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The traditional image super-resolution reconstruction method has the problems of relying on hardware
devices, high computational cost, and poor interpretability and generalization ability. To improve the
efficiency of image super-resolution reconstruction, the study proposes a partial differential equation
image super-resolution reconstruction method that introduces a priori information. The study first
extracts the a priori information of the image based on convolutional neural network, and then fuses the
extracted a priori information with the partial differential equation model. This convolutional neural
network is based on the ResNet-18 framework. It enhances the differential expression of feature channels
and the precise capture of edge features. This is achieved by removing batch normalization layers and
introducing channel attention modules and gradient-guided branches. The experiment was conducted on
the Flickr2K dataset and evaluated using cross method comparison metrics such as structural similarity
index and peak signal to noise ratio. The results indicated that feature similarity and edge preservation
rate were highest when extracting the gradient information of the image based on convolutional neural
network when compared with other methods. When the number of iterations was 500, the feature similarity
and edge preservation rate were 0.88 and 88.7% respectively. Edge pixel accuracy and gradient feature
correlation were best when extracting gradient information from the image based on convolutional neural
network. The values of edge pixel accuracy and gradient feature correlation were 0.92 and 0.87
respectively when the iteration was 500. The proposed method of partial differential equation image
super-resolution reconstruction by introducing a priori information has superior performance and can
provide technical support for image super-resolution reconstruction.

Povzetek: Razvita je metoda za izboljSanje locljivosti slik, ki zdruzuje konvolucijske nevronske mreze
(CNN) z modelom delnih diferencialnih enacb (PDE). CNN, zasnovan na izboljSanem ResNet-18 brez
normalizacijskih plasti, vkljucuje kanalno pozornost in gradientno vodenje za natancnejse zaznavanje
robov. Iz mreze izluscene gradientne informacije sluzijo kot predhodno znanje, ki se vkljuci v PDE-model

in usmerja proces rekonstrukcije.

1 Introduction

With the popularization of smartphones and the rise of
social media, visual culture is becoming more and more
dominant in modern society [1]. More and more people
choose to obtain and share information through pictures.
Social media platforms are dominated by images, and
users share and consume images on these platforms far
more frequently than text. This change has not only
changed the way human beings acquire information, but
also influenced their way of thinking, making visual
expression a part of daily communication [2]. However,
during image acquisition, the image resolution is often
insufficient due to factors such as sensor shape and size,
air disturbance, object motion, and lens defocusing,
leading to loss of details and degradation of clarity, which
in turn affects subsequent analysis and applications [3-4].
By using hardware or software to reconstruct the
appropriate high resolution (HR) images from low
resolution (LR) photos, the image super-resolution
reconstruction (ISRR) technology has emerged as a

successful solution to this issue. The aim of this technique
is to increase the resolution of the image through
algorithms without increasing the cost of hardware, thus
obtaining an image that contains more information [5-6].
However, traditional ISRR methods rely heavily on
hardware devices, involve complex computational
processes, and struggle to meet real-time requirements. In
addition, insufficient use of prior information in the image
results in inadequate detail recovery and the introduction
of artifacts. Therefore, the study proposes a partial
differential equation (PDE) iterative step-response (ISR)
method that introduces a priori information. This method
constructs an innovative model for extracting a priori
information based on convolutional neural networks
(CNNs). It adopts an improved residual network (ResNet)
structure by removing the batch normalization layer
(BNL) to keep the color distribution consistent. The
channel attention module (CAM) and gradient-guided
branch are also introduced to enhance the differential
representation of feature channels and the accurate capture
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of edge features. This study aims to construct a prior
information extraction model based on an improved CNN.
The model introduces a CAM and a gradient guidance
branch to enhance differential expression of the feature
channels and accurately capture edge features. This
enables effective reconstruction of LR images. The
success criteria are based on 500 iterations with a
structural similarity index (SSIM) greater than 0.95 and a
peak signal-to-noise ratio (PSNR) greater than 40 dB to
demonstrate the superior performance of the proposed
method in ISRR.

