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High-precision image classification has steadily emerged as a key area of research interest due to the 

extensive use of image classification technologies in many different domains. The study enhances the 

conventional feature pyramid networks (FPN) and suggests a high-precision image classification model 

in an attempt to further increase the precision and effectiveness of picture classification. The model 

enhances the ability of convolutional neural network (CNN) to focus on key information by combining the 

channel attention and spatial attention mechanisms. The outcomes indicated that the improved CNN 

model achieved 77.50% classification accuracy on the ImageNet dataset and 94.20% on the CIFAR-10 

dataset, which was significantly higher than the control model. In addition, in the classification of different 

types of high-precision images, the improved CNN model performed well in the recall, F1 score, and 

robustness metrics. Their values were 94.3%, 94.6%, and 93.5%, respectively. The results show that the 

high-precision image classification model is able to capture the key features and detail information in the 

image more effectively, which significantly improves the classification accuracy and robustness. This 

study provides a new technical tool for high-precision image classification tasks. 

Povzetek: Raziskave računalniškega vida so avtorji izvedli s pomočjo CNN za klasifikacijo slik z 

izboljšanim FPN (utežena večsklopna fuzija, prilagoditvena konvolucija) in hibridno kanalno-prostorsko 

pozornostjo. Validacija je narejena na ImageNet/CIFAR-10/medicinskih naborih. 

 

1 Introduction 
One of the fundamental tasks of computer vision, picture 

classification has extensive use in a variety of domains, 

including automatic driving, remote sensing image 

analysis, and medical image diagnostics. In these fields, 

high-precision image classification is crucial for 

improving work efficiency, reducing errors and enhancing 

safety [1-2]. For example, in medical image diagnosis, 

accurate identification of lesion areas is crucial for early 

diagnosis and treatment. In autonomous driving, high-

precision image classification (IC) can help vehicles better 

recognize road signs and obstacles, thus improving 

driving safety. Convolutional neural networks (CNNs) 

have emerged as one of the primary methods for modern 

IC due to their impressive performance in IC tasks in 

recent years. By automatically extracting features of an 

image, CNN can effectively capture local and global 

information in an image, thus realizing high-precision 

classification [3-4]. However, despite its excellent 

performance in IC, CNN still has some limitations. 

Traditional CNN models are often difficult to effectively 

focus on key information in images when dealing with 

complex image scenes, resulting in limited classification 

accuracy (CA). In addition, CNNs usually only capture 

single-scale features in the feature extraction (FE) process, 

ignoring the multi-scale information in the image [5-6].  

 

 

FE process is a process of gradually extracting local and 

global features of the image. 

Some scholars have also used CNN model to classify 

images at this stage. Wu et al. proposed an improved CNN 

model for multi-label medical IC. The model consisted of 

three main components of CNN and Transformer branch: 

multi-label multi-head attention-enhanced feature 

module, multi-branch residual module, and information 

interaction module. The results indicated that the 

framework demonstrated good performance on multiple 

publicly available datasets with good generalization 

ability and was applicable to other medical multi-label IC 

tasks [7]. Alkhatib M et al. proposed a model called 

Improved CNN model to address the lack of training 

samples in hyperspectral IC and the failure of traditional 

CNN to fully utilize the correlation between hyperspectral 

image bands. The results indicated that it outperformed 

existing methods in terms of overall accuracy, average 

accuracy, and Kappa coefficient, and obtained near-

optimal classification results even with a small number of 

training samples [8]. Han et al. proposed a dynamic multi-

scale CNN model for the current situation of insufficient 

feature information extracted by CNN and inaccurate 

attention weights in medical IC. The results indicated that 

the model achieved most advanced classification 

performance and solved the uncertainty quantization 

problem on publicly available datasets from four different 
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medical domains [9]. The specific retrospective analysis 

of the above-mentioned literature is shown in Table 1. 

 

 

Table 1: A specific review and analysis of the literature 

References Method Advantages Disadvantages 

Reference 7 

CTransCNN is a hybrid deep 

learning model that combines 
CNN and Transformer, 

specifically designed for multi-

label medical image 
classification. The model consists 

of a multi-label multi-head 

attention enhancement feature 
module, a multi-branch residual 

module and an information 

interaction module. 

The implicit correlation between labels is 

automatically captured, eliminating the need 

to manually predefine label relationships. A 
cross-attention mechanism is introduced to 

allow the model to weight image features 

according to the importance of each label. 
Effective fusion of local and global features 

is achieved through the information 

interaction module. The feature 
representation ability of the model is 

optimized through the embedded and 

externally embedded residual structures, and 
the number of parameters is reduced. 

