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The study presents an integrated interpreting model that combines intent recognition via Improved Grey 

Wolf Optimization (IGWO) with independent dynamic interaction via Graph Attention Networks (GAT). 

It builds an intent-relation graph, uses multi-head attention to capture dynamic links among intents, 

and leverages IGWO to adapt intent thresholds and attention-head weights. Goal: more reliable 

multi-intent recognition and better adaptation to changing contexts. On WMT14 (EN–FR) it achieves 

94.37% accuracy (DNN & HMM 79.31%, EEMD 75.09%, LLM 64.97%). For 60-s audio it reaches 

47.35 dB SNR (EMD 29.74 dB, LLM 26.72 dB); at 160 s it remains highest (47.68 dB). IGWO boosts 

accuracy via chaotic initialization and Gaussian mutation; a heterogeneous GAT models ternary 

relations. WMT14 and LibriSpeech are used for translation/ASR, and MixSNIPS/MixATIS for 

multi-intent understanding. After 500 iterations IGWO hits 92.91% (deep bidirectional pre-trained 

language model 69.86%, HMM 63.79%); recall exceeds 90% across datasets. Results indicate more 

accurate, natural translations and stronger handling of technical terminology. 

Povzetek: Raziskava predstavi hibridni interpretacijski model, ki združuje izboljšano optimizacijo sivih 

volkov in grafne pozornostne mreže, kar omogoča večnamensko prepoznavo namenov ter prilagodljivo, 

naravno interakcijo v dinamičnih prevajalskih okoljih. 

 

1  Introduction 
In today’s world, where globalization and 

digitalization are deeply integrated, real-time 

cross-language interaction has become indispensable 

across various fields. The demand for multilingual 

real-time interaction in cross-cultural meetings, 

international business negotiations, and emergency 

medical situations has been growing exponentially as the 

process of globalization accelerates [1]. Although 

existing interpretation models perform stably in general 

scenarios, they still rely on static rules and predefined 

interaction patterns. When faced with dynamic and 

ever-changing real-world environments, these models 

often expose issues such as translation delays, intent 

misjudgment, and rigid interactions due to a lack of 

context awareness and adaptive ability [2-3]. For 

example, dialogues with ambiguous intentions, 

terminology-heavy discussions, or semantic ambiguities 

caused by cultural differences can easily lead to reduced 

accuracy in interpretation results [4]. In recent years, 

speech recognition and neural machine translation 

technologies based on deep learning have significantly 

improved the benchmark performance of interpretation 

systems. However, their core bottleneck has gradually 

shifted to scene-specific intent recognition and 

independent dynamic interaction [5]. Intent recognition, 

as a natural language processing technique that  

 

understands the intent behind users’ input texts or speech, 

has been widely applied in fields such as intelligent 

customer service and virtual assistants [6, 7]. By 

accurately understanding the user’s intent, systems can 

provide more personalized and efficient services. L. L. Li 

et al. proposed a systematic review method for human 

lower limb movement intention, verifying the 

effectiveness of the method through analysis of the 

intention perception signals [8]. Independent dynamic 

interaction allows each module in a system to 

independently adjust and interact during operation, 

without relying on the states or behaviors of other 

components [9, 10]. With the development of intelligent 

technology in recent years, independent dynamic 

interaction has shown significant development trends and 

application potential in multiple fields. Some scholars 

have studied its advantages of independent interaction 

during operation. For instance, P. Sun et al. proposed a 

hybrid system to improve the dynamic stability of 

converters, analyzing its dynamic interactions. 

Experimental results demonstrated that the method 

possesses high accuracy and effectiveness [11]. Current 

translation technology has entered a new stage of 

development centered around large language models. For 

example, Y. Xiao addressed the issue of low accuracy in 

non-autoregressive generation in machine translation 

tasks. By exploring its expansion in areas such as 

grammar correction and text summarization, it was found 
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that non-autoregressive generation could promote its 

industrial application [12]. Xiang et al. put forward an 

integrated improved fusion model tailored to the 

characteristics of the Internet of Things platform. The 

model used a computer-aided translation system to 

extract specific words from the text corpus, and the 

results showed that the translation accuracy and recall 

rate of this method were both higher [13]. The study 

summarized the performance comparison of deep 

bidirectional pre-training language model (Bidirectional 

Encoder Representations from Transformers, BERT), 

deep neural network combined with hidden Markov 

model (Deep Neural Network and Hidden Markov Model, 

DNN-HMM), etc. and the results are shown in Table 1. 

 

Table 1: Comparison of performance indicators and Limitations of existing methods 

Category Method Performance index Limitations 

Intention recognition 

BERT 
Intent classification accuracy 

rate: 85%-90% 

Insufficient semantic 

understanding in complex 

contexts, weak ability to 

recognize implicit 

intentions, and poor 

multilingual adaptability. 

Grey Wolf Optimization 

Algorithm 

Optimization efficiency: 

Medium, with approximately 

50 to 100 iterations 

It is prone to fall into local 

optimum and has difficulty 

adapting to the demands of 

dynamically changing 

interpretation scenarios. 

Dynamic interaction 

Graph neural network 

The accuracy rate of 

interaction relationship 

capture: 80%-85% 

It has limited processing 

capabilities for long 

sequence dependencies, 

lacks a dynamic update 

mechanism, and has a slow 

response to real-time 

interaction scenarios. 

Recurrent neural network 

Latency: approximately 

300-500ms, signal-to-noise 

ratio: 7-10dB 

There exists the problem of 

vanishing gradient, the 

ability of multimodal 

information fusion is weak, 

and it is difficult to adapt to 

complex interpretation 

scenarios. 

