 

AI-Based Firewall 

Rule Refinement in 

HPC Networks 

Scalable AI-based rule 

optimization reduces 

conflicts and 

redundancy 

No adaptive decision-

making; reactive rather 

than proactive 

optimization 

[14] 
Leka, E. et al. 

(2024) 

ML and Blockchain-

Based WAF (ML-

BC-BWAF) for 

DDoS Mitigation 

Tamper-resistant logs 

and enhanced anomaly 

detection 

High system overhead; 

latency due to 

blockchain validation 
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[15] 
Fadlil, A. et al. 

(2024) 

SQL Injection 

Mitigation using 

Open Web 

Application Security 

Project (OWASP) 

Framework 

Effective application-

layer protection 

against SQLi 

Not adaptable to new 

types of attacks; lacks a 

network-level defense 

[16] 
Kouassi, T. et al. 

(2024) 

Security Policy 

Model in Hybrid 

TOGAF-Zachman 

Framework 

Structured and formal 

policy management in 

enterprise cloud setups 

The theoretical model 

lacks practical 

implementation and 

real-time enforcement 

capabilities 

 

 

3 Proposed methodology 
 

This paper presents FireRL, which uses 

reinforcement learning to provide adaptive firewall 

regulation methods. Its major aim is to adapt to 

changing network threats. Since static rules are 

obsolete, traditional firewalls can't respond to attacks in 

real time or account for new vectors. FireRL simulates 

an MDP to overcome these limits and choose the 

appropriate action given the network state. This 

technology allows the system to learn from its 

surroundings and alter its protective rules in real time to 

decrease dangers, delays, policy disobedience, and false 

positives. The agent employs a Deep Q-Network (DQN) 

to learn in high-dimensional state spaces to find the 

optimum Q-values for each state-action combination. 

The recommended method prioritizes experience replay 

to ensure convergence by emphasizing learning from 

significant or unexpected events. For FireRL's learning 

policy to operate in real time, its multi-objective reward 

function must balance threat detection and network 

efficiency. This can be game-changing. Using policy 

vector encoding, the system might grow while 

conserving resources. This allows several rules to be 

activated even with minimal computational resources. 

FireRL is a self-optimizing firewall that evolves its rule 

set. This secures complex networks and improves 

operations.

 

 
 

Figure 1: Existing methods-based firewall strategy 

 

Figure 1 above depicts the "Existing Method," the 

standard intrusion detection method that uses firewalls. 

The system is subjected to simulated network traffic, 

beginning with benign and malicious data. Before 

selecting whether or not to allow incoming data to get 

through, firewalls evaluate it based on a set of 

predetermined policies and standards for security and 

filtering. Static rule sets, unlike dynamic rule sets, do 

not include any established criteria in their decision-

making process on whether to accept or deny traffic. 

Immediately after verifying the data to ensure that it is 

in accordance with these standards, the system moves 

on to the attack detection phase, where it compares the 

data to the criteria to identify any potential threats. 

Because the technique is based on preset criteria, which 

cannot adapt to changing cyber threats or traffic 

patterns, it may have difficulty identifying new attacks 

or responding to unexpected surroundings. 

Conventional firewalls are characterized by their rule-

based architecture, linear operation, and reliance on 

established criteria for threat detection, as shown by the 

image. 
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Figure 2: Proposed diagram 

 

The FireRL framework is an intelligent firewall 

system that uses reinforcement learning to overcome 

network security restrictions dynamically. Figure 2 

depicts a schematic of the FireRL framework's 

architectural approach. When regulating and filtering 

incoming data, the first step is to evaluate and 

implement firewall rules using the FireRL firewall. 

Simulating real network activity is the method by which 

it accomplishes this goal. An RL agent can increase its 

performance by generating a reward signal and 

integrating the firewall's findings with the threats it has 

discovered. An RL agent receives this signal as it is 

being sent. Real-life agents (RL) are responsible for 

monitoring their state and responding correctly based on 

their observations to interact with the network, 

regardless of whether it is virtual or actual. Using a 

Deep Q-Learning technique, the agent acquires 

knowledge about the most effective firewall rule 

regulations to simplify these processes. Latency and 

throughput on the network are two metrics used to 

assess the degree to which these activities successfully 

reduce risks. 

As more time passes, the FireRL system improves 

its ability to make decisions by continually modifying 

the firewall rules to establish a balance between the two 

competing priorities of security and performance. The 

architecture ensures the firewall can constantly adapt to 

varied network circumstances and new threats, 

providing proactive and intelligent network security. In 

a word, the design ensures that the firewall is always 

effective. 

