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The traditional image super-resolution reconstruction method has the problems of relying on hardware 

devices, high computational cost, and poor interpretability and generalization ability. To improve the 

efficiency of image super-resolution reconstruction, the study proposes a partial differential equation 

image super-resolution reconstruction method that introduces a priori information. The study first 

extracts the a priori information of the image based on convolutional neural network, and then fuses the 

extracted a priori information with the partial differential equation model. This convolutional neural 

network is based on the ResNet-18 framework. It enhances the differential expression of feature channels 

and the precise capture of edge features. This is achieved by removing batch normalization layers and 

introducing channel attention modules and gradient-guided branches. The experiment was conducted on 

the Flickr2K dataset and evaluated using cross method comparison metrics such as structural similarity 

index and peak signal to noise ratio. The results indicated that feature similarity and edge preservation 

rate were highest when extracting the gradient information of the image based on convolutional neural 

network when compared with other methods. When the number of iterations was 500, the feature similarity 

and edge preservation rate were 0.88 and 88.7% respectively. Edge pixel accuracy and gradient feature 

correlation were best when extracting gradient information from the image based on convolutional neural 

network. The values of edge pixel accuracy and gradient feature correlation were 0.92 and 0.87 

respectively when the iteration was 500. The proposed method of partial differential equation image 

super-resolution reconstruction by introducing a priori information has superior performance and can 

provide technical support for image super-resolution reconstruction. 

Povzetek: Razvita je metoda za izboljšanje ločljivosti slik, ki združuje konvolucijske nevronske mreže 

(CNN) z modelom delnih diferencialnih enačb (PDE). CNN, zasnovan na izboljšanem ResNet-18 brez 

normalizacijskih plasti, vključuje kanalno pozornost in gradientno vodenje za natančnejše zaznavanje 

robov. Iz mreže izluščene gradientne informacije služijo kot predhodno znanje, ki se vključi v PDE-model 

in usmerja proces rekonstrukcije. 

 

1 Introduction 
With the popularization of smartphones and the rise of 

social media, visual culture is becoming more and more 

dominant in modern society [1]. More and more people 

choose to obtain and share information through pictures. 

Social media platforms are dominated by images, and 

users share and consume images on these platforms far 

more frequently than text. This change has not only 

changed the way human beings acquire information, but 

also influenced their way of thinking, making visual 

expression a part of daily communication [2]. However, 

during image acquisition, the image resolution is often 

insufficient due to factors such as sensor shape and size, 

air disturbance, object motion, and lens defocusing, 

leading to loss of details and degradation of clarity, which 

in turn affects subsequent analysis and applications [3-4]. 

By using hardware or software to reconstruct the 

appropriate high resolution (HR) images from low 

resolution (LR) photos, the image super-resolution 

reconstruction (ISRR) technology has emerged as a  

 

successful solution to this issue. The aim of this technique 

is to increase the resolution of the image through 

algorithms without increasing the cost of hardware, thus 

obtaining an image that contains more information [5-6].  

However, traditional ISRR methods rely heavily on 

hardware devices, involve complex computational 

processes, and struggle to meet real-time requirements. In 

addition, insufficient use of prior information in the image 

results in inadequate detail recovery and the introduction 

of artifacts. Therefore, the study proposes a partial 

differential equation (PDE) iterative step-response (ISR) 

method that introduces a priori information. This method 

constructs an innovative model for extracting a priori 

information based on convolutional neural networks 

(CNNs). It adopts an improved residual network (ResNet) 

structure by removing the batch normalization layer 

(BNL) to keep the color distribution consistent. The 

channel attention module (CAM) and gradient-guided 

branch are also introduced to enhance the differential 

representation of feature channels and the accurate capture 

mailto:13645132878@163.com


220 Informatica 49 (2025) 219–232 T. Ji 

of edge features. This study aims to construct a prior 

information extraction model based on an improved CNN. 

The model introduces a CAM and a gradient guidance 

branch to enhance differential expression of the feature 

channels and accurately capture edge features. This 

enables effective reconstruction of LR images. The 

success criteria are based on 500 iterations with a 

structural similarity index (SSIM) greater than 0.95 and a 

peak signal-to-noise ratio (PSNR) greater than 40 dB to 

demonstrate the superior performance of the proposed 

method in ISRR. 

2 Related works 
CNNs are sophisticated graph-based representation 

models that have extensive application in a variety of 

domains [7-8]. In an attempt to reduce the pressure on 

experts and equipment work due to the increase in the 

number of patients with diabetic retinopathy, 

Alshawabkeh et al. The study proposed a hybrid CNN 

model that combines image enhancement, contrast limited 

adaptive histogram equalization, migration learning, and 

integrated classification techniques. The results indicated 

that the accuracy, precision, recall, and stability of the 

method proposed in the study were higher [9]. Xiong et al. 

proposed a molecular CNN architecture based on DNA 

regulatory circuits to address the limitations of traditional 

neural networks in biomolecular recognition. The study 

combined DNA molecular circuits with deep learning 

(DL) to construct a novel neural network model with 

molecular computational properties. The findings 

demonstrated that, in comparison to the conventional 

approach, the suggested method's recognition accuracy 

was greatly increased to 98.7% [10]. A hybrid CNN-based 

model was proposed by Gupta et al. to handle the 

difficulties of picture quality, dataset imbalance, and 

dataset generation from various sources. The study 

combined three separate base hybrid CNN models in 

parallel configurations to offset the drawbacks of 

individual models. With an overall test accuracy of 97.3%, 

the study's suggested hybrid model beaten the majority of 

models, according to the data [11]. Çelik et al. proposed a 

hybrid CNN model and created a new deep feature in order 

to increase the dataset of durum wheat seeds for 

recognition and classification. The study classified the 

new feature set as support vector machine input. The 

results showed that the study proposed a model to 

recognize and classify durum wheat and a new durum 

wheat dataset was obtained [12]. A hybrid CNN model 

based on maximum correlation minimum redundancy was 

presented by Eroglu et al. to address the issue of 

Alzheimer's disease not being identified and categorized 

early enough to successfully delay the disease. The study 

classified signs in magnetic resonance imaging of the 

brain. The results displayed that that the accuracy of the 

risen model for feature extraction (FE) and classification 

was improved to 99.1% [13]. 