The structure of the model is relatively 
complex, resulting in a long training and 

reasoning time. The performance of the 

model depends to a certain extent on the 
quality and scale of the data set. Due to the 

complexity of the model, deploying it to 

mobile devices or other resource-
constrained environments may face 

challenges. 

Reference 8 

Tri-CNN first uses PCA for 

dimensionality reduction, and 

then inputs the data into three 
branches. Each branch uses 3D-

CNN of different scales to extract 

features. The features extracted 
from the three branches are 

flattened and tiled, then classified 
through the fully connected layer 

and the softmax layer, and trained 

using the cross-entropy loss 
function. 

Multi-scale FE can make more 

comprehensive use of the multi-dimensional 

information of hyperspectral images. 
Through feature fusion, the model can better 

capture features of different scales and types, 

and improve the classification performance. 
The model performs well on multiple 

datasets, demonstrating good adaptability 
and generalization ability. 

Since the model contains multiple 

branches and multi-scale 3D-CNNs, the 
computational complexity is relatively 

high. Although the model performs well on 

small sample datasets, its performance 
may depend on a sufficient number of 

training samples. The complexity of the 
model may lead to deployment difficulties 

in practical applications, especially in 

resource-constrained environments. 

Reference 9 

The DM-CNN model introduces 
a dynamic multi-scale feature 

fusion module, a hierarchical 

dynamic uncertainty quantization 
attention mechanism, a multi-

scale fusion pooling method, and 

a multi-objective loss 
optimization network structure 

for medical image classification. 

The model is capable of extracting feature 

information at different scales. The attention 

mechanism can dynamically adjust the 
attention weights according to different 

information in each layer, enabling the 

model to better focus on important feature 
information. The pooling method can 

accelerate the computing speed and prevent 

overfitting while retaining the main and 
important information. Multi-objective loss 

can better balance the training process of the 

model and improve the convergence speed 
and classification performance of the model 

The training and reasoning time of the 

model is relatively long. Performance may 

depend on sufficient training samples. 
Scalability may be limited 

 

The diversity of visual data makes it challenging for a 

single FE method to match the demand for high-precision 

classification, even though the aforementioned research 

has produced superior outcomes. Based on this research, 

feature pyramid networks (FPN) is improved. Meanwhile, 

it improves CNN based on attention mechanism (AM) and 

multi-scale features (MSFs). The research aims to enhance 

the CNN's ability to focus on key information by 

introducing an AM and a MSF extraction method, as a 

way to improve the accuracy and efficiency of IC. The 

innovation of the study is the introduction of weighted 

fusion mechanism and adaptive feature adjustment 

strategy to improve the FPN. Meanwhile, by combining 

channel attention and spatial attention, the hybrid AM is 

designed to improve the CNN's capacity to concentrate on 

important information and increase CA. 

2 Methods and materials 

2.1 Efficient FE method based on MSF 

fusion 

In IC tasks, FE is one of the key steps to determine the CA. 

By combining features of several scales, MSFs can 

enhance the accuracy of IC and collect both global and 

specific information about an image [10-11]. FE is crucial 

to the accuracy of image classification. MSFs 

simultaneously capture image details and global 

information, improving CA by fusing features of different 

scales. Multi-scale FE is a key technology for high-

precision image classification. Traditional FPN, as a 

classic architecture, is widely used in object detection and 

image classification. Its structure is shown in Figure 1. 

In the task of image classification, multi-scale FE is 

one of the key technologies for improving CA. To better 

understand the multi-scale FE process, the study first 

introduces the FPN, as shown in Figure 1. The core idea 

of the traditional feature pyramid lies in combining high-

level semantic information with low-level detail 

information through a top-down path. This generates a 

multi-scale FPN with rich semantics and details, which 

effectively captures the multi-scale information of the 

image [12-13]. The traditional FPN structure can be 

mainly divided into FE, top-down path, and the generation 

process of FPN. The key steps of the process are shown in 

Fig. 2. 
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Figure 1: Schematic diagram of the MSF pyramid structure 
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Figure 2: The generation process of the feature pyramid 

In Fig. 2, the first is the FE phase, which is based on 

the first few layers of the CNN to extract different levels 

of the feature map (FM) 
1 2, , nF F F . Among them, 

iF  

denotes the FM of layer i . Moreover, the resolution of 
iF  

gradually decreases and the semantics gradually increases. 