 

 

 
 

Figure 3: Enhanced MDP environment for firewall strategy 
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Figure 3 shows that within the context of improving 

dynamic firewall management, the graphic named 

"Enhanced MDP Environment for Firewall Strategy" 

illustrates a reinforcement learning strategy that uses 

Markov Decision Process (MDP). Within the 

framework of this architecture, the agent has the 

responsibility of implementing learnt rules (𝜋)  in 

response to an environment, to identify the most suitable 

firewall techniques. At each time step 𝑡 , the agent 

decides on what actions to take, such as adding, altering, 

or deleting firewall rules, depending on the current state 

of the network environment 𝒔𝒕. As a consequence of this 

action, a new state, denoted by sₜ₊₁, is introduced into the 

environment. Additionally, a reward, denoted by 𝒓𝒕, is 

allocated to the environment based on the probability 

𝑷(𝒔′|𝒔, 𝒂), which shows how the action successfully 

maintained the network's security and operational 

efficiency. 

Because the agent's policy may be modified over 

time in response to changes in the surrounding 

environment, the reward function 𝑅(𝑠, 𝑎) evaluates the 

effect of the action. Using this feedback loop, the agent 

can continually change its behaviors to increase its 

accumulated rewards. As a result of a discount factor 𝛾, 
which may have values ranging from 0 to 1, the 

importance of profits in the near term is greater than the 

significance of gains in the long run. Not only does the 

system improve real-time danger awareness, but it can 

also respond to environmental changes by sending out 

alerts or warnings. The system can react to potential 

dangers as a result of this. This agent provides an 

alternative to static rule-based techniques since it can 

dynamically adapt firewall settings in response to 

changing network conditions and attack patterns. 

 

𝑀 = (𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚 }, 𝐴 =
{𝑎1, 𝑎2, … , 𝑎𝑚}. 𝑃(𝑠′|𝑠, 𝑎) = 𝑃𝑟[𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 =

𝑠], 𝑅: 𝑆 × 𝐴 → 𝑅, 𝛾 ∈ [0,1]  (1) 

 

 

As equation (1) was calculated, the enhanced MDRP 

environment definition was deliberated. A mathematical 

framework, the Markov Decision Process (MDP), 

depicts the FireRL system. This strategy makes it 

possible to make decisions sequentially when 

confronted with uncertainty. Given the present value of 

𝑆,  there is an infinite number of possible states that 

might be achieved by the network. Some examples of 

states that might be present include the use of resources, 

the configuration of firewalls, the attempts to break into 

the network, and the traffic patterns that are currently in 

place. The letter 𝑎 represents a variety of possible RL 

agent operations that may be put into effect or modified 

to apply or change firewall rules. The transition function 

𝑷(𝒔′|𝒔, 𝒂) is a mathematical expression that determines 

the probability of transitioning from state s to state 𝒔′ via 

the execution of an action. It is possible to quantify the 

immediate positive or negative effect of each action in a 

given state by using the reward function𝑅(𝑠, 𝑎). This 

function reflects performance indicators such as security 

enforcement, packet loss, and policy adherence. The 

discount factor 𝛾  is responsible for determining the 

significance of future benefits. Values that are closer to 

1 indicate a preference for stability and long-term 

planning in the process of developing a security strategy. 

 

𝑄𝜃(𝑆𝑡 , 𝑎𝑡) = 𝐸𝑆𝑡+1
~𝑃(. |𝑠𝑡 , 𝑎𝑡)[𝑅(𝑠𝑡 , 𝑎𝑡) +

𝛾. ∑ 𝜋(𝑎′|𝑠𝑡+1).𝑎′𝜖𝐴 𝑄𝜃−(𝑆𝑡 + 1, 𝑎′)]          (2) 

 

 As examined in equation (2), the deep-Q-network 

Bellman expectation has been explored. It is possible to 

approximate the action-value function 𝑸𝜽 by using this 

equation. This function indicates the anticipated total 

benefit that would result from acting in a state (𝑺𝒕, 𝒂𝒕) 

and then continuing to adhere to the policy that is 

already in place. Because of the unpredictability of the 

network environment, this scenario, 𝝅(𝒂′|𝒔𝒕+𝟏) 

Second, it is projected to occur. The evaluation of the 

current efficacy of the action is carried out by using the 

reward function 𝑹(𝒔𝒕, 𝒂𝒕) . The future value of the 

action is represented by the effects that will occur in the 

future, which are discounted across all prospective 

actions (∑ 𝝅(𝒂′).𝒂′𝝐𝑨 𝑸𝜽−) . Within the target Q-

network 𝜽−, the future state 𝒔𝒕+𝟏 and the likelihood of 

carrying out the action 𝒂′  are represented by the 

symbols 𝝅(𝒂′|𝒔𝒕+𝟏), correspondingly representing the 

future state and the probability, respectively. This 

strategy makes learning more robust and flexible while 

dealing with scenarios involving partly visible or 

stochastic networks. 

