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Multimodal data differ significantly in temporal granularity, structural features, and semantic levels,
which leads to difficulties in fusion, weak generalization ability, and low training efficiency. To this end,
this paper introduces the Distributed Support Vector Machine (DSVM) architecture to construct modal
local models separately, and achieve unified decision-making through support vector aggregation to
improve system efficiency, scalability, and adaptability to heterogeneous data. The system first extracts
statistical features, keyword features, and time series patterns from network traffic, system logs, and
behavior sequences, then uses standardization and PCA (Principal Component Analysis) to reduce the
dimension of the features. Then, the different modal data are distributed and mapped to each computing
node. The local SVM (Support Vector Machine) model is deployed independently and trained using the
SMO (Sequential Minimal Optimization) algorithm, and the boundary distance screens the effective
support vector. All local support vectors are uploaded to the DSVM central node, the RBF kernel function
is used to reconstruct the global classifier, and the final decision is made through majority voting. In
addition, the system designs a modality plug-in mechanism to support the access of new modalities, and
realizes rapid model updates and dynamic adjustment of support vectors based on incremental SVM.
Experiments show that the DSVM system has superior performance in multimodal data fusion: the
classification accuracy is still 88% under severe imbalance (1:20); the accuracy is maintained at 83%
when the noise intensity 6=0.4, the fusion training efficiency is significantly improved compared with the
centralized SVM. The system has excellent scalability and discrimination boundary stability, which
verifies its robustness and engineering practicality.

Povzetek: Clanek predstavi DSVM arhitekturo za multimodalno zaznavanje vdorov: lokalni SVM-ji po
modalitetah, izbira podpornih vektorjev in globalni RBF kiasifikator z vecinskim glasovanjem. Vikljucuje

inkrementalno ucenje in razsirljivost modalitet.

1 Introduction

Cyber-attack methods continue to evolve, and attackers
continue using multi-source information to construct
attack paths collaboratively, resulting in the complexity of
the feature dimensions of intrusion events and the
diversification of their manifestations. In traditional
single-modal intrusion detection frameworks, the system
often relies only on single-dimensional feature data, such
as packet behavior in network traffic, event records in host
logs, or user behavior sequences [1], [2], [3]. Although
this design approach reduces the implementation cost and
deployment difficulty of the model, its ability to identify
complex attack behaviors is extremely limited. Especially
in the face of advanced threat scenarios such as hybrid
attacks, zero-day attacks, and persistent threats, the model
recognition rate drops significantly, and false positives
and missed negatives occur frequently. Such systems rely
too much on contextual clues from a single information
source and cannot form a multi-angle joint identification
mechanism [4], [5]. As a result, the detection range is

limited, the attack pattern recognition is incomplete, and
the policy response is delayed.

In recent years, multimodal intrusion detection
systems have been widely studied. Such systems attempt
to model and identify intrusion behaviors from multiple
levels by integrating information sources from different
dimensions, such as network layer data, host layer logs,
and behavior layer call sequences. This structure
significantly enhances the system's attack perception
breadth and accuracy, especially in behavior correlation
analysis and abnormal behavior identification  [6].
Researchers have conducted extensive explorations in
multimodal feature extraction, semantic association, and
time series modeling, using natural language processing
technology to process system log text, using convolutional
networks to extract traffic patterns, and introducing graph
neural networks to analyze behavior dependencies [7], [8],
[9]. Although relevant research has progressed, key
challenges are still faced in the unified modeling of
multimodal data.
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The core problem lies in the difficulty of fusion caused by
the heterogeneity of data between modalities [10], [11].
Network traffic presents high-frequency and sparse
temporal characteristics, log data is semi-structured text,
and user behavior is primarily high-dimensional time
series. Their different time windows, significant
differences in structural distribution, and inconsistent
semantic levels [12], [13] seriously affect the
effectiveness of feature alignment and fusion strategies.

To alleviate the above problems, researchers have
introduced various deep learning models for feature
fusion, such as deep autoencoders, multi-channel
convolutional neural networks, attention mechanisms, and
adversarial generative networks. These methods jointly
encode different data types through multimodal input
terminals and construct a shared latent semantic space,
thereby  achieving information  aggregation  of
heterogeneous modalities to a certain extent. Related
results have certain advantages in improving accuracy
[14], [15], but key technical bottlenecks remain. First, this
type of deep model relies on many labeled samples for
end-to-end training. In actual industrial environments, the
problems of uneven sample distribution and high labeling
costs have not been effectively solved [16]. Second, deep
models consume large amounts of computing resources
and have long training cycles, making them unsuitable for
deployment in edge environments with limited computing
resources. In addition, such models have serious
interpretability issues, and security operations personnel
find it difficult to understand the model discrimination
logic, which is not conducive to traceability analysis and
response decision-making [17], [18]. Although the deep
fusion method performs well in terms of accuracy
indicators, it has shortcomings regarding system response
speed, deployment portability, and model robustness.The
core hypothesis of this study is that the multimodal
intrusion detection system based on the DSVM
architecture can achieve dynamic modal expansion
(global accuracy fluctuation <5% after adding a new
modality) and noise robustness (accuracy >80% when
0=0.4) through distributed training and support vector
aggregation while maintaining high accuracy (accuracy
>85% in unbalanced scenarios). Specific research
questions include: (1) How to alleviate the modal
heterogeneity problem through local model decoupling
training? (2) Can support vector pruning and incremental
update mechanisms maintain the stability of the
discrimination  boundary  while  reducing the
computational load? (3) Does the performance of DSVM
significantly outperform the deep learning baseline in
unbalanced data and noisy environments?

In response to the above problems, some studies have
focused on lightweight and modular modeling strategies,
hoping to build a more controllable and adaptable
intrusion detection framework. Among them, SVM has
been widely used in intrusion detection scenarios due to
its excellent small sample learning ability, strong
interpretability, and fast convergence speed [19], [20].
However, when faced with large-scale multimodal data,
the traditional SVM model's memory overhead and
computational complexity increase rapidly, and it cannot
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be effectively expanded in distributed scenarios. For this
reason, DSVM was proposed to parallelize the model
training process to multiple computing nodes and obtain
the global discrimination boundary through local model
collaborative optimization. This structure improves
training efficiency and supports the distributed processing
of multimodal features.

