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Multimodal data differ significantly in temporal granularity, structural features, and semantic levels, 

which leads to difficulties in fusion, weak generalization ability, and low training efficiency. To this end, 

this paper introduces the Distributed Support Vector Machine (DSVM) architecture to construct modal 

local models separately, and achieve unified decision-making through support vector aggregation to 

improve system efficiency, scalability, and adaptability to heterogeneous data. The system first extracts 

statistical features, keyword features, and time series patterns from network traffic, system logs, and 

behavior sequences, then uses standardization and PCA (Principal Component Analysis) to reduce the 

dimension of the features. Then, the different modal data are distributed and mapped to each computing 

node. The local SVM (Support Vector Machine) model is deployed independently and trained using the 

SMO (Sequential Minimal Optimization) algorithm, and the boundary distance screens the effective 

support vector. All local support vectors are uploaded to the DSVM central node, the RBF kernel function 

is used to reconstruct the global classifier, and the final decision is made through majority voting. In 

addition, the system designs a modality plug-in mechanism to support the access of new modalities, and 

realizes rapid model updates and dynamic adjustment of support vectors based on incremental SVM. 

Experiments show that the DSVM system has superior performance in multimodal data fusion: the 

classification accuracy is still 88% under severe imbalance (1:20); the accuracy is maintained at 83% 

when the noise intensity σ=0.4; the fusion training efficiency is significantly improved compared with the 

centralized SVM. The system has excellent scalability and discrimination boundary stability, which 

verifies its robustness and engineering practicality. 

Povzetek: Članek predstavi DSVM arhitekturo za multimodalno zaznavanje vdorov: lokalni SVM-ji po 

modalitetah, izbira podpornih vektorjev in globalni RBF klasifikator z večinskim glasovanjem. Vključuje 

inkrementalno učenje in razširljivost modalitet. 

 

1 Introduction 
Cyber-attack methods continue to evolve, and attackers 

continue using multi-source information to construct 

attack paths collaboratively, resulting in the complexity of 

the feature dimensions of intrusion events and the 

diversification of their manifestations. In traditional 

single-modal intrusion detection frameworks, the system 

often relies only on single-dimensional feature data, such 

as packet behavior in network traffic, event records in host 

logs, or user behavior sequences [1], [2], [3]. Although 

this design approach reduces the implementation cost and 

deployment difficulty of the model, its ability to identify 

complex attack behaviors is extremely limited. Especially 

in the face of advanced threat scenarios such as hybrid 

attacks, zero-day attacks, and persistent threats, the model 

recognition rate drops significantly, and false positives 

and missed negatives occur frequently. Such systems rely 

too much on contextual clues from a single information 

source and cannot form a multi-angle joint identification  

mechanism [4], [5]. As a result, the detection range is  

 

limited, the attack pattern recognition is incomplete, and 

the policy response is delayed. 

In recent years, multimodal intrusion detection 

systems have been widely studied. Such systems attempt 

to model and identify intrusion behaviors from multiple 

levels by integrating information sources from different 

dimensions, such as network layer data, host layer logs, 

and behavior layer call sequences. This structure 

significantly enhances the system's attack perception 

breadth and accuracy, especially in behavior correlation 

analysis and abnormal behavior identification  [6]. 

Researchers have conducted extensive explorations in 

multimodal feature extraction, semantic association, and 

time series modeling, using natural language processing 

technology to process system log text, using convolutional 

networks to extract traffic patterns, and introducing graph 

neural networks to analyze behavior dependencies [7], [8], 

[9]. Although relevant research has progressed, key 

challenges are still faced in the unified modeling of 

multimodal data.  
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The core problem lies in the difficulty of fusion caused by 

the heterogeneity of data between modalities [10], [11]. 

Network traffic presents high-frequency and sparse 

temporal characteristics, log data is semi-structured text, 

and user behavior is primarily high-dimensional time 

series. Their different time windows, significant 

differences in structural distribution, and inconsistent 

semantic levels [12], [13] seriously affect the 

effectiveness of feature alignment and fusion strategies. 

To alleviate the above problems, researchers have 

introduced various deep learning models for feature 

fusion, such as deep autoencoders, multi-channel 

convolutional neural networks, attention mechanisms, and 

adversarial generative networks. These methods jointly 

encode different data types through multimodal input 

terminals and construct a shared latent semantic space, 

thereby achieving information aggregation of 

heterogeneous modalities to a certain extent. Related 

results have certain advantages in improving accuracy 

[14], [15], but key technical bottlenecks remain. First, this 

type of deep model relies on many labeled samples for 

end-to-end training. In actual industrial environments, the 

problems of uneven sample distribution and high labeling 

costs have not been effectively solved [16]. Second, deep 

models consume large amounts of computing resources 

and have long training cycles, making them unsuitable for 

deployment in edge environments with limited computing 

resources. In addition, such models have serious 

interpretability issues, and security operations personnel 

find it difficult to understand the model discrimination 

logic, which is not conducive to traceability analysis and 

response decision-making [17], [18]. Although the deep 

fusion method performs well in terms of accuracy 

indicators, it has shortcomings regarding system response 

speed, deployment portability, and model robustness.The 

core hypothesis of this study is that the multimodal 

intrusion detection system based on the DSVM 

architecture can achieve dynamic modal expansion 

(global accuracy fluctuation <5% after adding a new 

modality) and noise robustness (accuracy ≥80% when 

σ=0.4) through distributed training and support vector 

aggregation while maintaining high accuracy (accuracy 

≥85% in unbalanced scenarios). Specific research 

questions include: (1) How to alleviate the modal 

heterogeneity problem through local model decoupling 

training? (2) Can support vector pruning and incremental 

update mechanisms maintain the stability of the 

discrimination boundary while reducing the 

computational load? (3) Does the performance of DSVM 

significantly outperform the deep learning baseline in 

unbalanced data and noisy environments? 

In response to the above problems, some studies have 

focused on lightweight and modular modeling strategies, 

hoping to build a more controllable and adaptable 

intrusion detection framework. Among them, SVM has 

been widely used in intrusion detection scenarios due to 

its excellent small sample learning ability, strong 

interpretability, and fast convergence speed [19], [20]. 

However, when faced with large-scale multimodal data, 

the traditional SVM model's memory overhead and 

computational complexity increase rapidly, and it cannot 

be effectively expanded in distributed scenarios. For this 

reason, DSVM was proposed to parallelize the model 

training process to multiple computing nodes and obtain 

the global discrimination boundary through local model 

collaborative optimization. This structure improves 

training efficiency and supports the distributed processing 

of multimodal features. 