FM is the result of the convolution operation. It is a two-

dimensional or three-dimensional that represents how the 

input image (InI) responds to a specific convolution 

kernel. This is followed by a top-down path stage. That is, 

starting from the high-level FM, the FM is gradually up-

sampled. Meanwhile, pixel-by-pixel summation is 

performed with the bottom layer FMs, so as to generate a 

series of fused feature maps (FFMs). For the FM 
iF  of the 

i th layer, the mathematical expression of the FFM is 

shown in Equation (1). 
~ ~

1( )i i iF F U F+= +                          (1) 

In Equation (1), 
~

iF  denotes the FFM. U  denotes the 

up-sampling operation. The FFMs are generated through 

upsampling operations. First, each FM is averaged and 

pooled globally to generate a one-dimensional vector 

(1DV). Then, the vector is input into the fully connected 

layer (FCL) to calculate the weights. Finally, it is the 

generation stage of FPN. The FFMs are composed into a 

feature pyramid, which is used for subsequent 

classification tasks. Although the traditional FPN has 

achieved remarkable results in MSF extraction, it has 

some shortcomings in the feature fusion process. For 

example, the simple pixel-by-pixel summing operation 

does not take into account the difference in importance of 

features at different scales. To overcome these limitations, 

the study proposes an improved FPN network. First, a 

weighted fusion mechanism is introduced. That is, a 

weight is assigned to each scale in the process of feature 

fusion as a way to highlight the feature information with 
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higher value [14-15]. Defining the FM weight of layer i  

as 
i , then the mathematical expression of the FFM is 

shown in Equation (2). 
~ ~

1( )i i i iF F U F +=  +                          (2) 

In Equation (2), the weights 
i  are dynamically 

computed by a weight learning module, which is 

implemented through global average pooling (GAP) as 

well as a FCL. A GAP operation is first performed on each 

FM 
iF  to obtain a 1DV. The related mathematical 

expression is shown in Equation (3). 

( )i a iv P F=                                  (3) 

In Equation (3), the corresponding weight information 

is obtained after inputting a IDV 
iv  into the fully 

connected form, as shown in Equation (4). 

Re ( ( ))i iLU FC v =                          (4) 

In Equation (4), FC  means the FCL. Re LU  

denotes the activation function (AF). After introducing the 

weighted fusion mechanism to optimize the FPN, in order 

to further the effect of feature fusion, the study introduces 

an adaptive adjustment module on the FFM. This module 

optimally adjusts the fused features through a 

convolutional layer (CL) as a way to enhance the 

expression of the relevant features [16]. Specifically based 

on the FFM 
~

iF , the mathematical expression of the FM 

through optimization and adjustment is shown in Equation 

(5). 
~( )adjust

i iF Conv F=                           (5) 

In Equation (5), 
adjust

iF  denotes the FM after 

adjustment and optimization. By introducing the weighted 

fusion mechanism as well as the adaptive feature 

adjustment strategy, the FPN network structure proposed 

in the study is able to fuse MSFs more effectively. 

Meanwhile, more valuable feature information is 

highlighted, which in turn improves the performance of 

IC. 

2.2 Construction of IC model with improved 

CNN based on AM 

The introduction of weighted fusion mechanism and 

adaptive feature tuning strategy through improved FPN 

has effectively enhanced the performance of FE. 

However, in complex image scenes, certain regions or 

channels may be more critical to the classification task. To 

further improve the accuracy of IC, this study introduces 

an AM to enhance the CNN's ability to focus on critical 

information on the basis of FE. The primary function of 

CNN's central convolutional operation is to extract an 

image's local features. The related schematic is shown in 

Fig. 3. 

The convolution operation is the core of convolutional 

neural networks and is primarily used to extract the local 

features of images. Figure 3 illustrates the specific 

operation flow to better understand the process of 

convolution operation. In Fig. 3, the InI is defined as 
H W CI R   . Among them, H , W , and C  denote the 

height, width, and quantity of channels of the image. 

Meanwhile, the convolution kernel 
k k CK R    is slid 

over the InI and after multiplying and summing by 

element-by-element, this generates the FM F , as 

expressed in Equation (6). 
1 1 1

, , , ,

0 0 0

k k C

ij m n c i m j n c

m n c

F K I b
− − −

+ +

= = =

=  +                (6) 

In Equation (6), b  means the bias term. ijF  means 

the value of the output FM at position ( , )i j . k  means the 

size of the convolution kernel. The primary purpose of 

pooling procedures is to decrease the FM's spatial 

dimension (SD) and computational burden. Both 

maximum pooling (MP) and average pooling (AP) are 

common pooling operations (POs). The related schematic 

is shown in Fig. 4. 