To solve the problem of heterogeneous data fusion in
multimodal intrusion detection, this paper constructs a
detection system based on the DSVM architecture. By
utilizing the structural differences between the modalities,
local SVM models are deployed on independent nodes to
avoid the information interference problem caused by
direct feature fusion between modalities. The SMO
algorithm trains local data in each node, and efficient
support vectors are selected by boundary distance.
Subsequently, these support vectors are uploaded to the
central node. The global SVM classifier is constructed
using the RBF kernel function, and the final decision is
made through the majority voting mechanism. The system
adopts a distributed deployment architecture, supports
modality plug-ins and incremental parameter updates,
improving the model's generalization ability and
maintenance flexibility [21], [22]. The system process
includes multiple steps such as feature extraction and
standardization, modality mapping and partitioning, local
training and vector screening, global fusion and voting
decision, and a dynamic update mechanism. By
introducing the DSVM model structure, this paper avoids
the problems of poor interpretability and high resource
overhead faced by traditional deep fusion methods. It
efficiently identifies and responds to complex attack
behaviors without sacrificing detection accuracy.

The Sequential Minimal Optimization (SMO)
algorithm is used for local model training, the TensorFlow
Federated (TFF) framework supports distributed
deployment, the Gated Recurrent Unit (GRU) processes
sequence data, and the Radial Basis Function (RBF)
kernel is used for global classifier construction.

This experiment uses a multimodal dataset containing
300,000 network traffic records, 20,000 system log events,
and 5,000 API call sequences. The results show that the
DSVM system performs well in multimodal data fusion:
even under the condition of severe sample imbalance
(1:20), the classification accuracy is still 88%; when the
noise intensity is 6=0.4, the accuracy is still maintained at
83%. In the data scenario of 10k samples and 3 modalities,
DSVM reduces the training time by 65% compared with
centralized SVM (1100 seconds vs. 3100 seconds). The
existing SOTA relies on end-to-end training (CNN fusion
requires 850s/10k samples), which is difficult to adapt to
the resource constraints of edge devices; the integrated
model cannot dynamically expand new modalities.
Through the distributed SMO algorithm and vector-level
aggregation, DSVM improves the training efficiency to
about 1.6 times that of CNN while ensuring
interpretability.
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The key indicators of this method are summarized in
Table 1. In addition, the system shows good scalability
and stable discrimination boundary, which further verifies
its robustness and engineering application value. It
provides new ideas for the engineering deployment and
practical application of multimodal safety detection
systems

2 Multimodal intrusion detection

system architecture design
2.1 Multimodal Feature Extraction and
Standardization

2.1.1 Heterogeneous modal feature encoding
strategy

This study selects network traffic, system logs, and API
(Application Programming Interface) calls as the primary
data modalities, representing transmission behavior,
system-level events, and process-level interactions. In the
network traffic mode, the Statistical Flow Features
Extraction method is used to quantitatively model each
TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol) connection record. Specifically, 15
statistical features are extracted, including average packet
length, maximum sending interval, flow duration, number
of direction changes, and ratio of uplink and downlink
packets. Based on the original data dimension of a 5-tuple
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(source IP, destination IP, protocol, port, timestamp),
features are aggregated at the data stream granularity to
construct input vectors for behavioral analysis.The 15-
dimensional statistical features of network traffic (average
packet length, maximum sending interval, etc.) are
selected based on feature importance analysis: first, the
mutual information values of all candidate features and
attack labels are calculated, and the top 15 discriminative
features (mutual information>0.25) are retained .

The system log mode mainly processes text-based
event data stored in a time series structure. To fully retain
the semantic features of the attack behavior, the Term
Frequency-Inverse Document Frequency (TF-IDF)
combined with the n-gram filtering algorithm encodes the
log content. Stop words and non-structural terms are
removed in the text preprocessing stage, and the event
sequence window is sliced by setting n=2~3 to obtain the
local context expression of the attack stage. Finally, the
vector space model maps each log event into a 128-
dimensional keyword frequency weight vector. System
logs use TF-IDF combined with n-gram representation.
The TF-IDF value of term ¢ in document d is expressed as
formula 1:

N
TF-IDF(t, d) = TF(t, d) - log ( — (t)) 1

Among them: TF(t, d) represents the frequency of the
term t in document d; DF(t) represents the number of
documents in which the term t appears in the entire
corpus; N is the total number of documents in the corpus;
1 is added to prevent the denominator from being zero
(smoothing), by setting the n-gram window (n = 2,3),
TF-IDF is calculated in units of continuous word
sequences. This formula converts the text modality into a
128-dimensional sparse weight vector, retaining the
relative importance of attack semantic clues and word
frequency features.

The API call mode focuses on the system call
sequence of the user-mode or kernel-mode process within
a specific time window. Considering the importance of
sequence context structure to behavior discrimination, a
bidirectional gated recurrent unit (Bi-GRU) is used to
build an embedding model to perform sequence
embedding modeling on each call trace. The model
structure is set as follows: the input layer accepts a call
sequence of length not exceeding 512, the embedding
layer dimension is 128, the Bi-GRU hidden state
dimension is 64, and finally, the average pooling output is
taken in the time dimension to generate a fixed-length
vector representation. This process retains the dynamic
information of the call order, bidirectional dependency,
and behavior context, and the output dimension is 128.
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TF-IDF Weights of System Log Keywords
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t-SNE Visualization of API Call Sequence Embeddings
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Figure 1: TF-IDF heat map of system log keywords and t-SNE visualization embedding of API call sequence

The heat map on the left side of Fig. 1 shows the TF-
IDF weight distribution of normal and attack logs on ten
typical keywords. The weights of attack logs on high-risk
terms such as "access denied" (0.35), "brute force™ (0.40),
and "malicious payload” (0.45) are significantly higher
than those of normal logs, indicating that intrusion events
have concentrated and significant abnormal characteristics
at the semantic level. The t-SNE visualization on the right
embeds and maps the 128-dimensional API call sequence
into a two-dimensional space. Normal calls are mainly
concentrated in the two clusters on the left. In contrast,
attack calls are distributed on the right, which fully
demonstrates the ability of this paper's multimodal fusion
to accurately distinguish malicious activities at the log
semantics and behavior sequence levels.