Comprehensive model DNN-HMM 
Interpretation accuracy rate: 

75%-80%, delay: 400-600ms 

The model structure is fixed 

and cannot flexibly cope 

with multi-language and 

multi-domain scenarios, 

with poor intent 

understanding and 

interaction coordination. 

 

As shown in Table 1, currently, some algorithms 

have difficulty identifying weak signals in complex 

environments, often resulting in the omission of key 

information. Most existing interpretation models deal 

with intent recognition and interaction respectively. This 

innovative model integrates an improved Grey Wolf 

Optimization (IGWO) algorithm for intent recognition 

with an independent dynamic interaction mechanism 

based on Graph Attention Networks (GAT), aiming to 

overcome the limitations of traditional algorithms in 

capturing intentions in complex environments. 

Real-world interpretation scenarios require handling 

multiple intents and complex semantic interactions. This 

proposed model ensures accurate intention recognition to 

support semantic understanding and promotes the 

development of intelligent response technology, which is 

both innovative and necessary. 
Current interpretation models struggle to capture 

users’ implicit intentions, leading to translations that 

deviate from the intended dialogue goals. For example, 

non-autoregressive generation can significantly improve  

the reasoning speed in tasks such as machine translation, 

but there is a loss of accuracy. Traditional systems rely  

 

on linear input-output mechanisms and lack the ability to 

dynamically adjust translation strategies based on 

real-time dialogue states, such as speaker emotions, 

environmental noise, and multimodal context. This 

limitation causes a significant drop in reliability in noisy 

environments or during multi-speaker exchanges [13-14]. 

Therefore, this study innovatively proposed to build a 

fusion interpretation model, which uses IGWO and GAT 

for intent recognition and the design of independent 

dynamic interaction mechanisms. At the same time, by 

introducing the intent recognition module to analyze the 

speaker's semantic intent in real time, the core 

information of the source language can be captured more 

accurately. The independent dynamic interaction 

mechanism allows different modules to be independently 

optimized and updated during the interaction process. 

The model innovatively employs IGWO with a dynamic 

weight adjustment mechanism and a population diversity 

optimization strategy to enhance the global search 
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capability and convergence speed of intent recognition, 

and GAT dynamically models the relationship between 

nodes through the attention mechanism. The study aims 

to improve the accuracy of the interpretation model in 

capturing the user's implicit intentions in complex 

scenarios through this fusion model, and offers robust 

data to support the advancement of intelligent 

interpretation technologies. 

2  Methods and materials 

2.1 Design of intent recognition algorithm 

based on IGWO 
Intent recognition is an important task in natural 

language processing. It primarily analyzes text, speech, 

and other user inputs to understand underlying intentions 

or needs [15-16]. Although intent recognition 

demonstrates strong adaptability and interactivity, its 

effectiveness heavily depends on the quality and quantity 

of training data [17-18]. Moreover, intent recognition 

technologies face challenges with ambiguous, complex, 

or vague statements, leading to increased uncertainty and 

risk in recognition outcomes [19]. GWO efficiently 

optimizes the parameters of intent recognition models by 

simulating the hunting behavior of grey wolves. This 

study improves GWO by introducing a dimensional 

reasoning hierarchy search strategy, resulting in IGWO, 

which is applied to optimize intent recognition. The 

optimization process of IGWO is shown in Figure 1. 
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Figure 1: Schematic diagram of IGWO optimization process 

 

In Figure 1, the position of each grey wolf 

represents a potential solution to the problem. The 

population initialization part randomly generates the grey 

wolf population and sets the population size based on the 

problem complexity. The study calculates the fitness 

value of each grey wolf to evaluate the quality of its 

solution. The complexity of the real-time input speech is 

used to dynamically adjust the convergence factor of 

GWO, and a random dropout mechanism is introduced in 

the GWO iteration to randomly mask the weight updates 

of some noise nodes. The cross-attention mechanism 

aligns speech, text, and temporal behavior features, 

generating a fused embedding vector as the fitness 

evaluation criterion for GWO. The cooperation of the 

grey wolf group searches for optimal feature weight 

distribution to enhance the consistency of cross-lingual 

intent expression. The calculation of the grey wolf group 

approaching and surrounding the prey is shown in 

Equation (1). 

 

( ) ( )

( 1) ( )

p

p

D C X t X t

X t X t A D

 =  −

 + = − 

   (1) 

 

In Equation (1), D  represents the position of the 

individual relative to the prey, t  and pX  are the 

current iteration number and prey’s position vector, X  

and ( 1)X t +  represent the position vectors of the grey 

wolves and their position updates, A  and C  are 

coefficient vectors. In the intention recognition task, the 

dimension of each variable is consistent with the number 

of features. The calculation of the coefficient vectors is 

shown in Equation (2). 

 

1

2

2

2

A r

C r

 =    − 


= 
   (2) 

 

In Equation (2),   represents the convergence 

factor that linearly decreases from 2 to 0 as the iteration 

count increases, and 1r  and 2r  are random vectors 

within the range of  0,1 , the number of dimensions is 

consistent with the number of features. IGWO simulates 

the hunting behavior of grey wolves to efficiently find 

the optimal solution in the search space. Therefore, 

IGWO optimizes the intent recognition algorithm, and 

the optimized algorithm is shown in Figure 2. 



https://doi.org/10.31449/inf.v49i31.9319                                         Informatica 49 (2025) 162–176 162 
 

Model architecture 

optimization

Dynamic adaptation 

mechanism

Multimodal feature 

alignment

Parameter dynamic 

adjustment
Hierarchical 

optimization strategy

Adaptive 

convergence factor

Anti-noise position 

update

Feature alignment

Collaborative search

Input

Output

 

Figure 2: Optimization process of intent recognition algorithm based on IGWO 

 

In Figure 2, the design process first treats the 

hyperparameters of intent recognition as optimization 

variables for GWO. The parameters are dynamically 

adjusted by the grey wolf group's cooperative search to 

find the optimal parameter combination. In the 

hierarchical optimization strategy, the decision wolves 

and auxiliary decision wolves represent the global and 

second-best solutions. The two wolves optimize the main 

network parameters of the model and adjust the weights 

of the local feature extraction module, respectively. The 

feature extraction calculation in intent recognition is 

shown in Equation (3). 