2 Related works

CNNs are sophisticated graph-based representation
models that have extensive application in a variety of
domains [7-8]. In an attempt to reduce the pressure on
experts and equipment work due to the increase in the
number of patients with diabetic retinopathy,
Alshawabkeh et al. The study proposed a hybrid CNN
model that combines image enhancement, contrast limited
adaptive histogram equalization, migration learning, and
integrated classification techniques. The results indicated
that the accuracy, precision, recall, and stability of the
method proposed in the study were higher [9]. Xiong et al.
proposed a molecular CNN architecture based on DNA
regulatory circuits to address the limitations of traditional
neural networks in biomolecular recognition. The study
combined DNA molecular circuits with deep learning
(DL) to construct a novel neural network model with
molecular computational properties. The findings
demonstrated that, in comparison to the conventional
approach, the suggested method's recognition accuracy
was greatly increased to 98.7% [10]. A hybrid CNN-based
model was proposed by Gupta et al. to handle the
difficulties of picture quality, dataset imbalance, and
dataset generation from various sources. The study
combined three separate base hybrid CNN models in
parallel configurations to offset the drawbacks of
individual models. With an overall test accuracy of 97.3%,
the study's suggested hybrid model beaten the majority of
models, according to the data [11]. Celik et al. proposed a
hybrid CNN model and created a new deep feature in order
to increase the dataset of durum wheat seeds for
recognition and classification. The study classified the
new feature set as support vector machine input. The
results showed that the study proposed a model to
recognize and classify durum wheat and a new durum
wheat dataset was obtained [12]. A hybrid CNN model
based on maximum correlation minimum redundancy was
presented by Eroglu et al. to address the issue of
Alzheimer's disease not being identified and categorized
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early enough to successfully delay the disease. The study
classified signs in magnetic resonance imaging of the
brain. The results displayed that that the accuracy of the
risen model for feature extraction (FE) and classification
was improved to 99.1% [13].

The imaging environment, imaging distance, optical
system error, and other factors will all have an impact on
the quality of the image during the acquisition process.
When these elements are combined, the image quality will
deteriorate. In contrast, super-resolution reconstruction
(SRR) can reconstruct the corresponding HR image from
the observed LR image [14]. To solve the issue of medical
image resolution issues that impact clinical diagnosis
accuracy, Du W et al. suggested an SRR technique that
combines Transformer and generative adversarial
networks. The study realized high-quality reconstruction
of medical images by fusing the global FE capability of
Transformer and the detail generation advantage of
generative adversarial networks. The findings revealed
that the suggested technique preserved the image's
anatomical validity while increasing reconstruction
accuracy to 98.3% [15]. Afacan et al. suggested a scan-
specific generative neural network-based technique to
enhance magnetic resonance imaging resolution and
produce high-quality image reconstruction. The DL
algorithm was used to perform SRR of LR magnetic
resonance images. The outcomes demonstrated how well
the suggested technique improved image detail
reproduction. In terms of PSNR and SSIM, the
reconstructed image performed noticeably better than the
traditional approach [16]. To enhance ISRR performance,
Zhang M et al. proved a DL network based on heat transfer
theory. The results displayed that that this method
achieved better reconstruction results than the traditional
algorithm on several benchmark datasets [17]. Zhang et al.
proposed a SRR method for the problem of insufficient
resolution of global 3-arc-second digital elevation model
data. The study constructed a DL-driven digital elevation
model SRR framework by fusing multi-source remote
sensing data. The results indicated that the proposed
method successfully improved the resolution of the
original digital elevation model data to the level of 1 arc
second, and the error of elevation accuracy was controlled
within 2.5 meters [18]. To meet the needs of modern
video processing, Gong et al. proposed a video SSR
method based on the Transformer and attention
mechanisms. They also designed a video super-resolution
architecture based on the temporal Transformer. The
results indicated that the proposed model had substantially
improved image quality [19]. The related works summary
table is shown in Table 1.

Table 1: Summary table of related works.

Literature Method Data set Index Limitation
Hybrid CNN+Transfer Accuracy, precision, and | Dependent on image quality,
[9] Learning+Ensemble Retinal fundus image recall have all been | without specifying
Classification improved generalization ability
Synthetic DNA Sequence | The recognition accuracy is S
[10] CNN Dataset 98.7% Scalability is limited
[11] Parallel Hybrid CNN COVID-19 public dataset The accuracy rate is 97.3% Eg;elanz:se an issue of data
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[12] Hybr'lq ) CNN+SVM Sel_f built hard grain wheat Small dataset size
classification grain dataset
[13] Hybrid CNN ADNI Public Dataset ;I;h;zg il;:smcatlon accuracy Relying on MRI quality
[15] Transformer+GAN Medical Imaging Dataset The reconstruction accuracy | High consumption of computing
is 98.3% resources
[16] Scan specific generative Low resolution MRI SSIM_ and PSNR have both Gener_allzatlon limited by
neural network been improved scanning protocol
- . . Simplification ~ of  physical
[17] Heuristic deep learning Set5, Setl4 PSNR_mcreased by 1.2dB, models leads to loss of high-
network SSIM increased by 0.03 .
frequency details
18] Deep Leaming Framework | Global 3-second DEM data Resolution increased to 1 arc Incre_ased errors in  complex
second terrain areas
Transformer+cross modal - Substantial improvement in | Time consistency indicator not
[19] . - Video dataset : . -
attention mechanism image quality specified

To summarize, ISRR technique is of great
significance for improving image quality in medical
diagnosis, remote sensing mapping and other fields. To
further increase ISRR's accuracy and dependability,
numerous researchers and experts have created numerous
enhanced models. However, there are still some
shortcomings, such as limited adaptability to complex
imaging environments and low computational efficiency
in processing special images. Therefore, the study
proposes a PDE ISRR method that incorporates a priori
information. This method aims to improve the accuracy
and stability of SRR and reduce the blurring caused by
traditional methods.