2.1.2 Unified feature normalization and
dimensionality reduction processing

All extracted feature vectors are first uniformly
normalized to solve the differences in scale and
distribution of multimodal features. This study uses the Z-
score normalization method to process each dimension of
the features. The implementation method is to subtract the
mean of the training sample from each column of features
and divide it by the standard deviation, so that the mean is
normalized to 0 and the standard deviation is 1. This
process is performed independently within the modality,
ensuring that the feature structures between different
modalities are still distinguishable while avoiding the
problem of training instability caused by distribution shift.
After standardization, considering the differences in the
original dimensions of features of different modalities
(network traffic is 15 dimensions, system logs are 128
dimensions, and API calls are 128 dimensions), to build a
unified input space and reduce the risk of overfitting
caused by high-dimensional features in the modeling
stage, this system introduces principal component analysis
(PCA) for linear dimensionality reduction. Taking the API
call modality as an example, the original 128-dimensional
embedding vector is compressed to 64 dimensions through

PCA, retaining more than 95% of the cumulative
explained variance. During the dimensionality reduction
process, the sample covariance matrix is calculated based
on the standardized features, and the eigenvector is
reconstructed based on the singular value decomposition
(SVD) results. The high-dimensional modalities (system
logs, API calls) are compressed to 64 dimensions, and the
traffic modalities are expanded to 64 dimensions by zero
padding to align the input space. The data matrix after Z-
score standardization is recorded as XU) € R™%, and its
covariance matrix is defined as formula 2:
cO) = 1 (f((j))Tg(j) )
n

By performing singular value decomposition (SVD)
or eigenvalue decomposition on CY, the projection matrix
wY e R%*¥ consisting of the first k principal
component vectors are obtained, and the feature
expression after dimensionality reduction is expressed as
formula 3:

720 =X . wY (3)

This step retains the main variability of the original
data (usually, the cumulative explained variance is greater
than 95%) and unifies the output dimensions to support
subsequent modeling.

After complete feature encoding and unified
processing, all samples can be stored in the corresponding
data nodes according to the modality. Each node saves all
the standardized and reduced dimensionality features of a
single modality for local modeling during subsequent
distributed training. The encoding and standardization
processes are completed in an offline batch processing
flow to reduce memory consumption and communication
burden during the training phase. Efficient NumPy matrix
operations and scikit-learn toolkits are used to complete
Z-score and PCA-related operations. The processing
throughput is maintained at approximately 1,800 records
per second.

The above steps complete the conversion from
original heterogeneous data to a unified trainable feature
vector. They ensure that multimodal information is
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comparable and input consistent while retaining their
respective structural semantics, laying the foundation for
subsequent modal distribution mapping and local
classifier training.When the traffic modality is compressed
to 64 dimensions through PCA under the original 15-
dimensional features, the retained variance is 92% due to
the redundancy introduced by feature padding; system
logs and API calls retain 96% and 95% of the variance
respectively after being reduced from 128 dimensions to
64 dimensions. Although the variance of the traffic
modality is slightly lower after compression, its feature
redundancy indicates that retaining 64 dimensions can still
maintain the discriminative ability.

2.2 Distributed mapping and partitioning of
modal data

2.2.1 Kafka data channel construction and
modal decoupling transmission

To address the problem of asynchronous arrival and
structural heterogeneity of multimodal input sources, this
system introduces Apache Kafka as a high-throughput
distributed messaging middleware to achieve efficient
decoupled transmission of modal data between the
acquisition end and the training node. First, separate
Kafka topics are built for network traffic, system logs, and
API calls, and each topic is bound to a unique identifier to
ensure data path isolation between modalities. The data
producer (Producer) is based on the time window. Each
batch of processed standardized feature vectors is
packaged in JSON (JavaScript Object Notation) format
and written to the corresponding Kafka partition. The
system defaults to 3 partition replicas for each topic to
ensure message redundancy and high-availability
distribution in the event of node failure.

The data consumer is deployed on each sub-training
node under the DSVM architecture. The Kafka client
configuration uses the consumer group mechanism to
ensure that each message is consumed only by its
corresponding node to avoid information cross-talk. The
consumption strategy is based on poll-based fetch, setting
the maximum batch size to 512 messages and the
maximum delay threshold to 2 seconds to ensure a balance
between data processing and network transmission. After
the data transmission, the consumer end caches it into the
memory pool and sends it to the local SVM training
pipeline in batches. To reduce the impact of network
latency, Kafka runs in a Linux Kkernel optimization
environment with zero-copy transmission enabled. The
single-channel message transmission rate can be stable at
more than 35,000 records per second.

Kafka was chosen over RabbitMQ because of its
throughput advantage and its support for partitioned
replicas to meet the needs of multimodal data isolation.
TFF is more suitable for federated learning scenarios than
PyTorch Distributed because of its built-in secure
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aggregation protocol and 40% higher resource isolation of
Docker containers (verified by CPU utilization
monitoring).

2.2.2 Distributed node mapping mechanism and
training partition strategy

To simulate a real multi-terminal deployment
environment, this system builds a distributed training
platform based on TensorFlow Federated (TFF), where
each sub-node represents an independent modeling unit of
a modality. During the deployment phase, the system
defines a separate TFF sub-client environment for each
modality and starts three logical nodes: traffic node, log
node, and call sequence node. Each client runs in an
independent Docker container and is bound to different
virtual CPU (Central Processing Unit) cores and 4GB of
memory resources to ensure resource isolation in the
distributed training process. The data between nodes is
entirely independent, and the original features or
intermediate gradient information are not shared at any
stage, which meets the data isolation requirements in edge
computing scenarios.

