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High-precision image classification has steadily emerged as a key area of research interest due to the
extensive use of image classification technologies in many different domains. The study enhances the
conventional feature pyramid networks (FPN) and suggests a high-precision image classification model
in an attempt to further increase the precision and effectiveness of picture classification. The model
enhances the ability of convolutional neural network (CNN) to focus on key information by combining the
channel attention and spatial attention mechanisms. The outcomes indicated that the improved CNN
model achieved 77.50% classification accuracy on the ImageNet dataset and 94.20% on the CIFAR-10
dataset, which was significantly higher than the control model. In addition, in the classification of different
types of high-precision images, the improved CNN model performed well in the recall, F1 score, and
robustness metrics. Their values were 94.3%, 94.6%, and 93.5%, respectively. The results show that the
high-precision image classification model is able to capture the key features and detail information in the
image more effectively, which significantly improves the classification accuracy and robustness. This
study provides a new technical tool for high-precision image classification tasks.

Povzetek: Raziskave racunalniskega vida so avtorji izvedli s pomocjo CNN za klasifikacijo slik z
izboljsanim FPN (uteZena vecsklopna fuzija, prilagoditvena konvolucija) in hibridno kanalno-prostorsko

pozornostjo. Validacija je narejena na ImageNet/CIFAR-10/medicinskih naborih.

1 Introduction

One of the fundamental tasks of computer vision, picture
classification has extensive use in a variety of domains,
including automatic driving, remote sensing image
analysis, and medical image diagnostics. In these fields,
high-precision image classification is crucial for
improving work efficiency, reducing errors and enhancing
safety [1-2]. For example, in medical image diagnosis,
accurate identification of lesion areas is crucial for early
diagnosis and treatment. In autonomous driving, high-
precision image classification (IC) can help vehicles better
recognize road signs and obstacles, thus improving
driving safety. Convolutional neural networks (CNNSs)
have emerged as one of the primary methods for modern
IC due to their impressive performance in IC tasks in
recent years. By automatically extracting features of an
image, CNN can effectively capture local and global
information in an image, thus realizing high-precision
classification [3-4]. However, despite its excellent
performance in IC, CNN still has some limitations.
Traditional CNN models are often difficult to effectively
focus on key information in images when dealing with
complex image scenes, resulting in limited classification
accuracy (CA). In addition, CNNs usually only capture
single-scale features in the feature extraction (FE) process,
ignoring the multi-scale information in the image [5-6].

FE process is a process of gradually extracting local and
global features of the image.

Some scholars have also used CNN model to classify
images at this stage. Wu et al. proposed an improved CNN
model for multi-label medical IC. The model consisted of
three main components of CNN and Transformer branch:
multi-label  multi-head  attention-enhanced  feature
module, multi-branch residual module, and information
interaction module. The results indicated that the
framework demonstrated good performance on multiple
publicly available datasets with good generalization
ability and was applicable to other medical multi-label IC
tasks [7]. Alkhatib M et al. proposed a model called
Improved CNN model to address the lack of training
samples in hyperspectral IC and the failure of traditional
CNN to fully utilize the correlation between hyperspectral
image bands. The results indicated that it outperformed
existing methods in terms of overall accuracy, average
accuracy, and Kappa coefficient, and obtained near-
optimal classification results even with a small number of
training samples [8]. Han et al. proposed a dynamic multi-
scale CNN model for the current situation of insufficient
feature information extracted by CNN and inaccurate
attention weights in medical 1C. The results indicated that
the model achieved most advanced classification
performance and solved the uncertainty quantization
problem on publicly available datasets from four different
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medical domains [9]. The specific retrospective analysis
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of the above-mentioned literature is shown in Table 1.
Table 1: A specific review and analysis of the literature

References

Method

Advantages

Disadvantages

Reference 7

CTransCNN is a hybrid deep
learning model that combines
CNN and Transformer,
specifically designed for multi-
label medical image
classification. The model consists

The implicit correlation between labels is
automatically captured, eliminating the need
to manually predefine label relationships. A
cross-attention mechanism is introduced to
allow the model to weight image features
according to the importance of each label.
Effective fusion of local and global features

The structure of the model is relatively
complex, resulting in a long training and
reasoning time. The performance of the
model depends to a certain extent on the
quality and scale of the data set. Due to the

Reference 8

of a multi-label multi-head | is achieved through the information | complexity of the model, deploying it to
attention enhancement feature | interaction module. The feature | mobile devices or other resource-
module, a multi-branch residual | representation ability of the model is | constrained environments may face
module and an information | optimized through the embedded and | challenges.
interaction module. externally embedded residual structures, and

the number of parameters is reduced.
Tri-CNN first uses PCA for
dimensionality reduction, and Since the model contains multiple

then inputs the data into three
branches. Each branch uses 3D-
CNN of different scales to extract
features. The features extracted
from the three branches are
flattened and tiled, then classified
through the fully connected layer
and the softmax layer, and trained
using the cross-entropy loss
function.

