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The rapid development of virtual reality technology has made depth estimation the key to enhancing 

immersion, but existing methods still suffer from insufficient multi-scale feature fusion and detail loss in 

complex scenes, leading to a decrease in depth map accuracy. To this end, a deep estimation network 

model based on Residual Networks with Next Generation (ResNeXt) and spatial pyramid modules is 

proposed. This model combines the efficient feature extraction of ResNeXt with the multi-scale fusion 

capability of Extremely Efficient Spatial Pyramid (EESP) module, combined with a hybrid attention 

mechanism, to improve depth estimation accuracy while optimizing computational efficiency. The 

experimental results show that the parameter count and floating-point operations of the proposed model 

in the training set are 19.2M and 33.2G, respectively, with an inference speed of 46FPS, demonstrating 

its robustness in indoor, outdoor, and low light environments. In addition, the model exhibits excellent 

performance in indoor, outdoor, and low light environments. In indoor scenes, the mean square error of 

the model is 0.045, the peak signal-to-noise ratio is 38.5, and the structural similarity is 0.92, which is 

8% higher in accuracy than the baseline model. The results indicate that the method proposed by the 

research provides an effective and efficient solution for high-precision depth estimation in virtual reality 

applications. 

Povzetek: Prispevek uvaja mrežo EESP-ResNeXt, ki združuje ResNeXt, prostorsko piramido in hibridni 

pozornostni mehanizem za učinkovito oceno globine VR slik v zahtevnih okoljih. 

 

1 Introduction 
Virtual Reality (VR) technology is rapidly developing, 

especially in fields such as entertainment, healthcare, and 

education, demonstrating enormous potential [1-2]. Depth 

maps play a crucial role in VR, autonomous driving, robot 

navigation, and other fields by recording the spatial 

separation between each point within the scene and the 

camera, providing basic 3D information for tasks such as 

3D reconstruction, object recognition, and path planning. 

Although traditional depth estimation methods relying on 

stereo vision, structured light, or LiDAR have high 

accuracy, they have limitations such as high hardware 

costs and poor environmental adaptability. Therefore, how 

to enhance the precision and computational efficiency of 

depth estimation through software algorithms has 

emerged as a pressing issue that demands immediate 

resolution within the realm of computer vision. Pintore G 

et al. proposed a geometric information extraction and 

rendering method based on a single spherical panorama, 

significantly enhancing the 3D immersive experience of 

VR applications. This method adopted an end-to-end deep 

learning framework to synchronously predict scene depth 

and room structure, and optimized network performance 

through pre training with synthesized data. Its lightweight 

design enabled real-time interactive panoramic view 

generation and supported perspective transformation 

synchronized with head movements. The outcomes of the  

 

experiments revealed that the proposed approach  

surpassed the currently available methods with respect to 

latency and accuracy, and performed well on mainstream 

indoor panoramic datasets [3]. Cai Y et al. introduced a 

real-time 6DoF video processing system that integrated 

three core technologies: unsupervised multi-view depth 

estimation, real-time virtual view rendering, and 6DoF 

video encoding. Experimental data showed that the system 

achieved significant algorithm acceleration, increasing 

depth estimation speed by 34 times and improving the 

efficiency of Depth Image-Based Rendering (DIBR) 

algorithm by 168 times [4]. Liu et al. developed an 

unsupervised ship depth estimation method based on 

monocular drone images. This method first utilized 

realistic rendering techniques to construct a specialized 

training dataset with uniform lighting and a clean 

background. Subsequently, a lightweight knowledge 

distillation network based on a differentiable rendering 

framework was designed to achieve accurate ship depth 

estimation through unsupervised learning. The outcomes 

of the experiments revealed that the proposed approach 

surpassed the currently available methods with respect to 

accuracy while maintaining a more compact model 

volume [5]. 

In recent years, deep learning-based depth estimation 

methods have gradually become mainstream, making 

significant progress by learning to directly predict depth 

maps from monocular or multi-view images [6]. The 
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Residual Networks with Next Generation (ResNeXt) 

network, as an improved residual network, has strong 

feature extraction capabilities and can effectively avoid 

the computational bottleneck caused by traditional deep 

networks as depth increases [7]. Khan et al. proposed an 

improved ResNeXt deep convolutional network for 

Bengali handwritten composite character recognition. 