 

Conv

Conv

 

Figure 3: Schematic diagram of CO 
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Figure 4: Schematic diagram of PO 

The PO is an important step in CNNs. It is mainly 

used to reduce the SD of FMs and decrease the 

computational load. To present the process of POs more 

intuitively, the study illustrates the specific pooling 

process through Figure 4. Fig. 4(a) and Fig. 4(b) illustrate 

the process of MP as well as AP, respectively. For the 

input FM, the study uses a combination of MP and AP, 

i.e., for the input F . The mathematical expression related 

to MP and AP is shown in Equation (7). 
1 1

max, , , ,
0 0

1 1

, , , ,2
0 0

max max

1

p p

i j i p m j p n
m n

p p

avg i j i p m j p n

m n

F F

F F
p

− −

+  +
= =

− −

+  +

= =


=


 =



                    (7) 

In Equation (7), p p  denotes the size of the 

convolutional kernel. In the CNN model, the study 

introduces a hybrid AM. It mainly consists of two types of 

channel attention as well as spatial attention. First, channel 

attention mainly learns the weights between channels as a 

way to highlight the channel features with better values. 

For the input FM F , GAP, and global MP are applied to 

individual channels to obtain two IDVs ,avg cF  and max,cF , 

as shown in Equation (8). 
1 1

, , ,

0 0

1 1

, , , ,2
0 0

1

1

H W

avg c i j e

i j

p p

avg i j i p m j p n

m n

F F
H W

F F
p

− −

= =

− −

+  +

= =


= 


 =






                    (8) 

After obtaining two IDVs based on Equation (8), the 

channel attention weights   are obtained by splicing 

them and inputting them into the two FCLs as shown in 

Equation (9). 

2 1 max( (Re ( ([ , ]))))avgSigmoid FC LU FC F F =        (9) 

In Equation (9), Sigmoid  denotes the AF. Then the 

mathematical expression of the final channel attention FM 

is displayed in Equation (10). 

caF F=                               (10) 

In Equation (10), 
caF  is the channel attention FM.  

denotes element-by-element multiplication. The spatial 

AM focuses on the weights between spatial locations as a 

way to highlight more valuable spatial regions [17-18]. 

First, two 2D FMs t

avgF  and max

tF  are obtained after 

channel AP and channel MP of the FMs, as shown in 

Equation (11). 
1

, , , ,

0

max, , , ,

1

max

C
t

avg i j i j e

c

t

i j i j c
c

F F
C

F F

−

=


=


 =



                        (11) 

After obtaining a 2D FM based on Equation (11), it is 

spliced and input into a CL as a way to obtain the spatial 

attention weight  , as shown in Equation (12). 

max( ([ , ]))avgSigmoid Conv F F =                (12) 

In Equation (12), Conv  denotes the convolution 

operation (CO). The final mathematical expression based 

on the spatial attention FM 
saF  is shown in Equation (13). 

saF F=                               (13) 

The building of the enhanced CNN model is finished 

once the channel AM and the spatial AM have been 

incorporated into each CL. Fig. 5 displays the schematic 

of the CNN model based on the AM. 
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Figure 5: The structure of CNN model based on the AM 

In Fig. 5, first, for the InI I , the FM F  is obtained 

based on Equation (14) after the CO through the CL. 

( )F Conv I=                              (14) 

Based on the FM F , it is applied to the channel and 

spatial attention module and the corresponding FM is 

obtained. The PO is performed on the final FM as a way 

to reduce the SD of the FM, as shown in Equation (15). 

( )pool final

final ca

F Pool F

F F

=


=

                      (15) 

The pooled FM is expanded into a IDV, which is fed 

into the FCL, as shown in Equation (16). 

Re ( )poolY LU WF b= +                     (16) 

Finally, the result of the FCL is output to the 

classifier, which can complete the process of classifying 

high-precision images. Overall, the study proposes a FE 

model based on improved FPN. By introducing a weighted 

fusion mechanism and an adaptive feature adjustment 

strategy, it is able to fuse MSFs more effectively and 

highlight valuable information. Second, a CNN 

classification model based on the AM is constructed. By 

combining the channel and spatial AMs, the model's 

ability to focus on key information is enhanced. To 

facilitate the description of subsequent experiments, the 

overall model combining these two modules is defined as 

AM CNN with improved FPN (AM-CNN-FPN) model. 

3 Results 

3.1 Performance evaluation of CNN models 

with the introduction of an AM 

The above study introduces a weighted fusion mechanism, 

an adaptive feature adjustment strategy, and an AM to 

optimize the CNN model. The operation of deep learning 

(DL) models often possesses high requirements on the 

computer environment. The experimental environment 

Settings are shown in Table 2 as follows. 

After the experimental environment is set up, the 

specific parameters and architecture of the model are 

elaborated in detail in the study. The relevant parameter 

settings and values are shown in Table 3. 

Based on the network structure parameter information 

shown in Table 3, the study first validates the performance 

of the improved FPN. It introduces the traditional CNN 

model, support vector machine (SVM) model, and random 

forest (RF) for controlled experiments. Meanwhile, the 

dataset is selected from ImageNet dataset and CIFAR-10 

dataset. 