3 Introduction of a
information for PDE ISRR

priori

3.1 DL-based a priori information
extraction models

In DL, CNN is a strong network structure, particularly for
processing images and videos [20]. CNNs' primary
strength lies in their ability to automatically and
effectively extract features from data, a task that is often
done manually in conventional machine learning
techniques. CNNs are designed with convolutional layers
(CLs) so that each neuron only needs to respond to a
portion of the input data, i.e., the local perceptual domain.
This mechanism allows CNNSs to capture local features in
an image, such as edges, textures, etc [21-22]. Therefore,
the study employs CNN for FE of LR images to learn the

gradient, texture and other information of the image,
which is input into the PDE model as a priori information.
The retrieved features are more abstract and include more
semantic information the more layers the CNN network
has. Nevertheless, when the layer of the model increases,
it leads to the problem of gradient dispersion or gradient
explosion. To solve this problem, the research adds
ResNet to the a priori information extraction model. In
ResNet, the output of each sublayer is not just the result of
the output of the previous layer after an activation function
(AF). However, it is directly added to the input of the
previous layer through jump connections. Suppose there

is a layer with input x and output F(x) after a series of
transformations, the final output is displayed in Equation

).
y=F(x)+x 1)
In Equation (1), Y is the result of residual linkage.
With this design, the model no longer needs to learn the
entire input representation, but rather the increment of the
input. In the SRR task, it is crucial to maintain the
consistency between the input and output images in terms
of color distribution. In contrast, the BNL in the ResNet
architecture changes the distributional properties of the
input data through normalization operations. This process
may interfere with this consistency, leading to color
distortion or contrast anomalies in the reconstructed
images. Therefore, in the design of the a priori information
extraction model, the removal of the BNL in ResNet is
investigated. The ResNet pairs before and after removal
are shown in Figure 1.
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Figure 1: Comparison of ResNet before and after removing BNL.
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Figure 2: Channel attention calculation steps.

In Figure 1, the upper part shows the original ResNet
structure containing two consecutive 3x3 CLs. The BNL
and ReLU AF are connected after each CL. The lower part
shows the improved structure after removing the BNL,
which retains the 3x3 CLs and ReLU AF and removes all
the BNLs. To improve the network's ability to perceive
key regions of the image, especially the reconstruction
effect in detail-rich regions and edge structures. The study
incorporates two core modules in the model design.
Among them, the CAM is used to enhance the differential
representation between feature channels. The gradient
guidance branch is used to capture and reconstruct the
edge features of the image. The channel attention (CA)
computation steps are shown in Figure 2.

In Figure 2, the steps of CA computation are as
follows. First, global maximum pooling (GMP) and global
average pooling (GAP) of spatial dimensions are

performed on an input feature map (FM) F of size HXWxC
to obtain two 1x1xC FMs. The GAP is computed in

Equation (2).
H
i 2
HW le 2% @
In Equation (2), F,, is the FM after GAP. X, is the

value of the input FM at position (i, j). W and H isthe

width and height of the FM. The GMP is calculated in
Equation (3).

W

Favg =

Fra = Max; ; X;; (3)

In Equation (3), F,, denotes the FM after GMP.
Next, input F, and F_ into two shared multi layer
perceptrons (MLPs) for learning, resulting in two feature
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maps MLP,, and MLPR,, of 1x1xC. The calculation of
MLP,, is shown in equation (4).

MLB,, = ReLU(\NlFan +b) 4)

In Equation (4), W, denotes the weight matrix (WM)

of the first layer. b, denotes the bias vector of the first

layer. ReLU denotes the ReLU AF. The calculation of
MLP,., is shown in Equation (5).

MLP,_, =W,MLP, +b, (5)

In Equation (5), W, isthe WM of the 2ndL. b, isthe

bias vector of the 2ndL. Finally, the MLP output is
subjected to addition operation and mapped by Sigmoid
AF to obtain the final CA WM. The CA WM A is
calculated in Equation (6).
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A=o(MLR, + MLPR,) (6)

In Equation (6), o denotes the Sigmoid AF. Gradient

branching aims to super-resolve the gradient map (GM) of

an LR image into the corresponding GM of an HR image.

The GM of an image | is obtained by calculating the

difference between neighboring pixels. Equation (7)
provides the computation of the gradient vector.

VI(X) = (1,(), 1,(x)) ()

In Equation (7), VI(x) is the gradient vector at

position x. 1,(x) and I (x) is the gradient along the x

and Yy direction at position x . The GM of image I is
computed in Equation (8).

G(1) = [VIX)[, = {1E(x) +15(x) (®)

y direction
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Figure 3: Steps for obtaining image gradients through CLs.