This model embedded a squeeze excitation module in the 

traditional ResNeXt architecture, effectively integrating 

spatial information within the local receptive field and 

inter channel dependencies by dynamically adjusting 

channel feature weights. The experiment outcomes 

indicated that the model achieved an average recognition 

accuracy of 99.82%, which was better than the current 

optimal method [8]. Hu et al. proposed an improved 

ResNeXt 3x1D deep residual network specifically 

designed for detecting abnormal behavior in aquaculture. 

The network was optimized based on the R(2+1)D 

convolutional architecture, and experiment outcomes 

indicated that the proposed ResNeXt 3x1D performed 

well in identifying abnormal behaviors in the field of 

aquaculture, with a recognition accuracy of 95.3% [9]. 

The Extremely Efficient Spatial Pyramid (EESP) module 

utilizes Spatial Pyramid Pooling (SPP) technology to 

enhance the model's ability to process multi-scale 

information by capturing image features at multiple scales 

[10]. Xiong et al. proposed an improved You Only Look 

Once version 3 (YOLOv3) traffic sign detection method, 

which enhanced detection performance by integrating SPP 

module and Adaptive Spatial Feature Fusion (ASFF) 

mechanism. This method introduced the SPP module in 

the feature extraction stage to fuse multi-scale contextual 

information, and used the ASFF module to optimize the 

gradient propagation of the feature pyramid in the 

detection stage. Experimental results showed that this 

SPP-ASFF-YOLOv3 architecture significantly improved 

the detection accuracy of the original YOLOv3 network 

[11]. Zhao et al. proposed a dual branch network based on 

multi-scale dilated fusion for real-time semantic 

segmentation. Its core consisted of three innovative 

modules: The semantic guided spatial detail module 

improved boundary accuracy and fine-grained 

classification, the multi-scale dilated pyramid module 

integrated multiple dilation rate features, and the bilateral 

fusion module optimized feature fusion through cross 

weighting. The experiment showed that the network 

achieved a good balance between accuracy and speed [12]. 

In summary, although existing depth estimation 

models perform well in some static scenarios, they still 

face challenges in complex environments. For example, 

although Pintore G et al. [3] proposed a method of jointly 

estimating depth and room layout using a single spherical 

panoramic image, it significantly enhanced indoor VR 

immersion. However, this model was tailored for 

omnidirectional indoor views and lacked robust multi-

scale feature fusion, which limited its generalization 

ability to complex outdoor scenes. Xiong S et al. [11] and 

Zhao S et al. [12] integrated SPP or expansion fusion 

modules into detection or segmentation tasks to capture 

multi-scale context, but did not include explicit attention 

mechanisms. To further improve the accuracy and 

robustness of VR image depth estimation, a new depth 

estimation network structure is proposed by innovatively 

combining ResNeXt and EESP modules. Compared with 

the limited applicability of the 6DoF real-time video 

system based on multi-view depth prediction proposed by 

Cai Y et al. [4] for monocular depth estimation, the 

proposed method solves the monocular constraint problem 

by using ResNeXt's grouped convolution for efficient 

feature extraction, and introduces spatial pyramid fusion 

to maintain cross scale scene structure. This module is 

capable of capturing rich spatial features at multiple 

scales, especially in complex scenes and low lighting 

conditions, demonstrating high depth estimation accuracy 

and computational efficiency. 

2 Methods and materials 

2.1 ResNeXt combined with spatial 

pyramid network construction 

ResNeXt is a Convolutional Neural Network (CNN) 

architecture based on deep residual learning, aimed at 

improving the performance and efficiency of the network. 

By introducing the idea of grouped convolution, the 

standard convolution operation is divided into multiple 

smaller groups to lower the parameter number and 

improve computation speed. Compared with the 

traditional ResNet architecture, ResNeXt has higher 

flexibility and better performance, and the structural 

comparison between the two is shown in Figure 1 [13]. 
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Figure 1: Structural comparison between ResNet and ResNeXt. 
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Figure 2: EESP module structure. 

Figures 1 (a) and 1 (b) show the residual structures of 

ResNet and ResNeXt, respectively. Both architectures 

employ similar designs. They include a 1×1 convolutional 

layer, a 3×3 convolutional layer, and the final 1×1 

convolutional layer. However, ResNeXt introduces the 

concept of Cardinality. Cardinality refers to the number of 

groups in grouped convolutions. When compared to 

simply increasing the network depth, this grouped 

convolution method has dual advantages. It not only 

reduces the computational complexity but also improves 

the model efficiency. Additionally, it avoids the training 

difficulty and hardware burden that increasing depth could 

cause. This method enables ResNeXt to enhance the 

model's capability to capture different feature 

representations without a substantial increase in the 

number of parameters. The ResNeXt expression is shown 

in equation (1) [14]. 