The imaging environment, imaging distance, optical 

system error, and other factors will all have an impact on 

the quality of the image during the acquisition process. 

When these elements are combined, the image quality will 

deteriorate. In contrast, super-resolution reconstruction 

(SRR) can reconstruct the corresponding HR image from 

the observed LR image [14]. To solve the issue of medical 

image resolution issues that impact clinical diagnosis 

accuracy, Du W et al. suggested an SRR technique that 

combines Transformer and generative adversarial 

networks. The study realized high-quality reconstruction 

of medical images by fusing the global FE capability of 

Transformer and the detail generation advantage of 

generative adversarial networks. The findings revealed 

that the suggested technique preserved the image's 

anatomical validity while increasing reconstruction 

accuracy to 98.3% [15]. Afacan et al. suggested a scan-

specific generative neural network-based technique to 

enhance magnetic resonance imaging resolution and 

produce high-quality image reconstruction. The DL 

algorithm was used to perform SRR of LR magnetic 

resonance images. The outcomes demonstrated how well 

the suggested technique improved image detail 

reproduction. In terms of PSNR and SSIM, the 

reconstructed image performed noticeably better than the 

traditional approach [16]. To enhance ISRR performance, 

Zhang M et al. proved a DL network based on heat transfer 

theory. The results displayed that that this method 

achieved better reconstruction results than the traditional 

algorithm on several benchmark datasets [17]. Zhang et al. 

proposed a SRR method for the problem of insufficient 

resolution of global 3-arc-second digital elevation model 

data. The study constructed a DL-driven digital elevation 

model SRR framework by fusing multi-source remote 

sensing data. The results indicated that the proposed 

method successfully improved the resolution of the 

original digital elevation model data to the level of 1 arc 

second, and the error of elevation accuracy was controlled 

within ±2.5 meters [18]. To meet the needs of modern 

video processing, Gong et al. proposed a video SSR 

method based on the Transformer and attention 

mechanisms. They also designed a video super-resolution 

architecture based on the temporal Transformer. The 

results indicated that the proposed model had substantially 

improved image quality [19]. The related works summary 

table is shown in Table 1. 

Table 1: Summary table of related works. 

Literature Method Data set Index Limitation 

[9] 

Hybrid CNN+Transfer 

Learning+Ensemble 

Classification 

Retinal fundus image 

Accuracy, precision, and 

recall have all been 

improved 

Dependent on image quality, 

without specifying 

generalization ability 

[10] CNN 
Synthetic DNA Sequence 
Dataset 

The recognition accuracy is 
98.7% 

Scalability is limited 

[11] Parallel Hybrid CNN COVID-19 public dataset The accuracy rate is 97.3% 
There is an issue of data 

imbalance 



Image Super-Resolution via CNN-Guided Prior Integration… Informatica 49 (2025) 219–232 221 

[12] 
Hybrid CNN+SVM 
classification 

Self built hard grain wheat 
grain dataset 

- Small dataset size 

[13] Hybrid CNN ADNI Public Dataset 
The classification accuracy 

is 99.1% 
Relying on MRI quality 

[15] Transformer+GAN Medical Imaging Dataset 
The reconstruction accuracy 
is 98.3% 

High consumption of computing 
resources 

[16] 
Scan specific generative 

neural network 
Low resolution MRI 

SSIM and PSNR have both 

been improved 

Generalization limited by 

scanning protocol 

[17] 
Heuristic deep learning 

network 
Set5, Set14 

PSNR increased by 1.2dB, 

SSIM increased by 0.03 

Simplification of physical 
models leads to loss of high-

frequency details 

[18] Deep Learning Framework Global 3-second DEM data 
Resolution increased to 1 arc 

second 

Increased errors in complex 

terrain areas 

[19] 
Transformer+cross modal 

attention mechanism 
Video dataset 

Substantial improvement in 

image quality 

Time consistency indicator not 

specified 

 

To summarize, ISRR technique is of great 

significance for improving image quality in medical 

diagnosis, remote sensing mapping and other fields. To 

further increase ISRR's accuracy and dependability, 

numerous researchers and experts have created numerous 

enhanced models. However, there are still some 

shortcomings, such as limited adaptability to complex 

imaging environments and low computational efficiency 

in processing special images. Therefore, the study 

proposes a PDE ISRR method that incorporates a priori 

information. This method aims to improve the accuracy 

and stability of SRR and reduce the blurring caused by 

traditional methods. 

3 Introduction of a priori 

information for PDE ISRR 

3.1 DL-based a priori information 

extraction models 

In DL, CNN is a strong network structure, particularly for 

processing images and videos [20]. CNNs' primary 

strength lies in their ability to automatically and 

effectively extract features from data, a task that is often 

done manually in conventional machine learning 

techniques. CNNs are designed with convolutional layers 

(CLs) so that each neuron only needs to respond to a 

portion of the input data, i.e., the local perceptual domain. 

This mechanism allows CNNs to capture local features in 

an image, such as edges, textures, etc [21-22]. Therefore, 

the study employs CNN for FE of LR images to learn the 

gradient, texture and other information of the image, 

which is input into the PDE model as a priori information. 

The retrieved features are more abstract and include more 

semantic information the more layers the CNN network 

has. Nevertheless, when the layer of the model increases, 

it leads to the problem of gradient dispersion or gradient 

explosion. To solve this problem, the research adds 

ResNet to the a priori information extraction model. In 

ResNet, the output of each sublayer is not just the result of 

the output of the previous layer after an activation function 

(AF). However, it is directly added to the input of the 

previous layer through jump connections. Suppose there 

is a layer with input x  and output ( )F x  after a series of 

transformations, the final output is displayed in Equation 

(1). 

( )y F x x= +                               (1) 

In Equation (1), y  is the result of residual linkage. 

With this design, the model no longer needs to learn the 

entire input representation, but rather the increment of the 

input. In the SRR task, it is crucial to maintain the 

consistency between the input and output images in terms 

of color distribution. In contrast, the BNL in the ResNet 

architecture changes the distributional properties of the 

input data through normalization operations. This process 

may interfere with this consistency, leading to color 

distortion or contrast anomalies in the reconstructed 

images. Therefore, in the design of the a priori information 

extraction model, the removal of the BNL in ResNet is 

investigated. The ResNet pairs before and after removal 

are shown in Figure 1. 
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Figure 1: Comparison of ResNet before and after removing BNL. 
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Figure 2: Channel attention calculation steps. 