The node-side SVM training task is based on the
locally received Kafka data; the SMO method is used to
optimize the intra-modal data's boundary function
independently. The number of local iterations is set to
1000 per round of training, the tolerance error threshold is
set to 1le-3, and the RBF kernel function is used to handle
nonlinear boundary situations. After the training, each
node marks and filters the valid support vectors obtained
from the local training, removes redundant vectors whose
boundary distance exceeds the threshold, and retains only
the key support vectors that play a decisive role in the
classification decision.

After the mapping is completed, all training nodes
communicate synchronously through the TFF server, and
all local support vectors are transmitted to the central
scheduler as floating-point tensors. The transmission
protocol is based on the gRPC (Google Remote Procedure
Call) framework, using TLS (Transport Layer Security)
encrypted channels and enabling maximum bandwidth
limits. The number of support vectors exchanged each
time is controlled within 300. Through this distributed
mapping and communication mechanism, the system
completes the modal partition closed-loop processing flow
from data distribution, local training, and global modeling.

Ultimately, the modal mapping mechanism ensures
the complete isolation of heterogeneous data sources in
the processing path, and also realizes data parallelization
and computational decoupling in the training phase
through the distributed architecture composed of Kafka
and TFF. This significantly reduces the system's latency
overhead and communication load, providing a stable
input basis for subsequent global classifier reconstruction
and support vector merging.
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Figure 2: Distributed multimodal SVM training process

Fig. 2 shows the distributed multimodal SVM training
process: network traffic, system logs, and API call data are
written to three Kafka topics in JSON format, and three
copies are retained for each topic. The three TFF client
groups running in the Docker container pull data from the
corresponding Kafka topics, perform local feature
extraction and SVM training, filter the support vectors,
and send them to the central TFF server via an encrypted
gRPC/TLS channel. The server aggregates the support
vectors of each node and builds a global SVM classifier to
achieve unified cross-modal decision making.

2.3 Local SVM model training and support
vector screening

2.3.1 Local SVM construction and SMO
solution process

In the distributed architecture of multimodal intrusion
detection systems, each subnode needs to build a local
classification model for its independent modal feature
space. In this study, the local SVM in the LibSVM
framework uses a linear kernel to accelerate convergence,
while the global model uses the RBF kernel to achieve
cross-modal nonlinear fusion, combined with the high-
dimensional sparse characteristics of the internal features
of the modalities, while maintaining the analytical
properties of the classification boundary and controlling
the computational complexity. During the training
process, the SMO algorithm is used to efficiently
iteratively solve the Lagrange multiplier and optimize the

objective function. The algorithm selects two variables for
analytical update in each iteration, avoiding the resource
consumption of matrix inversion operations in traditional
quadratic programming, and adapting to the deployment
requirements of edge nodes with limited computing
resources in a distributed environment.

The maximum number of iterations of the training
task is 100 rounds, and the tolerance error threshold is le-
3. The regularization parameter C is set to 10 to strengthen
the penalty for training errors and ensure that the model
can distinguish when identifying attack behaviors. To
accelerate convergence, the training data must meet two
conditions: first, the order is randomly shuffled according
to the modal characteristics; second, the mini-batch
mechanism is used, with 128 samples per batch. In
addition, the LibSVM cache size is set to 100MB, and the
shrinking heuristic algorithm is enabled to automatically
remove inactive variables to reduce the amount of
calculation.

After the training, each local model generates a set of
support vectors. The support vector is automatically
determined through the model training process, that is, the
sample points where the Lagrange multiplier o of the
objective function is between 0 and C. These samples are
near the classification hyperplane and directly impact the
decision function. Considering the differences between
modal features, to avoid the impact of uneven dimensions
or redundancy when unifying the fusion model, each
modal node needs to complete a support vector reduction
process locally.
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Figure 3: Convergence curve of the SMO algorithm and comparison of the number of support vectors before and after
reduction

In the left sub-graph of Fig. 3, the horizontal axis
represents the number of iterations of the SMO algorithm
(1-200 rounds), and the vertical axis represents the
training error. The three curves correspond to the
convergence process of traffic, log, and APl modes,
respectively. The error of the traffic mode drops to 0.04 at
about 50 iterations and remains stable. The log mode
reaches the same threshold at about 70 iterations, while the
API mode stops converging at about 90, reflecting the
difficulty of training different modal features. In the
horizontal bar chart on the right, the vertical axis is the
name of the three modes, and the horizontal axis is the
number of support vectors. The original support vectors
are Flow 300, Log 250, and APl 280. After pruning, the
retention ratio is 20%, corresponding to 60, 50, and 56
support vectors. This dramatically reduces the model
complexity and verifies the effectiveness of Distance-
based Vector Pruning in reducing global fusion overhead.

2.3.2 Distance-constrained support vector
screening mechanism

To improve the collection performance and structural
compactness of the global fusion model, this study
introduced the Distance-based Vector Pruning Algorithm
(DVPA) after the training of each local node was
completed, and performed basket selection sorting
according to the Euclidean distance between the support
vector and the decision boundary. First, for each support
vector sample x;, calculate its projection distance on the
classification hyperplane, which is determined by the
trained weight vector and the bias term. Without sharing
the original data, each node calculates the function value
of each support vector based on the local model weight w
and intercept b, as shown in Formula 4:
fx)=wlx; +b (4)

Then the absolute distance |f (x;)|/||lw]|| is obtained
as the basis for sorting.

After all local support vectors are sorted from small
to large by distance, the first k% support vectors closest to

the boundary are retained as valid samples and passed into
the global model-building process. In this study, the k
value is set to 20% based on the modal sample distribution
and support vector density, that is, only the top 20% of the
most discriminative support vectors are retained for each
modality to minimize the interference of redundant data
on the boundary judgment of the fusion model. This step
reduces the communication load during model
synchronization, minimizes the complexity introduced by
the number of support vectors to subsequent classifier
training, and improves the overall execution efficiency of
the system. Assume that the local support vector set is
Siocar = {X1, ---, Xy} According to the sorting result, only
the samples in the first k% are retained to enter the
synchronization process, as shown in Formula 5:

Sselected = {xi € Sipcat | Rank(D(xi)) 5

<|k-NJ}, k=02 ®)

Among them, rank(D(x;)) represents the ranking
after sorting by D, and |-] represents rounding down.