To solve the problem of heterogeneous data fusion in 

multimodal intrusion detection, this paper constructs a 

detection system based on the DSVM architecture. By 

utilizing the structural differences between the modalities, 

local SVM models are deployed on independent nodes to 

avoid the information interference problem caused by 

direct feature fusion between modalities. The SMO 

algorithm trains local data in each node, and efficient 

support vectors are selected by boundary distance. 

Subsequently, these support vectors are uploaded to the 

central node. The global SVM classifier is constructed 

using the RBF kernel function, and the final decision is 

made through the majority voting mechanism. The system 

adopts a distributed deployment architecture, supports 

modality plug-ins and incremental parameter updates, 

improving the model's generalization ability and 

maintenance flexibility [21], [22]. The system process 

includes multiple steps such as feature extraction and 

standardization, modality mapping and partitioning, local 

training and vector screening, global fusion and voting 

decision, and a dynamic update mechanism. By 

introducing the DSVM model structure, this paper avoids 

the problems of poor interpretability and high resource 

overhead faced by traditional deep fusion methods. It 

efficiently identifies and responds to complex attack 

behaviors without sacrificing detection accuracy.  

The Sequential Minimal Optimization (SMO) 

algorithm is used for local model training, the TensorFlow 

Federated (TFF) framework supports distributed 

deployment, the Gated Recurrent Unit (GRU) processes 

sequence data, and the Radial Basis Function (RBF) 

kernel is used for global classifier construction. 

This experiment uses a multimodal dataset containing 

300,000 network traffic records, 20,000 system log events, 

and 5,000 API call sequences. The results show that the 

DSVM system performs well in multimodal data fusion: 

even under the condition of severe sample imbalance 

(1:20), the classification accuracy is still 88%; when the 

noise intensity is σ=0.4, the accuracy is still maintained at 

83%. In the data scenario of 10k samples and 3 modalities, 

DSVM reduces the training time by 65% compared with 

centralized SVM (1100 seconds vs. 3100 seconds). The 

existing SOTA relies on end-to-end training (CNN fusion 

requires 850s/10k samples), which is difficult to adapt to 

the resource constraints of edge devices; the integrated 

model cannot dynamically expand new modalities. 

Through the distributed SMO algorithm and vector-level 

aggregation, DSVM improves the training efficiency to 

about 1.6 times that of CNN while ensuring 

interpretability. 
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Table 1 Summary of the key indicators of this 

method 

Method 
Accura

cy 

F1 

Scor

e 

Scalabilit
y 

Computatio
nal Cost 

Interpretabil
ity 

Single-
modal 

SVM 

≤83% ≤0.72 
Not 
support

ed 

Low High 

CNN 
Fusion 

84% 
0.7

8 

Partially 

support

ed 

High Low 

Ensemb

le 
Model 

85% 
0.8

1 

Not 

support
ed 

Medium 
Mediu

m 

DSVM 
(This 

study) 

88% 0.85 
Support

ed 

Medium-

Low 
High 

 

The key indicators of this method are summarized in 

Table 1. In addition, the system shows good scalability 

and stable discrimination boundary, which further verifies 

its robustness and engineering application value. It 

provides new ideas for the engineering deployment and 

practical application of multimodal safety detection 

systems 

2 Multimodal intrusion detection 

system architecture design 
2.1 Multimodal Feature Extraction and 

Standardization 

2.1.1 Heterogeneous modal feature encoding 

strategy 

This study selects network traffic, system logs, and API 

(Application Programming Interface) calls as the primary 

data modalities, representing transmission behavior, 

system-level events, and process-level interactions. In the 

network traffic mode, the Statistical Flow Features 

Extraction method is used to quantitatively model each 

TCP (Transmission Control Protocol) and UDP (User 

Datagram Protocol) connection record. Specifically, 15 

statistical features are extracted, including average packet 

length, maximum sending interval, flow duration, number 

of direction changes, and ratio of uplink and downlink 

packets. Based on the original data dimension of a 5-tuple 

(source IP, destination IP, protocol, port, timestamp), 

features are aggregated at the data stream granularity to 

construct input vectors for behavioral analysis.The 15-

dimensional statistical features of network traffic (average 

packet length, maximum sending interval, etc.) are 

selected based on feature importance analysis: first, the 

mutual information values of all candidate features and 

attack labels are calculated, and the top 15 discriminative 

features (mutual information>0.25) are retained . 

The system log mode mainly processes text-based 

event data stored in a time series structure. To fully retain 

the semantic features of the attack behavior, the Term 

Frequency-Inverse Document Frequency (TF-IDF) 

combined with the n-gram filtering algorithm encodes the 

log content. Stop words and non-structural terms are 

removed in the text preprocessing stage, and the event 

sequence window is sliced by setting n=2~3 to obtain the 

local context expression of the attack stage. Finally, the 

vector space model maps each log event into a 128-

dimensional keyword frequency weight vector. System 

logs use TF-IDF combined with n-gram representation. 

The TF-IDF value of term 𝑡 in document 𝑑 is expressed as 

formula 1: 

TF-IDF(𝑡, 𝑑) = TF(𝑡, 𝑑) ⋅ log (
𝑁

1 + DF(𝑡)
) (1) 

Among them: TF(𝑡, 𝑑) represents the frequency of the 

term 𝑡 in document 𝑑; DF(𝑡) represents the number of 

documents in which the term 𝑡 appears in the entire 

corpus; 𝑁 is the total number of documents in the corpus; 

1 is added to prevent the denominator from being zero 

(smoothing), by setting the n-gram window (𝑛 = 2,3), 
TF-IDF is calculated in units of continuous word 

sequences. This formula converts the text modality into a 

128-dimensional sparse weight vector, retaining the 

relative importance of attack semantic clues and word 

frequency features. 

The API call mode focuses on the system call 

sequence of the user-mode or kernel-mode process within 

a specific time window. Considering the importance of 

sequence context structure to behavior discrimination, a 

bidirectional gated recurrent unit (Bi-GRU) is used to 

build an embedding model to perform sequence 

embedding modeling on each call trace. The model 

structure is set as follows: the input layer accepts a call 

sequence of length not exceeding 512, the embedding 

layer dimension is 128, the Bi-GRU hidden state 

dimension is 64, and finally, the average pooling output is 

taken in the time dimension to generate a fixed-length 

vector representation. This process retains the dynamic 

information of the call order, bidirectional dependency, 

and behavior context, and the output dimension is 128.
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Figure 1: TF-IDF heat map of system log keywords and t-SNE visualization embedding of API call sequence 

The heat map on the left side of Fig. 1 shows the TF-

IDF weight distribution of normal and attack logs on ten 

typical keywords. The weights of attack logs on high-risk 

terms such as "access denied" (0.35), "brute force" (0.40), 

and "malicious payload" (0.45) are significantly higher 

than those of normal logs, indicating that intrusion events 

have concentrated and significant abnormal characteristics 

at the semantic level. The t-SNE visualization on the right 

embeds and maps the 128-dimensional API call sequence 

into a two-dimensional space. Normal calls are mainly 

concentrated in the two clusters on the left. In contrast, 

attack calls are distributed on the right, which fully 

demonstrates the ability of this paper's multimodal fusion 

to accurately distinguish malicious activities at the log 

semantics and behavior sequence levels. 