𝐿(𝜃) =
1

𝑀
∑ [(𝑟𝑖 + 𝛾. max

𝑎′
𝑄𝜃−(𝑆𝑖

′, 𝑎′) −𝑀
𝑗=1

𝑄𝜃(𝑆𝑖 , 𝑎𝑖))

2

+ 𝜆. ‖𝜃‖2
2]   (3) 

 

As explored in equation (3) expanded temporal-

difference loss function has been described. It is the TD 

loss function that is responsible for the learning process 

that the Q-network does. By calculating the squared 

difference between the TD target 𝒓𝒊 +
𝜸. 𝐦𝐚𝐱

𝒂′
𝑸𝜽−(𝑺𝒊

′, 𝒂′)and each of the 𝑁 samples in a mini-

batch, the projected Q-value can be computed. This 

difference equals the sum of the squared differences 

between the TD target and each N sample. The 

calculation of stable predictions of future rewards is 

accomplished by using the target network parameters  

𝜽− The L2 regularization technique is used to prevent 

overfitting and improve generalization. This technique 

involves the utilization of the regularization coefficient 

𝝀. ‖𝜽‖𝟐
𝟐 and the collection of all feasible values for 𝜃, 

which is equal to 2 raised to the power of ‖𝜽‖𝟐
𝟐 . 

Backpropagation and stochastic gradient descent reduce 

this loss as much as possible throughout the training 

process. 
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Figure 4: Reinforcement Learning – based policy optimization 

 

An illustration in Figure 4, with the heading 

"Reinforcement Learning-based Policy Optimization," 

sets the framework for optimizing firewall techniques in 

real-time using an RL model. In this configuration, the 

Agent, which functions in a manner comparable to that 

of a firewall, adheres to a policy π(s) that ascertains the 

most appropriate course of action depending on a certain 

state of the Environment. When generating network 

states, it is necessary to consider various elements, 

including traffic patterns, user habits, and 

environmental dangers. 

Following the identification of the situation, the 

agent will decide what actions to do next, which may 

include adjusting the rules of the firewall. Upon 

completion of the job, the environment will provide you 

with a reward ( 𝑅 ) based on how well it improved 

security, decreased the number of false alarms, or 

increased throughput by a certain amount. One possible 

use of this incentive is to modify policy gradient 

techniques or parameters, however this will depend on 

the approach taken. These little adjustments have 

improved the agent's policy, which will allow it to make 

more informed decisions in the future. 

Additionally, the unique strategy can increase 

defenses against complex and dynamic attacks. This is 

accomplished by continually guiding future activities. 

As a result, the firewall's performance is enhanced. By 

removing the need for human interpretation and 

amendment of static rule sets, RL makes it possible to 

optimize firewall settings in a way that is both 

autonomous and adaptive. 

 

𝑅(𝑆𝑡 , 𝑎𝑡) =
𝑤1. 𝑡ℎ𝑟𝑒𝑎𝑡𝑏𝑙𝑜𝑐𝑘𝑒𝑑(𝑆𝑡 , 𝑎𝑡), 𝑤2. 𝑃𝑜𝑐𝑘𝑒𝑡𝑓𝑎𝑙𝑠𝑒_𝑑𝑟𝑜𝑝(𝑆𝑡 , 𝑎𝑡) −

𝑤3. 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑑𝑑𝑒𝑑(𝑆𝑡 , 𝑎𝑡) +
𝑤4. 𝑃𝑜𝑙𝑖𝑐𝑦𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒(𝑆𝑡 , 𝑎𝑡)   (4) 

 

 

As found in equation (4) multi-objective reward 

function with real-time feedback has been examined. 

The reward function considers several real-time metrics 

that relate to the functioning of the network. To 

determine the effectiveness of threat stopping, the 

effectiveness of packet or connection interception is 

evaluated 𝒕𝒉𝒓𝒆𝒂𝒕𝒃𝒍𝒐𝒄𝒌𝒆𝒅 . As a result of the 

𝑷𝒐𝒄𝒌𝒆𝒕𝒇𝒂𝒍𝒔𝒆_𝒅𝒓𝒐𝒑  Function, it is strongly discouraged 

to suppress valid data packets unnecessarily. The 

overhead of decision-making or complicated rule 

evaluations is 𝑳𝒂𝒕𝒆𝒏𝒄𝒚𝒂𝒅𝒅𝒆𝒅 , which is a significant 

factor. 𝑷𝒐𝒍𝒊𝒄𝒚𝒄𝒐𝒎𝒑𝒍𝒊𝒂𝒏𝒄𝒆  is a recognised method for 

recognizing decisions that are by the security standards 

of the company or the government. It is possible to 

provide a weight to each phrase by using a 

hyperparameter called 𝒘𝒊 This allows customization to 

prioritize goals such as zero-trust enforcement or user 

experience objectives. This framework with several 

objectives conveys the intricate trade-offs involved in 

dynamic network security. 

 

𝑃(𝑖) =
|𝛿𝑖|𝛼

∑ |𝛿𝑙|𝛼
𝑘

, 𝛿𝑖 = 𝑟𝑖 + 𝛾. max
𝑎′

𝑄𝜃− (𝑆𝑖
′, 𝑎′) −

𝑄𝜃(𝑆𝑖 , 𝑎𝑖)    (5) 

 

As equation (5) prioritized, experience replay 

sampling has been computed. In contrast to methods 

that randomly choose previous events, FireRL employs 

a technique known as prioritized experience replay. 