In Figure 1, the upper part shows the original ResNet 

structure containing two consecutive 3×3 CLs. The BNL 

and ReLU AF are connected after each CL. The lower part 

shows the improved structure after removing the BNL, 

which retains the 3×3 CLs and ReLU AF and removes all 

the BNLs. To improve the network's ability to perceive 

key regions of the image, especially the reconstruction 

effect in detail-rich regions and edge structures. The study 

incorporates two core modules in the model design. 

Among them, the CAM is used to enhance the differential 

representation between feature channels. The gradient 

guidance branch is used to capture and reconstruct the 

edge features of the image. The channel attention (CA) 

computation steps are shown in Figure 2. 

In Figure 2, the steps of CA computation are as 

follows. First, global maximum pooling (GMP) and global 

average pooling (GAP) of spatial dimensions are 

performed on an input feature map (FM) F of size H×W×C 

to obtain two 1×1×C FMs. The GAP is computed in 

Equation (2). 

1 1

1 H W

avg ij

i j

F X
H W = =

=


                        (2) 

In Equation (2), 
avgF  is the FM after GAP. 

ijX  is the 

value of the input FM at position ( ),i j . W  and H  is the 

width and height of the FM. The GMP is calculated in 

Equation (3). 

,maxmax i j ijF X=                            (3) 

In Equation (3), 
maxF  denotes the FM after GMP. 

Next, input 
avgF  and 

maxF  into two shared multi layer 

perceptrons (MLPs) for learning, resulting in two feature 
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maps 
avgMLP  and 

maxMLP  of 1×1×C. The calculation of 

avgMLP  is shown in equation (4). 

1 1ReLU( )avg avgMLP W F b= +                    (4) 

In Equation (4), 
1W  denotes the weight matrix (WM) 

of the first layer. 
1b  denotes the bias vector of the first 

layer. ReLU  denotes the ReLU AF. The calculation of 

maxMLP  is shown in Equation (5). 

max 2 1 2MLP =W MLP +b                         (5) 

In Equation (5), 
2W  is the WM of the 2ndL. 

2b  is the 

bias vector of the 2ndL. Finally, the MLP output is 

subjected to addition operation and mapped by Sigmoid 

AF to obtain the final CA WM. The CA WM A  is 

calculated in Equation (6). 

1 2( )A MLP MLP=  +                        (6) 

In Equation (6),   denotes the Sigmoid AF. Gradient 

branching aims to super-resolve the gradient map (GM) of 

an LR image into the corresponding GM of an HR image. 

The GM of an image I  is obtained by calculating the 

difference between neighboring pixels. Equation (7) 

provides the computation of the gradient vector. 

( ) ( ( ), ( ))x yI I I =x x x                        (7) 

In Equation (7), ( )I x  is the gradient vector at 

position x . ( )xI x  and ( )yI x  is the gradient along the x  

and y  direction at position x . The GM of image I  is 

computed in Equation (8). 

2 2

2
( ) ( ) ( ) ( )x yG I I I I=  = +x x x              (8) 
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Figure 3: Steps for obtaining image gradients through CLs. 

 

In Equation (8), ( )G   denotes the operation of taking the 

GM, and the operation of obtaining the gradient can be 

realized by a CL with a fixed kernel. The realization steps 

are shown in Figure 3. 

In Figure 3, the steps for obtaining the gradient of an 

image by means of a CL are as follows. First, two distinct 

convolution kernels are used to the image matrix in an 

attempt to determine the image's gradient in the x and y 

directions, respectively. After the convolution operation is 

completed, the gradient of the image in x and y direction 

is obtained. Next, each element of these two gradient 

matrices is squared and the results are summed to get a 

new matrix. Ultimately, the square root of this matrix 

yields the final GM. In summary, the CNN architecture 

proposed in this study is based on the ResNet-18 

framework. It includes an initial CL with 64 3x3 

convolution kernels and a ReLU AF. This is followed by 

18 improved residual blocks. Each residual block contains 

two CLs. Each layer uses 64 3x3 convolution kernels and 

a ReLU AF. The input is added directly to the output of 

the second CL through residual connections. This study 

removes the BNL from the residual block and introduced 

a CAM. This module performs both global average and 

GMP on the input feature map simultaneously, producing 

two 1×1×C vectors. Through shared two-layer MLP 

processing, they are added and activated by Sigmoid to 

generate channel weights. No pre trained model is used, 

and all network parameters are trained from scratch using 

the Adam optimizer. 

3.2 PDE model construction and solution 

with fused a priori 

The study first extracts the a priori information of the 

image based on CNN after which the extracted a priori 

information is fused with the PDE model. Most of the 

semantic and shape information in an image can be 

represented by edges. The edge portion of the image is 

where the pixel values change drastically. Gradient of all 

the pixel value locations of the image tells which locations 

in the image are edges. The gradient information (GI) 

essentially describes the trend of the pixel values, such as 

the contour of the object, the direction of the texture, and 

so on. These features are crucial for reconstructing HR 

images. Therefore, the study fuses the image GI extracted 

by the CNN model as a priori information with the PDE 

model. In ISRR, using GI as a priori information can help 

the reconstruction algorithm to recover the details of the 

image more accurately. This is particularly true in high-

frequency areas, which typically hold the image's texture 

and edge information. The reconstructed HR image can be 

made to match the LR image at the pixel level by including 

this a priori information into the PDE model. Additionally, 

it can enhance the overall quality of the reconstructed 

image by lowering potential artifacts and blurring 

throughout the reconstruction process. The model that 
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integrates the image GI extracted by the CNN model as a 

priori information with the PDE is shown in Figure 4. 
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Figure 4: The image GI extracted from the CNN model as a model for integrating a priori information with PDEs. 

In Figure 4, the model is mainly composed of an input 

layer, a CL, a ResNet layer, an MLP, a feature fusion 

layer, and an output layer. First, the initial LR map is 

passed through a CL to extract the preliminary FM. 

Second, the preliminary FMs go to the ResNet layer, 

where the features are further extracted and optimized. 

Then, the extracted feature maps are fused through a 

feature fusion layer to form a fused feature map. 