Multi-scale FE  can make more
comprehensive use of the multi-dimensional
information of hyperspectral  images.
Through feature fusion, the model can better
capture features of different scales and types,
and improve the classification performance.
The model performs well on multiple
datasets, demonstrating good adaptability
and generalization ability.

branches and multi-scale 3D-CNNs, the
computational complexity is relatively
high. Although the model performs well on
small sample datasets, its performance
may depend on a sufficient number of
training samples. The complexity of the
model may lead to deployment difficulties
in practical applications, especially in
resource-constrained environments.

Reference 9

The DM-CNN model introduces
a dynamic multi-scale feature
fusion module, a hierarchical
dynamic uncertainty quantization
attention mechanism, a multi-
scale fusion pooling method, and
a multi-objective loss
optimization network structure
for medical image classification.

The model is capable of extracting feature
information at different scales. The attention
mechanism can dynamically adjust the
attention weights according to different
information in each layer, enabling the
model to better focus on important feature
information. The pooling method can
accelerate the computing speed and prevent
overfitting while retaining the main and
important information. Multi-objective loss
can better balance the training process of the
model and improve the convergence speed
and classification performance of the model

The training and reasoning time of the
model is relatively long. Performance may
depend on sufficient training samples.
Scalability may be limited

The diversity of visual data makes it challenging for a
single FE method to match the demand for high-precision
classification, even though the aforementioned research
has produced superior outcomes. Based on this research,
feature pyramid networks (FPN) is improved. Meanwhile,
it improves CNN based on attention mechanism (AM) and
multi-scale features (MSFs). The research aims to enhance
the CNN's ability to focus on key information by
introducing an AM and a MSF extraction method, as a
way to improve the accuracy and efficiency of IC. The
innovation of the study is the introduction of weighted
fusion mechanism and adaptive feature adjustment
strategy to improve the FPN. Meanwhile, by combining
channel attention and spatial attention, the hybrid AM is
designed to improve the CNN's capacity to concentrate on
important information and increase CA.

2 Methods and materials

2.1 Efficient FE method based on MSF
fusion

In IC tasks, FE is one of the key steps to determine the CA.
By combining features of several scales, MSFs can

enhance the accuracy of IC and collect both global and
specific information about an image [10-11]. FE is crucial
to the accuracy of image classification. MSFs
simultaneously capture image details and global
information, improving CA by fusing features of different
scales. Multi-scale FE is a key technology for high-
precision image classification. Traditional FPN, as a
classic architecture, is widely used in object detection and
image classification. Its structure is shown in Figure 1.

In the task of image classification, multi-scale FE is
one of the key technologies for improving CA. To better
understand the multi-scale FE process, the study first
introduces the FPN, as shown in Figure 1. The core idea
of the traditional feature pyramid lies in combining high-
level semantic information with low-level detail
information through a top-down path. This generates a
multi-scale FPN with rich semantics and details, which
effectively captures the multi-scale information of the
image [12-13]. The traditional FPN structure can be
mainly divided into FE, top-down path, and the generation
process of FPN. The key steps of the process are shown in
Fig. 2.
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Figure 1: Schematic diagram of the MSF pyramid structure
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Figure 2: The generation process of the feature pyramid

In Fig. 2, the first is the FE phase, which is based on
the first few layers of the CNN to extract different levels
of the feature map (FM) F,F,,---F,. Among them, F

denotes the FM of layer i . Moreover, the resolution of F,

gradually decreases and the semantics gradually increases.
FM is the result of the convolution operation. It is a two-
dimensional or three-dimensional that represents how the
input image (Inl) responds to a specific convolution
kernel. This is followed by a top-down path stage. That is,
starting from the high-level FM, the FM is gradually up-
sampled. Meanwhile, pixel-by-pixel summation is
performed with the bottom layer FMs, so as to generate a
series of fused feature maps (FFMs). For the FM F, of the

i th layer, the mathematical expression of the FFM is
shown in Equation (1).