This technique gives preference to samples that have a 
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substantial temporal-difference (TD) error, denoted as 

𝜹𝒊 . Consequently, the learning process will direct 

greater attention toward unanticipated or presently 

misestimated transitions, speeding up the convergence 

process. A uniform sampling is achieved when the 

priority exponent 𝛼 = 0. This allows learning important 

events, such as uncommon assaults or boundary 

judgments, from larger values. This strategy is essential 

for the effective and reliable operation of reinforcement 

learning in contexts characterised by a high degree of 

complexity. 

 

𝜃𝑗
− ← 𝜏. 𝜃𝑗 + (1 − 𝜏). 𝜃𝑗

−, ∀𝑗 ∈ {1,2, … , 𝑛} (6) 

 

As calculated in equation (6) soft target network 

update mechanism has been expressed. FireRL employs 

a gentle update strategy for the target network 

parameters 𝜃−  to avoid Q-learning from losing its 

quality or straying from its intended path. Therefore, 

rather than completely replacing them, the parameters 

are gradually modified to align with the existing 

parameters of the online network, denoted as 𝜃. These 

parameters are governed by a smoothing factor 𝜏 ∈
 (0, 1)  controlled by the parameters. FireRL removes 

oscillations brought on by fast-shifting objectives, and 

we guarantee that the Q-value estimations generated 

during training are reliable. Learning efficiency and 

convergence are both improved by this strategy, 

particularly in high-dimensional security state spaces. 

 

𝜋(𝑆𝑡|𝑎𝑡) =

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑄𝜃(𝑆𝑖 , 𝑎), 𝑖𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1) >∈𝑡

𝑅𝑎𝑛𝑑𝑜𝑚(𝐴), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, ∈𝑡=

∈𝑚𝑖𝑛+ (∈𝑚𝑎𝑥−∈𝑚𝑖𝑛).  𝑒−𝛽𝑡  (7) 

 

As shown in equation (7) epsilon greedy 

exploration with a decaying schedule has been 

discussed. This equation serves as the defining 

framework for the FireRL exploration technique. At the 

beginning of the process, the agent is instructed by ∈𝒕 to 

carry out more exploratory random actions with a 

significant probability. In future stages, the agent is 

strongly urged to make use of the knowledge that they 

have obtained, since the decay rate of ∈𝒕  is 

exponentially decreasing from (∈𝒎𝒂𝒙 𝒕𝒐 ∈𝒎𝒊𝒏) , as 

determined by a decay rate 𝜷. With the help of this 

dynamic equilibrium, the agent can stabilize and 

enhance ideal rule sets over time, while guaranteeing 

that early episodes include sufficient exploration of the 

expansive state-action space. 

𝑎𝑡 = [𝑎𝑡,1, 𝑎𝑡,2, … , 𝑎𝑡,𝑛 ] ∈
{0,1}𝑛, 𝑠. 𝑡 ∑ 𝑎𝑡,𝑗 . 𝑐𝑜𝑠𝑡𝑗

𝑛
𝑗=1 ≤ 𝑏𝑢𝑑𝑔𝑒𝑡𝑚𝑎𝑥 (8) 

 

As discussed in equation (8) policy decision vector 

with cost constraints has been described. Every action 

that the agent does results in the existence of a matching 

binary vector 𝒂𝒕 where 𝒂𝒕,𝒊 is either activated or altered. 

It is difficult to apply all of the rules at the same time 

because of the constraints of resources (such as the 

amount of processing power, memory use, and time 

restrictions). Therefore, there is a 𝒄𝒐𝒔𝒕𝒋 connected with 

each rule, and the agent is responsible for ensuring that 

the entire cost does not exceed a maximum limit 

determined in the past. Because of this limitation, the 

firewall technique is guaranteed to be effective and 

practically applicable in deployments in the real world. 

Table 1 shows the Reinforcement Learning-based 

Firewall Rule Optimization. 

 

 

 
Figure 5: Flowchart of proposed diagram 

 

FireRL uses deep Q-learning and reinforcement 

learning to construct a smart firewall shown in Figure 5. 

The image shows its process. Capturing network traffic 

is the initial step in extracting essential attributes for 

data analysis. After receiving these characteristics, the 

proposed technique generates firewall rules 

autonomously. Automation is essential for reacting to 

shifting threats without human intervention. 

Next, transfer system-generated traffic to a 

simulated network agent to simulate situations. While 

talking to this agent, the real-life agent learns new 

abilities. The agent builds a self-optimizing firewall 

using the Deep Q-learning algorithm and policy updates 

to enhance decision-making. The firewall evaluates 

each circumstance to see whether a danger exists. The 

system resumes live traffic monitoring if no danger is 
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found. Detecting a danger will alert the necessary 

systems or administrators. This iterative technique 

allows real-time firewall adaptation, making it smarter 

and more responsive. Algorithm 1 shows the FireRL.