1

( ( ))
C

i

i

y x f x
=

= +   (1) 

In equation (1), y  represents the output feature map 

(FM), x  represents the input FM, C  represents the 

number of groups, ( )if x  represents the FM processed 

through a group convolution operation. To reduce 

computational costs, the EESP module is introduced to 

further improve the performance of the network. ResNeXt 

enhances the network's expressive power through grouped 

convolution and C , enabling the network to learn rich 

feature representations more efficiently. The EESP 

module uses Depthwise Dilated Separable Convolution 

(DDSC) with multiple dilation rates to capture multi-scale 

features, but the interval sampling characteristics of 

dilated convolutions may result in some pixels being 

missed, leading to grid artifacts. The EESP module 

structure is shown in Figure 2 [15]. 

In Figure 2, R  means the expansion rate. This 

module adopts the Hierarchical Feature Fusion (HFF) 

mechanism to eliminate grid artifacts. Its core idea is to 

stack convolution results with different dilation rates step 

by step, and finally concatenate the fused features and 

compress them through 1×1 convolution. After 

convolution operations, batch normalization (BN) and 

nonlinear activation operations are performed. BN is 

employed to expedite convergence and enhance the 

stability of the training process. Meanwhile, the activation 

function imparts nonlinear properties to the model, 

preventing it from degenerating into mere linear 

transformations. This, in turn, safeguards the network's 
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expressive capabilities and bolsters its classification 

performance. Introducing EESP module in skip 

connections can effectively fuse multi-scale features. The 

size of the FM in the encoder stage decreases while the 

number of channels increases: Shallow features have 

higher resolution, fewer channels, and retain fine-grained 

information such as texture. Deep level features have low 

resolution and multiple channels, containing abstract 

semantic information. The EESP module dynamically 

adjusts the dilation rate of depthwise separable 

convolutions to achieve collaborative optimization of 

global semantics and local details. The formula for 

calculating the size of the dilated convolution filter is 

shown in equation (2). 

( 1) 1S R size=  − +   (2) 

In equation (2), S  is the size of the convolutional 

filter and size  is the size of the input FM. 

2.2 EESP-ResNeXt structure integrating 

hybrid attention mechanism 

On the basis of ResNeXt combined with spatial pyramid 

network, in order to further optimize the effectiveness of 

multi-scale feature fusion, a hybrid attention mechanism 

(AM) fusion EESP-ResNeXt structure is proposed. The 

quality of feature fusion directly determines the generation 

effect of depth maps, and the multi-scale features 

extracted by the EESP module are enhanced in the 

decoding stage by combining them with deep features. To 

achieve this objective, a hybrid mechanism that integrates 

both spatial and channel attention is implemented within 

the decoder. This mechanism not only adeptly captures the 

interdependencies among features but also dynamically 

enhances the weights of crucial features. As a result, it 

enables more precise extraction of the most pertinent 

feature information for depth estimation tasks. The 

structure is shown in Figure 3. 

In Figure 3, 
SDX  represents the input of the spatial 

attention module and 
DW  the width of the deep FM. The 

hybrid AM adopts a serial processing approach, first 

analyzing the spatial distribution relationship of the scene 

through the EESP module, focusing on enhancing the 

weight distribution of key regions, and guiding the model 

to focus on salient regions. The input of this module is 

composed of shallow and deep features, which are 

convolved by 1×1 to reduce the dimensionality to 1/2 

channel and then concatenated to form the input features 

of the spatial attention layer. The flowchart of spatial AM 

and channel AM is shown in Figure 4 [16-17]. 