2.1.2 Unified feature normalization and 

dimensionality reduction processing 

All extracted feature vectors are first uniformly 

normalized to solve the differences in scale and 

distribution of multimodal features. This study uses the Z-

score normalization method to process each dimension of 

the features. The implementation method is to subtract the 

mean of the training sample from each column of features 

and divide it by the standard deviation, so that the mean is 

normalized to 0 and the standard deviation is 1. This 

process is performed independently within the modality, 

ensuring that the feature structures between different 

modalities are still distinguishable while avoiding the 

problem of training instability caused by distribution shift. 

After standardization, considering the differences in the 

original dimensions of features of different modalities 

(network traffic is 15 dimensions, system logs are 128 

dimensions, and API calls are 128 dimensions), to build a 

unified input space and reduce the risk of overfitting 

caused by high-dimensional features in the modeling 

stage, this system introduces principal component analysis 

(PCA) for linear dimensionality reduction. Taking the API 

call modality as an example, the original 128-dimensional 

embedding vector is compressed to 64 dimensions through 

PCA, retaining more than 95% of the cumulative 

explained variance. During the dimensionality reduction 

process, the sample covariance matrix is calculated based 

on the standardized features, and the eigenvector is 

reconstructed based on the singular value decomposition 

(SVD) results. The high-dimensional modalities (system 

logs, API calls) are compressed to 64 dimensions, and the 

traffic modalities are expanded to 64 dimensions by zero 

padding to align the input space. The data matrix after Z-

score standardization is recorded as 𝐗̂(𝑗) ∈ ℝ𝑛×𝑑𝑗 , and its 

covariance matrix is defined as formula 2: 

𝐂(𝑗) =
1

𝑛
(𝐗̂(𝑗))

⊤
𝐗̂(𝑗) (2) 

By performing singular value decomposition (SVD) 

or eigenvalue decomposition on 𝐂(𝑗), the projection matrix 

𝐖𝑘
(𝑗)

∈ ℝ𝑑𝑗×𝑘 consisting of the first 𝑘 principal 

component vectors are obtained, and the feature 

expression after dimensionality reduction is expressed as 

formula 3: 

𝐙(𝑗) = 𝐗̂(𝑗) ⋅ 𝐖𝑘
(𝑗)

 (3) 

This step retains the main variability of the original 

data (usually, the cumulative explained variance is greater 

than 95%) and unifies the output dimensions to support 

subsequent modeling. 

After complete feature encoding and unified 

processing, all samples can be stored in the corresponding 

data nodes according to the modality. Each node saves all 

the standardized and reduced dimensionality features of a 

single modality for local modeling during subsequent 

distributed training. The encoding and standardization 

processes are completed in an offline batch processing 

flow to reduce memory consumption and communication 

burden during the training phase. Efficient NumPy matrix 

operations and scikit-learn toolkits are used to complete 

Z-score and PCA-related operations. The processing 

throughput is maintained at approximately 1,800 records 

per second. 

The above steps complete the conversion from 

original heterogeneous data to a unified trainable feature 

vector. They ensure that multimodal information is 



Distributed SVM-based Multimodal Intrusion Detection Architecture… Informatica 49 (2025) 355–370 359 

 

comparable and input consistent while retaining their 

respective structural semantics, laying the foundation for 

subsequent modal distribution mapping and local 

classifier training.When the traffic modality is compressed 

to 64 dimensions through PCA under the original 15-

dimensional features, the retained variance is 92% due to 

the redundancy introduced by feature padding; system 

logs and API calls retain 96% and 95% of the variance 

respectively after being reduced from 128 dimensions to 

64 dimensions. Although the variance of the traffic 

modality is slightly lower after compression, its feature 

redundancy indicates that retaining 64 dimensions can still 

maintain the discriminative ability. 

2.2 Distributed mapping and partitioning of 

modal data 

2.2.1 Kafka data channel construction and 

modal decoupling transmission 

To address the problem of asynchronous arrival and 

structural heterogeneity of multimodal input sources, this 

system introduces Apache Kafka as a high-throughput 

distributed messaging middleware to achieve efficient 

decoupled transmission of modal data between the 

acquisition end and the training node. First, separate 

Kafka topics are built for network traffic, system logs, and 

API calls, and each topic is bound to a unique identifier to 

ensure data path isolation between modalities. The data 

producer (Producer) is based on the time window. Each 

batch of processed standardized feature vectors is 

packaged in JSON (JavaScript Object Notation) format 

and written to the corresponding Kafka partition. The 

system defaults to 3 partition replicas for each topic to 

ensure message redundancy and high-availability 

distribution in the event of node failure. 

The data consumer is deployed on each sub-training 

node under the DSVM architecture. The Kafka client 

configuration uses the consumer group mechanism to 

ensure that each message is consumed only by its 

corresponding node to avoid information cross-talk. The 

consumption strategy is based on poll-based fetch, setting 

the maximum batch size to 512 messages and the 

maximum delay threshold to 2 seconds to ensure a balance 

between data processing and network transmission. After 

the data transmission, the consumer end caches it into the 

memory pool and sends it to the local SVM training 

pipeline in batches. To reduce the impact of network 

latency, Kafka runs in a Linux kernel optimization 

environment with zero-copy transmission enabled. The 

single-channel message transmission rate can be stable at 

more than 35,000 records per second. 

Kafka was chosen over RabbitMQ because of its 

throughput advantage and its support for partitioned 

replicas to meet the needs of multimodal data isolation. 

TFF is more suitable for federated learning scenarios than 

PyTorch Distributed because of its built-in secure 

aggregation protocol and 40% higher resource isolation of 

Docker containers (verified by CPU utilization 

monitoring). 

2.2.2 Distributed node mapping mechanism and 

training partition strategy 

To simulate a real multi-terminal deployment 

environment, this system builds a distributed training 

platform based on TensorFlow Federated (TFF), where 

each sub-node represents an independent modeling unit of 

a modality. During the deployment phase, the system 

defines a separate TFF sub-client environment for each 

modality and starts three logical nodes: traffic node, log 

node, and call sequence node. Each client runs in an 

independent Docker container and is bound to different 

virtual CPU (Central Processing Unit) cores and 4GB of 

memory resources to ensure resource isolation in the 

distributed training process. The data between nodes is 

entirely independent, and the original features or 

intermediate gradient information are not shared at any 

stage, which meets the data isolation requirements in edge 

computing scenarios. 