Table 2: Performance trade-offs of different support
vector retention ratios

Dgta Accuracy Training Number
Retention . . of Support
Rate (1:20) Time (s) Vectors
0 0/& 0 90% 480 300
50% 89% 310 150
20% 88% 220 60

The performance trade-offs of different support
vector retention ratios are shown in Table 2. Screening
20% of the key vectors only reduces the accuracy by 2%,
but the training time is reduced by 54%, which proves the
high efficiency of the DVPA mechanism.

After the support vector screening is completed, each
child node encodes the selected valid vector in the index +
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feature vector + label structure format, and synchronizes
it to the global center through an encrypted channel.

The feature vector accuracy is maintained as a 32-bit
floating-point type to ensure the calculation accuracy is
maintained  without significantly increasing the
communication load. Throughout the process, the data is
not desensitized or converted into a reversible form, which
meets the privacy protection requirements under multi-
source heterogeneous data processing.

Through the dual strategies of local modeling and
boundary fine screening, the system effectively controls
the scale and complexity of the global model by ensuring
the modality's internal accuracy and establishes structural
prior constraints for the subsequent support vector
merging and global decision function optimization.

2.4 Support vector aggregation and decision
fusion

2.4.1 Global support vector integration
mechanism

The system enters the global modeling stage after
screening local support vectors for each modality. All
participating nodes send the support vectors optimized by
distance constraints to the central fusion node through a
preset encrypted channel. Each group of support vectors is
encapsulated as a triple: index number, feature vector
(normalized), and original label. Data transmission uses
the TLS 1.3 protocol to prevent data leakage and man-in-
the-middle attacks during transmission. At the same time,
node signature information is attached to each data packet
to ensure source verifiability and compliance tracking.

After the fusion node receives the support vectors
uploaded by all modal child nodes, the Distributed SVM
Aggregation with Weighted Voting strategy is used to
construct the global classification model. First, for each
modality's support vector set, the system evaluates its F1
score on the local validation set as the voting weight
indicator of the modality. This weight is used to measure
the reliability of different modalities in attack behavior
recognition, and the weight coefficient is normalized and
used for sample-weighted allocation during the global
training process. Subsequently, the fusion node constructs
a unified training set for the training of the global SVM
model by fully splicing all support vectors. In this stage,
the modal source is no longer distinguished, and the cross-
modal generalization ability of the model is improved by
unifying the discrimination boundary.

The global model training uses a nonlinear kernel
function to improve the discrimination ability of complex
attack samples. The Radial Basis Function (RBF) kernel
function is selected, and its form is as shown in Formula
6:

K(xi,%;) = exp (—V”xi - x,-||2) (6)

The value of y is optimized through five-fold cross-
validation. In the experiment, vy is initially set to 0.05 and
fluctuates between 0.01 and 0.1. The regularization
parameter C is set to 100 to increase the penalty for
classification errors and improve the model's sensitivity to
boundary samples. The introduction of the RBF kernel
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function effectively solves the problem of discriminant
overlap that may occur after the fusion of linearly
inseparable modal data. It improves the model's
robustness to boundary deformation.

The fusion node uses the implementation of RBF
kernel support in LibSVM to build a global SVM model.
It enables the automatic class weight adjustment function
(class_weight="balanced’) to alleviate the imbalance
between attack and normal samples. All training samples
are filtered support vectors, and the input dimension is in
the 64-dimensional unified space after PCA compression
defined in Section 2.1 to maintain feature scale
consistency. The global training sets the maximum
iteration round to 1000, uses the epsilon precision
termination standard, the error limit is le-4, and cache
optimization is enabled. The cache space is allocated to
200MB to ensure the convergence speed of the model in
the batch support vector fusion scenario.

The optimization of the y parameter of the five-fold
cross validation shows that when y=0.05, the standard
deviation of the test set is the smallest (6=0.008), while
the fluctuation increases when y=0.1 (6=0.023). The
difference in accuracy between folds with regularization
parameter C=100 does not exceed 1.5%, indicating the
robustness of the model. Finally, y = 0.05 was selected as
the balance point, and its validation loss was lower than
the mean of 1.98c.

2.4.2 Multimodal majority voting decision
fusion mechanism

In addition to building a unified global model, to enhance
the system's fault tolerance in actual deployment to deal
with modality loss, abnormal node offline, and other
situations, this paper introduces the majority voting
mechanism as an auxiliary decision process. This
mechanism does not directly rely on the output of the
fusion model, but rather integrates parallel decisions based
on the independent prediction results of each modality
sub-model. After receiving the sample to be tested, each
sub-node outputs an independent binary classification
label based on its trained model. After the central node
collects the label results of all modalities, the final
classification decision is determined based on the majority
principle. If two of the three modalities are consistent, the
majority class label is directly adopted; if the prediction
results of the three are inconsistent, the modal output with
the highest local accuracy is adopted first.

The weights introduced by the voting mechanism are
also dynamically updated based on the performance of
each node's validation set. Assume that the accuracy of
each modal local model on the independent validation set
iS accy,acc,,accy, then the corresponding weighted
voting value is formula 7:

w; = acci/z acc; )

The fusion node uses this weight to weight the
prediction results in the voting process, and uses the
threshold of 0.5 as the final decision boundary. This
method enhances the stability of the system in complex
scenarios such as heterogeneous modalities and
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incomplete data, and can provide more robust recognition
capabilities when the attack sample category distribution
is highly uneven. Under the complete modality, the
accuracy of RBF-SVM (88%) is better than voting (85%);
but when one modality is lost, the accuracy of the voting
mechanism only drops by 2.1%, while that of RBF-SVM
drops by 5.8%. In addition, in the scenario of class
imbalance (1:20), the F1 score stability of the voting
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mechanism (6=0.015) is better than that of the RBF kernel
(6=0.032).