Figure 4 (a) shows the spatial AM, and Figure 4 (b) 

shows the channel AM. Firstly, the input features are 

reduced to half of the original number of channels through 

a 1×1 convolution. Then, average pooling and max 

pooling are performed on the channel dimension to obtain 

two types of spatial description information. After 

stitching them together, the spatial attention map is 

generated through convolution and Sigmoid activation 

function to highlight key areas in the scene. The weighted 

features are input into the channel attention module, global 

average pooling is first input, and the average activation 

value of each channel is obtained. Then the channel weight 

map is calculated through 1×1 convolution and Sigmoid 

function. Finally, the feature maps are weighted by 

channel wise multiplication to enhance semantically 

significant channel responses. This two-stage mechanism 

enables the model to simultaneously focus on key regions 

in space and semantic features in channels, thereby 

effectively improving the feature expression ability in 

depth estimation tasks. In the spatial AM, input feature 

SDX  is compressed after average pooling and max 

pooling, and then concatenated to form a new feature 

representation, whose mathematical expression is shown 

in equation (3) [18]. 
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Figure 3: Module structure of hybrid AM. 
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Figure 4: Spatial AM and channel AM. 

 

[max( ), ( )]ma SD SDW X avg X=  (3) 

In equation (3), 
maW  represents the new features 

obtained after max pooling and average pooling. Then, 

using convolution operation combined with Sigmoid 

nonlinear transformation, the expression is shown in 

equation (4). 

( ( ))Space maW Conv W=  (4) 

In equation (4), SpaceW  represents the spatial feature 

weight map and   represents the activation function, 

Conv  represents convolution operation on maW . The 

input feature 
SDX  is point multiplied with the spatial 

weight map SpaceW , and the output FM is shown in 

equation (5). 

m SD SpaceF X W=    (5) 

In equation (5), mF  represents an FM of size 

H W CS  , and   represents dot multiplication 

operation. In CNN, each channel corresponds to a specific 

image feature extracted, but a single channel of shallow 

features can only capture limited geometric information. 

The channel AM dynamically adjusts the weights of each 

channel by analyzing cross channel feature relationships, 

achieving channel level calibration of FMs. Similar to the 

spatial attention module, the first step is to reduce the 

number of channels of feature D  to CS  through 1×1 

convolution, and then concatenate them with mF  to 

generate features as shown in equation (6). 

[ , ]D mW D F=   (6) 

According to equation (6), global average pooling is 

used followed by 1×1 convolution and Sigmoid activation, 

and the channel weight map of output 1 1 CS   is shown 

in equation (7). 

( ( ( )))T JW Conv avg W=  (7) 

In equation (7), TW  represents the channel feature 

weight map, JW  represents the output of a certain layer in 

a convolutional network. To enable the model to 

dynamically select effective features, dot multiplication 

operation between 
TW  and 

mF  is required, as shown in 

equation (8). 

, [1,3]i T mY W F i=    (8) 

In equation (8), 
iY  represents the FM with a size of 

H W CS  . The D1, D2, and D3 nodes of the decoder 

network all integrate a hybrid AM. Among them, D1 

outputs FM X1 as D2 input, and the processing flow of 

each node is the same. This design effectively enhances 

the network's attention to key features by integrating 

shallow and deep features. Based on this, the EESP-

ResNeXt network model was proposed for VR image 

depth estimation, as shown in Figure 5. 

In Figure 5, the network architecture consists of three 

core components: feature extraction module, ESPP 

module, and hybrid attention module. The encoder uses 

ResNeXt as the base network, and the residual module 

adopts a grouped convolution design. During 

downsampling, the FM resolution is reduced by 50% 

while the number of channels is doubled. In addition, the 

network embeds ESPP modules at cross layer connections 

to achieve multi-scale feature fusion and optimize the 

decoding process. This network adopts an unsupervised 

training method and can select left/right views as inputs. 

Left and right disparity maps are generated separately 

through convolutional networks, and these disparity maps 

are used to reconstruct corresponding views. By 

comparing the differences between the real view and the 

reconstructed view, the LOSS value is calculated, and the 

network parameters are continuously optimized based on 

the backpropagation algorithm, ultimately achieving end-

to-end training of the model. The overall loss function is 

defined as shown in equation (9). 
4

1

sum s

s

L L
=

=   (9) 
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Figure 5: EESP-ResNeXt network model (Source from : https://www.1001freedownloads.com/free-photo/perspective-

w-rzburg-russian-fortress-bridge). 

Table 1: Training configuration and implementation details. 

Parameter Value 

Batch size 16 

Epochs 40 

Input resolution 256 × 512 

Weight initialization He normal initialization 

Framework PyTorch 1.13 

GPU NVIDIA RTX 3090 

Table 2: Results of ablation experiment. 