Subsequently, the fused feature map is input into the PDE 

model and fused with the GI image extracted from the 

CNN model. The PDE model utilizes GI as prior 

information to guide the SSR process of images. Next, the 

fused feature map is then input into the PDE model, where 

it is fused with the GI image extracted from the CNN 

model. Finally, the upsampled image is refined through a 

CL to obtain the final high-resolution image. 

Finite difference method (FDM) is a numerical 

method for solving PDEs and ordinary differential 

equations. Its solved on computer by discretizing 

differential equations into difference equations. It has the 

advantages of simplicity and intuition, versatility and 

accuracy [23-24]. Therefore, this study is based on FDM 

for solving PDEs with fused a priori. FDM works on the 

basis of first breaking down the problem's definition 

domain in a grid. To simplify the PDE definite solution 

problem with continuous variables to a system of 

algebraic equations with just a finite number of unknowns, 

the derivative is substituted by the difference quotient of 

the function at the grid points [25-26]. The solution steps 

are shown in Figure 5. 

N=Nmax
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Boundary cond-

ition setting

Prior informa-

tion extraction

Calculation of diffusion 

coefficient

Iterative

 solution

High resolution images

Yes
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Figure 5: Solves the steps of the PDE of the fusion prior based on FDM. 

In Figure 5, the steps for solving the PDE with fused 

prior are as follows. First, the problem domain is defined 

and the solution region is discretized in space and time to 

form a grid. Second, the initial and boundary conditions 

are set. The LR image's a priori information is then 

retrieved using CNN, and each grid point's diffusion 

coefficient is computed using the information that is 

extracted. Finally, the a priori information is fused and the 

features learned from the data are integrated into the PDE 

model to obtain the HR image. However, FDM is prone to 

numerical oscillations in high-resolution image 

reconstruction, especially when dealing with complex 

image boundaries and regions with high gradients. This 

can lead to image distortion. Moreover, high-resolution 

reconstruction requires finer grids to improve accuracy, 

which significantly increases the computational and 
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storage requirements of FDM. Larger grid sizes can also 

lead to insufficient accuracy. Therefore, this study adopts 

grid-adaptive encryption technology in complex areas and 

near image boundaries to refine the grid and capture 

details and boundary features more accurately. At the 

same time, the interpolation method is optimized to reduce 

the error introduced due to the mismatch between the grid 

and the image boundary. FDM substitutes a finite quantity 

of discrete points for the independent variable's 

continuous variation region. It substitutes functions of 

discrete variables defined on the grid points for functions 

of continuous variables that appear in the problem. The 

PDE discretization is shown in Equation (9). 

1

, , 1, , 1, , 1 , , 1

,2 2

2 2n n n n n n n n

i j i j i j i j i j i j i j i j n

i j

u u u u u u u u
D f

t x y

+

+ − + −
 − − + − +

= + + 
    

                                     (9) 

In Equation (9), .

n

i ju  denotes the pixel value at time 

step n and spatial location ( ),i j . D  denotes the diffusion 

coefficient. t  denotes the time step. x  and y  denote 

the spatial step. .

n

i jf  denotes the external source term. 

Among them, 

1

, ,

n n

i j i ju u

t

+ −


 represents the rate of change 

over time. It reflects how image pixel values evolve with 

time steps. This enables the model to gradually optimize 

the image's details and structure based on prior 

information. 

1, , 1, , 1 , , 1

2 2

2 2n n n n n n

i j i j i j i j i j i ju u u u u u
D

x y

+ − + −
 − + − +

+ 
   

 describes 

the spatial diffusion process of image pixel values. This 

process can smooth out noise and discontinuities in an 

image while enhancing edge and texture details. The result 

is a clearer, more complete image. .

n

i jf  may contain prior 

information extracted from CNN. This enables the model 

to utilize prior knowledge of the image better, restoring 

the details and structure of high-resolution images. This 

improves the quality and accuracy of reconstruction. The 

calculation of the diffusion coefficient is shown in 

Equation (10). 
2exp( | | )D u=                          (10) 

In Equation (10),   denotes the scaling factor.   

denotes the adjustment coefficient. 
2

u  denotes the 

square of the mode of the image gradient. The gradients 

along the x  and y  directions are calculated in Equation 

(11). 

1, 1,

, 1 , 1

2

2

n n

i j i j

n n

i j i j

u uu

x x

u uu

y y

+ −

+ −

 −
= 

  
 

− 
=

   

                      (11) 

In Equation (11), 
u

x




 is the gradient along the x  

direction. 
u

y




 is the gradient along the y  direction. The 

boundary conditions are shown in Equation (12). 

0, , ,0 , ,x y

n n n n

j N j i i N i ju u u u g= = = =              (12) 

In Equation (12), 
,i jg  denotes the boundary condition 

value. In ISRR, it is often difficult to obtain the values of 

boundary pixels directly from LR images. Equation (12) 

specifies the values of the image's boundary pixels, 

providing a constraint condition for the image's edges. 

This ensures the image's rationality at the boundary and 

the accuracy of internal pixel calculations. The iterative 

update is shown in Equation (13). 

1, , 1, , 1 , , 11

, , ,2 2

2 2n n n n n n

i j i j i j i j i j i jn n n

i j i j i j

u u u u u u
u u t D f

x y

+ − + −+
  − + − +
 = +   + + 

     

                                 (13) 

PSNR measures the difference between a 

reconstructed image and the original image, reflecting the 

similarity of the pixel values in the image. Higher PSNR 

values indicate better image quality. The calculation is 

shown in equation (14). 
2

1010 log ( )
MAX

PSNR
MSE

=                   (14) 

In equation (14), MAX  represents the maximum 

possible value of an image pixel, and MSE  represents the 

maximum possible value of an image pixel. The SSIM is 

used to evaluate the similarity between reconstructed and 

original images. It takes into account brightness, contrast, 

and structural information. The range of SSIM values is 

between -1 and 1, and the closer the value is to 1, the more 

similar the image structure is. This study uses functions in 

MATLAB to directly calculate PSNR and SSIM metrics. 