Table 2: Experimental environment setting 

Name Model and configuration Name Model and configuration 

Operating system Ubuntu 20.04 LTS Deep learning framework PyTorch 1.9.0 

CPU Intel Core i7-9700K Programming version Python 3.8 

GPU NVIDIA GeForce RTX 2080 Ti CUDA version CUDA 11.1 

Memory 32GB DDR4 (3200 MHz) cuDNN version cuDNN 8.0 

Hard disk 1TB NVMe SSD + 2TB HDD / / 

 

Table 3: Parameter settings and values 

Layer type Layer name Filter size Number of filters Stride Padding Activation function Dropout rate 

Input layer Input / / / / / / 

Convolutional layer Conv1 3x3 32 1 Same ReLU 0.2 

Pooling layer Pool1 2x2 - 2 / / / 

Convolutional layer Conv2 3x3 64 1 Same ReLU 0.3 

Pooling layer Pool2 2x2 - 2 / / / 

Convolutional layer Conv3 3x3 128 1 Same ReLU 0.4 

Pooling layer Pool3 2x2 - 2 / / / 

Fully connected layer FC1 / 256 / / ReLU 0.5 

Fully connected layer FC2 / 128 / / ReLU 0.5 

Output layer Output / Num_classes / / Softmax / 

 

Large-scale IC and target identification tasks are the 

primary applications for the ImageNet dataset, which has 

over 14 million annotated images. The CIFAR-10 dataset 

is frequently used to assess how well IC models perform, 
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particularly in terms of their capacity to classify small-size 

pictures. In the setting of hyperparameters, the attenuation 

factor of the learning rate is set to 0.01, and the minimum 

learning rate is set to 1×10-6. The initial learning rate of 

the optimizer Adam is 0.001, where β1=0.9, β2=0.999, 

and the weight attenuation coefficient is 1×10-5. 

According to the early stop standard, training will be 

stopped if the loss of the validation set does not improve 

within 20 consecutive epochs. Meanwhile, if the 

improvement of the validation set loss is less than 1×10-4, 

it is considered that there is no improvement. To improve 

the model's generalization ability and robustness, a variety 

of data augmentation techniques are adopted during the 

study's training process. First, there is a random horizontal 

flip, meaning the image is flipped horizontally at random 

with a probability of 0.5. Second, there is a random 

vertical flip, meaning the image is flipped vertically at 

random with a probability of 0.5. Next comes the random 

rotation, that is, the random rotation of the image, with the 

rotation Angle ranging from -10 to +10 degrees. Finally, 

there is random cropping, which involves cropping a 

random part of the image. The size of the cropped image 

is 224×224. The study simultaneously divides the dataset 

into the training set, the validation set and the test set in a 

ratio of 7:1:2. The study starts by comparing the four 

models' CA comparability. The results are shown in Fig. 

6. 

(a) Parallel experiment 1 classification accuracy comparison
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Figure 6: Comparison of CA of the four models 
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Figure 7: Comparison of computational efficiency among the four models 



418 Informatica 49 (2025) 411–424 L. Yang et al. 

Fig. 6(a) shows the comparison of CA of the four 

models in parallel experiment 1. Fig. 6(b) shows the 

comparison of CA of the four models in parallel 

experiment 2. The enhanced FNN model's CA in the two 

simultaneous runs on the ImageNet dataset is 0.81 and 

0.83, which is noticeably higher than that of the other three 

models. This indicates that the improved FNN model has 

obvious advantages in dealing with large-scale and 

complex IC tasks. The CA of the traditional CNN model 

is 0.76 and 0.71 in the two experiments, respectively. 

Although it also shows better performance, it still falls 

short of the improved FNN model. On the CIFAR-10 

dataset, the CA of the improved FNN model is 0.94 and 

0.93 in two parallel experiments, which is also 

significantly higher than the other three models. The 

findings reveals that the improved FNN model not only 

has an obvious advantage in CA, but also excels in 

performance stability and consistency. The study further 

compares the computational efficiency of the AM-CNN-

FPN model with the control model. The results are shown 

in Fig. 7. 

Fig. 7 shows the training time (TT) comparison of the 

four models. TT refers to the total time required for a 

model to complete its training process. This time depends 

on various factors, including the model's complexity, the 

dataset's size, and the hardware configuration. The results 

show that the TT of the AM-CNN-FPN model is 120s and 

125s in parallel experiment 1 and parallel experiment 2, 

respectively. Its TT is slightly longer compared with that 

of the traditional CNN model, which may be due to the 

introduction of the AM and MSF fusion, and the 

computational complexity is increased. However, the 

overall TT is still within the acceptable range. The 

computational efficiency of the improved model is not 

significantly reduced while the performance is improved. 