R =F+U(RD) @

In Equation (1), K~ denotes the FFM. U denotes the

up-sampling operation. The FFMs are generated through
upsampling operations. First, each FM is averaged and
pooled globally to generate a one-dimensional vector
(1DV). Then, the vector is input into the fully connected
layer (FCL) to calculate the weights. Finally, it is the
generation stage of FPN. The FFMs are composed into a
feature pyramid, which is wused for subsequent
classification tasks. Although the traditional FPN has
achieved remarkable results in MSF extraction, it has
some shortcomings in the feature fusion process. For
example, the simple pixel-by-pixel summing operation
does not take into account the difference in importance of
features at different scales. To overcome these limitations,
the study proposes an improved FPN network. First, a
weighted fusion mechanism is introduced. That is, a
weight is assigned to each scale in the process of feature
fusion as a way to highlight the feature information with
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higher value [14-15]. Defining the FM weight of layer i

as w,, then the mathematical expression of the FFM is
shown in Equation (2).
F=a-F+U(R,) 2

In Equation (2), the weights «, are dynamically

computed by a weight learning module, which is
implemented through global average pooling (GAP) as
well as a FCL. A GAP operation is first performed on each
FM F to obtain a 1DV. The related mathematical

expression is shown in Equation (3).
v, =P,(F) ®)
In Equation (3), the corresponding weight information
is obtained after inputting a IDV v, into the fully

connected form, as shown in Equation (4).
=ReLU(FC(v,)) 4)
In Equation (4), FC means the FCL. RelU
denotes the activation function (AF). After introducing the
weighted fusion mechanism to optimize the FPN, in order
to further the effect of feature fusion, the study introduces
an adaptive adjustment module on the FFM. This module
optimally adjusts the fused features through a
convolutional layer (CL) as a way to enhance the
expression of the relevant features [16]. Specifically based
on the FFM F, the mathematical expression of the FM

through optimization and adjustment is shown in Equation

).

R = Conv(F") 5)

In Equation (5), F*™* denotes the FM after

adjustment and optimization. By introducing the weighted
fusion mechanism as well as the adaptive feature
adjustment strategy, the FPN network structure proposed
in the study is able to fuse MSFs more effectively.
Meanwhile, more valuable feature information is
highlighted, which in turn improves the performance of
IC.
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2.2 Construction of IC model with improved
CNN based on AM

The introduction of weighted fusion mechanism and
adaptive feature tuning strategy through improved FPN
has effectively enhanced the performance of FE.
However, in complex image scenes, certain regions or
channels may be more critical to the classification task. To
further improve the accuracy of IC, this study introduces
an AM to enhance the CNN's ability to focus on critical
information on the basis of FE. The primary function of
CNN's central convolutional operation is to extract an
image's local features. The related schematic is shown in
Fig. 3.

The convolution operation is the core of convolutional
neural networks and is primarily used to extract the local
features of images. Figure 3 illustrates the specific
operation flow to better understand the process of
convolution operation. In Fig. 3, the Inl is defined as

| e R"™ . Among them, H , W , and C denote the
height, width, and quantity of channels of the image.

Meanwhile, the convolution kernel K e R“*° is slid
over the Inl and after multiplying and summing by
element-by-element, this generates the FM F , as

expressed in Equation (6).
k-1 k-1C-1

F’ _ZZZK ,c' i+m, j+n,c +b (6)

m=0 n=0 c=0
In Equation (6), b means the bias term. F; means

the value of the output FM at position (i, j). k means the

size of the convolution kernel. The primary purpose of
pooling procedures is to decrease the FM's spatial
dimension (SD) and computational burden. Both
maximum pooling (MP) and average pooling (AP) are
common pooling operations (POs). The related schematic
is shown in Fig. 4.

Figure 3: Schematic diagram of CO
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(a) Schematic diagram of maximum pooling
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(b) Average pooling schematic diagram

Figure 4: Schematic diagram of PO

The PO is an important step in CNNs. It is mainly
used to reduce the SD of FMs and decrease the
computational load. To present the process of POs more
intuitively, the study illustrates the specific pooling
process through Figure 4. Fig. 4(a) and Fig. 4(b) illustrate
the process of MP as well as AP, respectively. For the
input FM, the study uses a combination of MP and AP,
i.e., for the input F . The mathematical expression related
to MP and AP is shown in Equation (7).