4 Quality analysis of SRR of PDE 

images 

4.1 Experimental environment and 

parameter settings 

The hardware configuration chosen for the experiment is 

as follows. The operating system is Windows 11, the 

RAM is 64GB, the video memory is 24GB, the CPU is 

Intel Core i9-13900K @3.00GHz, and the GPU chosen is 

NVIDIA-GeForce RTX 4090. The software chosen for 

this study is yTorch 1.12, CUDA 11.6, and MATLAB-

R2023a. This study conduct experiments by using the 

Flickr2K dataset 

(http://cv.snu.ac.kr/research/EDSR/Flickr2K.tar). The 

Flickr2K dataset is an image dataset used for super-

resolution tasks, containing 2650 high-resolution images. 

First, the image is normalized by reducing the pixel values 
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to within the range of [0,1]. In addition, in order to 

enhance the generalization ability of the model, data 

augmentation processing is performed on the data, 

including random cropping, horizontal flipping, vertical 

flipping, and rotation, to increase the diversity and 

richness of the training data. It is divided into training set, 

test set, and validation set in the ratio of 8:1:1. Table 2 

displays the experimental parameters' precise settings. 

Table 2: Sample parameter settings. 

The parameter 

name 
Parameter values  Describe The parameter name Parameter values  Describe 

Enter image size 64×64 
Input dimensions for the low-

resolution images 
BatchSize 16 

Number of images 

per training input 

Learning rate  1×10-4 
Initial learning rate of the Adam 

optimizer 
Epochs 500 

Number of training 

iterations for the 
complete dataset 

ResNet number 
of plies 

18 
Number of underlying layers of 
the residual network 

Gradient branch 
convolution kernel 

3×3 Center 
Difference 

Convolution kernel 

fixed for extracting 
the image ladder, 

degrees 

Channel attention 

dimension 
64 

The characteristic dimension of 

the MLP middle layer 

PDE coefficient of 

diffusion 
0.05 

Controlling for the 
weight of the 

gradient prior in the 

PDE model 

(△x,△y) 0.5 
Spatially discretized the grid step 
size 

△t 0.01 

The time step of the 

PDE iterative 

solution 

 

Table 3: Parameter sensitivity analysis results. 

    PSNR/dB SSIM AI 

0.03 0.1 40.45±0.29 0.95±0.01 0.55±0.07 

0.05 0.1 40.87±0.22 0.96±0.01 0.51±0.04 

0.08 0.1 41.43±0.31 0.96±0.01 0.49±0.05 

0.03 0.2 40.78±0.21 0.96±0.01 0.53±0.05 

0.05 0.2 41.75±0.17 0.97±0.01 0.47±0.04 

0.08 0.2 40.38±0.27 0.95±0.01 0.59±0.08 

0.03 0.3 40.21±0.25 0.93±0.01 0.52±0.05 

0.05 0.3 41.19±0.23 0.96±0.01 0.59±0.07 

0.08 0.3 40.87±0.25 0.95±0.01 0.60±0.09 

 

  is used to control the weight of gradient priors in 

PDE models. A larger   can highlight image edges and 

textures, but may also amplify noise. A smaller   may 

lead to blurred edges.   is used to regulate the sensitivity 

of diffusion coefficient to gradient changes. A larger   

makes the diffusion coefficient more sensitive to gradient 

changes. This highlights strong edges but potentially loses 

weak textures. A smaller   is the opposite. To determine 

the parameters   and   in the diffusion coefficient, the 

study set   to 0.03, 0.05, and 0.08, and set   to 0.1, 0.2, 

and 0.3, respectively. PSNR, SSIM, and artifact index (AI) 

are used as evaluation metrics. The results of parameter 

sensitivity analysis are shown in Table 3. When  =0.05 

and  =0.2, all indicators reach their optimal values. This 

indicates that the parameter combination can achieve good 

results in ISRR. 

4.2 Quality analysis of CNN-based a priori 

information extraction models 

The qualitative judgment of reconstruction quality is 

based on domain consensus: PSNR not less than 40dB is 

excellent. SSIM not less than 0.95 is high fidelity. AI not 

more than 0.5 is no obvious artifacts. Local texture 

sharpness (LTS) not less than 0.8 is clear texture. SDR not 

more than 0.1 is structural fidelity. Gradient magnitude 

error (GME) and gradient orientation consistency (GOC) 

are compared with other methods for extracting the GI of 

an image based on CNN with different number of 

iterations. GME is evaluated by calculating the absolute 

error of the gradient amplitude between the reconstructed 

image and the original image. The smaller the value, the 

better the consistency of the gradient amplitude. The GOC 

evaluates the consistency of directions by calculating the 

difference in the gradient directions between 

reconstructed and original images. It can also use the 

cosine similarity of the angle differences to calculate the 

consistency of directions. The closer the GOC value is to 

1, the better the consistency of the gradient direction. The 

comparison of GME and GOC for extracting image GI 

using different methods is shown in Figure 6. In Figure 

6(a), the GME decreases with the increase in the number 

of iterations when different methods are used to extract the 

GI of the image. When CNN is used to extract the image's 

GI, the GME is at its lowest, and when principal 

component analysis (PCA) is employed, it is at its highest. 
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When the iteration is 500, the GME is categorized as 0.34 

and 0.41. In Figure 6(b), the GOC increases with the 

increase in the number of iterations for extracting the GI 

of the image by different methods. The GOC is maximum 

when CNN is used to extract the GI of the image. When 

the number of iterations is 500, the GOC at this time is 

0.94. The results display that CNN can extract the GI more 

accurately while maintaining higher directional 

consistency. 
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Figure 6: Comparison of GME and GOC for extracting image GI using different methods. 

With different number of iterations, the feature 

similarity (FSIM) and edge preservation rate (EPR) when 

extracting GI from the image based on CNN is compared 

with other methods. FSIM evaluates FSIM by calculating 

the gradient magnitude and gradient orientation of an 

image. The closer the value is to 1, the higher the FSIM of 

the image. The EPR calculates the retention rate by 

comparing the edge maps of the original and reconstructed 

images. These images can be obtained using the Canny 

operator or other edge detection methods. The comparison 

of FSIM and EPR for extracting image GI using different 

methods is shown in Figure 7. The higher the EPR value, 

the more edge information is preserved in the 

reconstructed image. In Figure 7(a), FSIM is lowest when 

using wavelet transform (WT) and greatest when using 

CNN to extract an image's GI. When the number of 

iterations is 500, the FSIM is 0.71 and 0.88, respectively. 