The node-side SVM training task is based on the 

locally received Kafka data; the SMO method is used to 

optimize the intra-modal data's boundary function 

independently. The number of local iterations is set to 

1000 per round of training, the tolerance error threshold is 

set to 1e-3, and the RBF kernel function is used to handle 

nonlinear boundary situations. After the training, each 

node marks and filters the valid support vectors obtained 

from the local training, removes redundant vectors whose 

boundary distance exceeds the threshold, and retains only 

the key support vectors that play a decisive role in the 

classification decision. 

After the mapping is completed, all training nodes 

communicate synchronously through the TFF server, and 

all local support vectors are transmitted to the central 

scheduler as floating-point tensors. The transmission 

protocol is based on the gRPC (Google Remote Procedure 

Call) framework, using TLS (Transport Layer Security) 

encrypted channels and enabling maximum bandwidth 

limits. The number of support vectors exchanged each 

time is controlled within 300. Through this distributed 

mapping and communication mechanism, the system 

completes the modal partition closed-loop processing flow 

from data distribution, local training, and global modeling. 

Ultimately, the modal mapping mechanism ensures 

the complete isolation of heterogeneous data sources in 

the processing path, and also realizes data parallelization 

and computational decoupling in the training phase 

through the distributed architecture composed of Kafka 

and TFF. This significantly reduces the system's latency 

overhead and communication load, providing a stable 

input basis for subsequent global classifier reconstruction 

and support vector merging.
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Figure 2: Distributed multimodal SVM training process 

Fig. 2 shows the distributed multimodal SVM training 

process: network traffic, system logs, and API call data are 

written to three Kafka topics in JSON format, and three 

copies are retained for each topic. The three TFF client 

groups running in the Docker container pull data from the 

corresponding Kafka topics, perform local feature 

extraction and SVM training, filter the support vectors, 

and send them to the central TFF server via an encrypted 

gRPC/TLS channel. The server aggregates the support 

vectors of each node and builds a global SVM classifier to 

achieve unified cross-modal decision making. 

2.3 Local SVM model training and support 

vector screening 

2.3.1 Local SVM construction and SMO 

solution process 

In the distributed architecture of multimodal intrusion 

detection systems, each subnode needs to build a local 

classification model for its independent modal feature 

space. In this study, the local SVM in the LibSVM 

framework uses a linear kernel to accelerate convergence, 

while the global model uses the RBF kernel to achieve 

cross-modal nonlinear fusion, combined with the high-

dimensional sparse characteristics of the internal features 

of the modalities, while maintaining the analytical 

properties of the classification boundary and controlling 

the computational complexity. During the training 

process, the SMO algorithm is used to efficiently 

iteratively solve the Lagrange multiplier and optimize the 

objective function. The algorithm selects two variables for 

analytical update in each iteration, avoiding the resource 

consumption of matrix inversion operations in traditional 

quadratic programming, and adapting to the deployment 

requirements of edge nodes with limited computing 

resources in a distributed environment. 

The maximum number of iterations of the training 

task is 100 rounds, and the tolerance error threshold is 1e-

3. The regularization parameter C is set to 10 to strengthen 

the penalty for training errors and ensure that the model 

can distinguish when identifying attack behaviors. To 

accelerate convergence, the training data must meet two 

conditions: first, the order is randomly shuffled according 

to the modal characteristics; second, the mini-batch 

mechanism is used, with 128 samples per batch. In 

addition, the LibSVM cache size is set to 100MB, and the 

shrinking heuristic algorithm is enabled to automatically 

remove inactive variables to reduce the amount of 

calculation. 

After the training, each local model generates a set of 

support vectors. The support vector is automatically 

determined through the model training process, that is, the 

sample points where the Lagrange multiplier α of the 

objective function is between 0 and C. These samples are 

near the classification hyperplane and directly impact the 

decision function. Considering the differences between 

modal features, to avoid the impact of uneven dimensions 

or redundancy when unifying the fusion model, each 

modal node needs to complete a support vector reduction 

process locally.
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Figure 3: Convergence curve of the SMO algorithm and comparison of the number of support vectors before and after 

reduction 

In the left sub-graph of Fig. 3, the horizontal axis 

represents the number of iterations of the SMO algorithm 

(1-200 rounds), and the vertical axis represents the 

training error. The three curves correspond to the 

convergence process of traffic, log, and API modes, 

respectively. The error of the traffic mode drops to 0.04 at 

about 50 iterations and remains stable. The log mode 

reaches the same threshold at about 70 iterations, while the 

API mode stops converging at about 90, reflecting the 

difficulty of training different modal features. In the 

horizontal bar chart on the right, the vertical axis is the 

name of the three modes, and the horizontal axis is the 

number of support vectors. The original support vectors 

are Flow 300, Log 250, and API 280. After pruning, the 

retention ratio is 20%, corresponding to 60, 50, and 56 

support vectors. This dramatically reduces the model 

complexity and verifies the effectiveness of Distance-

based Vector Pruning in reducing global fusion overhead. 

2.3.2 Distance-constrained support vector 

screening mechanism 

To improve the collection performance and structural 

compactness of the global fusion model, this study 

introduced the Distance-based Vector Pruning Algorithm 

(DVPA) after the training of each local node was 

completed, and performed basket selection sorting 

according to the Euclidean distance between the support 

vector and the decision boundary. First, for each support 

vector sample 𝑥𝑖, calculate its projection distance on the 

classification hyperplane, which is determined by the 

trained weight vector and the bias term. Without sharing 

the original data, each node calculates the function value 

of each support vector based on the local model weight 𝑤 

and intercept 𝑏, as shown in Formula 4: 

𝑓(𝑥𝑖) = 𝑤𝑇𝑥𝑖 + 𝑏 (4) 

Then the absolute distance |𝑓(𝑥𝑖)|/‖𝑤‖ is obtained 

as the basis for sorting. 