 

Algorithm 1: FireRL – Reinforcement Learning-based Firewall Rule Optimization 

Input: Simulated network traffic 𝑇 (both benign and malicious),Initial firewall rule set 𝑅0, Reward function 

ℛ (balancing throughput, latency, and threat mitigation), Learning rate 𝛼, discount factor 𝛾, exploration rate 𝜀, 

max episodes 𝐸 

Initialize: Q-network with random weights 𝜃, Experience replay buffer 𝐷, Environment 𝐸𝑛𝑣 simulating 

network behavior, Set 𝑅 =  𝑅0 

Output: Optimized firewall rule set 𝑅𝑜𝑝𝑡 

1. For episode = 1 to E do: 

2.     Initialize environment state 𝑆0 ← Env.get_state() 

3.     While not terminal: 

4.         With probability ε select random action 𝑎𝑡  

5.         Otherwise, select 𝑎𝑡 = 𝑎𝑟𝑔 max
𝑎

𝑄( 𝑆𝑡 , 𝑎, 𝜃) 

6.         Apply 𝑎𝑡 to firewall (update rule set 𝑅) 

7.         Simulate traffic through firewall → observe new state 𝑠ₜ₊₁ and reward rₜ from ℛ 

8.         Store experience (𝑆𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑡+1) in buffer 𝐷 

9.         Sample mini-batch from 𝐷 and update Q-network using loss: 

𝐿(𝜃) = 𝐸𝑆,𝑎,𝑟,𝑆′ [(𝑟 + 𝛾. max
𝑎′

𝑄(𝑆′, 𝑎′; 𝜃−) − 𝑄(𝑆′, 𝑎′; 𝜃−))

2

]  

10.     End While 

11.     Periodically update the target network𝜃− ←  𝜃 

12. End For 

13. Return the final firewall rule set 𝑅𝑜𝑝𝑡 

 

 

FireRL uses Deep Q-learning to adapt firewall rules 

to changing network threats. The first stages are rules, a 

simulated network traffic creation environment, and a 

Q-network with random weights. Depending on each 

episode's network state, the system uses learnt Q-values 

(exploitation) or random sampling to decide whether to 

add, change, or remove a rule. The chosen action 

generates a new state and reward after updating the 

firewall settings and testing with simulated network 

traffic. This award considers threat prevention, 

performance, and latency. Minimizing the discrepancy 

between objective and forecasted Q-values trains the Q-

network using mini-batches of events. State, action, 

consequence, and following state make up an 

experience. The goal network is updated often to 

maintain learning stability. After multiple events, agents 

learn to adjust firewall rules on the fly to optimize the 

rule set and react intelligently and proactively to benign 

and dangerous traffic scenarios. This method's focus on 

dynamic rule sets and expert-defined parameters 

improves system efficiency, security, and flexibility. 

 

4 Numerical results and discussion 
 

4.1 Dataset description 
The Kaggle project created the Internet Firewall Data 

Set, a massive library of business firewall events. Over 

a million records describe network traffic, including IP 

addresses (source and destination), ports, protocols 

(TCP, UDP, ICMP), application identities, session 

durations, total bytes in and out, actions (allow or 

refuse), and policy enforcement labels. Each album has 

a conclusion and, in certain situations, a warning label. 

The dataset realistically simulates policy disputes, 

protocol settings, and highly changing traffic, making it 

ideal for assessing adaptive firewall solutions. Data was 

preprocessed for machine learning and reinforcement 

learning research. They employed SMOTE, dealt with 

missing data, encoded categorical variables using one-

hot encoding, standardized numerical characteristics, 

and deleted duplicate identifiers to fix class imbalance. 

Subdividing the data into training (70%) and testing 

(30%) subgroups offered a complete evaluation [17]. 

 

4.2 Experimental setup 
To test the FireRL framework against competitors, we 

built a bespoke RL environment using Python, 

TensorFlow, and OpenAI Gym. A Deep Q-Network 

(DQN) agent optimizes and dynamically generates 

firewall rule schemes in the FireRL model. The 

environment's Markov Decision Process (MDP) 

simulates the firewall's behavior for every network 

traffic combination. One thousand episodes with 500 

traffic cases were trained. Keeping latency low, 

blocking harmful traffic, and reducing false positives 

will earn the agent incentives. Secure (false positives), 

usable (delay), and efficient (throughput) are balanced 

by the reward function. The experimental system 

executed heavy network traffic simulations using a 

powerful Intel Core i7 CPU, 32 GB of RAM, and 

NVIDIA RTX 3080 GPU. FireRL and baseline models 



 

Improved Attention-Enhanced Efficient Face-Transformer Model… Informatica 49 (2025) 437–452 445 

 

 

 
were compared using recall, accuracy, precision, F1-

score, throughput, and latency. 