In Equation (8), G(-) denotes the operation of taking the

GM, and the operation of obtaining the gradient can be
realized by a CL with a fixed kernel. The realization steps
are shown in Figure 3.

In Figure 3, the steps for obtaining the gradient of an
image by means of a CL are as follows. First, two distinct
convolution kernels are used to the image matrix in an
attempt to determine the image's gradient in the x and y
directions, respectively. After the convolution operation is
completed, the gradient of the image in x and y direction
is obtained. Next, each element of these two gradient
matrices is squared and the results are summed to get a
new matrix. Ultimately, the square root of this matrix
yields the final GM. In summary, the CNN architecture
proposed in this study is based on the ResNet-18
framework. It includes an initial CL with 64 3x3
convolution kernels and a ReLU AF. This is followed by
18 improved residual blocks. Each residual block contains
two CLs. Each layer uses 64 3x3 convolution kernels and
a ReLU AF. The input is added directly to the output of
the second CL through residual connections. This study
removes the BNL from the residual block and introduced
a CAM. This module performs both global average and
GMP on the input feature map simultaneously, producing
two 1x1xC vectors. Through shared two-layer MLP
processing, they are added and activated by Sigmoid to
generate channel weights. No pre trained model is used,

and all network parameters are trained from scratch using
the Adam optimizer.

3.2 PDE model construction and solution
with fused a priori

The study first extracts the a priori information of the
image based on CNN after which the extracted a priori
information is fused with the PDE model. Most of the
semantic and shape information in an image can be
represented by edges. The edge portion of the image is
where the pixel values change drastically. Gradient of all
the pixel value locations of the image tells which locations
in the image are edges. The gradient information (GI)
essentially describes the trend of the pixel values, such as
the contour of the object, the direction of the texture, and
so on. These features are crucial for reconstructing HR
images. Therefore, the study fuses the image Gl extracted
by the CNN model as a priori information with the PDE
model. In ISRR, using Gl as a priori information can help
the reconstruction algorithm to recover the details of the
image more accurately. This is particularly true in high-
frequency areas, which typically hold the image's texture
and edge information. The reconstructed HR image can be
made to match the LR image at the pixel level by including
this a priori information into the PDE model. Additionally,
it can enhance the overall quality of the reconstructed
image by lowering potential artifacts and blurring
throughout the reconstruction process. The model that
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integrates the image Gl extracted by the CNN model as a
priori information with the PDE is shown in Figure 4.
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Figure 4: The image Gl extracted from the CNN model as

In Figure 4, the model is mainly composed of an input
layer, a CL, a ResNet layer, an MLP, a feature fusion
layer, and an output layer. First, the initial LR map is
passed through a CL to extract the preliminary FM.
Second, the preliminary FMs go to the ResNet layer,
where the features are further extracted and optimized.
Then, the extracted feature maps are fused through a
feature fusion layer to form a fused feature map.
Subsequently, the fused feature map is input into the PDE
model and fused with the GI image extracted from the
CNN model. The PDE model utilizes Gl as prior
information to guide the SSR process of images. Next, the
fused feature map is then input into the PDE model, where
it is fused with the GI image extracted from the CNN
model. Finally, the upsampled image is refined through a
CL to obtain the final high-resolution image.

Problem

definition

Prior informa-

Discretizin . .
9 tion extraction

Initialization / o\

Calculation of diffusion

a model for integrating a priori information with PDEs.

Finite difference method (FDM) is a numerical
method for solving PDEs and ordinary differential
equations. Its solved on computer by discretizing
differential equations into difference equations. It has the
advantages of simplicity and intuition, versatility and
accuracy [23-24]. Therefore, this study is based on FDM
for solving PDEs with fused a priori. FDM works on the
basis of first breaking down the problem's definition
domain in a grid. To simplify the PDE definite solution
problem with continuous variables to a system of
algebraic equations with just a finite number of unknowns,
the derivative is substituted by the difference quotient of
the function at the grid points [25-26]. The solution steps
are shown in Figure 5.

Iterative

coefficient solution

o_0o

Boundary cond-

ition setting High resolution images

Figure 5: Solves the steps of the PDE of the fusion prior based on FDM.

In Figure 5, the steps for solving the PDE with fused
prior are as follows. First, the problem domain is defined
and the solution region is discretized in space and time to
form a grid. Second, the initial and boundary conditions
are set. The LR image's a priori information is then
retrieved using CNN, and each grid point's diffusion
coefficient is computed using the information that is
extracted. Finally, the a priori information is fused and the

features learned from the data are integrated into the PDE
model to obtain the HR image. However, FDM is prone to
numerical  oscillations in high-resolution image
reconstruction, especially when dealing with complex
image boundaries and regions with high gradients. This
can lead to image distortion. Moreover, high-resolution
reconstruction requires finer grids to improve accuracy,
which significantly increases the computational and
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storage requirements of FDM. Larger grid sizes can also
lead to insufficient accuracy. Therefore, this study adopts
grid-adaptive encryption technology in complex areas and
near image boundaries to refine the grid and capture
details and boundary features more accurately. At the
same time, the interpolation method is optimized to reduce
the error introduced due to the mismatch between the grid

n+1
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and the image boundary. FDM substitutes a finite quantity
of discrete points for the independent variable's
continuous variation region. It substitutes functions of
discrete variables defined on the grid points for functions
of continuous variables that appear in the problem. The
PDE discretization is shown in Equation (9).