Finally, the system retains the RBF kernel fusion
model output and the majority voting result. In static
detection scenarios, the global SVM model output is used
first; in dynamic or incomplete node deployment
scenarios, it switches to majority voting decision. This
dual-channel discrimination system has both high
accuracy and system robustness.
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Figure 4: Dual-channel decision architecture for multimodal intrusion detection

Fig. 4 shows the dual-channel decision architecture
for multimodal intrusion detection: the three-modal
support vectors are transmitted to the aggregation center
via TLS encryption, weighted concatenation is performed
by normalizing the local F1 scores, and the global SVM
model is constructed by optimizing the RBF kernel
parameters using five-fold cross-validation. The parallel
majority voting mechanism dynamically weights the
modal accuracy, prioritizes global model output in static
scenarios, and switches to weighted voting when nodes are
abnormal. Dual-channel fusion ensures high-security
transmission (digital signature verification), complex
attack identification (nonlinear kernel function), and
dynamic environment robustness, balancing detection
accuracy and system fault tolerance.

2.5 Dynamic modal increment and update
mechanism

2.5.1 Rapid modeling and embedded expansion
of new modalities

For new data modalities that may be connected during
system operation (from new terminals, unknown sensors,
etc.), the platform adopts an online support vector learning
mechanism based on kernel approximation to achieve
rapid integration and avoid destroying the existing local
and global model structures that have been stably trained.
During the access phase of a new modality, the system
independently allocates a temporary subnode for it and
immediately uses the Online SVM with Kernel
Approximation method for preliminary modeling.
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This method uses the Nystrom method to perform low-
rank approximation on the kernel function, effectively
reducing the complexity of matrix operations during
online training. The number of sampled basis vectors in
the Nystrom approximation is 15% of the original number
of samples, and the maximum sample limit is 2,000 to
ensure low-latency deployment performance. The kernel
function continues to use the RBF kernel consistent with
the fusion model. Its parameter y is obtained by online
fitting using the local holdout method, and its initial value
is set to 0.05. Suppose the original training sample is X =
{x1, X3, ., X} € R™4, from which m « n basis vectors
are sampled to form a subset Z = {z,, ..., z,,}, and the
RBF kernel function is Formula 8:
K(x,z) = exp(=y Il x — z II*) (8)

The Nystrom kernel is approximately expressed as
Equation 9:

K(X,X) = Ky ;K; ;K7 x )

Kx 7 € R™™ is the kernel matrix between X and the
sampling point Z; K , € R™™ is the kernel matrix of the
sampling point itself; this approximation reduces the
original kernel matrix from 0(n?) to O(nm). Without
retaining all samples, the Online SVM can update the rule
(recursive) for each new sample (x;, y;), the online SVM
adopts the following recursive optimization, as shown in
Formula 10:

Wepr = we =10 - (VLW X, ye) + Awy) (10)

Among them, n, is the step learning rate; A is the
regularization coefficient; £ is the loss function after
kernel approximation transformation; this update rule
supports recursive convergence over time while
maintaining the sparsity of the model.

During the online training, the system updates the
model parameters in a sample-by-sample recursive
manner without retaining the full sample cache. To
alleviate the interference of class imbalance on the model
boundary, the training process continuously monitors each
batch's classification error change rate. If the deviation
between the new sample category and the existing sample
ratio exceeds 20%, the category loss weight coefficient of
the modal node is dynamically adjusted. The training
termination condition is that the error change rate of three
consecutive sample batches is less than 1e-3 or the number
of iterations reaches 200 rounds. This strategy ensures that
the initial modeling of the new modality has basic
discrimination capabilities and a kernel expression
consistent with the original modality model, laying a
foundation for subsequent dimensionality reduction and
fusion.

After the new modality modeling is completed, the
system automatically synchronizes the modality's support
vector space and label structure and marks the node into
the "fusion candidate" state, waiting for the subsequent
global model update process to be activated.

Nystréom modeling latency is 1.8s (vs. 28s for global
retraining), with an initial accuracy of 78% (up to 83%
through 3 rounds of incremental updates). iPCA triggers
retraining every 72 hours (when the cumulative variance
drops to 93%), and memory usage is stable at 1.8GB, 42%
lower than full PCA .
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The update process of incremental PCA: First,
calculate the covariance matrix of the new modal feature,
merge it with the historical principal component matrix,
perform singular value decomposition, dynamically adjust
the principal component weights, and finally generate a
unified 64-dimensional feature space. This process uses a
sliding window mechanism to keep the cumulative
variance > 95% to ensure feature consistency after
dimensionality reduction.

2.5.2 Incremental dimensionality reduction and
local update of fusion model

To maintain cross-modal feature consistency and avoid
retraining all modal dimensionality reduction models due
to the access of new modalities, the system uses the
Incremental PCA (iPCA) method to expand the original
principal component space dynamically. iPCA achieves
uninterrupted feature compression update by performing
simultaneous singular value decomposition of the current
sample covariance matrix and the historical principal
component matrix. In specific operations, the system
maintains the 64-dimensional dimension reduction target
unchanged, but dynamically evaluates the cumulative
variance explanation of the first 10 principal components
for each round of updates. Suppose the explanation of the
first 10 principal components decreases by more than 5%
due to differences in new modal features. In that case, the
system can perform a sliding window backtracking of the
historical feature matrix and expand the principal
component set to retain the principal axis information with
a total explanation of more than 95%. The covariance
matrix cache size used in iPCA is capped at 4096 samples,
and updates are loaded in batches to keep memory
overhead within 2 GB.

After completing the iPCA update, the new modality
support vectors are projected into a unified feature space
and fed into the fusion update module. The system
introduces the Local Support Vector Adjustment (LSVA)
mechanism to avoid global model retraining, which
adjusts the fusion model parameters only for the new
modality-related support vector subset. In the specific
operation, the system identifies the decision boundary
points in the global model that are most affected by the
new modality, that is, all support vector samples whose
distance to the new modality support vector is less than the
preset threshold & (set to 0.3) and whose classification
direction is opposite, and marks them as the set to be
updated. This update set is locally retrained under the RBF
kernel, and only the weight parameter o and the bias term
b are fine-tuned, keeping the rest of the parameter
structure stable. During the training process, a local
gradient descent optimizer is used, and the learning rate is
set to 0.01 to ensure that the fusion model fine-tuning is
completed within 2 seconds.