 

( , ) ( , ) ( )TF IDF t d TF t d IDF t− =     (3) 

 

In Equation (3), ( , )TF t d  and ( )IDF t  represent 

the term frequency of word t  and the inverse document 

frequency of word d  in document t . The dimension of 

( , )TF t d  is the statistical value of a single document and 

a single word, while ( )IDF t  is the statistical value of a 

single word in the global document set. The calculation 

of the inverse document frequency is shown in Equation 

(4). 

 

( ) log
1 ( )

N
IDF t

DF t
=

+
   (4) 

 

In Equation (4), N  and ( )DF t  represent the 

total number of documents and the number of documents 

containing word t . N  is the statistical value of the 

global document set, which is a fixed value, and the 

dimension of ( )DF t  is the statistical value of a single 

word in the global document set. Then, the convergence 

factor of GWO is dynamically adjusted based on the 

complexity of real-time input speech, and the random 

dropout mechanism is introduced to mask the weight 

updates of noise nodes in GWO iterations. The 

cross-attention mechanism aligns temporal behavior 

features to generate a fused embedding vector used as the 

fitness evaluation criterion for GWO. The cooperation of 

the grey wolf group enhances the consistency of 

language intent expression. In the cross-attention module, 

the attention weights between different features are 

calculated to explore feature associations. During 

cross-attention fusion, features are weighted and summed 

according to the attention weights to achieve deep 

integration. Moreover, IGWO can optimize the attention 

parameters, enabling the model to better adapt to various 

intent recognition scenarios. 

 

2.2 Design of independent dynamic 

interaction method based on GAT 
The IGWO-based intent recognition algorithm 

leverages GWO's strong global search capability to 

prevent convergence to local optima. Additionally, 

IGWO has a straightforward structure and requires fewer 

adjustable parameters, enhancing its convenience and 

efficiency in intent recognition. Furthermore, 

independent dynamic interaction, as an interactive mode 

that enhances user experience through dynamic elements 

and user interaction functions, can independently 

perceive changes in user behavior and the environment, 

dynamically adjusting the interaction mode based on this 

information [20-21]. This study incorporates independent 

dynamic interaction into the construction of the 

interpretation model. The model dynamically adjusts 

translation results according to personalized needs, such 

as users' language habits and professional terminology 

preferences, providing translation services more tailored 

to users' needs. The modular architecture design and 

technical implementation path of the independent 

dynamic interaction unit are shown in Figure 3.
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Figure 3: Independent dynamic interaction unit design and technical implementation path 

 

Figure 3 illustrates the modular architecture and 

technical implementation path of the independent 

dynamic interaction unit. In the modular architecture 

design, the independent computation unit designs an 

independent GAT module for each interaction node, 

dynamically allocating the weight between nodes via 

multi-head attention mechanism and supporting real-time 

updates of local dynamic relationships. The adaptive 

weight allocation aligns multi-modal inputs via the 

cross-attention mechanism to generate dynamic feature 

fusion graphs, while IGWO adjusts the attention weights. 

This study uses Fitz's Law as the basis for modeling 

interactive behavior. The calculation equation of Fitz's 

Law describing the time law of human movement is 

shown in Equation (5) [22]. 

 

1 2log ( 1)
d

T a b
W

= + +    (5) 

 

In Equation (5), a  and b  represent empirical 

constants, W  and d  represent the width of the target 

area and the distance between the starting position and 

the target position. The equation describing the 

calculation of the time law of multiple-choice decision is 

shown in Equation (6) [23]. 

 

2 2log ( 1)T a b n= + +    (6) 

 

In Equation (6), n  represents the number of 

choices. By using Formula (5) and Formula (6), the study 

extracted the core rules of distance and quantity affecting 

interaction efficiency. The human-computer interaction 

rules of Fitz Law were transformed into design 

constraints and mechanism inspiration for the model, 

which was used to guide the design of GAT dynamic 

interaction module and make GAT dynamic interaction 

module closer to the human behavior characteristics in 

real interpretation scenarios. Independent dynamic 

interaction adjusts translation strategies in real time 

based on context and environment. However, its dynamic 

design may hide some content, preventing users from 

directly accessing needed information and reducing 

interaction intuitiveness. GAT can automatically learn the 

relationships between nodes through the attention 

mechanism, dynamically adjusting the interaction 

strategy to improve flexibility and adaptability. Therefore, 

this study employs GAT to optimize dynamic interaction 

design, enabling efficient and flexible capture of 

interaction relationships. The independent dynamic 

interaction method based on GAT is shown in Figure 4. 
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Figure 4: Schematic diagram of independent dynamic interaction method based on GAT 

 

As shown in Figure 4, in the independent dynamic 

interaction process based on GAT, independent GAT 

modules are designed for each user and device 

interaction node to support real-time updates of local 

dynamic relationships. Then, the multi-head attention 

mechanism calculates the interaction weight between 

nodes by combining timestamp information to capture 

the temporal variation of interaction relationships. The 

hierarchical mechanism includes intra-session and 

inter-session interactions. Intra-session interaction 

mainly uses a position-aware attention network to 

capture local dynamic sequences, while inter-session 

interaction requires constructing a global hypergraph 

encoder to establish long-term dependencies through 
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higher-order connectivity. The linear transformation of 

node features is calculated as shown in Equation (7). 