A AX?

In Equation (9), u; denotes the pixel value at time

step n and spatial location (i, j). D denotes the diffusion
coefficient. At denotes the time step. Ax and Ay denote
the spatial step. fi_”j denotes the external source term.

n+l _ on
ij ij

Among them, represents the rate of change

over time. It reflects how image pixel values evolve with
time steps. This enables the model to gradually optimize
the image's details and structure based on prior
information.

Uiy =200 Ul Ul =20+l )
D 2 L 2 describes
AX Ay
the spatial diffusion process of image pixel values. This

process can smooth out noise and discontinuities in an
image while enhancing edge and texture details. The result

is a clearer, more complete image. f,"; may contain prior

information extracted from CNN. ThIS enables the model
to utilize prior knowledge of the image better, restoring
the details and structure of high-resolution images. This
improves the quality and accuracy of reconstruction. The
calculation of the diffusion coefficient is shown in
Equation (10).

D =o-exp(-| Vu[) (10)

2u +u

ul - (u,m—Zu +u
" L-D

Ay2
In Equation (10), o denotes the scaling factor. {3

-2u, i TU;
+ IJ+1 |J—1j fi'nj (9)

denotes the adjustment coefficient. |Vu|2 denotes the

square of the mode of the image gradient. The gradients
along the x and y directions are calculated in Equation
(12).

n
a_U _ Uiy — Uiy

OX 2AX

n

a_U uirjj+1 - ui,j—l
oy 2Ay

(11)

In Equation (11), Z—u is the gradient along the x
X

direction. Z—u is the gradient along the Yy direction. The
y

boundary conditions are shown in Equation (12).
ug,j = urr:lx,j = Uirjo = uin,Ny =0 12)
In Equation (12), g, ; denotes the boundary condition

value. In ISRR, it is often difficult to obtain the values of
boundary pixels directly from LR images. Equation (12)
specifies the values of the image's boundary pixels,
providing a constraint condition for the image's edges.
This ensures the image's rationality at the boundary and
the accuracy of internal pixel calculations. The iterative
update is shown in Equation (13).

(13)

n+l _ ..n i+1,j
Ui —ui,j+At-{D( sz

PSNR measures the difference between a
reconstructed image and the original image, reflecting the
similarity of the pixel values in the image. Higher PSNR
values indicate better image quality. The calculation is
shown in equation (14).

MAX 2
PSNR =10-lo
Oy (o VISE )

In equation (14), MAX represents the maximum
possible value of an image pixel, and MSE represents the
maximum possible value of an image pixel. The SSIM is
used to evaluate the similarity between reconstructed and
original images. It takes into account brightness, contrast,
and structural information. The range of SSIM values is
between -1 and 1, and the closer the value is to 1, the more
similar the image structure is. This study uses functions in
MATLAB to directly calculate PSNR and SSIM metrics.

(14)

,M 2u +u .
by Ay2 +fi‘j

4 Quality analysis of SRR of PDE
images

4.1 Experimental environment and
parameter settings

The hardware configuration chosen for the experiment is
as follows. The operating system is Windows 11, the
RAM is 64GB, the video memory is 24GB, the CPU is
Intel Core i9-13900K @3.00GHz, and the GPU chosen is
NVIDIA-GeForce RTX 4090. The software chosen for
this study is yTorch 1.12, CUDA 11.6, and MATLAB-
R2023a. This study conduct experiments by using the
Flickr2K dataset
(http://cv.snu.ac.kr/research/EDSR/Flickr2K .tar). The
Flickr2K dataset is an image dataset used for super-
resolution tasks, containing 2650 high-resolution images.
First, the image is normalized by reducing the pixel values
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to within the range of [0,1]. In addition, in order to
enhance the generalization ability of the model, data
augmentation processing is performed on the data,
including random cropping, horizontal flipping, vertical
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flipping, and rotation, to increase the diversity and
richness of the training data. It is divided into training set,
test set, and validation set in the ratio of 8:1:1. Table 2
displays the experimental parameters' precise settings.

Table 2: Sample parameter settings.