After all local support vectors are sorted from small 

to large by distance, the first k% support vectors closest to 

the boundary are retained as valid samples and passed into 

the global model-building process. In this study, the k 

value is set to 20% based on the modal sample distribution 

and support vector density, that is, only the top 20% of the 

most discriminative support vectors are retained for each 

modality to minimize the interference of redundant data 

on the boundary judgment of the fusion model. This step 

reduces the communication load during model 

synchronization, minimizes the complexity introduced by 

the number of support vectors to subsequent classifier 

training, and improves the overall execution efficiency of 

the system. Assume that the local support vector set is 

𝒮𝑙𝑜𝑐𝑎𝑙 = {𝐱1, … , 𝐱𝑁}. According to the sorting result, only 

the samples in the first 𝑘% are retained to enter the 

synchronization process, as shown in Formula 5: 

𝒮𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = {𝒙𝑖 ∈ 𝒮𝑙𝑜𝑐𝑎𝑙 ∣ 𝑅𝑎𝑛𝑘(𝐷(𝒙𝑖)) 

≤ ⌊𝑘 ⋅ 𝑁⌋}, 𝑘 = 0.2 
(5) 

Among them, rank(𝐷(𝐱𝑖)) represents the ranking 

after sorting by 𝐷, and ⌊⋅⌋ represents rounding down. 

 

Table 2: Performance trade-offs of different support 

vector retention ratios 

Data 

Retention 

Rate 

Accuracy 

(1:20) 

Training 

Time (s) 

Number 

of Support 

Vectors 

10 

0 % 
90% 480 300 

50% 89% 310 150 

20% 88% 220 60 

 

The performance trade-offs of different support 

vector retention ratios are shown in Table 2. Screening 

20% of the key vectors only reduces the accuracy by 2%, 

but the training time is reduced by 54%, which proves the 

high efficiency of the DVPA mechanism. 

After the support vector screening is completed, each 

child node encodes the selected valid vector in the index + 
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feature vector + label structure format, and synchronizes 

it to the global center through an encrypted channel. 

The feature vector accuracy is maintained as a 32-bit 

floating-point type to ensure the calculation accuracy is 

maintained without significantly increasing the 

communication load. Throughout the process, the data is 

not desensitized or converted into a reversible form, which 

meets the privacy protection requirements under multi-

source heterogeneous data processing. 

Through the dual strategies of local modeling and 

boundary fine screening, the system effectively controls 

the scale and complexity of the global model by ensuring 

the modality's internal accuracy and establishes structural 

prior constraints for the subsequent support vector 

merging and global decision function optimization. 

2.4 Support vector aggregation and decision 

fusion 

2.4.1 Global support vector integration 

mechanism 

The system enters the global modeling stage after 

screening local support vectors for each modality. All 

participating nodes send the support vectors optimized by 

distance constraints to the central fusion node through a 

preset encrypted channel. Each group of support vectors is 

encapsulated as a triple: index number, feature vector 

(normalized), and original label. Data transmission uses 

the TLS 1.3 protocol to prevent data leakage and man-in-

the-middle attacks during transmission. At the same time, 

node signature information is attached to each data packet 

to ensure source verifiability and compliance tracking. 

After the fusion node receives the support vectors 

uploaded by all modal child nodes, the Distributed SVM 

Aggregation with Weighted Voting strategy is used to 

construct the global classification model. First, for each 

modality's support vector set, the system evaluates its F1 

score on the local validation set as the voting weight 

indicator of the modality. This weight is used to measure 

the reliability of different modalities in attack behavior 

recognition, and the weight coefficient is normalized and 

used for sample-weighted allocation during the global 

training process. Subsequently, the fusion node constructs 

a unified training set for the training of the global SVM 

model by fully splicing all support vectors. In this stage, 

the modal source is no longer distinguished, and the cross-

modal generalization ability of the model is improved by 

unifying the discrimination boundary. 

The global model training uses a nonlinear kernel 

function to improve the discrimination ability of complex 

attack samples. The Radial Basis Function (RBF) kernel 

function is selected, and its form is as shown in Formula 

6: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝⁡ (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) (6) 

The value of γ is optimized through five-fold cross-

validation. In the experiment, γ is initially set to 0.05 and 

fluctuates between 0.01 and 0.1. The regularization 

parameter C is set to 100 to increase the penalty for 

classification errors and improve the model's sensitivity to 

boundary samples. The introduction of the RBF kernel 

function effectively solves the problem of discriminant 

overlap that may occur after the fusion of linearly 

inseparable modal data. It improves the model's 

robustness to boundary deformation. 

The fusion node uses the implementation of RBF 

kernel support in LibSVM to build a global SVM model. 

It enables the automatic class weight adjustment function 

(class_weight='balanced') to alleviate the imbalance 

between attack and normal samples. All training samples 

are filtered support vectors, and the input dimension is in 

the 64-dimensional unified space after PCA compression 

defined in Section 2.1 to maintain feature scale 

consistency. The global training sets the maximum 

iteration round to 1000, uses the epsilon precision 

termination standard, the error limit is 1e-4, and cache 

optimization is enabled. The cache space is allocated to 

200MB to ensure the convergence speed of the model in 

the batch support vector fusion scenario. 

The optimization of the γ parameter of the five-fold 

cross validation shows that when γ=0.05, the standard 

deviation of the test set is the smallest (σ=0.008), while 

the fluctuation increases when γ=0.1 (σ=0.023). The 

difference in accuracy between folds with regularization 

parameter C=100 does not exceed 1.5%, indicating the 

robustness of the model. Finally, γ = 0.05 was selected as 

the balance point, and its validation loss was lower than 

the mean of 1.98σ. 

2.4.2 Multimodal majority voting decision 

fusion mechanism 

In addition to building a unified global model, to enhance 

the system's fault tolerance in actual deployment to deal 

with modality loss, abnormal node offline, and other 

situations, this paper introduces the majority voting 

mechanism as an auxiliary decision process. This 

mechanism does not directly rely on the output of the 

fusion model, but rather integrates parallel decisions based 

on the independent prediction results of each modality 

sub-model. After receiving the sample to be tested, each 

sub-node outputs an independent binary classification 

label based on its trained model. After the central node 

collects the label results of all modalities, the final 

classification decision is determined based on the majority 

principle. If two of the three modalities are consistent, the 

majority class label is directly adopted; if the prediction 

results of the three are inconsistent, the modal output with 

the highest local accuracy is adopted first. 

The weights introduced by the voting mechanism are 

also dynamically updated based on the performance of 

each node's validation set. Assume that the accuracy of 

each modal local model on the independent validation set 

is 𝑎𝑐𝑐1, 𝑎𝑐𝑐2, 𝑎𝑐𝑐3, then the corresponding weighted 

voting value is formula 7: 

𝑤𝑖 = 𝑎𝑐𝑐𝑖/∑⁡𝑎𝑐𝑐𝑗 (7) 

The fusion node uses this weight to weight the 

prediction results in the voting process, and uses the 

threshold of 0.5 as the final decision boundary. This 

method enhances the stability of the system in complex 

scenarios such as heterogeneous modalities and 
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incomplete data, and can provide more robust recognition 

capabilities when the attack sample category distribution 

is highly uneven. Under the complete modality, the 

accuracy of RBF-SVM (88%) is better than voting (85%); 

but when one modality is lost, the accuracy of the voting 

mechanism only drops by 2.1%, while that of RBF-SVM 

drops by 5.8%. In addition, in the scenario of class 

imbalance (1:20), the F1 score stability of the voting 

mechanism (σ=0.015) is better than that of the RBF kernel 

(σ=0.032). 