 

i ih wh

=    (7) 

 

In Equation (7), w  and ih  are the learnable 

weight matrix and the original features of node i . The 

attention coefficient between nodes is calculated as 

shown in Equation (8). 

 

Re ( / /
T

i jije Leaky LU a wh wh =
 

   (8) 

 

In Equation (8), a  and / /  represent the learnable 

attention vectors and the feature concatenation operation. 

The study optimizes the strategy during dynamic 

interaction by designing dynamic graph pooling and 

multi-task loss functions, using learnable projection 

vectors to filter key nodes and generate compact 

subgraph representations, thus improving the 

discrimination ability of dynamic interaction mode and 

the modeling ability of interaction relationships. 

 

2.3 Construction of interpretation model 

based on improved intent recognition and 

independent dynamic interaction 
Optimizing intent recognition and independent 

dynamic interaction can improve the accuracy and 

efficiency of intent recognition and enhance the 

flexibility and adaptability of independent dynamic 

interaction in complex dialogues [24]. Therefore, this 

study builds the interpretation model on improved intent 

recognition and independent dynamic interaction, 

dynamically adjusting strategies to better handle 

multi-task scenarios. The cognitive process of 

interpretation is shown in Figure 5. 
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Figure 5: Schematic diagram of the cognitive processing of interpretation 

 

In Figure 5, the cognitive processing of 

interpretation involves the integration of multiple 

cognitive mechanisms and skills, mainly including 

communication, attention, problem-solving, and 

reasoning ability. The classic formula of human 

interpretation cognitive process is introduced as shown in 

Equation (9). 

 

OI L G M O= + + +    (9) 

 

In Equation (9), L  and G  represent hearing 

analysis and notes, M  and O  represent short-term 

memory and coordination. The calculation for the speech 

output phase is shown in Equation (10). 

 

2OI R GR P= + +    (10) 

 

In Equation (10), R , GR , and P  represent 

memory, note reading, and production. Equations (9) and 

(10) reveal cognitive patterns in human interpreting, such 

as listening analysis, memory coordination, and speech 

production. These provide valuable references for 

simulating real interpreting processes in models. This 

study designs the computational components based on 

these principles, constructing multi-task encoders and 

hierarchical decoders within the model to enable artificial 

intelligence systems to implicitly replicate the cognitive 

processes of human interpreting in their computational 

logic. During interpretation, the interpreter listens to, 

comprehends, and stores the original language 

information in short-term memory. When needed in the 

scene, the interpreter extracts information from 

short-term memory and expresses it in the target 

language. The interpreter also needs to quickly allocate 

attention, perform comprehensive analysis, reasoning, 

and problem-solving to ensure the accuracy and logic of 

the translation. The application foundation of intent 

recognition and independent dynamic interaction in 

interpretation is shown in Figure 6. 
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Figure 6: Application principles of intent recognition and independent dynamic interaction 

 

Figure 6 shows that intent recognition in 

interpretation primarily relies on constructing a dynamic 

graph interaction network and a joint model. 

Constructing a dynamic graph model to capture the 

relationship between intent and context improves the 

accuracy of intent recognition, and combining intent 

recognition with slot filling tasks enables more 

comprehensive semantic understanding. In interpretation, 

independent dynamic interaction adjusts translation 

strategies using an adaptive framework. The combination 

of intent recognition, slot filling, and dynamic interaction 

further enhances the robustness and timeliness of 

interpretation. The graph structure of the time step is 

calculated as shown in Equation (11). 

 

1( , )T T Tg f g x−=    (11) 

 

In Equation (11), f  and Tx  represent the 

dynamic update function and the input features of time 

step T , and 1Tg −  is the graph structure of the previous 

time step. The interpretation model based on improved 

intent recognition and independent dynamic interaction is 

shown in Figure 7. 
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Figure 7: Framework diagram of the proposed 

interpretation model 

 

In Figure 7, the fused interpretation model first uses 

GAT to construct an intent relationship graph, leveraging 

the multi-head attention mechanism to capture the 

dynamic associations between multiple intents. IGWO is 

then introduced to dynamically adjust the intent 

boundary thresholds and attention head weights. IGWO’s 

global search capability improves intent confidence 

calculation, enabling more accurate and interpretable 

intent recognition. The local graph update strategy of 

GAT, combined with the encircling mechanism of IGWO, 

enables the interactive unit to respond to sudden context 

changes within milliseconds. The fitness value 

calculation for the grey wolf’s position is shown in 

Equation (12). 

 

( ) ( Re ( ))f X Accuracy Intent cognition X=    (12) 

 

In Equation (12), Accuracy  represents the 

accuracy of the intent recognition model. The calculation 

of attention weights is shown in Equation (13). 

 

 

exp( Re ( / / ))

exp( Re ( / / ))
i

i j

ij T

i kk N

Leaky LU a wh wh

Leaky LU a wh wh




   
=


   

(13) 

 

In Equation (13), a  represents the parameter 

vector of the attention mechanism. The calculation for 

node feature updates is shown in Equation (14). 

( )
i

i ij jj N
h wh 


 =     (14) 

In Equation (14),   represents the activation 

function. The combined calculation of IGWO and GAT is 

shown in Equation (15).

  

( ( ( Re ( )), ( ( )))feat featInterpretation Decoder AttentionFusion IGWO Intent c S GAT DynamicInter C=

   

(15) 
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In equation (15), ( Re ( ))featIGWO Intent c S  

represents the extraction of intent feature vectors from 

input S  after the IGWO optimization intention 

recognition model. ( ( )featGAT DynamicInter C  denotes 

the GAT extracting semantic interaction feature vectors 

from dynamic interaction content C . 