I:r%e parameter Parameter values | Describe The parameter name | Parameter values | Describe
Enter image size 64x64 Input _dlm_ensmns for the low- BatchSize 16 Numb(_er_ Of. Images
resolution images per training input
. . Number of training
Learning rate 1x10-4 Imt.'al. learning rate of the Adam Epochs 500 iterations for the
optimizer
complete dataset
Convolution  kernel
ResNet number 18 Number of underlying layers of | Gradient branch | 3x3 Center | fixed for extracting
of plies the residual network convolution kernel Difference the image ladder,
degrees
Controlling for the
Channel attention 64 The characteristic dimension of | PDE coefficient of 005 weight of the
dimension the MLP middle layer diffusion ’ gradient prior in the
PDE model
. . . . The time step of the
(ax,0) 05 sSi;;ztlally discretized the grid step At 0.01 PDE iterative
solution
Table 3: Parameter sensitivity analysis results.
o B PSNR/dB SSIM Al
0.03 0.1 40.45+0.29 0.95+0.01 0.55+0.07
0.05 0.1 40.87+0.22 0.96+0.01 0.51+0.04
0.08 0.1 41.43+0.31 0.96+0.01 0.49+0.05
0.03 0.2 40.78+0.21 0.96+0.01 0.53+0.05
0.05 0.2 41.75+0.17 0.97+0.01 0.47+0.04
0.08 0.2 40.38+0.27 0.95+0.01 0.59+0.08
0.03 0.3 40.21+0.25 0.93+0.01 0.52+0.05
0.05 0.3 41.19+0.23 0.96+0.01 0.59+0.07
0.08 0.3 40.87+0.25 0.95+0.01 0.60+0.09

o is used to control the weight of gradient priors in
PDE models. A larger oo can highlight image edges and
textures, but may also amplify noise. A smaller o may
lead to blurred edges. B is used to regulate the sensitivity
of diffusion coefficient to gradient changes. A larger
makes the diffusion coefficient more sensitive to gradient
changes. This highlights strong edges but potentially loses
weak textures. A smaller B is the opposite. To determine
the parameters o and B in the diffusion coefficient, the
study set o to 0.03, 0.05, and 0.08, and set § to 0.1, 0.2,
and 0.3, respectively. PSNR, SSIM, and artifact index (Al)
are used as evaluation metrics. The results of parameter
sensitivity analysis are shown in Table 3. When o =0.05
and B =0.2, all indicators reach their optimal values. This

indicates that the parameter combination can achieve good
results in ISRR.

4.2 Quality analysis of CNN-based a priori
information extraction models

The qualitative judgment of reconstruction quality is
based on domain consensus: PSNR not less than 40dB is

excellent. SSIM not less than 0.95 is high fidelity. Al not
more than 0.5 is no obvious artifacts. Local texture
sharpness (LTS) not less than 0.8 is clear texture. SDR not
more than 0.1 is structural fidelity. Gradient magnitude
error (GME) and gradient orientation consistency (GOC)
are compared with other methods for extracting the Gl of
an image based on CNN with different number of
iterations. GME is evaluated by calculating the absolute
error of the gradient amplitude between the reconstructed
image and the original image. The smaller the value, the
better the consistency of the gradient amplitude. The GOC
evaluates the consistency of directions by calculating the
difference in the gradient directions between
reconstructed and original images. It can also use the
cosine similarity of the angle differences to calculate the
consistency of directions. The closer the GOC value is to
1, the better the consistency of the gradient direction. The
comparison of GME and GOC for extracting image Gl
using different methods is shown in Figure 6. In Figure
6(a), the GME decreases with the increase in the number
of iterations when different methods are used to extract the
Gl of the image. When CNN is used to extract the image's
Gl, the GME is at its lowest, and when principal
component analysis (PCA) is employed, it is at its highest.
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When the iteration is 500, the GME is categorized as 0.34
and 0.41. In Figure 6(b), the GOC increases with the
increase in the number of iterations for extracting the Gl
of the image by different methods. The GOC is maximum
when CNN is used to extract the Gl of the image. When
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(a) GME for extracting gradient information from
images using different methods
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the number of iterations is 500, the GOC at this time is
0.94. The results display that CNN can extract the GI more
accurately  while  maintaining  higher directional
consistency.
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(b) GOC for extracting gradient information from
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Figure 6: Comparison of GME and GOC for extracting image Gl using different methods.

With different number of iterations, the feature
similarity (FSIM) and edge preservation rate (EPR) when
extracting GI from the image based on CNN is compared
with other methods. FSIM evaluates FSIM by calculating
the gradient magnitude and gradient orientation of an
image. The closer the value is to 1, the higher the FSIM of
the image. The EPR calculates the retention rate by
comparing the edge maps of the original and reconstructed
images. These images can be obtained using the Canny
operator or other edge detection methods. The comparison
of FSIM and EPR for extracting image Gl using different
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(a) FSIM for extracting gradient information from
images using different methods

EPR (%)

methods is shown in Figure 7. The higher the EPR value,
the more edge information is preserved in the
reconstructed image. In Figure 7(a), FSIM is lowest when
using wavelet transform (WT) and greatest when using
CNN to extract an image's GI. When the number of
iterations is 500, the FSIM is 0.71 and 0.88, respectively.
In Figure 7(b), the EPR is highest when the GI of the
image is extracted based on CNN. When the number of
experiments is 500, the EPR is 88.7%. It verifies the
efficiency of the proposed method of the study in edge
information retention.
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Figure 7: Comparison of FSIM and EPR for extracting image Gl using different methods.