Finally, the system retains the RBF kernel fusion 

model output and the majority voting result. In static 

detection scenarios, the global SVM model output is used 

first; in dynamic or incomplete node deployment 

scenarios, it switches to majority voting decision. This 

dual-channel discrimination system has both high 

accuracy and system robustness.

 

Figure 4: Dual-channel decision architecture for multimodal intrusion detection 

Fig. 4 shows the dual-channel decision architecture 

for multimodal intrusion detection: the three-modal 

support vectors are transmitted to the aggregation center 

via TLS encryption, weighted concatenation is performed 

by normalizing the local F1 scores, and the global SVM 

model is constructed by optimizing the RBF kernel 

parameters using five-fold cross-validation. The parallel 

majority voting mechanism dynamically weights the 

modal accuracy, prioritizes global model output in static 

scenarios, and switches to weighted voting when nodes are 

abnormal. Dual-channel fusion ensures high-security 

transmission (digital signature verification), complex 

attack identification (nonlinear kernel function), and 

dynamic environment robustness, balancing detection 

accuracy and system fault tolerance. 

2.5 Dynamic modal increment and update 

mechanism 

2.5.1 Rapid modeling and embedded expansion 

of new modalities 

For new data modalities that may be connected during 

system operation (from new terminals, unknown sensors, 

etc.), the platform adopts an online support vector learning 

mechanism based on kernel approximation to achieve 

rapid integration and avoid destroying the existing local 

and global model structures that have been stably trained. 

During the access phase of a new modality, the system 

independently allocates a temporary subnode for it and 

immediately uses the Online SVM with Kernel 

Approximation method for preliminary modeling.  
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This method uses the Nyström method to perform low-

rank approximation on the kernel function, effectively 

reducing the complexity of matrix operations during 

online training. The number of sampled basis vectors in 

the Nyström approximation is 15% of the original number 

of samples, and the maximum sample limit is 2,000 to 

ensure low-latency deployment performance. The kernel 

function continues to use the RBF kernel consistent with 

the fusion model. Its parameter γ is obtained by online 

fitting using the local holdout method, and its initial value 

is set to 0.05. Suppose the original training sample is 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛} ∈ ℝ𝑛×𝑑, from which 𝑚 ≪ 𝑛 basis vectors 

are sampled to form a subset 𝑍 = {𝑧1, … , 𝑧𝑚}, and the 

RBF kernel function is Formula 8: 

𝐾(𝑥, 𝑧) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥 − 𝑧 ∥2) (8) 

The Nyström kernel is approximately expressed as 

Equation 9: 

𝐾(𝑋, 𝑋) = 𝐾𝑋,𝑍𝐾𝑍,𝑍
−1𝐾𝑍,𝑋 (9) 

𝐾𝑋,𝑍 ∈ ℝ𝑛×𝑚 is the kernel matrix between 𝑋 and the 

sampling point 𝑍; 𝐾𝑍,𝑍 ∈ ℝ𝑚×𝑚 is the kernel matrix of the 

sampling point itself; this approximation reduces the 

original kernel matrix from 𝒪(𝑛2) to 𝒪(𝑛𝑚). Without 

retaining all samples, the Online SVM can update the rule 

(recursive) for each new sample (𝑥𝑡 , 𝑦𝑡), the online SVM 

adopts the following recursive optimization, as shown in 

Formula 10: 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 ⋅ (𝛻ℒ(𝑤𝑡; 𝑥𝑡 , 𝑦𝑡) + 𝜆𝑤𝑡) (10) 

Among them, 𝜂𝑡 is the step learning rate; 𝜆 is the 

regularization coefficient; ℒ is the loss function after 

kernel approximation transformation; this update rule 

supports recursive convergence over time while 

maintaining the sparsity of the model. 

During the online training, the system updates the 

model parameters in a sample-by-sample recursive 

manner without retaining the full sample cache. To 

alleviate the interference of class imbalance on the model 

boundary, the training process continuously monitors each 

batch's classification error change rate. If the deviation 

between the new sample category and the existing sample 

ratio exceeds 20%, the category loss weight coefficient of 

the modal node is dynamically adjusted. The training 

termination condition is that the error change rate of three 

consecutive sample batches is less than 1e-3 or the number 

of iterations reaches 200 rounds. This strategy ensures that 

the initial modeling of the new modality has basic 

discrimination capabilities and a kernel expression 

consistent with the original modality model, laying a 

foundation for subsequent dimensionality reduction and 

fusion. 

After the new modality modeling is completed, the 

system automatically synchronizes the modality's support 

vector space and label structure and marks the node into 

the "fusion candidate" state, waiting for the subsequent 

global model update process to be activated. 

Nyström modeling latency is 1.8s (vs. 28s for global 

retraining), with an initial accuracy of 78% (up to 83% 

through 3 rounds of incremental updates). iPCA triggers 

retraining every 72 hours (when the cumulative variance 

drops to 93%), and memory usage is stable at 1.8GB, 42% 

lower than full PCA . 

The update process of incremental PCA: First, 

calculate the covariance matrix of the new modal feature, 

merge it with the historical principal component matrix, 

perform singular value decomposition, dynamically adjust 

the principal component weights, and finally generate a 

unified 64-dimensional feature space. This process uses a 

sliding window mechanism to keep the cumulative 

variance > 95% to ensure feature consistency after 

dimensionality reduction. 

2.5.2 Incremental dimensionality reduction and 

local update of fusion model 

To maintain cross-modal feature consistency and avoid 

retraining all modal dimensionality reduction models due 

to the access of new modalities, the system uses the 

Incremental PCA (iPCA) method to expand the original 

principal component space dynamically. iPCA achieves 

uninterrupted feature compression update by performing 

simultaneous singular value decomposition of the current 

sample covariance matrix and the historical principal 

component matrix. In specific operations, the system 

maintains the 64-dimensional dimension reduction target 

unchanged, but dynamically evaluates the cumulative 

variance explanation of the first 10 principal components 

for each round of updates. Suppose the explanation of the 

first 10 principal components decreases by more than 5% 

due to differences in new modal features. In that case, the 

system can perform a sliding window backtracking of the 

historical feature matrix and expand the principal 

component set to retain the principal axis information with 

a total explanation of more than 95%. The covariance 

matrix cache size used in iPCA is capped at 4096 samples, 

and updates are loaded in batches to keep memory 

overhead within 2 GB. 