1
F nq X nqax F

max,i, j m=0 n=o i,p+m,j-p+n

1232
a\/gIJ =7 ZFI,P“"‘I"P*”
p m=0 n=0

In Equation (7), pxp denotes the size of the

convolutional kernel. In the CNN model, the study
introduces a hybrid AM. It mainly consists of two types of
channel attention as well as spatial attention. First, channel
attention mainly learns the weights between channels as a
way to highlight the channel features with better values.
For the input FM F, GAP, and global MP are applied to

()

individual channels to obtain two IDVs F, . and F, .,
as shown in Equation (8).
l H-1w-1
Favg c T 3 I:I je
H-W i3 i
®)
1 p-1 p-1
anIJ:_Z ZFIPH“JP*“
=0 n=0

After obtaining two IDVs based on Equation (8), the
channel attention weights « are obtained by splicing
them and inputting them into the two FCLs as shown in
Equation (9).

a = Sigmoid (FC, (Re LU (FC,([F,,. Fr 1)) (9)
In Equation (9), Sigmoid denotes the AF. Then the
mathematical expression of the final channel attention FM
is displayed in Equation (10).
F,=alF (10)
In Equation (10), F,, is the channel attention FM. [J
denotes element-by-element multiplication. The spatial
AM focuses on the weights between spatial locations as a
way to highlight more valuable spatial regions [17-18].
First, two 2D FMs F. and F, are obtained after

avg
channel AP and channel MP of the FMs, as shown in
Equation (11).

1§
FVI == Fl
i cg (11)
Fnt'laxu _maXFijc

c e

After obtaining a 2D FM based on Equation (11), it is
spliced and input into a CL as a way to obtain the spatial
attention weight g, as shown in Equation (12).

8 = Sigmoid (Conv([F,,, K, 1)) (12)

In Equation (12), Conv denotes the convolution
operation (CO). The final mathematical expression based
on the spatial attention FM F_, is shown in Equation (13).

=p0F (13)

The building of the enhanced CNN model is finished

once the channel AM and the spatial AM have been

incorporated into each CL. Fig. 5 displays the schematic
of the CNN model based on the AM.



416  Informatica 49 (2025) 411-424

i -
Channel attention module :

Global average

==°  Fully connected
layer

4

|
|
pooling :
|
. |
— — Global maximum |
pooling :
i |
Input image Convolqtlon |
operation |
|
|
|
|

©

L. Yang et al.

Channel attention module :

Channel average

@ Convolutional layer

I
pooling :
I
Channel | .
maximization :-*@ — £ — ac
. =0 o
pooling | . A
| Pooling Fully  Classification
I operation  connected
| layer
I
I
I

Figure 5: The structure of CNN model based on the AM

In Fig. 5, first, for the Inl 1 , the FM F is obtained
based on Equation (14) after the CO through the CL.
F =Conv(l) (14)
Based on the FM F, it is applied to the channel and
spatial attention module and the corresponding FM is
obtained. The PO is performed on the final FM as a way
to reduce the SD of the FM, as shown in Equation (15).
Fpool = POOI(FfinaI)
Fia =BU R,
The pooled FM is expanded into a IDV, which is fed
into the FCL, as shown in Equation (16).
Y =ReLUWF, +b) (16)

Finally, the result of the FCL is output to the
classifier, which can complete the process of classifying
high-precision images. Overall, the study proposes a FE
model based on improved FPN. By introducing a weighted
fusion mechanism and an adaptive feature adjustment
strategy, it is able to fuse MSFs more effectively and
highlight valuable information. Second, a CNN
classification model based on the AM is constructed. By
combining the channel and spatial AMs, the model's
ability to focus on key information is enhanced. To
facilitate the description of subsequent experiments, the

(15)

overall model combining these two modules is defined as
AM CNN with improved FPN (AM-CNN-FPN) model.

3 Results

3.1 Performance evaluation of CNN models
with the introduction of an AM

The above study introduces a weighted fusion mechanism,
an adaptive feature adjustment strategy, and an AM to
optimize the CNN model. The operation of deep learning
(DL) models often possesses high requirements on the
computer environment. The experimental environment
Settings are shown in Table 2 as follows.

After the experimental environment is set up, the
specific parameters and architecture of the model are
elaborated in detail in the study. The relevant parameter
settings and values are shown in Table 3.

Based on the network structure parameter information
shown in Table 3, the study first validates the performance
of the improved FPN. It introduces the traditional CNN
model, support vector machine (SVM) model, and random
forest (RF) for controlled experiments. Meanwhile, the
dataset is selected from ImageNet dataset and CIFAR-10
dataset.