( , )AttentionFusion    is the attention mechanism that 

integrates the intent and semantic features, enabling the 

model to focus on key interaction content driven by 

intent. ( )Decoder   represents the final interpretation 

output generated by the decoder after the fusion of these 

features. In the interpretation model, a temporal graph 

attention mechanism is introduced. Through GAT and 

IGWO, long-range contextual dependencies are captured, 

and the temporal window length and attention decay 

coefficient are adjusted, balancing translation accuracy 

and real-time performance. The intent feature vector is 

output by the IGWO intent recognition module and, after 

being adapted to the dimensions by the projection layer, 

is fed into the GAT interaction module. The real-time 

update cycle is set to 50ms. Within each cycle, IGWO 

outputs new intent features after 10 iterations and 

triggers the GAT to synchronize updates. When IGWO 

outputs updates, GAT immediately responds and 

recalculates the interaction weights, ensuring real-time 

coordination between the intent and interaction modules. 

In terms of graph construction, nodes are represented by 

interpreting sentences and semantic units, with node 

features integrating speech text encoding and the intent 

vectors identified by IGWO. Next, edge weights are 

calculated based on semantic relevance and the degree of 

intent alignment, with stronger associations receiving 

higher weights. As the interpretation progresses and new 

speech texts are input, the graph dynamically updates, 

triggering changes in node additions and deletions and 

edge weight updates. The Graph Attention Network 

(GAT) is used to aggregate new features in real-time, 

accurately capturing changes in the flow of semantics 

and intentions. IGWO and GAT focus on intent 

recognition and dynamic interaction, respectively. IGWO 

is designed to uncover deep-level intentions and generate 

intent feature vectors, while GAT uses statements and 

semantic blocks as nodes. The node features are 

integrated into the intent vectors of IGWO, and edge 

weights are constructed based on semantic relevance and 

intent alignment. During operation, each IGWO 

recognition result triggers an update of the GAT graph 

structure, transforming the two processes from 

independent functions into a deeply integrated, 

collaborative workflow. 

3  Results 

3.1 Performance comparison of IGWO 

intent recognition algorithm 
To evaluate the performance of the IGWO-based 

intent recognition algorithm, this study compares it with 

three other algorithms. These algorithms include the 

Glowworm Swarm Optimization combined with Random 

Forest (GSO-RF) intent recognition algorithm, the 

BERT-based intent recognition algorithm, and the Hidden 

Markov Model (HMM)-based intent recognition 

algorithm. The experimental datasets used were the 

MixSNIPS and MixATIS datasets. Both are public data 

sets. The MixSNIPS dataset serves as the training set and 

contains speech records from multiple domains, each 

labeled with multiple intents and associated slot data. 

This dataset was mainly used for intent recognition and 

slot filling tasks. The MixATIS dataset served as the test 

set, containing dialogue data from various domains, each 

with multiple intents and corresponding slot information, 

simulating real-world complex language expressions by 

users. The operating system used was Ubuntu 20.04.2 

LTS, with PyTorch as the deep learning development 

framework. The GPU and CPU were NVIDIA GeForce 

RTX 2080Ti and Intel Core i7-9700F, respectively. The 

Adam optimizer was used, with beta 1 set to 0.5 and beta 

2 set to 0.999. The IGWO population size was set to 50, 

iterations to 200, while other parameters were fixed using 

the control variable method and adjusted individually. 

The study first compared the classification accuracy and 

precision of the four algorithms on the MixSNIPS dataset, 

with results shown in Figure 8. 
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Figure 8: Classification accuracy and precision results 
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Figure 8(a) shows that IGWO achieved significantly 

higher classification accuracy than the other three 

algorithms. The classification accuracy of the 

comparison algorithms was all below 80%. The 

classification accuracy of IGWO for news-related intents 

was 89.98%, while the classification accuracy for 

GSO-RF and BERT were 74.05% and 63.42%, 

respectively. HMM had the lowest accuracy, at only 

53.61%. In Figure 8(b), IGWO's precision stabilized 

between 90% and 99% as the number of iterations 

increased. Among the comparison algorithms, GSO-RF 

achieved the highest precision of only 78.86%. When the 

number of iterations reached 500, the precision rates of 

BERT and HMM were 69.86% and 63.79%, respectively, 

while IGWO's precision remained higher than the 

comparison algorithms at 92.91%. These results 

demonstrate that IGWO achieved higher classification 

accuracy and precision. By improving the traditional 

grey wolf optimization algorithm, it searches more 

efficiently for optimal solutions, showing strong 

capability in feature extraction and key information 

selection. The study then analyzed the recall rates of the 

four algorithms on different datasets, with results shown 

in Table 2. 

 

Table 2: Recall rate experimental results in different datasets 

Dataset Class name 
Algorithm 

IGWO GSO-RF BERT HMM 

MixSNIPS 

dataset 

News 92.35%* 80.94% 80.09% 72.53% 

Tech 90.34%* 81.63% 76.54% 69.43% 

Entertainment 91.76%* 85.47% 74.33% 71.81% 

Sports 93.71%* 86.54% 72.91% 72.35% 

Education 92.33%* 88.14% 78.53% 68.18% 

Health 94.08%* 83.46% 73.16% 67.69% 

Law 91.35%* 83.06% 76.37% 73.41% 

MixATIS dataset 

News 95.03%* 84.11% 79.29% 69.34% 

Tech 91.36%* 80.31% 77.68% 66.29% 

Entertainment 94.14%* 83.21% 74.31% 68.79% 

Sports 93.54%* 79.61% 76.81% 64.32% 

Education 92.01%* 77.39% 80.34% 68.81% 

Health 93.33%* 81.07% 73.64% 67.94% 

Law 93.46%* 82.38% 72.19% 63.22% 

Note: "*" indicates statistical significance, p < 0.05. 