After completing the iPCA update, the new modality 

support vectors are projected into a unified feature space 

and fed into the fusion update module. The system 

introduces the Local Support Vector Adjustment (LSVA) 

mechanism to avoid global model retraining, which 

adjusts the fusion model parameters only for the new 

modality-related support vector subset. In the specific 

operation, the system identifies the decision boundary 

points in the global model that are most affected by the 

new modality, that is, all support vector samples whose 

distance to the new modality support vector is less than the 

preset threshold δ (set to 0.3) and whose classification 

direction is opposite, and marks them as the set to be 

updated. This update set is locally retrained under the RBF 

kernel, and only the weight parameter α and the bias term 

b are fine-tuned, keeping the rest of the parameter 

structure stable. During the training process, a local 

gradient descent optimizer is used, and the learning rate is 

set to 0.01 to ensure that the fusion model fine-tuning is 

completed within 2 seconds. 

At the same time, to maintain the effectiveness of the 

voting mechanism, the system synchronously records the 

accuracy of the new modality sub-model on the 

incremental validation set. It incorporates it into the next 

round of majority voting weight update. Suppose the 

accuracy of the modal sub-model for three consecutive 
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window periods is lower than the average performance 

standard of the original system (set to 92%). It cannot be 

included in the fusion vote for now; it can only be used for 

model evaluation monitoring. This dynamic fusion 

strategy ensures the scalability of the system structure and 

significantly reduces the resource consumption and 

structural instability risks caused by model reconstruction. 

The system achieves flexible access to unknown 

modes, seamless structural expansion, and performance 

consistency maintenance through the above mechanism. 

In multi-source network attack scenarios, it is particularly 

suitable for automatic adaptation requirements when 

facing new attack methods or newly deployed security 

nodes, ensuring that the DSVM framework has long-term 

evolvability and deployment flexibility. 

3 Evaluation and analysis of the 

model 
This study uses a multimodal intrusion detection dataset 

that combines synthetic and public data. The network 

traffic contains 300,000 TCP/UDP connection records, 

each extracting 15-dimensional statistical features; the 

system log simulates the Linux security log, and 20,000 

events are mapped to 128-dimensional vectors by TF-IDF. 

The API call sequence generates 5,000 samples based on 

the real behavior trajectory and is encoded into 128 

dimensions by Bi-GRU. The three-modal samples are 

mixed in an unbalanced ratio of 1:5:20. The labels are 

divided into normal and attack categories, which are used 

to evaluate the performance of the unimodal SVM and 

DSVM global models under different distribution and 

noise conditions. The experimental data is synthesized 

based on CIC-IDS2017 (traffic), Linux Syslog (log) and 

UNM behavior dataset (API call), and all preprocessing 

codes have been open source (GitHub link). 

Hyperparameter search range: SMO iteration number 

[100,1000], PCA dimension [32,64,128], RBF γ 

[0.01,0.1], and the optimal value is determined by grid 

search. 

3.1 Model classification accuracy 

This indicator measures the system's ability to recognize 

normal and abnormal behaviors. In the evaluation, the 

prediction results of the SVM model are trained separately 

for each modal input, and the fused DSVM global model 

is statistically analyzed to calculate the discrimination of 

each type of sample. All test samples are input into the 

system one by one, and the predicted labels are compared 

with the actual labels, and the number of samples 

classified correctly and incorrectly is counted. The final 

result shows whether multimodal fusion improves the 

overall recognition effect, especially the performance in 

the scenario of unbalanced sample distribution.

 

Figure 5: Comparison of classification accuracy of each model under different imbalance scenarios 

The horizontal axis in Fig. 5 represents three sample 

distribution scenarios - Balanced (1:1), Mild Imbalance 

(1:5), and Severe Imbalance (1:20), and the vertical axis 

represents the classification accuracy of each model in the 

corresponding scenario. As the imbalance increases, the 

accuracy of the unimodal model decreases significantly, 

with the flow SVM dropping from 0.88 to 0.83, the log 

SVM dropping from 0.85 to 0.79, and the API SVM 

dropping from 0.80 to 0.75. At the same time, the DSVM 

remains at high levels of 0.92, 0.90, and 0.88. This shows 

that the global model constructed by multimodal support 

vector aggregation still has excellent robustness and 

overall recognition ability when facing severely 

imbalanced data. 

3.2 Model F1 score 

This indicator is used to comprehensively evaluate the 

accuracy and coverage of the model in identifying 

abnormal behaviors. In the experimental process, the 

frequency of each type of attack sample being correctly 
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identified and the proportion of samples misidentified as 

other types are recorded separately and combined with the 

recall rate for comprehensive evaluation. Weights are set 

for high-risk attack types to reflect the system's ability to 

respond to key threats. By comparing the individual 

recognition results of each modality with the fusion 

recognition results, it is evaluated whether the multimodal 

structure improves the effectiveness and consistency of 

anomaly detection.

 

Figure 6: F1 scores of different models under five types of attacks 

Fig. 6 shows the F1 scores of different models under 

five types of attacks. The horizontal axis is the attack type, 

including DoS (Denial of Service), Ransomware, 

Backdoor, Data Theft, and Botnet, and the vertical axis is 

the F1 value. The fusion model DSVM outperforms the 

single-modal model in all attacks, especially in 

Ransomware and Backdoor detection, where the F1 scores 

reach 0.85 and 0.83, respectively, significantly higher than 

the 0.70 and 0.67 of API-SVM. In the Data Theft scenario, 

which is more difficult to identify, DSVM still maintains 

a score of 0.80, showing its good generalization ability. 

The overall results show that multimodal fusion 

significantly improves the stability and accuracy of the 

model in abnormal behavior identification. 

3.3 Inter-modal fusion efficiency 

This indicator focuses on the change in overall 

training efficiency after the model adopts a distributed 

structure. In the test process, the total time required to train 

the SVM model and the parallel training time under the 

DSVM architecture are counted separately, and the 

training data scale is controlled to be consistent with the 

number of modalities. The fusion efficiency is reflected in 

the time reduction ratio of the training process, reflecting 

the system's parallel processing capability and 

deployability under multi-source data. The results 

evaluate whether DSVM has engineering feasibility in real 

application scenarios. 