The TT of SVM model is significantly higher than that of 

CNN model, probably due to the fact that SVM needs to 

extract features manually. Moreover, its computational 

complexity is higher when dealing with large-scale 

datasets. The TT of RF model is also longer. Although it 

shows better performance in some tasks, it is less 

computationally efficient on large-scale datasets. In 

summary, the AM-CNN-FPN model does not 

significantly decrease the computational efficiency while 

improving its performance. It shows that it has good 

application prospects in high-precision IC tasks. The study 

further introduces more advanced models, ResNet, 

DenseNet, and EfficientNet, for comparative experiments. 

Therefore, the performance comparison of the four models 

is shown in Table 4. 

Table 4 shows that the performance parameters of the 

AM-CNN-FPN proposed in the study are all superior to 

those of the control model, with respective accuracy rates 

of 77.5% and 94.2%. The recall rates are 94.3% and 

94.0%, respectively. The F1 is 94.6% and 94.3%, 

respectively. The robustness indicators are 93.5% and 

94.5%. The TTs are 120 s and 30 s. The results show that 

the AM-CNN-FPN model performs well in both datasets. 

Meanwhile, its TT is the shortest, indicating that it also has 

advantages in computational efficiency. In conclusion, the 

AM-CNN-FPN model is highly effective and efficient at 

complex image classification tasks, making it a high-

precision image classification model. The study verifies 

the performance of the AM-CNN-FPN model with 

ablation experiments. The results are shown in Table 5. 

In Table 5, the CA of the AM-CNN-FPN model on 

the ImageNet dataset is 77.50%, and the TT is 120s. The 

CA of the AM-CNN-FPN model on CIFAR-10 is 94.20%, 

and the TT is 30s. The results show that the full AM-CNN-

FPN model on both datasets exhibits the highest CA. It 

demonstrates how these two mechanisms working 

together can significantly enhance the model's 

performance. Meanwhile, the basic CNN model has an 

advantage in TT, but still has room for improvement in 

CA. It shows that the base CNN has achieved a better 

balance between performance and efficiency. However, 

its performance can be further improved by introducing 

the AM and improved FNN. 

Table 4: Model performance comparison 

Model Dataset Accuracy (%) Recall (%) F1 score (%) Robustness (%) Training time (s) 

AM-CNN-FPN ImageNet 77.5 94.3 94.6 93.5 120 

ResNet ImageNet 76.8 93.5 93.8 92 110 

DenseNet ImageNet 76.2 92.8 93.2 91.5 130 

EfficientNet ImageNet 76.5 93.2 93.5 92.5 115 

AM-CNN-FPN CIFAR-10 94.2 94 94.3 94.5 30 

ResNet-50 CIFAR-10 93.5 92.5 92.8 93 28 

DenseNet CIFAR-10 93 91.5 91.8 92 32 

EfficientNet CIFAR-10 93.3 92.8 93 93.2 31 

Table 5: Ablation experiment results 

Data set Model configuration Classification accuracy Training time 

ImageNet 

Complete improvement of CNN (AM+improved FPN) 77.50% 120 

Attention-free mechanism (only improving FPN) 76.64% 115 

No improved FPN (AM only) 76.25% 118 

Attention-free mechanism and improved FPN (basic CNN) 76.05% 100 

CIFAR-10 

Complete improvement of CNN (AM+improved FPN) 94.20% 30 

Attention-free mechanism (only improving FPN) 93.50% 28 

No improved FPN (AM only) 93.80% 29 

Attention-free mechanism and improved FPN (basic CNN) 93.06% 25 
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3.2 Performance comparison of different 

types of high-precision IC 

After validating the performance of the AM-CNN-FPN 

model, the study further compares the classification 

performance of the model for different types of high-

precision images. Among them, the high-precision images 

include mountain texture, reflection on the lake surface, 

airplane flight, and bird feather texture. First, the recall 

and F1 score (F1) comparisons based on the four high-

precision images are shown in Fig. 8. 

Fig. 8(a) shows the recall comparison of the model 

against four high-precision images. Fig. 8(b) shows the 

comparison of F1 of the model for four high-precision 

images. The results show that the recall of the AM-CNN-

FPN model on the mountain texture image reaches 94.3% 

and the F1 is 94.6%. It is 3.1% and 3.1% higher than the 

traditional CNN, respectively. This illustrates that AM-

CNN-FPN is able to recognize the target object more 

accurately while maintaining a high precision rate when 

recognizing complex natural scenes like mountain texture. 