Test group RMSE REL  1 

Group 1 0.852 0.152 0.872 

Group 2 0.817 0.143 0.891 

Group 3 0.793 0.138 0.902 

Group 4 0.768 0.13 0.915 

Group 5 0.744 0.125 0.928 

Group 6 0.716 0.118 0.942 

 

In equation (9), sumL  represents the total loss 

function, sL  integrates appearance similarity loss, 

disparity smoothing constraint, and left-right disparity 

matching loss. The specific expression is shown in 

equation (10). 
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+

  (10) 

In equation (10), aL  represents appearance matching 

loss, pL  represents disparity smoothness loss, and lrL  

represents left-right disparity consistency loss. a , p , 

and lr  are the weight coefficients corresponding to the 

respective losses. The process of converting a disparity 

map into a depth map is shown in equation (11). 

df
e

e
 =   (11) 

In equation (11), e  represents the disparity map of the 

given scene, e  represents the converted depth map, d  

represents the disparity map of the given scene, and f  

represents the focal length. 

3 Results 

3.1 EESP-ResNeXt network model 

performance testing 

To verify the performance advantages of the EESP-

ResNeXt network model proposed by the research, the 

KITTI dataset was selected for ablation experiments. The 

experiment was conducted in a Python environment, using 

TensorFlow and PyTorch frameworks to train and test the 

model. The hardware platform was a workstation 

equipped with NVIDIA RTX 3090 GPU, ensuring 

efficient training and inference speed. The hyperparameter 

configuration for training is shown in Table 1. 

Table 1 shows the key hyperparameter settings, data 

preprocessing methods, optimizer selection, loss function 

composition, and hardware and software environment 

configuration during the training process. Based on this, 

ablation experiments were conducted for testing. The 
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experiment used the standard ResNet-50 as the baseline 

model, which was the first group. Firstly, ResNeXt's 

grouped convolution structure was introduced in the 

second group to verify its improvement effect on feature 

expression ability. Subsequently, the third group added an 

EESP module without HFF mechanism based on ResNeXt 

to analyze the role of multi-scale feature extraction and the 

potential grid artifact problems it may cause. The fourth 

group further integrated HFF mechanism in the EESP 

module to specifically evaluate its effectiveness in 

eliminating grid artifacts. The fifth group extended the 

EESP module to skip connections and studies the 

contribution of multi-scale features in cross layer fusion. 

The final complete model of Group 6 integrated all core 

components, including grouped convolution, EESP 

module combined with HFF, hybrid AM, and skip 

connection optimization, to verify the collaborative 

performance improvement of the overall architecture. The 

root mean square error (RMSE), relative absolute error 

(REL), and threshold accuracy  1 were used as 

indicators for testing, 1 represents the proportion of 

pixels with an error within the range of 1.25 times. The 

results are shown in Table 2. 

According to the results in Table 2, from the baseline 

model ResNet-50 to the complete model, RMSE 

decreased from 0.852 to 0.716, REL improved from 0.152 

to 0.118, and  1 increased from 0.872 to 0.942, 

indicating the cumulative contribution of each component 

to the model performance. After introducing grouped 

convolution in the second group, all three indicators 

showed significant improvement, indicating that the 

structure effectively enhanced the feature expression 

ability. The performance of the third group continued to 

improve after adding the basic EESP module, and the 

fourth group further optimized the results by integrating 

the HFF mechanism, confirming the important role of 

hierarchical feature fusion in eliminating grid artifacts. 

After introducing the EESP module in the skip connection, 

the model performed better in multi-scale feature fusion in 

Group 5. In the end, the complete model integrated all 

optimized components and achieved the best level in all 

evaluation metrics, with an accuracy of 0.942, an increase 

of 8 percentage points from the baseline, fully verifying 

the effectiveness of the overall architecture design. To 

further validate the performance of the proposed model, 

EESP-ResNeXt was compared with Spatial Pyramid 

Pooling Convolutional Neural Network (SPP-CNN) [19] 

and ResNeXt Support Vector Machine (ResNeXt-SVM)-

based methods [20]. The KITTI dataset was divided into a 

training set and a testing set in a 7:3 ratio, and the variation 

of the loss function with the number of iterations is shown 

in Figure 6. 