Table 2: Experimental environment setting

Name Model and configuration Name Model and configuration
Operating system Ubuntu 20.04 LTS Deep learning framework PyTorch 1.9.0
CPU Intel Core i7-9700K Programming version Python 3.8
GPU NVIDIA GeForce RTX 2080 Ti CUDA version CUDA11.1
Memory 32GB DDR4 (3200 MHz) cuDNN version cuDNN 8.0
Hard disk 1TB NVMe SSD + 2TB HDD / /

Table 3: Parameter settings and values
Layer type Layer name | Filter size | Number of filters | Stride Padding Activation function | Dropout rate
Input layer Input / / / / / /
Convolutional layer Convl 3x3 32 1 Same ReLU 0.2
Pooling layer Pooll 2x2 - 2 / / /
Convolutional layer Conv2 3x3 64 1 Same ReLU 0.3
Pooling layer Pool2 2x2 - 2 / / /
Convolutional layer Conv3 3x3 128 1 Same RelLU 0.4
Pooling layer Pool3 2x2 - 2 / / /
Fully connected layer FC1 / 256 / / RelLU 0.5
Fully connected layer FC2 / 128 / / ReLU 0.5
Output layer Output / Num_classes / / Softmax /

Large-scale IC and target identification tasks are the
primary applications for the ImageNet dataset, which has

over 14 million annotated images. The CIFAR-10 dataset
is frequently used to assess how well IC models perform,
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particularly in terms of their capacity to classify small-size
pictures. In the setting of hyperparameters, the attenuation
factor of the learning rate is set to 0.01, and the minimum
learning rate is set to 1x10-6. The initial learning rate of
the optimizer Adam is 0.001, where $1=0.9, $2=0.999,
and the weight attenuation coefficient is 1x10-5.
According to the early stop standard, training will be
stopped if the loss of the validation set does not improve
within 20 consecutive epochs. Meanwhile, if the
improvement of the validation set loss is less than 1x10-4,
it is considered that there is no improvement. To improve
the model's generalization ability and robustness, a variety
of data augmentation techniques are adopted during the
study's training process. First, there is a random horizontal
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flip, meaning the image is flipped horizontally at random
with a probability of 0.5. Second, there is a random
vertical flip, meaning the image is flipped vertically at
random with a probability of 0.5. Next comes the random
rotation, that is, the random rotation of the image, with the
rotation Angle ranging from -10 to +10 degrees. Finally,
there is random cropping, which involves cropping a
random part of the image. The size of the cropped image
is 224x224. The study simultaneously divides the dataset
into the training set, the validation set and the test set in a
ratio of 7:1:2. The study starts by comparing the four
models' CA comparability. The results are shown in Fig.
6.

| CNN | CNN
I 'mproved FPN I 'mproved FPN
SVM SVM
B RF B RF
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(a) Parallel experiment 1 classification accuracy comparison
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Figure 6: Comparison of CA of the four models
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Figure 7: Comparison of computational efficiency among the four models



418 Informatica 49 (2025) 411-424

Fig. 6(a) shows the comparison of CA of the four
models in parallel experiment 1. Fig. 6(b) shows the
comparison of CA of the four models in parallel
experiment 2. The enhanced FNN model's CA in the two
simultaneous runs on the ImageNet dataset is 0.81 and
0.83, which is noticeably higher than that of the other three
models. This indicates that the improved FNN model has
obvious advantages in dealing with large-scale and
complex IC tasks. The CA of the traditional CNN model
is 0.76 and 0.71 in the two experiments, respectively.
Although it also shows better performance, it still falls
short of the improved FNN model. On the CIFAR-10
dataset, the CA of the improved FNN model is 0.94 and
0.93 in two parallel experiments, which is also
significantly higher than the other three models. The
findings reveals that the improved FNN model not only
has an obvious advantage in CA, but also excels in
performance stability and consistency. The study further
compares the computational efficiency of the AM-CNN-
FPN model with the control model. The results are shown
in Fig. 7.

Fig. 7 shows the training time (TT) comparison of the
four models. TT refers to the total time required for a
model to complete its training process. This time depends
on various factors, including the model's complexity, the
dataset's size, and the hardware configuration. The results
show that the TT of the AM-CNN-FPN model is 120s and
125s in parallel experiment 1 and parallel experiment 2,
respectively. Its TT is slightly longer compared with that
of the traditional CNN model, which may be due to the
introduction of the AM and MSF fusion, and the
computational complexity is increased. However, the
overall TT is still within the acceptable range. The
computational efficiency of the improved model is not
significantly reduced while the performance is improved.
The TT of SVM model is significantly higher than that of
CNN model, probably due to the fact that SVM needs to
extract features manually. Moreover, its computational
complexity is higher when dealing with large-scale

L. Yang et al.

datasets. The TT of RF model is also longer. Although it
shows better performance in some tasks, it is less
computationally efficient on large-scale datasets. In
summary, the AM-CNN-FPN model does not
significantly decrease the computational efficiency while
improving its performance. It shows that it has good
application prospects in high-precision IC tasks. The study
further introduces more advanced models, ResNet,
DenseNet, and EfficientNet, for comparative experiments.
Therefore, the performance comparison of the four models
is shown in Table 4.