In contrast, the SVM and RF models have lower recall and 

F1 of 88.7%, 89.0%, 87.5%, and 88.2%, respectively. The 

AM-CNN-FPN model has a recall of 93.8% and an F1 of 

94.1% in the classification of the reflection on the lake 

surface image. It is also higher than 90.5% and 91.0% for 

the traditional CNN model. For airplane flight IC, the AM-

CNN-FPN model achieves 95.2% recall and 95.5% F1, 

respectively. This compares favorably with 92.8% and 

93.2% for traditional CNN. Finally, in the classification of 

bird feather texture images, the AM-CNN-FPN model has 

a recall of 94.0% and an F1 of 94.3%. It is 3.3% and 3.1% 

higher than the traditional CNN, respectively. In 

summary, the AM-CNN-FPN model enables the model to 

capture the key features and detail information in the 

image more effectively by introducing the AM and the 

improved FPN network. Meanwhile, it achieves a better 

balance between precision and recall. The study further 

compares the robustness metrics of the model for high-

precision images. The results are shown in Fig. 9. 
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Figure 8: Recall rate of high-precision images and comparison of F1 
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Figure 9: Comparison of model robustness indicators 

Fig. 9(a) shows the comparison of model robustness 

metrics for mountain texture and reflection on the lake 

surface high-precision images. Fig. 9(b) shows the 

comparison of model robustness indexes for airplane 
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flight and bird feather texture high-precision images. The 

results show that the robustness index of AM-CNN-FPN 

model is 93.5%, which is significantly higher than that of 

traditional CNN (89.2%), SVM (84.7%), and RF (86.3%). 

It shows that AM-CNN-FPN is better able to resist the 

influence of noise and illumination changes and maintain 

high classification performance when dealing with 

complex natural scenes. In classification of reflection on 

the lake surface images, the robustness index of AM-

CNN-FPN model is 92.8%, which is significantly higher 

than the rest of the models. It shows that it can recognize 

key features more effectively and reduce the possibility of 

misclassification when dealing with images with complex 

light and shadow effects. The robustness index of AM-

CNN-FPN in airplane flight IC is 94.2%. It shows that it 

can locate and classify more accurately when recognizing 

images with clear target objects. Finally, the robustness 

index of AM-CNN-FPN in bird feather texture is 93.0%. 

It shows that it can extract key features more effectively 

and improve the CA when dealing with images with rich 

details and complex textures. In summary, the AM-CNN-

FPN model, through the introduced AM and improved 

FPN network, enables the model to capture key features 

and detail information in images more effectively. 

Meanwhile, it shows stronger stability when facing 

complex conditions such as noise, light changes, and 

occlusion. A comparison of the model's capacity to extract 

fine-grained features for four high-precision images 

rounds out the study. Fig. 10 displays the findings. 

The model's capacity to collect fine-grained features 

for four high-precision images is compared in Fig. 10. The 

results show that the AM-CNN-FPN model's detailed 

feature capturing ability for mountain texture images is 

95.2%, which is significantly higher than that of 

traditional CNN (92.1%), SVM (87.6%), and RF (88.9%). 

It shows that it is able to capture features such as mountain 

texture and contours more effectively when dealing with 

complex natural scenes. For the reflection on the lake 

surface image, the detailed feature capturing ability of 

AM-CNN-FPN is 94.5%, which is higher than that of 

traditional CNN (91.3%), SVM (86.7%), and RF (87.8%). 

It shows that it can recognize and capture key details more 

effectively when processing images with complex lighting 

effects. For airplane flight, the detailed feature capturing 

ability of AM-CNN-FPN is 96.0%, which is significantly 

higher than that of traditional CNN (93.4%), SVM 

(88.2%), and RF (90.1%). It shows that it is able to capture 

detailed features more accurately when recognizing 

images with clear target objects. Finally, in terms of bird 

feather texture image, the detailed feature capturing ability 

of AM-CNN-FPN is 94.8%, which is higher than that of 

traditional CNN (91.7%), SVM (87.3%), and RF (89.5%). 

 

Reflection on the lake surface
 

Figure 10: Comparison of detail feature capture capabilities 
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Figure 11: Performance comparison of four models for the medical image dataset 

3.3 Comparison of model performance 

indicators in the medical field 

Although the model performed well in general 

applications in the above-mentioned research, its use is 

limited to specific fields. To explore the broader 

application of the model, its performance in the field of 

medical images is studied and investigated. The MIMIC-

CXR and CheXpert datasets are selected for the study on 

medical images. MIMIC-CXR is a large-scale dataset of 

chest X-ray images, containing over 370,000 chest X-ray 

images, and is used for the diagnosis of various diseases. 

The CheXpert dataset contains over 220,000 chest X-ray 

images for classifying various chest diseases. First, the 

performance comparison of the four models for the 

medical image dataset is shown in Figure 11. 