 

4.3 Latency ratio 
The FireRL system that has been suggested intends 

to reduce the amount of delay that occurs in real-time 

firewall judgments by optimizing decision routes and 

dynamically prioritizing rule evaluations via the use of 

a method that is based on reinforcement learning. 

Unlike static firewalls, which analyze rules 

sequentially, resulting in delays as the rule list expands, 

FireRL can learn to predict which rules or actions are 

most suited for each packet and context. To get the 

average 𝐿̅ for each packet in the system, consider the 

following equation:

 

 
 

Figure 6: Latency(ms) 

 

 

𝐿̅ =
1

𝑇
∑ (𝛼. log(𝑅𝑡 + 1) + 𝛽. 𝐸𝑠𝑡,𝑎𝑡~𝜋[𝜏𝑎𝑡] +𝑇

𝑡=1

𝛾. 𝜒(𝑠𝑡) − 𝛿. 𝜌(𝑎𝑡))  (9) 

Figure 6 and equation 9 show the latency. The three 

main factors that cause delay, as shown by this equation, 

are the following: the ruling matching 

difficulty log(𝑅𝑡 + 1) , the decision computation time 

𝜏𝑎𝑡
, and the cost of updating the state 𝜒(𝑠𝑡), which is 

actively decreased by action efficiency 𝜌(𝑎𝑡) . The 

DQN agent of FireRL learns to decrease latency by 

choosing subsets of firewall rules that are likely to 

match incoming packets, thereby lowering 𝑅𝑡  and 

𝜏𝑎𝑡
during the overlap. Furthermore, it controls 𝜒(𝑠𝑡) by 

optimizing state transitions to minimize superfluous 

calculations. The choice of actions that result in quicker 

threat detection with less resources is encouraged by the 

reinforcement signal 𝜌(𝑎𝑡), which hurts latency and is 

then deducted from the equation. Due to its latency-

aware optimization, FireRL can surpass other 

approaches, such as CMD-BWAF, ML-BC-BWAF, and 

OWASP, especially in heavily populated areas. As 

shown in experiments, this approach can cut average 

decision latency by as much as 30%, making it a better 

fit for scalable, efficient contemporary network 

infrastructures prioritizing accuracy and speed. 

 

4.3.1 Accuracy ratio 

To improve firewall rule sets acceptably, the 

FireRL technique that has been presented puts 

reinforcement learning (RL) to use. It is necessary to 

continually adapt to accomplish this goal because of the 

ever-changing nature of networks and the increasing 

complexity of cyber threats. By taking into account the 

current status of the network, the actions taken to 

modify firewall rules, and the advantages that accrue 

from these initiatives in terms of throughput, latency, 

and threat mitigation, the MDP architecture provides the 

RL agent with assistance in the decision-making process 

that encompasses FireRL. Because of the nature of the 

MDP, some choices are even within the realm of 

possibility. A technique known as Deep Q-Learning is 

used to instruct the agent on how to optimize the long-

term return. To accomplish this objective, they must 

optimize the system's latency and throughput while 

minimizing the number of security risks.
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Figure 7: Accuracy Ratio (%) 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 +

𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)]  (10) 

Figure 7 and equation (10) deliberates the accuracy 

ratio (%). The action-value function, 𝑄(𝑠𝑡 , 𝑎𝑡), predicts 

the anticipated reward for an action 𝑠𝑡 in a state 𝑎𝑡 

represents a firewall system's action, such as admitting 

or disallowing traffic, whereas 𝑠𝑡  represents the 

network's current state, including traffic patterns and 

firewall settings. The decision-making process is aided 

by this function, which allows the agent to assess an 

action according to the anticipated future rewards of that 

activity. This feature is useful since it aids the agent 

while making choices. The learning rate, denoted by the 

symbol α, is one ingredient that determines how quickly 

the agent refreshes its knowledge. As α increases, the 

agent can quickly adjust to the ever-changing network 

conditions, allowing it to gain more information with 

every new event. The agent will rely more on its past 

knowledge and execute updates more slowly if the value 

of α is smaller. Modifications to this value are necessary 

to guarantee that the agent learns new information 

without reacting strongly to singular events. The 

expression 𝑟𝑡+1 refers to the agent's immediate reward 

for action 𝑎𝑡  in state 𝑠𝑡 . If the firewall improved 

network security or performance, the award reflects its 

effectiveness. If the firewall stops a threat, it may get a 

positive payment; if it creates network inefficiencies or 

fails to neutralize an attack, it may receive a negative 

reward. As shown by 𝛾 the discount factor balances 

future and current rewards. When 𝛾 is near 1, the agent 

prioritizes long-term benefits and may plan for optimal 

security and performance. Lower 𝛾  values enable 

focusing on short-term gains and rewards. FireRL needs 

this section to optimize firewall rules over time. The 

greatest value of 𝑎′ is 𝑎𝑌′ after adding all conceivable 

values of max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) . Where 𝑄(𝑠𝑡+1, 𝑎′) is the 

highest anticipated payoff for the state 𝑠𝑡+1  after 

evaluating all feasible actions 𝑎′. This word represents 

the highest potential advantage agents can gain from 

their current position and helps them plan and predict 

their actions. To enhance system security and 

performance, FireRL analyzes the highest reward for 

future actions while making choices. 