In Figure 7(b), the EPR is highest when the GI of the 

image is extracted based on CNN. When the number of 

experiments is 500, the EPR is 88.7%. It verifies the 

efficiency of the proposed method of the study in edge 

information retention. 
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Figure 7: Comparison of FSIM and EPR for extracting image GI using different methods. 

The edge pixel accuracy (EPA) and gradient feature 

correlation (GFC) when extracting GI from an image 

based on CNN is compared with other methods. The EPA 

calculates accuracy by comparing the edge maps of the 

reconstructed and original images. This calculation is 

performed by dividing the number of correctly classified 

edge pixels by the total number of edge pixels. The higher 

the EPA value, the higher the matching degree between 

the edge pixels of the reconstructed image and the original 

image. The GFC measures the correlation between the 

direction and magnitude of image gradients. The Pearson 

correlation coefficient can then be used to calculate the 

correlation of the gradient features. The higher the GFC 

value, the better the consistency of gradient features. 

Table 4 displays the findings. CNN based extracting the 

GI of an image shows good performance. Poor 

performance is shown when extracting GI of an image 

based on WT. The values of EPA are 0.92 and 0.87 when 

the iteration is 500. The values of GFC are 0.87 and 0.79. 

The reliability of CNN in edge localization and GFC is 

confirmed. 
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Table 4: EPA and GFC for ISRR using different models. 

Number of iterations 
EPA GFC 

WT PCA CNN WT PCA CNN 

100 0.79 0.83 0.85 0.72 0.75 0.79 

200 0.80 0.85 0.87 0.74 0.77 0.81 

300 0.82 0.86 0.89 0.75 0.79 0.84 

400 0.84 0.88 0.91 0.77 0.80 0.85 

500 0.87 0.89 0.92 0.79 0.83 0.87 

 

Table 5: Results of ablation experiment. 

Model PSNR/dB SSIM AI 

CNN 38.42 0.91 0.62 

CNN+CAM 39.25 0.93 0.58 

PDE 37.89 0.89 0.66 

Complete model 41.74 0.97 0.48 

 

4.3 Fusion of a priori PDE models for 

quality analysis 

Ablation studies are conducted to evaluate the 

effectiveness of each component in the proposed model. 

PSNR, SSIM, and AI are used as evaluation metrics to 

compare CNN, CNN+CAM, PDE, and the complete 

model. The results of the ablation experiment are shown 

in Table 5. The complete model performs the best in terms 

of metrics, with PSNR, SSIM, and AI being 41.74dB, 

0.97, and 0.48, respectively. Next is CNN+CAM. PDE 

performs the worst, indicating that relying solely on PDE 

for reconstruction can easily result in the loss of detailed 

image information. The results suggest that combining the 

CNN, CAM, and PDE modules can enable the model to 

reconstruct images with different textures effectively. 

To verify the effectiveness of fusing a priori PDE 

models for ISRR, the study uses PSNR with SSIM for 

evaluation. In Figure 8(a), the PSNR value of ISRR based 

on fusion a priori PDE model is the highest and the PSNR 

value based on bicubic interpolation is the lowest. When 

the number of iterations is 500, the PSNR values of 

bicubic interpolation and PDE model are 33.8dB and 

41.74dB, respectively. In Figure 8(b), the highest SSIM 

value is obtained for SRR of the image based on the fused 

a priori PDE model. The SSIM value is 0.97 when the 

number of iterations is 500. The results displays that the 

proposed method of the study can effectively restore the 

image structure. 

The LTS and AI of the SRR of the image by fusing 

the a priori PDE model are compared with other methods. 

LTS measures by calculating the contrast and sharpness of 

local regions in an image, with higher values indicating 

clearer texture details in the image. AI can evaluate the 

extent of artifacts in an image by calculating the 

distribution and intensity of abnormal pixels, with lower 

values indicating fewer artifacts. The comparison between 

LTS and AI for ISRR using different models is shown in 

Figure 9. In Figure 9(a), the LTS of ISRR by different 

methods increases with the iterations’ quantity. The 

highest value of LTS is obtained for SRR of image based 

on fused a priori PDE model. When the iteration is 500, 

the LTS value is 0.852. In Figure 9(b), the AI of SRR of 

the image by different methods decreases with the 

increase in the iteration. The AI value of SRR of image 

based on fused a priori PDE model is minimum. When the 

iteration is 500, the AI value is 0.48. It has been confirmed 

that the study's suggested approach greatly enhances 

texture details while lowering artifacts. 
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Figure 8: PSNR and SSIM for ISRR using different models. 
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Figure 9: Comparison between LTS and AI for ISRR using different models. 

The edge enhancement index (EEI) and structural 

distortion rate (SDR) of ISRR by fusing the a priori PDE 

model are compared with other methods. EEI evaluates 

the edge enhancement effect by comparing the edge 

intensity of the reconstructed image with the original high-

resolution image. A higher EEI value indicates a greater 

enhancement of the reconstructed image's edge intensity 

compared to the original image and a better edge detail 

restoration effect. SDR evaluates the degree of distortion 

in structural features between reconstructed and original 

images by comparing their local structural similarities and 

differences. The SDR value ranges from 0 to 1. A smaller 

value indicates a higher SSIM between the reconstructed 

and original images and a lower degree of distortion. Table 

6 displays the findings. The fusion a priori PDE model 

shows good performance in ISRR. The bicubic 

interpolation based ISRR shows poor performance. With 

500 iterations, the EEI values for the PDE model and 

bicubic interpolation are 0.64 and 0.54, respectively, while 

the SDR values are 0.05 and 0.10, respectively. The 

efficiency of the PDE model for edge enhancement and 

structure fidelity is verified. 

To further validate the generalization and efficiency 

of the proposed model, the DIV2K dataset containing 

1000 different scene images is used for testing. Evaluation 

metrics include PSNR, runtime, GPU utilization, and 

model size. The PDE model integrating a priori 

information is compared with three advanced SSR 

models: bicubic interpolation, super solution generative 

adversarial network (SRGAN), and hybrid attention 

Transformer (HAT). Thirty independent runs are 

conducted to collect data, and paired t-tests are used to 

evaluate whether the performance differences between the 

models are statistically significant. The threshold for 

significance level is 0.05. If p<0.05, it is considered that 

the performance improvement of the proposed method is 

significant. The performance comparison results of the 

four models are shown in Table 7. The average PSNR of 

the PDE model that incorporates prior information is 

33.46 dB, which is significantly higher than that of the 

comparison model (p<0.05). With an average GPU 

utilization of 70.52% and an average running time of 0.66 

s, the PDE model surpasses all but the bicubic 

interpolation model. The results indicate that the PDE 
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model incorporating prior information has excellent 

generalization and efficiency in ISRR tasks. 