The edge pixel accuracy (EPA) and gradient feature
correlation (GFC) when extracting GI from an image
based on CNN is compared with other methods. The EPA
calculates accuracy by comparing the edge maps of the
reconstructed and original images. This calculation is
performed by dividing the number of correctly classified
edge pixels by the total number of edge pixels. The higher
the EPA value, the higher the matching degree between
the edge pixels of the reconstructed image and the original
image. The GFC measures the correlation between the
direction and magnitude of image gradients. The Pearson

correlation coefficient can then be used to calculate the
correlation of the gradient features. The higher the GFC
value, the better the consistency of gradient features.
Table 4 displays the findings. CNN based extracting the
Gl of an image shows good performance. Poor
performance is shown when extracting Gl of an image
based on WT. The values of EPA are 0.92 and 0.87 when
the iteration is 500. The values of GFC are 0.87 and 0.79.
The reliability of CNN in edge localization and GFC is
confirmed.
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Table 4: EPA and GFC for ISRR using different models.

Number of iterations EPA GFC

WT PCA CNN WT PCA CNN
100 0.79 0.83 0.85 0.72 0.75 0.79
200 0.80 0.85 0.87 0.74 0.77 0.81
300 0.82 0.86 0.89 0.75 0.79 0.84
400 0.84 0.88 0.91 0.77 0.80 0.85
500 0.87 0.89 0.92 0.79 0.83 0.87

Table 5: Results of ablation experiment.

Model PSNR/dB SSIM Al
CNN 38.42 0.91 0.62
CNN+CAM 39.25 0.93 0.58
PDE 37.89 0.89 0.66
Complete model 41.74 0.97 0.48

4.3 Fusion of a priori PDE models for
quality analysis

Ablation studies are conducted to evaluate the
effectiveness of each component in the proposed model.
PSNR, SSIM, and Al are used as evaluation metrics to
compare CNN, CNN+CAM, PDE, and the complete
model. The results of the ablation experiment are shown
in Table 5. The complete model performs the best in terms
of metrics, with PSNR, SSIM, and Al being 41.74dB,
0.97, and 0.48, respectively. Next is CNN+CAM. PDE
performs the worst, indicating that relying solely on PDE
for reconstruction can easily result in the loss of detailed
image information. The results suggest that combining the
CNN, CAM, and PDE modules can enable the model to
reconstruct images with different textures effectively.

To verify the effectiveness of fusing a priori PDE
models for ISRR, the study uses PSNR with SSIM for
evaluation. In Figure 8(a), the PSNR value of ISRR based
on fusion a priori PDE model is the highest and the PSNR
value based on bicubic interpolation is the lowest. When
the number of iterations is 500, the PSNR values of
bicubic interpolation and PDE model are 33.8dB and
41.74dB, respectively. In Figure 8(b), the highest SSIM

value is obtained for SRR of the image based on the fused
a priori PDE model. The SSIM value is 0.97 when the
number of iterations is 500. The results displays that the
proposed method of the study can effectively restore the
image structure.

The LTS and Al of the SRR of the image by fusing
the a priori PDE model are compared with other methods.
LTS measures by calculating the contrast and sharpness of
local regions in an image, with higher values indicating
clearer texture details in the image. Al can evaluate the
extent of artifacts in an image by calculating the
distribution and intensity of abnormal pixels, with lower
values indicating fewer artifacts. The comparison between
LTS and Al for ISRR using different models is shown in
Figure 9. In Figure 9(a), the LTS of ISRR by different
methods increases with the iterations’ quantity. The
highest value of LTS is obtained for SRR of image based
on fused a priori PDE model. When the iteration is 500,
the LTS value is 0.852. In Figure 9(b), the Al of SRR of
the image by different methods decreases with the
increase in the iteration. The Al value of SRR of image
based on fused a priori PDE model is minimum. When the
iteration is 500, the Al value is 0.48. It has been confirmed
that the study's suggested approach greatly enhances
texture details while lowering artifacts.
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The edge enhancement index (EEI) and structural
distortion rate (SDR) of ISRR by fusing the a priori PDE
model are compared with other methods. EEI evaluates
the edge enhancement effect by comparing the edge
intensity of the reconstructed image with the original high-
resolution image. A higher EEI value indicates a greater
enhancement of the reconstructed image's edge intensity
compared to the original image and a better edge detail
restoration effect. SDR evaluates the degree of distortion
in structural features between reconstructed and original
images by comparing their local structural similarities and
differences. The SDR value ranges from 0 to 1. A smaller
value indicates a higher SSIM between the reconstructed
and original images and a lower degree of distortion. Table
6 displays the findings. The fusion a priori PDE model
shows good performance in ISRR. The bicubic
interpolation based ISRR shows poor performance. With
500 iterations, the EEI values for the PDE model and
bicubic interpolation are 0.64 and 0.54, respectively, while
the SDR values are 0.05 and 0.10, respectively. The
efficiency of the PDE model for edge enhancement and
structure fidelity is verified.