 

4.4 Throughput ratio 
Implementing reinforcement learning to optimize 

firewall rules is one approach that may be used to 

simulate the FireRL technique offered and shed light on 

its high throughput. While simultaneously maximizing 

the system's effectiveness, this upgrade aims to maintain 

a balanced approach to threat detection and reduce the 

number of false positives detected. Examine the 

following equation to get an understanding of how the 

Deep Q-Learning (DQL) technique used by FireRL 

helps to achieve high throughput of data:
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Figure 8: Throughput 

 

𝑇ℎ𝑟𝑜𝑢ℎ𝑝𝑢𝑡 = ∑ (
𝑝𝑡.(1−𝐹𝑃𝑅𝑡)

1+𝛽.𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡
)𝑇

𝑡=1   (11) 

Figure 8 and equation (11) illustrate the throughput. 

The goal of FireRL optimization is to maximize 

network performance for a certain period 𝑇 . This 

measures the overall amount of data passed across the 

firewall over time, which is significant because network 

circumstances change. The packet flow rate is the 

quantity of data or packets transmitted at a time 𝑝𝑡 . 

FireRL can optimize firewall settings for data 

performance due to improved packet flow. The false 

positive rate pertains to the percentage of genuine traffic 

rejected by the firewall at a time 𝑝𝑡 . FireRL aims to 

reduce this to maximize throughput and prevent the 

deletion of genuine traffic. Higher throughput is 

achieved with lower 𝐹𝑃𝑅𝑡 . This network congestion 

factor shows how network congestion or packet delay 

affects throughput. Network congestion or delay may 

dramatically reduce throughput if 𝛽  is large. FireRL 

enhances performance by modifying firewall rules to 

reduce congestion and latency. Packet transmission time 

is known as network latency at time 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑡 . Low 

latency is essential for good throughput as a 

considerable delay may diminish it. FireRL adjusts 

firewall rules to prevent latency from bottlenecks. Total 

time steps or episodes considered for throughput. 

Through network interaction, FireRL learns and adjusts 

between episodes to increase throughput in 

reinforcement learning. 

 

4.5 False positive rate 
The low false positive rate (FPR) of the proposed 

FireRL system may be partially explained by entering 

an agent-learning-behavior equation into the model. 

This allows us to see how the agent minimizes the 

number of erroneous detections over time. False 

positive rate is a crucial indicator for firewall systems. 

It counts the frequency of benign communication as 

wrongly categorized as harmful and, as a result, 

prohibited from passing through the firewall.
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Figure 9: False Positive Rate (%) 

   

 

 

 

𝐹𝑃𝑅𝑡 =
𝐹𝑃𝑡

𝐹𝑃𝑡+𝑇𝑁𝑡
=

∑ 𝐼[𝑎𝑖=𝑏𝑙𝑜𝑐𝑘⋀𝑦𝑖=𝑏𝑒𝑛𝑖𝑔𝑛]𝑁
𝑖=1

∑ 𝐼[𝑦𝑖=𝑏𝑒𝑛𝑖𝑔𝑛]𝑁
𝑖=1

(12) 

Figure 9 and equation(12) examine the false 

positive rate (%). To determine the false positive rate at 

time step 𝐹𝑃𝑡 , divide the total number of benign 

samples (which includes false positives and true 

negatives) by the number of false positive predictions 

(𝐹𝑃𝑡). The value changes with each learning episode or 

time step as the agent learns to classify traffic. 

Adding all variables yields one in the numerator 

∑ 𝐼[𝑎𝑖 = 𝑏𝑙𝑜𝑐𝑘⋀𝑦𝑖 = 𝑏𝑒𝑛𝑖𝑔𝑛]𝑁
𝑖=1 . This block has no 𝑁 

values and is safe. Calculate the sum of all positive 

integers from 1 to 𝑁  using 𝐹𝑃𝑡 . The formula is 

computed for each traffic sample 𝑖 where the agent 

blocked traffic (done action 𝑎𝑖 = 𝑏𝑙𝑜𝑐𝑘), regardless of 

whether the label 𝑦𝑖 = 𝑏𝑒𝑛𝑖𝑔𝑛 . To determine the 

amount of legitimate packets incorrectly blocked, use 

the indicator function 𝐼[. ] , which returns 1 when true 

and 0 otherwise. Benign is represented by 𝑦𝑖  and the 

denominator is the total of positive integers. To count 

benign traffic samples, use the formula 𝐹𝑃𝑡 + 𝑇𝑁𝑡 =
∑ 𝐼[𝑦𝑖 = 𝑏𝑒𝑛𝑖𝑔𝑛]𝑁

𝑖=1 . These formulas account for 

genuine negatives and false positives. The number of 

true negatives—times when the agent correctly 

identified and allowed benign traffic—can be used to 

estimate the model's false positive risk. The FireRL 

agent can learn to differentiate between harmless and 

harmful traffic via the use of Deep Q-learning, which 

resulted in a reduction in the FPR. This was 

accomplished by continual environmental input. Every 

time the agent completes a task, such as accepting or 

rejecting a packet, it receives a reward signal. This 

signal is sent to the agent. Every time it erroneously 

blocks a packet, it is rewarded with a negative reward 

instead. The number of false positives diminishes as the 

agent gains experience and realizes it should not 

interfere with genuine conversations. 