Figures 6 (a) and 6 (b) show the loss function 

variation curves of the three models on the training and 

testing sets, respectively. In Figure 6 (a), the EESP-

ResNeXt model had the fastest loss reduction rate, 

indicating that its convergence speed during training was 

faster than that of the other two models. The loss reduction 

of the ResNeXt-SVM model was slower, while the loss 

reduction of the SPP-CNN model was the slowest, 

indicating its poor convergence effect during the training 

process. In Figure 6 (b), EESP-ResNeXt still exhibited a 

fast convergence speed, and in the later stages of training, 

the loss value tended to stabilize. The performance of the 

ResNeXt-SVM model on the test set was also relatively 

stable, but its loss value was slightly higher than that of 

EESP-ResNeXt. The SPP - CNN model had a high loss 

value on the test set and converged slowly, indicating poor 

generalization ability of the model. The study compared 

the introduction of Resnet 50 with Spatial Pyramid 

Pooling (Resnet50-SPP) [21] and the MobileViT-based 

depth (MViTDepth) model [22], using parameters, 

Floating Point Operations (FLOPs), and inference time as 

indicators. The computational efficiency results are shown 

in Table 3. 

In Table 3, the MViTDepth model had the highest 

number of parameters of 25.3M and the highest floating-

point operation of 43.5G, but its inference speed on the 

training set was only 39 FPS, indicating that it consumed 

a large amount of computing resources and had average 

speed performance. The parameters of the ResNet50 SPP 

model were 25.1M, FLOPs were 41.6G, and inference 

speed was 36 FPS. The overall performance was at a 

relatively low level among all models. In contrast, the 

SPP-CNN model had parameters of 24.6M, FLOPs of 

40.3G, and inference speed of 38 FPS, slightly better than 

ResNet50 SPP. ResNeXt SVM performed better on the 

training set with parameters of 22.5M, FLOPs of 39.8G, 

and inference speed of 41 FPS. The EESP ResNeXt model 

had the fewest parameters, only 19.2M, FLOPs of 33.2G, 

and inference speed of 46 FPS, making it the fastest 

inference model on the training set. On the test set, EESP 

ResNeXt still maintained a leading position, with an 

inference speed of 57 FPS, parameters of 19.4M, and 

FLOPs of 33.7G, fully demonstrating its superior balance 

between model lightweighting and high inference 

efficiency. The inference speed of the ResNeXt SVM 

model on the test set was 52 FPS, with parameters of 

21.5M and FLOPs of 37.8G, and its performance was also 

quite excellent. The SPP-CNN model had parameters of 

23.7M, FLOPs of 41.9G, and inference speed of 45 FPS, 

showing average performance. MViTDepth and ResNet50 

SPP both had 44 FPS on the test set, with FLOPs of 42.6G 

for MViTDepth and 40.2G for ResNet50 SPP. The 

parameters were 25.1M and 24.8M, respectively, both 

showing high resource consumption. The throughput of 

the three models on the training and testing sets is shown 

in Figure 7. 
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Figure 6: Change result of loss function. 

Table 3: Comparison of computational efficiency results. 

Data set Model Params (M) FLOPs (G) Reasoning speed (FPS) 

Training set 

MViTDepth 25.3 43.5 39 

Resnet50-SPP 25.1 41.6 36 

SPP-CNN 24.6 40.3 38 

ResNeXt-SVM 22.5 39.8 41 

EESP-ResNeXt 19.2 33.2 46 

Test set 

MViTDepth 25.1 42.6 44 

Resnet50-SPP 24.8 40.2 44 

SPP-CNN 23.7 41.8 45 

ResNeXt-SVM 21.5 37.8 52 

EESP-ResNeXt 19.4 33.7 57 
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Figure 7: Throughput changes of different models. 

Table 4: Error result analysis. 

Scene Model MSE MAE PSNR SSIM 

Indoor 

EESP-ResNeXt 0.045 0.035 38.5 0.92 

ResNeXt-SVM 0.055 0.042 35.6 0.89 

SPP-CNN 0.072 0.068 33.2 0.85 

Outdoor 

EESP-ResNeXt 0.054 0.046 37.9 0.93 

ResNeXt-SVM 0.063 0.045 35.8 0.88 

SPP-CNN 0.084 0.065 32.3 0.83 

Low light environment 

EESP-ResNeXt 0.038 0.028 39.2 0.93 

ResNeXt-SVM 0.048 0.035 36.4 0.94 

SPP-CNN 0.065 0.055 34.2 0.86 

 