Table 6: EEI and SDR for ISRR using different models. 

Number of 

iterations 

EEI SDR 

Bicubic Interpolation SC PDE Bicubic Interpolation SC PDE 

100 0.42 0.50 0.55 0.17 0.15 0.11 

200 0.47 0.51 0.58 0.15 0.14 0.09 

300 0.50 0.53 0.59 0.13 0.12 0.07 

400 0.52 0.56 0.61 0.11 0.10 0.06 

500 0.54 0.58 0.64 0.10 0.09 0.05 

 

Table 7: Performance comparison results of four models. 

Model PSNR/dB Run time/s Utilization rate/% Model size/MB p (and PSNR of PDE) 

Bicubic Interpolation 28.55±0.33 0.15±0.03 15.20±2.07 0.55 <0.05 

SRGAN 30.24±0.46 0.88±0.13 65.14±5.01 119.82 <0.05 

HAT 31.88±0.39 0.66±0.09 69.82±6.25 85.43 <0.05 

PDE 33.46±0.39 0.58±0.05 70.52±4.71 94.69 - 

 

5 Discussion 
To better meet the demand for HR images in related fields, 

the study proposed a PDE ISRR method that introduced a 

priori information. Moreover, the experiments were 

conducted on the Flickr2K dataset and DIV2K dataset. 

The results revealed that in the Flickr2K dataset, the GME 

was the smallest when the GI of the image was extracted 

using CNN when compared with other methods. When the 

number of iterations was 500, the GME was 0.34. The 

GOC was at its maximum when the GI of the image was 

extracted using a CNN. When the number of iterations was 

500, the GOC at this point was 0.94. The fusion a priori 

PDE model performed well when SRR was applied to the 

image. At an iteration of 500, the EEI and SDR were 0.64 

and 0.05, respectively. The PSNR and SSIM were 41.74 

dB and 0.97, respectively. The PSNR of bicubic 

interpolation was only 33.8dB. In the DIV2K dataset, the 

average PSNR of the PDE model that integrated prior 

information was 33.46dB, significantly higher than the 

30.24dB of SRGAN. 

The experimental results indicated that the proposed 

ISRR method provided richer guidance information for 

the PDE model by introducing prior information. This 

made the reconstructed image more accurate in terms of 

detail restoration and edge preservation. Second, the 

ResNet model was improved by removing the BNL and 

introducing a CAM and a gradient-guided branch. This 

effectively solved the problem of gradient dispersion or 

explosion while enhancing the model's ability to perceive 

key areas in an image. However, while the proposed 

model improved the accuracy of ISRR, it also came with 

higher computational costs. The CNN model contained a 

large number of parameters and layers, resulting in a 

complex computational process that required high 

computational resources and time costs. In practical 

applications, a balance needed to be struck between 

specific needs and resource constraints. Therefore, future 

research should further explore model compression 

techniques, such as pruning and quantization, to reduce 

parameter and computational complexity while 

maintaining model performance. 

6 Conclusion 
HR photographs are frequently compressed into LR 

images throughout the image transmission and storage 

process in an effort to increase efficiency and conserve 

space, which results in the loss of image features. 

However, the ISRR technique can recover more detail 

information from LR images. The suggested approach 

produces superior results on a number of common datasets 

and successfully raises the quality and resilience of ISRR. 

However, CNNs have a large number of layers and 

parameters, which require a large amount of 

computational time and storage space, and thus have a 

high demand on computational resources. Subsequent 

studies will try to use other methods to improve it and 

avoid the long computation time. 

 

References 
[1]  Shaowei Zhang, Rongwang Yin, and Mengzi Zhang. 

Dynamic unstructured pruning neural network image 

super-resolution reconstruction. Informatica, 

48(7):11-22, 2024. 

https://doi.org/10.31449/inf.v48i7.5332 

[2] Chitwan Saharia, Jonathan Ho, William Chan, Tim 

Salimans, David J. Fleet, and Mohammad Norouzi. 

Image super-resolution via iterative refinement. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 45(4):4713-4726, 2022. 

https://doi.org/10.48550/arXiv.2104.07636 

[3] Xiaoyan Wang, and Ya Li. Edge detection and 

simulation analysis of multimedia images based on 

intelligent monitoring robot. Informatica, 48(5):97-

109, 2024. https://doi.org/10.31449/inf.v48i5.5366 

[4] Xu Yan. A face recognition method for sports video 

based on feature fusion and residual recurrent neural 

network. Informatica, 48(12):137-152, 2024. 

https://doi.org/10.31449/inf.v48i12.5968 



Image Super-Resolution via CNN-Guided Prior Integration… Informatica 49 (2025) 219–232 231 

[5] Liqun Shan, Xueyuan Bai, Chengqian Liu, Yin Feng, 

Yanchang Liu, and Yanyan Qi. Super-resolution 

reconstruction of digital rock CT images based on 

residual attention mechanism. Advances in Geo-

Energy Research, 6(2):157-168, 2022. 

https://doi.org/10.46690/ager.2022.02.07 

[6] Kai Fukami, Koji Fukagata, and Kunihiko Taira. 

Super-resolution analysis via machine learning: A 

survey for fluid flows. Theoretical and 

Computational Fluid Dynamics, 37(4):421-444, 

2023. https://doi.org/10.1007/s00162-023-00663-0 

[7] Shuang Cong, and Yang Zhou. A review of 

convolutional neural network architectures and their 

optimizations. Artificial Intelligence Review, 

56(3):1905-1969, 2023. 

https://doi.org/10.1007/s10462-022-10213-5 

[8] Hamam Mokayed, Tee Zhen Quan, Lama Alkhaled, 

and V. Sivakumar. Real-time human detection and 

counting system using deep learning computer vision 

techniques. Artificial Intelligence and Applications. 