 

As shown in Table 2, the IGWO-based intent 

recognition algorithm achieved higher recall rates across 

the different datasets, all reaching over 90%. In the 

MixSNIPS dataset, when the category was health, IGWO 

achieved the highest recall rate of 94.08%. Among the 

comparison algorithms, GSO-RF had the highest recall 

rate for the education category at 88.14%. In the 

MixATIS dataset, IGWO achieved the highest recall rate 

of 95.03%, while the highest recall rate for the other  

 

 

three comparison algorithms was only 84.11%. The recall 

rates for BERT and HMM were the lowest, at 72.19% 

and 63.22%, respectively. These results show that IGWO 

offers better comprehensiveness in intent recognition and 

can more efficiently search for the optimal solution, 

ensuring that the algorithm covers all relevant results in 

intent recognition tasks. The F1 value, translation quality 

BLEU score, interpretation delay and task success rate of 

the four algorithms in different data sets were then tested. 

The results are shown in Table 3. 

 

Table 3: compares the performance indexes of the four algorithms in different data sets 

Data set Index 
Algorithm 

IGWO GSO-RF BERT HMM 

MixSNIPS data 

set 

F1/% 92.23 82.58* 85.75* 76.31* 

BLEU score of 

translation quality 
78.51 61.35* 65.23* 54.70* 

Interpretation delayed 

/ms 
113.52 156.71* 138.49* 189.23* 

Task success rate /% 95.34 86.15* 82.43* 79.45* 

MixATIS data set 

F1/% 91.51 84.26* 87.94* 78.62* 

BLEU score of 

translation quality 
85.29 63.13* 67.51* 56.98* 

Interpretation delayed 

/ms 
105.36 149.27* 129.64* 181.58* 

Task success rate /% 96.22 81.45* 78.21* 76.54* 

Note: "*" indicates statistical significance, p < 0.05. 
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In Table 3, the F1 score of IGWO in the MixSNIPS 

dataset reached 92.23%, significantly outperforming the 

comparison algorithms. The F1 scores for GSO-RF, 

BERT, and HMM were 82.58%,85.75%, and 76.31%, 

respectively. In the MixATIS dataset, IGWO's 

interpretation delay was only 105.36ms, lower than the 

comparison algorithms, and its task success rate was 

96.22%. In contrast, HMM's task success rate was only 

76.54%, the lowest among the four algorithms. The data 

indicates that this algorithm captured intent more 

accurately and improved translation quality and 

efficiency. Moreover, the algorithm demonstrated 

superior performance in intent recognition F1, BLEU 

score, interpretation delay, and task success rate, 

highlighting its robustness and effectiveness across 

multiple datasets. 

 

 

 

3.2 Performance analysis of independent 

dynamic interaction method based on GAT 
This study tests the GAT-based independent 

dynamic interaction method by comparing it with 

multi-view collaborative, scene simulation technology, 

and Graph Neural Network (GNN)-based methods. The 

GAT consists of 4 layers with 8 attention heads and a 

dropout rate between 0.1 and 0.3 to prevent overfitting. 

Unity was used as the virtual reality simulation platform, 

and the GPS system positioning accuracy of the Kinect 

camera was set to 8.4m. The camera resolution and depth 

range were set to 640×480 and 0.5m–4.5m, respectively, 

while the image refresh rate and texture resolution of the 

virtual scene were 95Hz and 3840×2160, respectively. 

The user’s field of view angle and the camera frame rate 

were set to 120° and 30fps. The study first compared the 

ease of use and word error rates of the four methods, as 

shown in Figure 9. 
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Figure 9: Comparison of ease of use and number of dynamic interactions stops 

 

As shown in Figure 9(a), the usability of the GAT 

used in the study reached more than 90% across different 

interactive objects, while the usability of multi-view 

collaboration showed large fluctuations, with the lowest 

being only 48.37%. The highest and lowest usability of 

GNN were 81.71% and 74.69%. When there were 9 

interactive objects, the usability of GAT reached 96.98%, 

and the usability of visual simulation technology was 

65.07%. As shown in Figure 9(b), the word error rate of 

GAT is only 4.89%, while the highest word error rates for 

GNN and scene simulation technology are 17.23% and 

20.47%, respectively. The highest word error rate for 

multi-view collaboration is 23.49%. These data indicate 

that GAT effectively handles user input and prevents 

interaction interruptions caused by system delays or 

errors. Based on the above data results, GAT was more 

usable and effectively processed user input to avoid 

interaction interruptions caused by system response 

delays or errors. To verify the enhancement of 

multi-modal semantic understanding and language 

translation quality through the independent dynamic 

interaction method based on GAT, the study indirectly 

assesses the model's ability to capture language-action 

associations by observing the accuracy of thumb 

positioning. The millimeter-level error in thumb 

positioning indicates the GAT network's capability to 

capture local dynamic features. Accurate hand 

positioning is essentially the external manifestation of the 

model achieving semantic and action alignment, 

ultimately serving to optimize language translation 

quality. Based on this, the study analyzes the thumb 

positioning effects under semantic association scenarios 

for four dynamic interaction methods and further 

correlates these with language translation quality metrics 

to validate the impact of the interaction mechanism on 

core outputs. Therefore, a comparative analysis of the 

thumb positioning effects of four dynamic interaction 

methods was conducted, and the results are shown in 

Figure 10. 
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Figure 10: Thumb positioning results of the four methods 

 