Figures 7 (a) and 7 (b) show the throughput changes 

of the three models on the training and testing sets, 

respectively. In Figure 7 (a), the throughput of EESP-

ResNeXt consistently remained at a high level, 

significantly higher than that of ResNeXt-SVM and SPP-

CNN. From the changes in the curve, EESP-ResNeXt 

exhibited a relatively stable throughput during the training 

process, indicating its high computational efficiency and 

ability to maintain good training performance. In contrast, 

ResNeXt-SVM had lower throughput and greater 

fluctuations, indicating that it might face bottlenecks in 

certain training stages. The throughput of SPP-CNN was 
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the lowest and fluctuated the most, indicating that its 

computational efficiency during training was low and 

there might have been a high computational burden. In 

Figure 7 (b), the throughput of EESP-ResNeXt remained 

at the highest level, with overall small fluctuations, 

demonstrating good stability and efficiency. The 

throughput of ResNeXt-SVM was slightly lower than that 

of EESP-ResNeXt, but still significantly higher than that 

of SPP-CNN. The throughput of SPP-CNN on the test set 

was still the lowest, further confirming its high 

computational burden in the inference stage, which 

affected its performance. 

3.2 Application effect analysis of EESP-

ResNeXt network model 

To verify the application effect of EESP-ResNeXt in VR 

image depth estimation, three scenarios were simulated: 

indoor scenes, dynamic scenes, and low light 

environments, and the application effects of different 

models were tested in different scenarios. Each test 

scenario used the same dataset and environment settings, 

with Mean Squared Error (MSE), Mean Absolute Error 

(MAE), Peak Signal-to-Noise Ratio (PSNR), and 

Structural Similarity Index (SSIM) as metrics. The test 

results are shown in Table 4. 

In Table 4, the EESP-ResNeXt model performed the 

best in indoor scenes, with the lowest MSE and MAE of 

0.045 and 0.035, respectively. The PSNR was 38.5 and the 

SSIM was 0.92, demonstrating the accuracy and stability 

of the model in indoor environments. In contrast, SPP - 

CNN performed the worst in terms of MSE and MAE, and 

had the lowest PSNR and SSIM, indicating that the model 

had significant shortcomings in accuracy and structural 

similarity. In outdoor scenes, EESP-ResNeXt also 

performed well, with an MSE of 0.054, an MAE of 0.046, 

a PSNR of 37.9, and an SSIM of 0.93. The performance 

of ResNeXt-SVM and SPP-CNN was slightly inferior. 

Especially, SPP-CNN had poor performance in PSNR and 

SSIM, which were 32.3 and 0.83 respectively, indicating 

its poor adaptability to depth changes in outdoor scenes. 

In low-light environments, EESP-ResNeXt still 

maintained its lead, with an MSE of 0.038, an MAE of 

0.028, a PSNR of 39.2, and an SSIM of 0.93. The PSNR 

and SSIM of ResNeXt-SVM and SPP-CNN were 

significantly lower than those of EESP-ResNeXt, 

especially in terms of MSE and MAE. SPP-CNN 

performed the worst, indicating its lower depth-estimation 

accuracy in processing multi-view information. The CPU 

utilization of different models in different scenarios is 

shown in Figure 8. 
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Figure 8: CPU utilization in different scenarios. 

Figures 8 (a), 8 (b), and 8 (c) show the CPU usage of 

the three models in three simulation scenarios, 

respectively. In Figure 8 (a), EESP-ResNeXt had the 

lowest CPU utilization rate at 47.3%, while SPP-CNN had 

a CPU utilization rate of 56.7%, and ResNeXt-SVM had 

the highest CPU utilization rate at 68.3%. This indicated 

that EESP-ResNeXt could effectively reduce 

computational overhead and maintain low resource 

consumption when processing indoor scenes, while still 

achieving good performance. In Figure 8 (b), the CPU 



102 Informatica 49 (2025) 93–104 H. Li 

utilization of EESP-ResNeXt was 42.5%, which was the 

lowest among the three. The CPU utilization rates of SPP-

CNN and ResNeXt-SVM were 56.8% and 47.4%, 

respectively. This indicated that EESP-ResNeXt had 

lower computational requirements in outdoor scenarios 

compared to the other two models, and had high 

computational efficiency, which could efficiently handle 

depth estimation tasks in outdoor environments. In Figure 

8 (c), EESP-ResNeXt had the lowest CPU utilization at 

43.2%, while SPP-CNN had a CPU utilization of 59.8% 

and ResNeXt-SVM had a CPU utilization of 46.8%. This 

indicated that EESP-ResNeXt maintained low 

computational resource requirements under low-light 

conditions and could provide efficient depth estimation in 

resource-limited environments. To visually compare the 

depth maps generated by the three models, three images 

were selected for estimation in indoor, outdoor, and low 

light environments. The visualization results are shown in 

Figure 9. 