As shown in Figure 11, the performance indicators of 

the AM-CNN-FPN model proposed in this study are 

superior to those of the control model. Its accuracy rates 

are 89.1% and 85.4%, respectively. The recall rates are 

94.2% and 93.1% respectively. The F1 is 94.5% and 

93.6%, respectively. The robustness indicators are 93.6% 

and 92.1% respectively. The SVM model performs the 

worst in the medical dataset, achieving an accuracy rate of 

less than 80%. All of the other performance indicators are 

below 90%. In summary, the AM-CNN-FFN model 

outperforms traditional CNN, SVM and RF models on 

medical image datasets. It indicates that the AM-CNN-

FFN model not only performs well on general datasets, but 

also has good applicability and generalization ability on 

domain-specific datasets. 

4 Discussion and conclusion 
To enhance the performance of high-precision IC, the 

study improved the traditional FPN model and constructed 

an improved CNN model. Meanwhile, experimental 

validation was carried out on ImageNet and CIFAR-10 

datasets. The numerical results indicated that on the 

ImageNet dataset, the CA of the improved FPNN model 

reached 77.50%, which had a significant advantage over 

the traditional CNN model (76.05%), SVM model 

(65.0%), and RF model (61.0%). On the CIFAR-10 

dataset, the CA of the improved FNN model was 94.20%, 

which was also significantly higher than that of the 

traditional CNN model (93.06%), SVM model (85.0%), 

and RF model (72.0%). This outcome was in line with Yu 

F et al.'s findings, which suggested an enhanced FPN 

model for the advanced in entire crop growth cycle IC and 

recognition applications. The results indicated that the 

classification ability of the images of this improved FPN 

model was significantly better than that of the control 

model. Similar to this study, the CNN model incorporating 

the improved FPNN also introduced the AM as well as 

multi-feature fusion [19]. AM-CNN-FPN could capture 

the key features and detail information in the image more 

efficiently, which significantly improved the classification 

precision and robustness. In addition, AM-CNN-FPN 

performed well in different types of high-precision images 

(e.g., mountain texture, reflection on the lake surface, 

airplane flight, bird feather texture) in terms of recall, F1, 

and robustness metrics. The performance was excellent in 

terms of recall, F1, and robustness. For example, in 

mountain texture IC, the recall of AM-CNN-FPN reached 

94.3%, the F1 was 94.6%, and the robustness index was 

93.5%, which were higher than other models. The results 

differed from those of Zhou X et al. which proposed a tool 

wear classification method based on CNN and time series 

images. The method classified cutting force signals by 

converting them into time series images and then inputting 

them into a CNN model. Unlike this study, the 
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classification ability of this model was weaker than the 

improved RF model. The possible reason for this could be 

that the improved RF was highly robust to noise and 

outliers and did not require complex preprocessing steps. 

Meanwhile, the model complexity of the improved RF 

was relatively low and the TT was shorter. Even on 

ordinary computing resources, its training could be 

completed quickly [20]. 

The findings demonstrate that the enhanced CNN 

model offers notable benefits for handling intricate natural 

sceneries and fine-grained characteristics. In summary, 

the numerical results reflect the effectiveness and 

superiority of the improved CNN model in high-precision 

IC tasks, which provides a new research direction and 

technical means for the field of IC. The AM-CNN-FPN 

model proposed in the research improves the classification 

performance by introducing the AM and multi-scale FE. 

However, the complexity of deep neural networks 

typically makes the models difficult to interpret. The 

model's AM provides clues about which parts of the InI 

are important for classification. For example, the channel 

attention module emphasizes the most informative FM, 

and the spatial attention module highlights important 

spatial regions within the FM. These attention maps can 

be visualized to provide intuitive insight into the model's 

decision-making process.  

Although the AM-CNN-FPN model has shown 

promising results, it still has several limitations. First, the 

model's performance depends heavily on the quality and 

quantity of the training data. Insufficient or biased training 

data may lead to poor model performance and limited 

generalization ability. Second, introducing the AM and 

multi-scale FE increases the model's complexity and 

computational requirements. Compared with simpler 

models, this may lead to longer TT and higher resource 

consumption. Third, the interpretability of deep neural 

networks remains a challenge. Although AMs offer some 

interpretability, they cannot fully reveal the model's 

decision-making process. To enhance the robustness and 

generalization ability of the model in future research, more 

advanced data augmentation techniques and regularization 

methods should be explored. Meanwhile, techniques such 

as pruning, quantization, and knowledge distillation are 

used to reduce the model's complexity and computational 

requirements. In addition, layer-by-layer correlation 

propagation, SHAP or other advanced methods are 

adopted to explain the prediction results of the model in 

more detail. Ultimately, integrating the proposed model 

with other modalities could result in a more 

comprehensive and robust classification system. 
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