As shown in Figure 10, the improved intent recognition 

module in the interpretation model needs to synchronize 

with dynamic interactions, and the detection of sudden 

changes in the thumb trajectory can validate the 

semantic-action alignment of the two. The GAT-based 

independent dynamic interaction method outperformed 

the other three methods in thumb positioning. The 

three-dimensional coordinates of the user’s thumb 

tracked by GAT consistently align with the actual 

trajectory. For the comparison methods, the GNN-based 

method was the furthest from the actual thumb trajectory 

and had no three-dimensional coordinates overlapping  

 

 

with it. Scene simulation technology, compared to GNN, 

showed even more noticeable deviations from the actual 

trajectory. While the multi-view collaborative method 

had a few three-dimensional coordinates overlapping 

with the user’s actual thumb trajectory, its positioning 

effect was still inferior to the GAT-based method. Based 

on these results, it can be concluded that the GAT-based 

independent dynamic interaction method provides more 

accurate hand shape positioning, supporting more 

complex operational tasks. The study then tested the 

dynamic interaction latency time of the four methods 

with different interaction objects, with results shown in 

Figure 11. 
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Figure 11: Dynamic interaction lag time of different interactive objects 

 

As shown in Figure 11, when the number of 

interaction objects was 20, GAT had the lowest dynamic 

interaction latency time, with a value of 7.93s at 3 

experimental trials. The dynamic interaction latency 

times for GNN and scene simulation were 28.34s and 

44.73s, respectively, while the multi-view collaborative 

method had a latency time of 53.69s. When the number 

of trials was increased to 5, GAT’s latency time was 

8.32s, while multi-view collaborative had a latency time 

of 49.71s. The highest latency time for GAT was 13.24s, 

and the highest for multi-view collaborative was 53.06s. 

These results show that the GAT-based independent 

dynamic interaction method achieves the lowest latency 

across various interaction object counts, demonstrating 

superior computational efficiency and reasoning ability 

in complex tasks. 

3.3 Performance comparison and analysis of 

fusion interpretation models 
To verify the performance of the fused interpretation 

model based on intent recognition and independent 

dynamic interaction, the study selected the following 

models for comparison: interpretation models based on 

DNN-HMM, Ensemble empirical mode decomposition 

(Ensemble Empirical Mode Decomposition, EEMD) and 

large language model (LLM). The experimental datasets 

used were the Wmt14 and LibriSpeech datasets. Both are 

public data sets. The Wmt14 dataset served as the 

training set, containing parallel corpora for multiple 

language pairs, such as English-French, English-German, 

etc. Each sentence pair included source and target 

language texts. The LibriSpeech dataset served as the test 

set, containing approximately 1000 hours of 16kHz 
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English speech corpus. During the preprocessing stage, 

multi-language texts must undergo unified cleaning to 

remove special characters and non-linguistic symbols. 

Cross-language symbols are standardized through 

predefined dictionaries, including their professional 

terms and colloquial expressions. In the post-processing 

of ASR, language models correct word order errors, 

providing each algorithm with standardized input data to 

ensure fair performance comparisons. The WMT14 

dataset is split into training and validation sets at an 8:2 

ratio, while the LibriSpeech dataset is reserved entirely 

for testing to maintain evaluation integrity. During 

training, the WMT14 training set is fed into both the 

fusion interpretation model and the comparison model, 

with cross-entropy loss function used to optimize 

parameters. After training, the LibriSpeech test set is 

input into each model, and multiple rounds of 

experiments are conducted to calculate the mean and 

standard deviation, ensuring the reliability of the results. 
The experimental environment setup is shown in Table 4. 

 

Table 4: Experimental environment and configuration 

Hardware configuration 

CPU Intel Xeon Gold 5218 @ 2.30GHz 

GPU NVIDIA Tesla V100 32GB 

Internal memory 256GB DDR4 

Storage 2TB NVMe SSD 

Software environment 

Operating system Ubuntu 20.04 LTS 

Deep learning framework PyTorch 1.12.0 

Python version 3.8.10 

CUDA version 11.3 

CuDNN version 8.2.1 

 

The study first compared the training and actual loss 

values of the four models, using the BERT pre-trained 

language model to encode the input text and generate  

 

high-dimensional vector representations. The text 

sequences were uniformly truncated to a fixed length, 

and the results are shown in Figure 12. 
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Figure 12: Comparison of loss value results of four models 

 

From Figure 12, it can be seen that the loss values 

for the study’s model were the lowest and most 

consistent between training and actual losses, with 

convergence occurring around 30 iterations and 

stabilizing at approximately 0.35. The DNN-HMM 

model’s actual loss curve was higher than its training loss 

curve and only converged at 100 iterations. The EEMD 

model’s loss curve converged around 110 iterations, with 

a stable loss value of around 0.78. The loss curve for the 

LLM model showed a large discrepancy between the 

actual and training losses. Based on these results, it can 

be concluded that the study’s model had lower loss 

values and could better fit the training data, with results 

more consistent with the true labels. It also exhibited 

superior generalization and stability compared to the 

comparison models. The study then compared the 

interpretation accuracy of the four models on the Wmt14 

and LibriSpeech datasets, with results shown in Table 5. 