Table 4 shows that the performance parameters of the
AM-CNN-FPN proposed in the study are all superior to
those of the control model, with respective accuracy rates
of 77.5% and 94.2%. The recall rates are 94.3% and
94.0%, respectively. The F1 is 94.6% and 94.3%,
respectively. The robustness indicators are 93.5% and
94.5%. The TTs are 120 s and 30 s. The results show that
the AM-CNN-FPN model performs well in both datasets.
Meanwhile, its TT is the shortest, indicating that it also has
advantages in computational efficiency. In conclusion, the
AM-CNN-FPN model is highly effective and efficient at
complex image classification tasks, making it a high-
precision image classification model. The study verifies
the performance of the AM-CNN-FPN model with
ablation experiments. The results are shown in Table 5.

In Table 5, the CA of the AM-CNN-FPN model on
the ImageNet dataset is 77.50%, and the TT is 120s. The
CA of the AM-CNN-FPN model on CIFAR-10 is 94.20%,
and the TT is 30s. The results show that the full AM-CNN-
FPN model on both datasets exhibits the highest CA. It
demonstrates how these two mechanisms working
together can significantly enhance the model's
performance. Meanwhile, the basic CNN model has an
advantage in TT, but still has room for improvement in
CA. It shows that the base CNN has achieved a better
balance between performance and efficiency. However,
its performance can be further improved by introducing
the AM and improved FNN.

Table 4: Model performance comparison

Model Dataset Accuracy (%) Recall (%) F1 score (%) Robustness (%) Training time (s)
AM-CNN-FPN ImageNet 775 94.3 94.6 93.5 120
ResNet ImageNet 76.8 935 93.8 92 110
DenseNet ImageNet 76.2 92.8 93.2 915 130
EfficientNet ImageNet 76.5 93.2 93.5 92.5 115
AM-CNN-FPN CIFAR-10 94.2 94 94.3 94.5 30
ResNet-50 CIFAR-10 93.5 92.5 92.8 93 28
DenseNet CIFAR-10 93 91.5 91.8 92 32
EfficientNet CIFAR-10 93.3 92.8 93 93.2 31
Table 5: Ablation experiment results
Data set Model configuration Classification accuracy | Training time
Complete improvement of CNN (AM+improved FPN) 77.50% 120
ImageNet Attention-free mechanism (only improving FPN) 76.64% 115
No improved FPN (AM only) 76.25% 118
Attention-free mechanism and improved FPN (basic CNN) 76.05% 100
Complete improvement of CNN (AM+improved FPN) 94.20% 30
CIEAR-10 Attention-free mechanism (only improving FPN) 93.50% 28
No improved FPN (AM only) 93.80% 29
Attention-free mechanism and improved FPN (basic CNN) 93.06% 25
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3.2 Performance comparison of different
types of high-precision IC

After validating the performance of the AM-CNN-FPN
model, the study further compares the classification
performance of the model for different types of high-
precision images. Among them, the high-precision images
include mountain texture, reflection on the lake surface,
airplane flight, and bird feather texture. First, the recall
and F1 score (F1) comparisons based on the four high-
precision images are shown in Fig. 8.

Fig. 8(a) shows the recall comparison of the model
against four high-precision images. Fig. 8(b) shows the
comparison of F1 of the model for four high-precision
images. The results show that the recall of the AM-CNN-
FPN model on the mountain texture image reaches 94.3%
and the F1 is 94.6%. It is 3.1% and 3.1% higher than the
traditional CNN, respectively. This illustrates that AM-
CNN-FPN is able to recognize the target object more
accurately while maintaining a high precision rate when