To further validate the generalization and efficiency
of the proposed model, the DIV2K dataset containing
1000 different scene images is used for testing. Evaluation
metrics include PSNR, runtime, GPU utilization, and
model size. The PDE model integrating a priori
information is compared with three advanced SSR
models: bicubic interpolation, super solution generative
adversarial network (SRGAN), and hybrid attention
Transformer (HAT). Thirty independent runs are
conducted to collect data, and paired t-tests are used to
evaluate whether the performance differences between the
models are statistically significant. The threshold for
significance level is 0.05. If p<0.05, it is considered that
the performance improvement of the proposed method is
significant. The performance comparison results of the
four models are shown in Table 7. The average PSNR of
the PDE model that incorporates prior information is
33.46 dB, which is significantly higher than that of the
comparison model (p<0.05). With an average GPU
utilization of 70.52% and an average running time of 0.66
s, the PDE model surpasses all but the bicubic
interpolation model. The results indicate that the PDE
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model incorporating prior information has excellent
generalization and efficiency in ISRR tasks.

Table 6: EEI and SDR for ISRR using different models.

T.Ji

Number of | EEI SDR
iterations Bicubic Interpolation | SC PDE Bicubic Interpolation | SC PDE
100 0.42 0.50 0.55 0.17 0.15 0.11
200 0.47 0.51 0.58 0.15 0.14 0.09
300 0.50 0.53 0.59 0.13 0.12 0.07
400 0.52 0.56 0.61 0.11 0.10 0.06
500 0.54 0.58 0.64 0.10 0.09 0.05
Table 7: Performance comparison results of four models.
Model PSNR/dB Run time/s Utilization rate/% Model size/MB p (and PSNR of PDE)
Bicubic Interpolation | 28.55+0.33 0.15+0.03 15.20+2.07 0.55 <0.05
SRGAN 30.24+0.46 0.88+0.13 65.14+5.01 119.82 <0.05
HAT 31.88+0.39 0.66+0.09 69.82+6.25 85.43 <0.05
PDE 33.46+0.39 0.58+0.05 70.52+4.71 94.69
parameter and computational complexity  while

5 Discussion

To better meet the demand for HR images in related fields,
the study proposed a PDE ISRR method that introduced a
priori information. Moreover, the experiments were
conducted on the Flickr2K dataset and DIV2K dataset.
The results revealed that in the Flickr2K dataset, the GME
was the smallest when the Gl of the image was extracted
using CNN when compared with other methods. When the
number of iterations was 500, the GME was 0.34. The
GOC was at its maximum when the Gl of the image was
extracted using a CNN. When the number of iterations was
500, the GOC at this point was 0.94. The fusion a priori
PDE model performed well when SRR was applied to the
image. At an iteration of 500, the EEIl and SDR were 0.64
and 0.05, respectively. The PSNR and SSIM were 41.74
dB and 0.97, respectively. The PSNR of bicubic
interpolation was only 33.8dB. In the DIV2K dataset, the
average PSNR of the PDE model that integrated prior
information was 33.46dB, significantly higher than the
30.24dB of SRGAN.

The experimental results indicated that the proposed
ISRR method provided richer guidance information for
the PDE model by introducing prior information. This
made the reconstructed image more accurate in terms of
detail restoration and edge preservation. Second, the
ResNet model was improved by removing the BNL and
introducing a CAM and a gradient-guided branch. This
effectively solved the problem of gradient dispersion or
explosion while enhancing the model's ability to perceive
key areas in an image. However, while the proposed
model improved the accuracy of ISRR, it also came with
higher computational costs. The CNN model contained a
large number of parameters and layers, resulting in a
complex computational process that required high
computational resources and time costs. In practical
applications, a balance needed to be struck between
specific needs and resource constraints. Therefore, future
research should further explore model compression
techniques, such as pruning and quantization, to reduce

maintaining model performance.

6 Conclusion

HR photographs are frequently compressed into LR
images throughout the image transmission and storage
process in an effort to increase efficiency and conserve
space, which results in the loss of image features.
However, the ISRR technique can recover more detail
information from LR images. The suggested approach
produces superior results on a number of common datasets
and successfully raises the quality and resilience of ISRR.
However, CNNs have a large number of layers and
parameters, which require a large amount of
computational time and storage space, and thus have a
high demand on computational resources. Subsequent
studies will try to use other methods to improve it and
avoid the long computation time.
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