At the same time, to maintain the effectiveness of the
voting mechanism, the system synchronously records the
accuracy of the new modality sub-model on the
incremental validation set. It incorporates it into the next
round of majority voting weight update. Suppose the
accuracy of the modal sub-model for three consecutive
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window periods is lower than the average performance
standard of the original system (set to 92%). It cannot be
included in the fusion vote for now; it can only be used for
model evaluation monitoring. This dynamic fusion
strategy ensures the scalability of the system structure and
significantly reduces the resource consumption and
structural instability risks caused by model reconstruction.

The system achieves flexible access to unknown
modes, seamless structural expansion, and performance
consistency maintenance through the above mechanism.
In multi-source network attack scenarios, it is particularly
suitable for automatic adaptation requirements when
facing new attack methods or newly deployed security
nodes, ensuring that the DSVM framework has long-term
evolvability and deployment flexibility.

3 Evaluation and analysis of the
model

This study uses a multimodal intrusion detection dataset
that combines synthetic and public data. The network
traffic contains 300,000 TCP/UDP connection records,
each extracting 15-dimensional statistical features; the
system log simulates the Linux security log, and 20,000
events are mapped to 128-dimensional vectors by TF-IDF.
The API call sequence generates 5,000 samples based on
the real behavior trajectory and is encoded into 128

Classification Accuracy under Varying Imbalance
T
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dimensions by Bi-GRU. The three-modal samples are
mixed in an unbalanced ratio of 1:5:20. The labels are
divided into normal and attack categories, which are used
to evaluate the performance of the unimodal SVM and
DSVM global models under different distribution and
noise conditions. The experimental data is synthesized
based on CIC-1DS2017 (traffic), Linux Syslog (log) and
UNM behavior dataset (API call), and all preprocessing
codes have been open source (GitHub Ilink).
Hyperparameter search range: SMO iteration number
[100,1000], PCA dimension [32,64,128], RBF vy
[0.01,0.1], and the optimal value is determined by grid
search.

3.1 Model classification accuracy

This indicator measures the system's ability to recognize
normal and abnormal behaviors. In the evaluation, the
prediction results of the SVM model are trained separately
for each modal input, and the fused DSVM global model
is statistically analyzed to calculate the discrimination of
each type of sample. All test samples are input into the
system one by one, and the predicted labels are compared
with the actual labels, and the number of samples
classified correctly and incorrectly is counted. The final
result shows whether multimodal fusion improves the
overall recognition effect, especially the performance in
the scenario of unbalanced sample distribution.

0.95

0.9z

0.9

0.85

Accuracy

0.8

0.75

0.7
Balanced

Mild Imbalance

Severe Imbalance

[ Fiow sV I Log SV I AP) SV I DSVM |

Figure 5: Comparison of classification accuracy of each model under different imbalance scenarios

The horizontal axis in Fig. 5 represents three sample
distribution scenarios - Balanced (1:1), Mild Imbalance
(1:5), and Severe Imbalance (1:20), and the vertical axis
represents the classification accuracy of each model in the
corresponding scenario. As the imbalance increases, the
accuracy of the unimodal model decreases significantly,
with the flow SVM dropping from 0.88 to 0.83, the log
SVM dropping from 0.85 to 0.79, and the APl SVM
dropping from 0.80 to 0.75. At the same time, the DSVM
remains at high levels of 0.92, 0.90, and 0.88. This shows

that the global model constructed by multimodal support
vector aggregation still has excellent robustness and
overall recognition ability when facing severely
imbalanced data.

3.2 Model F1 score

This indicator is used to comprehensively evaluate the
accuracy and coverage of the model in identifying
abnormal behaviors. In the experimental process, the
frequency of each type of attack sample being correctly
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identified and the proportion of samples misidentified as
other types are recorded separately and combined with the
recall rate for comprehensive evaluation. Weights are set
for high-risk attack types to reflect the system's ability to
respond to key threats. By comparing the individual
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recognition results of each modality with the fusion
recognition results, it is evaluated whether the multimodal
structure improves the effectiveness and consistency of
anomaly detection.

F1 Score Comparison across Models and Attack Types
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Figure 6: F1 scores of different models under five types of attacks

Fig. 6 shows the F1 scores of different models under
five types of attacks. The horizontal axis is the attack type,
including DoS (Denial of Service), Ransomware,
Backdoor, Data Theft, and Botnet, and the vertical axis is
the F1 value. The fusion model DSVM outperforms the
single-modal model in all attacks, especially in
Ransomware and Backdoor detection, where the F1 scores
reach 0.85 and 0.83, respectively, significantly higher than
the 0.70 and 0.67 of API-SVM. In the Data Theft scenario,
which is more difficult to identify, DSVM still maintains
a score of 0.80, showing its good generalization ability.
The overall results show that multimodal fusion
significantly improves the stability and accuracy of the
model in abnormal behavior identification.

3.3 Inter-modal fusion efficiency

This indicator focuses on the change in overall
training efficiency after the model adopts a distributed
structure. In the test process, the total time required to train
the SVM model and the parallel training time under the
DSVM architecture are counted separately, and the
training data scale is controlled to be consistent with the
number of modalities. The fusion efficiency is reflected in
the time reduction ratio of the training process, reflecting
the system's parallel processing capability and
deployability under multi-source data. The results
evaluate whether DSVM has engineering feasibility in real
application scenarios.