Figure 9 (a) shows three scene diagrams, while 

Figures 9 (b), 9 (c), and 9 (d) show the depth maps 

generated by different models, respectively. In Figure 9 

(b), SPP-CNN could capture the details of objects well. 

For outdoor scenes, the depth map of SPP-CNN 

performed well with strong depth hierarchy, but the clarity 

was poor. In low light environments, the depth map 

generated by SPP-CNN maintained relatively clear depth 

information, but there was relatively less depth 

information in some shaded areas. In Figure 9 (c), the 

depth map of ResNeXt-SVM was more accurate than 

SPP-CNN, and could more accurately represent the depth 

information of objects. For outdoor scenes, the depth map 

of ResNeXt-SVM showed a strong sense of hierarchy, 

with clear object depth differentiation and better 

performance than SPP-CNN. In low light environments, 

ResNeXt-SVM performed more stably in generating 

depth maps, but there were still deviations in some shaded 

areas. In Figure 9 (d), the depth map generated by EESP-

ResNeXt could better capture subtle depth differences in 

indoor environments, especially in the details and edges of 

objects. In outdoor scenes, the depth map of EESP-

ResNeXt displayed extremely detailed depth variations, 

which could effectively distinguish between near and far 

objects. In low light environments, EESP-ResNeXt could 

maintain high accuracy. Although there might be slight 

changes in areas with insufficient lighting, it could still 

maintain the depth relationship between objects well, 

especially in shadow areas where depth estimation was 

more accurate. 

(a) Scene graph
Indoor scenes Outdoor scene Low light environment

(b) SPP-CNN

(c) ResNeXt-SVM

(d) EESP-ResNeXt

Indoor scenes Outdoor scene Low light environment

Indoor scenes Outdoor scene Low light environment

Indoor scenes Outdoor scene Low light environment

 

Figure 9: Visualization results (Picture “Indoor scenes” source from: https://www.1001freedownloads.com/free-

photo/bed-hotel-pillow-bedroom; Picture “Outdoor scenes” source from: https://www.1001freedownloads.com/free-

photo/perspective-w-rzburg-russian-fortress-bridge; Picture “Low light environment” source from: 

https://www.1001freedownloads.com/free-photo/oulu-finland-sunset-buildings-river-water). 
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4 Conclusion 
A EESP-ResNeXt network model based on ResNeXt 

combined with EESP module was proposed to meet the 

requirements of depth estimation accuracy and efficiency 

in VR environment. This model effectively improved the 

depth estimation accuracy of the model in complex 

environments by introducing multi-scale feature fusion 

and hybrid AMs. The experimental results showed that 

EESP-ResNeXt outperformed existing ResNeXt-SVM 

and SPP-CNN models in indoor, outdoor, and low light 

environments. The MSE of EESP-ResNeXt in indoor 

scenes was 0.045, PSNR was 38.5, and SSIM was 0.92, 

demonstrating its high accuracy and robustness in 

complex scenes. In low light environments, EESP 

ResNeXt could still maintain low MSE and high PSNR, 

with values of 0.050 and 37.9, respectively. This fully 

validated its robustness under varying lighting conditions. 

In addition, EESP ResNeXt had a parameter of 19.4M and 

an inference speed of 57 FPS, demonstrating comparable 

or higher depth accuracy while maintaining hardware 

efficiency, making it more suitable for VR real-time 

applications. Although EESP ResNeXt performed well in 

multiple scenarios, performance degradation might still 

occur in extreme lighting, strong reflection, dynamic 

occlusion, or adverse weather conditions. This type of 

environment usually had problems such as sparse texture, 

blurry imaging, and geometric distortion, and the current 

model was mainly trained in sunny days and conventional 

indoor and outdoor scenes, with certain limitations on 

generalization ability. Future research can introduce 

multi-modal sensor data, such as infrared or event 

cameras, to enhance the perceptual robustness of the 

model under harsh conditions. By combining style transfer 

and domain adaptation techniques, an enhanced training 

set across weather scenarios is constructed, and an 

uncertainty modeling mechanism is introduced to further 

improve the accuracy of depth estimation. 
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