A reduced FPR may be achieved by modifying the 

Q-values of the agent in such a way that it provides 

incentives for behaviors that result in accurate 

classifications. The agent learns firewall rules that more 

correctly represent the actual nature of traffic via an 

optimization process driven by incentives. This is true 

even when dynamic dangers are associated with the 

traffic. 

 

4.6 Enhanced threat detection rate 
Our suggested FireRL system achieves a high 

ETDR by using reinforcement learning to improve the 

agent's hostile traffic detection skills and by defining the 

system's functioning using this equation. The agent's 

Enhanced Threat Detection Rate proves that it can 

identify old and new dangers by showing that it can 

adapt to static and dynamic environments.
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Figure 10: Enhanced threat Detection Rate (%) 

 

 

𝐸𝑇𝐷𝑅𝑡 =
𝑇𝑃𝑡+𝜆.𝑁𝑇𝑡

𝑇𝑃𝑡+𝐹𝑁𝑡+𝜆.(𝑁𝑇𝑡+𝑀𝑁𝑡)
  (13) 

Figure 10 and equation (13) express the enhanced 

threat detection rate. The equation investigates the 

FireRL agent's capacity to identify newly emerging 

threats and those already present. The improved threat 

detection rate at time 𝑡  is denoted by the equation 

𝐸𝑇𝐷𝑅𝑡and the equation is used to assess the capability 

of the FireRL agent to recognize threats. Unlike static, 

rule-based systems, reinforcement learning allows 

agents to adapt to attack patterns they have not 

previously seen and observed. This is in contrast to 

rule-based systems, which are considered static. In 

designing this product, a significant emphasis was 

placed on its practicality. The total number of 

occurrences of potentially dangerous traffic that the 

agent was able to detect and prevent from happening 

is referred to as the True Positives, which may also be 

abbreviated as 𝑇𝑃𝑡 . This indicator indicates that the 

agent is capable of efficiently counteracting the 

dangers that have been identified. 

Incorrect packets that the agent failed to discover 

are called negatives, sometimes called defective 

negatives. This set of negatives is represented by the 

symbol 𝐹𝑁𝑡. A reduction in the 𝐹𝑁 makes it feasible 

to enhance detection, which eventually leads to an 

increase in the ETDR of the system. 

It is the aggregate of all of these threats that is 

signified by the mark 𝑁𝑇𝑡, which represents the total 

number of Novel Threats successfully discovered and 

eradicated. As a result of the generalizability of the 

system, it is feasible that the agent will identify some 

kinds of assaults it has never encountered before 

throughout its training. This is of the utmost 

importance because the dangers in the real world are 

always evolving. 

It may be deduced from the existence of a warning 

message that starts with the phrase "Missing Novel 

Threats" (𝑀𝑁𝑡 ) that the agent did not discover any 

new threats. 

Many aspects contribute to the significance of 

identifying new threats. One of these factors is the 

novelty weighting factor, which is represented by the 

symbol 𝜆 (in most cases, 𝜆 is larger than 1 1). The use 

of attack signatures that are already known is 

successfully discouraged by this option. This is 

accomplished by modifying the incentive system's 

bias toward accurately identifying new threats. 

 

5 Conclusion 
Our paper proposes FireRL, a reinforcement 

learning-powered adaptive firewall architecture, to 

solve the inadequacies of static rule-based systems in 

changing cybersecurity scenarios. FireRL intelligently 

optimises throughput, latency, false positive rate, and 

threat detection rate using Deep Q-Learning and a 

Markov Decision Process firewall rule optimization 

model. Experimental results with benign and 

malicious traffic reveal that FireRL outperforms 

traditional firewall systems' accuracy, adaptability, 

and resilience to new threats. While still protecting 

against known and emerging threats, the system may 

automatically update and fine-tune firewall settings, 

minimizing the need for security experts. Our next 

effort will augment FireRL with multi-agent 

reinforcement learning for remote firewall settings 

and cloud-native architectures. Integration of 

unsupervised anomaly detection methods improves 

zero-day threat detection without labeled data. To 

examine online learning to help FireRL modify its 

policies to shift traffic patterns in real time. Finally, 

testing FireRL in corporate or industrial networks will 

show how it functions under tremendous pressure.  
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