1(4):221-229, 2023. 

https://doi.org/10.47852/bonviewAIA2202391 

[9] Musa Alshawabkeh, Mohammad Hashem Ryalat, 

Osama M. Dorgham, Khalid Alkharabsheh, 

Mohammad Hjouj Btoush, and Mamoun Alazab. A 

hybrid convolutional neural network model for 

detection of diabetic retinopathy. International 

Journal of Computer Applications in Technology, 

70(3-4):179-196, 2022. 

https://doi.org/10.1504/ijcat.2022.130886 

[10] Xiewei Xiong, Tong Zhu, Yun Zhu, Mengyao Cao, 

Jin Xiao, Li Li, Fei Wang, Chunhai Fan, and Hao Pei. 

Molecular convolutional neural networks with DNA 

regulatory circuits. Nature Machine Intelligence, 

4(7):625-635, 2022. https://doi.org/10.1038/s42256-

022-00502-7 

[11] Harsh Gupta, Naman Bansal, Swati Garg, Hritesh 

Mallik, Anju Prabha, and Jyoti Yadav. A hybrid 

convolutional neural network model to detect 

COVID‐19 and pneumonia using chest X‐ray 

images. International Journal of Imaging Systems 

and Technology, 33(1):39-52, 2023. 

https://doi.org/10.1002/ima.22829 

[12] Yüksel Çelik, Erdal Başaran, and Yusuf Dilay. 

Identification of durum wheat grains by using hybrid 

convolution neural network and deep features. 

Signal, Image and Video Processing, 16(4):1135-

1142, 2022. https://doi.org/10.1007/s11760-021-

02094-y 

[13] Yesim Eroglu, Muhammed Yildirim, and Ahmet 

Cinar. mRMR‐based hybrid convolutional neural 

network model for classification of Alzheimer's 

disease on brain magnetic resonance images. 

International Journal of Imaging Systems and 

Technology, 32(2):517-527, 2022. 

https://doi.org/10.1002/ima.22632 

[14] Youngmin Jeon, and Donghyun You. Super-

resolution reconstruction of transitional boundary 

layers using a deep neural network. International 

Journal of Aeronautical and Space Sciences, 

24(4):1015-1031, 2023. 

https://doi.org/10.1007/s42405-023-00598-0 

[15] Weizhi Du, and Shihao Tian. Transformer and GAN-

based super-resolution reconstruction network for 

medical images. Tsinghua Science and Technology, 

29(1):197-206, 2023. 

https://doi.org/10.26599/TST.2022.9010071 

[16] Yao Sui, Onur Afacan, Camilo Jaimes, Ali 

Gholipour, and Simon K Warfield. Scan-specific 

generative neural network for MRI super-resolution 

reconstruction. IEEE Transactions on Medical 

Imaging, 41(6):1383-1399, 2022. 

https://doi.org/10.1109/TMI.2022.3142610 

[17] Mingjin Zhang, Qianqian Wu, Jie Guo, Yunsong Li, 

and Xinbo Gao. Heat transfer-inspired network for 

image super-resolution reconstruction. IEEE 

Transactions on Neural Networks and Learning 

Systems, 35(2):1810-1820, 2022. 

https://doi.org/10.1109/TNNLS.2022.3185529 

[18] Bo Zhang, Wei Xiong, Muyuan Ma, Mingqing 

Wang, Dong Wang, Xing Huang, Le Yu, Qiang 

Zhang, Hui Lu, Danfeng Hong, Fan Yu, Zidong 

Wang, Jie Wang, Xuelong Li, Peng Gong, and 

Xiaomeng Huang. Super-resolution reconstruction 

of a 3 arc-second global DEM dataset. Science 

Bulletin, 67(24):2526-2530, 2022. 

https://doi.org/10.1016/j.scib.2022.11.021 

[19] Jingmin Gong, Qinfei Xu, and Qinfei Xu. Temporal 

transformer-based video super-resolution 

reconstruction with cross-modal attention. 

Informatica, 49(10):179-190, 2025. 

https://doi.org/10.31449/inf.v49i10.7146 

[20] Saeed Iqbal, Adnan N. Qureshi, Jianqiang Li, and 

Tariq Mahmood. On the analyses of medical images 

using traditional machine learning techniques and 

convolutional neural networks. Archives of 

Computational Methods in Engineering, 30(5):3173-

3233, 2023. https://doi.org/10.1007/s11831-023-

09899-9 

[21] Fanghui Chen, Shouliang Li, Jiale Han, and 

Fengyuan Ren. Review of lightweight deep 

convolutional neural networks. Archives of 

Computational Methods in Engineering, 31(4):1915-

1937, 2024. https://doi.org/10.1007/s11831-023-

10032-z 

[22] D. R. Sarvamangala, and Raghavendra V. Kulkarni. 

Convolutional neural networks in medical image 

understanding: A survey. Evolutionary Intelligence, 

15(1):1-22, 2022. https://doi.org/10.1007/s12065-

020-00540-3 

[23] Andi Johnson. Investigation of network models finite 

difference method. Eurasian Journal of Chemical, 

Medicinal and Petroleum Research, 2(1):1-9, 2023. 

https://doi.org/10.5281/zenodo.7347257 

[24] Hao-Jun Michael Shi, Melody Qiming Xuan, Figen 

Oztoprak, and Jorge Nocedal. On the numerical 

performance of finite-difference-based methods for 

derivative-free optimization. Optimization Methods 

and Software, 38(2):289-311, 2023. 

https://doi.org/10.48550/arXiv.2102.09762 



232 Informatica 49 (2025) 219–232 T. Ji 

[25] Ram Shiromani, Vembu Shanthi, and J. Vigo-

Aguiar. A finite difference method for a singularly 

perturbed 2‐D elliptic convection‐diffusion PDEs on 

Shishkin‐type meshes with non‐smooth convection 

and source terms. Mathematical Methods in the 

Applied Sciences, 46(5):5915-5936, 2023. 

https://doi.org/10.1002/mma.8877 

[26] Daisuke Inoue, Yuji Ito, Takahito Kashiwabara, 

Norikazu Saito, and Hiroaki Yoshida. A fictitious-

play finite-difference method for linearly solvable 

mean field games. ESAIM: Mathematical Modelling 

and Numerical Analysis, 57(4):1863-1892, 2023. 

https://doi.org/10.1051/m2an/2023026 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