AM-CNN-
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CNN
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88
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flight texture
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(a) Recall rate comparison
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recognizing complex natural scenes like mountain texture.
In contrast, the SVM and RF models have lower recall and
F1 of 88.7%, 89.0%, 87.5%, and 88.2%, respectively. The
AM-CNN-FPN model has a recall of 93.8% and an F1 of
94.1% in the classification of the reflection on the lake
surface image. It is also higher than 90.5% and 91.0% for
the traditional CNN model. For airplane flight IC, the AM-
CNN-FPN model achieves 95.2% recall and 95.5% F1,
respectively. This compares favorably with 92.8% and
93.2% for traditional CNN. Finally, in the classification of
bird feather texture images, the AM-CNN-FPN model has
arecall of 94.0% and an F1 of 94.3%. It is 3.3% and 3.1%
higher than the traditional CNN, respectively. In
summary, the AM-CNN-FPN model enables the model to
capture the key features and detail information in the
image more effectively by introducing the AM and the
improved FPN network. Meanwhile, it achieves a better
balance between precision and recall. The study further
compares the robustness metrics of the model for high-
precision images. The results are shown in Fig. 9.
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Figure 8: Recall rate of high-precision images and comparison of F1
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(b) Comparison of robustness indicators
between airplane flight and bird feather texture

Figure 9: Comparison of model robustness indicators

Fig. 9(a) shows the comparison of model robustness
metrics for mountain texture and reflection on the lake

surface high-precision images. Fig. 9(b) shows the
comparison of model robustness indexes for airplane
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flight and bird feather texture high-precision images. The
results show that the robustness index of AM-CNN-FPN
model is 93.5%, which is significantly higher than that of
traditional CNN (89.2%), SVM (84.7%), and RF (86.3%).
It shows that AM-CNN-FPN is better able to resist the
influence of noise and illumination changes and maintain
high classification performance when dealing with
complex natural scenes. In classification of reflection on
the lake surface images, the robustness index of AM-
CNN-FPN model is 92.8%, which is significantly higher
than the rest of the models. It shows that it can recognize
key features more effectively and reduce the possibility of
misclassification when dealing with images with complex
light and shadow effects. The robustness index of AM-
CNN-FPN in airplane flight IC is 94.2%. It shows that it
can locate and classify more accurately when recognizing
images with clear target objects. Finally, the robustness
index of AM-CNN-FPN in bird feather texture is 93.0%.
It shows that it can extract key features more effectively
and improve the CA when dealing with images with rich
details and complex textures. In summary, the AM-CNN-
FPN model, through the introduced AM and improved
FPN network, enables the model to capture key features
and detail information in images more effectively.
Meanwhile, it shows stronger stability when facing
complex conditions such as noise, light changes, and
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occlusion. A comparison of the model's capacity to extract
fine-grained features for four high-precision images
rounds out the study. Fig. 10 displays the findings.

The model's capacity to collect fine-grained features
for four high-precision images is compared in Fig. 10. The
results show that the AM-CNN-FPN model's detailed
feature capturing ability for mountain texture images is
95.2%, which is significantly higher than that of
traditional CNN (92.1%), SVM (87.6%), and RF (88.9%).
It shows that it is able to capture features such as mountain
texture and contours more effectively when dealing with
complex natural scenes. For the reflection on the lake
surface image, the detailed feature capturing ability of
AM-CNN-FPN is 94.5%, which is higher than that of
traditional CNN (91.3%), SVM (86.7%), and RF (87.8%).
It shows that it can recognize and capture key details more
effectively when processing images with complex lighting
effects. For airplane flight, the detailed feature capturing
ability of AM-CNN-FPN is 96.0%, which is significantly
higher than that of traditional CNN (93.4%), SVM
(88.2%), and RF (90.1%). It shows that it is able to capture
detailed features more accurately when recognizing
images with clear target objects. Finally, in terms of bird
feather texture image, the detailed feature capturing ability
of AM-CNN-FPN is 94.8%, which is higher than that of
traditional CNN (91.7%), SVM (87.3%), and RF (89.5%).
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Figure 10: Comparison of detail feature capture capabilities
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Figure 11: Performance comparison of four models for the medical image dataset

3.3 Comparison of model performance
indicators in the medical field

Although the model performed well in general
applications in the above-mentioned research, its use is
limited to specific fields. To explore the broader
application of the model, its performance in the field of
medical images is studied and investigated. The MIMIC-
CXR and CheXpert datasets are selected for the study on
medical images. MIMIC-CXR is a large-scale dataset of
chest X-ray images, containing over 370,000 chest X-ray
images, and is used for the diagnosis of various diseases.
The CheXpert dataset contains over 220,000 chest X-ray
images for classifying various chest diseases. First, the
performance comparison of the four models for the
medical image dataset is shown in Figure 11.