 

 

Figure 7: Multimodal fusion efficiency: the impact of data scale and number of modalities 



Distributed SVM-based Multimodal Intrusion Detection Architecture… Informatica 49 (2025) 355–370 367 

 

In Fig. 7, the horizontal axis is the number of 

modalities (1, 3, 5), and the vertical axis is the training 

time (seconds). The three sample sizes are shown in three 

sub-figures. As the number of samples increases from 1k 

to 10k and the number of modalities expands from 1 to 5, 

the training time of the centralized SVM increases from 

80s to 3100s, while the DSVM only increases from 50s to 

1100s. The training time of Bi-GRU and CNN 

(Convolutional Neural Network) models increases with 

the number of modalities, from 120 seconds to 650 

seconds and from 150 seconds to 850 seconds, 

respectively. It is higher than DSVM in small-scale data, 

but lower than DSVM in large-scale scenarios (10,000). It 

is always significantly lower in large-scale scenarios than 

centralized SVM, showing a good balance between 

efficiency and scalability. 

3.4 Model scalability index 

This index measures the system's adaptability to new 

modalities and its recognition stability during expansion. 

In the experimental design, new data modalities such as 

host behavior sequences or device logs are introduced one 

by one, and the response changes of the system without 

retraining are evaluated. The discriminant fluctuations of 

the global classifier, the update of the support vector, and 

the changes in the decision confidence are observed to 

determine whether the new modalities cause system 

performance degradation. The results can be used to 

quantify the stability of the system's modular structure 

during continuous evolution.

Table 3: Scalability performance under different numbers of modes 

Number of Modalities Global Classification Accuracy Decision Confidence Std 

1 0.9 0.05 

2 0.89 0.055 

3 0.88 0.06 

4 0.87 0.065 

5 0.85 0.066 

 

Table 3 shows the scalability performance of the 

system under different numbers of modalities. As the 

number of modalities increases from 1 to 5, the global 

classification accuracy gradually decreases from 0.90 to 

0.85, and the standard deviation of decision confidence 

slowly increases from 0.050 to 0.066. Although 

multimodal fusion brings about an increase in information 

dimension, the overall recognition performance of the 

system remains at a high level with a slight fluctuation. 

This shows that the proposed distributed SVM fusion 

architecture still has good stability and controllability 

when the number of modules is expanded, and has strong 

horizontal scalability. 

3.5 Model discrimination boundary stability 

This indicator evaluates the system's ability to maintain 

stable classification boundaries when facing data 

perturbations or changes in sample distribution. In the 

experimental process, different degrees of input 

perturbations and modal noise are introduced to observe 

the changes in the support vector sets of each local model 

and monitor the degree of deviation of the global SVM 

classification boundary. Comparing the consistency of 

classification results under multiple disturbance 

conditions can indirectly reflect whether the model 

structure has anti-disturbance ability and robustness, 

which is significant for continuous adaptation in security 

scenarios.

Table 4: Stability of the judgment boundary of the model under different noise disturbance intensities 

Noise Level σ Boundary Parameter Shift ‖Δ(w,b)‖ Classification Consistency (Accuracy) 

0 0 0.92 

0.1 0.12 0.91 

0.2 0.245 0.89 

0.3 0.38 0.86 

0.4 0.6 0.83 

 

Table 4 reflects the stability of the model's 

discrimination boundary under different Gaussian noise 

intensities (σ). As the input noise standard deviation 

increases from 0.00 to 0.40, the boundary parameter offset 

rises from 0.000 to 0.600. Still, the classification 

consistency only decreases from 0.92 to 0.83, which 

means that even under noise conditions of up to 40%, the 

system can still maintain an accuracy of more than 83%. 

When σ=0.20, the offset is only 0.245, and the accuracy is 

still 0.89, which further verifies the robustness of the 

DSVM framework against data perturbations and its 

reliability in security scenarios. 

In addition, under severe imbalance (1:20), the false 

positive rate (FPR) of DSVM is 4.2% and the false 

negative rate (FNR) is 13.5%. Compared with Bi-GRU 

(FPR 7.1%, FNR 22.3%), it has obvious advantages. In 

terms of time complexity, the training time of DSVM O(n) 

slope (0.11s/100 samples) is significantly lower than that 

of centralized SVM (O(n²), slope 0.83s/100 samples). 

3.6 Discussion of Evaluation Results 
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88 % classification accuracy in the 1:20 severely 

unbalanced data scenario, significantly outperforming the 

single-modal SVM (up to 83%) and CNN fusion methods. 

This advantage stems from its unique mechanism design: 

the support vector pruning mechanism effectively reduces 

noise interference and model redundancy by screening the 

20% most discriminative boundary vectors, and improves 

the robustness of the decision boundary; the distributed 

SMO optimization greatly improves the local training 

efficiency, speeding up by 3 times compared with the 

centralized method, significantly alleviating the 

computational bottleneck of large-scale multimodal data; 

the modality plug-in design realizes the seamless access of 

new modalities, and the model update delay is controlled 

within 2 seconds, ensuring the adaptability of the system 

in a dynamic environment. The synergy of these 

technologies not only solves the problems of high 

dependence on labeled data and low efficiency of edge 

devices in traditional methods, but also highlights the core 

innovation of DSVM: the first innovative modality plug-

in mechanism supports incremental PCA to dynamically 

expand the feature space; the combination of distributed 

SMO and vector aggregation effectively avoids the 

memory explosion of multimodal data; the boundary 

distance screening further enhances the generalization 

ability of the global model, providing an efficient and 

scalable solution for intrusion detection systems. 

4 Conclusions 
This paper proposes and implements a multimodal 

intrusion detection system based on DSVM. The system's 

concurrent performance and detection accuracy are 

effectively improved through Kafka asynchronous 

pipeline, TFF distributed training architecture, local SVM 

modeling and support vector pruning, global fusion, and 

dynamic modal update mechanism. This method achieves 

asynchronous decoupling and parallel processing of data 

between modalities. It significantly reduces model 

complexity and global update overhead by optimizing 

support vector screening and incremental fusion. 

However, the current system relies on manual setting of 

some threshold parameters, and its adaptability is still 

limited when facing highly dynamic attack features. 

Future research can focus on introducing reinforcement 

learning optimization feedback mechanisms to achieve 

self-evolution adjustment of model structure and 

parameters, and further improve the intelligence and 

adaptability of the system. The current system relies on 

manually set pruning threshold (k=20%) and iPCA update 

condition (variance reduction>5%). In the future, dynamic 

thresholds can be optimized through reinforcement 

learning: for example, the k value can be automatically 

adjusted based on the current modal distribution offset, or 

iPCA retraining can be triggered in combination with the 

loss change rate of the online validation set. Such methods 

have been successfully applied in IoT anomaly detection 

and can improve the system's adaptability to dynamic 

attack patterns. 
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