Multimodal Fusion Efficiency: Impact of Data Scale and Modality Count
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In Fig. 7, the horizontal axis is the number of
modalities (1, 3, 5), and the vertical axis is the training
time (seconds). The three sample sizes are shown in three
sub-figures. As the number of samples increases from 1k
to 10k and the number of modalities expands from 1 to 5,
the training time of the centralized SVM increases from
80s to 3100s, while the DSVM only increases from 50s to
1100s. The training time of Bi-GRU and CNN
(Convolutional Neural Network) models increases with
the number of modalities, from 120 seconds to 650
seconds and from 150 seconds to 850 seconds,
respectively. It is higher than DSVM in small-scale data,
but lower than DSVM in large-scale scenarios (10,000). It
is always significantly lower in large-scale scenarios than
centralized SVM, showing a good balance between
efficiency and scalability.

3.4 Model scalability index

This index measures the system's adaptability to new
modalities and its recognition stability during expansion.
In the experimental design, new data modalities such as
host behavior sequences or device logs are introduced one
by one, and the response changes of the system without
retraining are evaluated. The discriminant fluctuations of
the global classifier, the update of the support vector, and
the changes in the decision confidence are observed to
determine whether the new modalities cause system
performance degradation. The results can be used to
quantify the stability of the system's modular structure
during continuous evolution.

Table 3: Scalability performance under different numbers of modes

Number of Modalities Global Classification Accuracy Decision Confidence Std
1 0.9 0.05

2 0.89 0.055

3 0.88 0.06

4 0.87 0.065

5 0.85 0.066

Table 3 shows the scalability performance of the
system under different numbers of modalities. As the
number of modalities increases from 1 to 5, the global
classification accuracy gradually decreases from 0.90 to
0.85, and the standard deviation of decision confidence
slowly increases from 0.050 to 0.066. Although
multimodal fusion brings about an increase in information
dimension, the overall recognition performance of the
system remains at a high level with a slight fluctuation.
This shows that the proposed distributed SVM fusion
architecture still has good stability and controllability
when the number of modules is expanded, and has strong
horizontal scalability.

3.5 Model discrimination boundary stability

This indicator evaluates the system's ability to maintain
stable classification boundaries when facing data
perturbations or changes in sample distribution. In the
experimental process, different degrees of input
perturbations and modal noise are introduced to observe
the changes in the support vector sets of each local model
and monitor the degree of deviation of the global SVM
classification boundary. Comparing the consistency of
classification results under multiple disturbance
conditions can indirectly reflect whether the model
structure has anti-disturbance ability and robustness,
which is significant for continuous adaptation in security
scenarios.

Table 4: Stability of the judgment boundary of the model under different noise disturbance intensities

Noise Level o Boundary Parameter Shift IA(w,b)l | Classification Consistency (Accuracy)
0 0 0.92
0.1 0.12 0.91
0.2 0.245 0.89
0.3 0.38 0.86
0.4 0.6 0.83

Table 4 reflects the stability of the model's
discrimination boundary under different Gaussian noise
intensities (o). As the input noise standard deviation
increases from 0.00 to 0.40, the boundary parameter offset
rises from 0.000 to 0.600. Still, the classification
consistency only decreases from 0.92 to 0.83, which
means that even under noise conditions of up to 40%, the
system can still maintain an accuracy of more than 83%.
When 6=0.20, the offset is only 0.245, and the accuracy is
still 0.89, which further verifies the robustness of the

DSVM framework against data perturbations and its
reliability in security scenarios.

In addition, under severe imbalance (1:20), the false
positive rate (FPR) of DSVM is 4.2% and the false
negative rate (FNR) is 13.5%. Compared with Bi-GRU
(FPR 7.1%, FNR 22.3%), it has obvious advantages. In
terms of time complexity, the training time of DSVM O(n)
slope (0.11s/100 samples) is significantly lower than that
of centralized SVM (0O(n?), slope 0.83s/100 samples).

3.6 Discussion of Evaluation Results



368 Informatica 49 (2025) 355-370

88 % classification accuracy in the 1:20 severely
unbalanced data scenario, significantly outperforming the
single-modal SVM (up to 83%) and CNN fusion methods.
This advantage stems from its unique mechanism design:
the support vector pruning mechanism effectively reduces
noise interference and model redundancy by screening the
20% most discriminative boundary vectors, and improves
the robustness of the decision boundary; the distributed
SMO optimization greatly improves the local training
efficiency, speeding up by 3 times compared with the
centralized method, significantly alleviating the
computational bottleneck of large-scale multimodal data;
the modality plug-in design realizes the seamless access of
new modalities, and the model update delay is controlled
within 2 seconds, ensuring the adaptability of the system
in a dynamic environment. The synergy of these
technologies not only solves the problems of high
dependence on labeled data and low efficiency of edge
devices in traditional methods, but also highlights the core
innovation of DSVM: the first innovative modality plug-
in mechanism supports incremental PCA to dynamically
expand the feature space; the combination of distributed
SMO and vector aggregation effectively avoids the
memory explosion of multimodal data; the boundary
distance screening further enhances the generalization
ability of the global model, providing an efficient and
scalable solution for intrusion detection systems.

4 Conclusions

This paper proposes and implements a multimodal
intrusion detection system based on DSVM. The system’s
concurrent performance and detection accuracy are
effectively improved through Kafka asynchronous
pipeline, TFF distributed training architecture, local SVM
modeling and support vector pruning, global fusion, and
dynamic modal update mechanism. This method achieves
asynchronous decoupling and parallel processing of data
between modalities. It significantly reduces model
complexity and global update overhead by optimizing
support vector screening and incremental fusion.
However, the current system relies on manual setting of
some threshold parameters, and its adaptability is still
limited when facing highly dynamic attack features.
Future research can focus on introducing reinforcement
learning optimization feedback mechanisms to achieve
self-evolution adjustment of model structure and
parameters, and further improve the intelligence and
adaptability of the system. The current system relies on
manually set pruning threshold (k=20%) and iPCA update
condition (variance reduction>5%). In the future, dynamic
thresholds can be optimized through reinforcement
learning: for example, the k value can be automatically
adjusted based on the current modal distribution offset, or
iPCA retraining can be triggered in combination with the
loss change rate of the online validation set. Such methods
have been successfully applied in 10T anomaly detection
and can improve the system's adaptability to dynamic
attack patterns.
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