As shown in Figure 11, the performance indicators of
the AM-CNN-FPN model proposed in this study are
superior to those of the control model. Its accuracy rates
are 89.1% and 85.4%, respectively. The recall rates are
94.2% and 93.1% respectively. The F1 is 94.5% and
93.6%, respectively. The robustness indicators are 93.6%
and 92.1% respectively. The SVM model performs the
worst in the medical dataset, achieving an accuracy rate of
less than 80%. All of the other performance indicators are
below 90%. In summary, the AM-CNN-FFN model
outperforms traditional CNN, SVM and RF models on
medical image datasets. It indicates that the AM-CNN-
FFN model not only performs well on general datasets, but
also has good applicability and generalization ability on
domain-specific datasets.

4 Discussion and conclusion

To enhance the performance of high-precision IC, the
study improved the traditional FPN model and constructed

an improved CNN model. Meanwhile, experimental
validation was carried out on ImageNet and CIFAR-10
datasets. The numerical results indicated that on the
ImageNet dataset, the CA of the improved FPNN model
reached 77.50%, which had a significant advantage over
the traditional CNN model (76.05%), SVM model
(65.0%), and RF model (61.0%). On the CIFAR-10
dataset, the CA of the improved FNN model was 94.20%,
which was also significantly higher than that of the
traditional CNN model (93.06%), SVM model (85.0%),
and RF model (72.0%). This outcome was in line with Yu
F et al.'s findings, which suggested an enhanced FPN
model for the advanced in entire crop growth cycle IC and
recognition applications. The results indicated that the
classification ability of the images of this improved FPN
model was significantly better than that of the control
model. Similar to this study, the CNN model incorporating
the improved FPNN also introduced the AM as well as
multi-feature fusion [19]. AM-CNN-FPN could capture
the key features and detail information in the image more
efficiently, which significantly improved the classification
precision and robustness. In addition, AM-CNN-FPN
performed well in different types of high-precision images
(e.g., mountain texture, reflection on the lake surface,
airplane flight, bird feather texture) in terms of recall, F1,
and robustness metrics. The performance was excellent in
terms of recall, F1, and robustness. For example, in
mountain texture 1C, the recall of AM-CNN-FPN reached
94.3%, the F1 was 94.6%, and the robustness index was
93.5%, which were higher than other models. The results
differed from those of Zhou X et al. which proposed a tool
wear classification method based on CNN and time series
images. The method classified cutting force signals by
converting them into time series images and then inputting
them into a CNN model. Unlike this study, the
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classification ability of this model was weaker than the
improved RF model. The possible reason for this could be
that the improved RF was highly robust to noise and
outliers and did not require complex preprocessing steps.
Meanwhile, the model complexity of the improved RF
was relatively low and the TT was shorter. Even on
ordinary computing resources, its training could be
completed quickly [20].

The findings demonstrate that the enhanced CNN
model offers notable benefits for handling intricate natural
sceneries and fine-grained characteristics. In summary,
the numerical results reflect the effectiveness and
superiority of the improved CNN model in high-precision
IC tasks, which provides a new research direction and
technical means for the field of IC. The AM-CNN-FPN
model proposed in the research improves the classification
performance by introducing the AM and multi-scale FE.
However, the complexity of deep neural networks
typically makes the models difficult to interpret. The
model's AM provides clues about which parts of the Inl
are important for classification. For example, the channel
attention module emphasizes the most informative FM,
and the spatial attention module highlights important
spatial regions within the FM. These attention maps can
be visualized to provide intuitive insight into the model's
decision-making process.

Although the AM-CNN-FPN model has shown
promising results, it still has several limitations. First, the
model's performance depends heavily on the quality and
quantity of the training data. Insufficient or biased training
data may lead to poor model performance and limited
generalization ability. Second, introducing the AM and
multi-scale FE increases the model's complexity and
computational requirements. Compared with simpler
models, this may lead to longer TT and higher resource
consumption. Third, the interpretability of deep neural
networks remains a challenge. Although AMs offer some
interpretability, they cannot fully reveal the model's
decision-making process. To enhance the robustness and
generalization ability of the model in future research, more
advanced data augmentation techniques and regularization
methods should be explored. Meanwhile, techniques such
as pruning, guantization, and knowledge distillation are
used to reduce the model's complexity and computational
requirements. In addition, layer-by-layer correlation
propagation, SHAP or other advanced methods are
adopted to explain the prediction results of the model in
more detail. Ultimately, integrating the proposed model
with other modalities could result in a more
comprehensive and robust classification system.
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