 

 

 

 



A Hybrid Interpretation Model Leveraging Improved Grey Wolf…                     Informatica 49 (2025) 159–176 171 

 

Table 5: Interpretation accuracy results in different datasets 

Dataset Interpretation type 
Interpretation accuracy (%) 

Fusion model DNN-HMM EEMD LLM 

Wmt14 

Anglo-French 94.37 79.31* 75.09* 64.97* 

Franco-English 96.21 77.59* 71.32* 69.85* 

Anglo-German 90.24 74.69* 70.24* 67.19* 

German-English 91.54 79.18* 72.31* 68.32* 

UK-China 93.36 80.23* 69.58* 69.04* 

China-UK 94.14 80.06* 66.19* 65.42* 

LibriSpeech 

Anglo-French 96.88 76.43* 69.87* 57.41* 

Franco-English 94.75 79.83* 68.52* 58.39* 

Anglo-German 92.05 76.52* 65.31* 70.35* 

German-English 90.04 77.68* 63.93* 61.23* 

UK-China 93.34 79.53* 69.57* 65.34* 

China-UK 91.72 74.18* 70.25* 58.17* 

Note: * indicates that the difference between the proposed model and the comparison model is statistically significant, 

p<0.05. 

 

As shown in Table 5, the fusion model used in the 

study showed a high interpretation accuracy across 

different datasets. In the Wmt14 dataset, when the 

interpretation type was German-English, the 

interpretation accuracy of the proposed model was the 

highest at 91.54%, while the interpretation accuracy of 

the LLM model was 68.32%. In the LibriSpeech dataset, 

the English-German interpretation accuracy of the 

proposed model reached 92.05%, while the accuracy of 

the DNN-HMM, EMMD, and LLM models were 76.52%, 

65.31%, and 70.35% respectively, and their interpretation 

effects were not as good as the proposed fusion model. It 

could be seen that the proposed model more accurately 

captured the meaning of the source language and 

converted it into the target language in the translation 

task. To ensure the reliability of the results, all models 

underwent 10 independent experiments for each dataset 

and interpretation type. The final accuracy was calculated 

as the average of these 10 experiments, with the standard 

deviation and 95% confidence interval also calculated. 

The improved GWO algorithm uses a population size of 

30 and a maximum of 100 iterations. The attention heads 

and hidden layer dimensions were both set to 8. 

Increasing the GWO population size aims to enhance the 

fusion model’s adaptability in complex contexts. The 

statistical analysis results for the four models' 

interpretation accuracy across different datasets are 

presented in Table 6. 

 

Table 6: Statistical analysis results of the four models on interpretation accuracy in different data sets 

Data Set 
Interpretation 

type 

Mean ± standard deviation, (confidence interval) 

proposed model DNN-HMM EEMD LLM 

Wmt14 

data set 

Anglo-French 
94.37±0.82(93.91-94.

83) 

79.31±1.54(78.23-80.

39) 

75.09±2.11(73.57-76.

61) 

64.97±2.85(62.73-67.

21) 

Franco-Englis

h 

96.21±0.75(95.78-96.

64) 

77.59±1.62(76.41-78.

77) 

71.32±2.25(69.53-73.

11) 

69.85±2.68(67.72-71.

98) 

Anglo-Germa

n 

90.24±0.91(89.65-90.

83) 

74.69±1.78(73.42-75.

96) 

70.24±2.33(68.39-72.

09) 

67.19±2.92(64.88-69.

50) 

German-Engli

sh 

91.54±0.87(91.02-92.

06) 

79.18±1.59(78.05-80.

31) 

72.31±2.18(70.65-73.

97) 

68.32±2.75(66.28-70.

36) 

UK-China 
93.36±0.84(92.89-93.

83) 

80.23±1.51(79.17-81.

29) 

69.58±2.29(67.81-71.

35) 

69.04±2.81(66.95-71.

13) 

China-UK 
94.14±0.79(93.68-94.

60) 

80.06±1.65(78.89-81.

23) 

66.19±2.42(64.35-68.

03) 

65.42±2.98(63.07-67.

77) 

LibriSpeec

h data set 

Anglo-French 
96.88±0.72(96.47-97.

29) 

76.43±1.68(75.19-77.

67) 

69.87±2.37(68.05-71.

69) 

57.41±3.12(55.00-59.

82) 

Franco-Englis

h 

94.75±0.81(94.26-95.

24) 

79.83±1.55(78.70-80.

96) 

68.52±2.22(66.85-70.

19) 

58.39±3.05(56.03-60.

75) 

Anglo-Germa

n 

92.05±0.89(91.48-92.

62) 

76.52±1.72(75.29-77.

75) 

65.31±2.45(63.43-67.

19) 

70.35±2.88(68.13-72.

57) 

German-Engli

sh 

90.04±0.93(89.45-90.

63) 

77.68±1.61(76.53-78.

83) 

63.93±2.38(62.17-65.

69) 

61.23±2.95(58.97-63.

49) 

UK-China 
93.34±0.86(92.85-93.

83) 

79.53±1.53(78.46-80.

60) 

69.57±2.31(67.82-71.

32) 

65.34±2.87(63.22-67.

46) 

China-UK 
91.72±0.83(91.22-92.

22) 

74.18±1.75(73.01-75.

35) 

70.25±2.27(68.47-72.

03) 

58.17±3.15(55.68-60.

66) 
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In Table 6, the proposed model outperforms the 

other three comparison models in terms of mean and 

standard deviation across all language pairs and datasets. 

The mean accuracy for the English-French pair on the 

Wmt14 dataset is 94.37%, significantly higher than the 

other models. Meanwhile, the mean accuracies for 

DNN-HMM and EEMD are 79.31% and 75.09%, 

respectively, while the mean accuracy for LLM is 

64.97%. On the LibriSpeech dataset, the mean accuracy 

for the German-English pair is 90.04%, which remains 

significantly higher than the comparison models. These 

data indicate that the proposed model demonstrates 

stronger robustness in interpretation accuracy, effectively 

enhancing translation precision. In order to further verify 

the performance of the interpretation model in actual 

application scenarios, the study chose to simulate a large 

international conference and used simultaneous 

interpretation equipment, selecting high-quality and 

low-latency translation headphones, transmitters, and 

receivers. The data Signal-to-Noise Ratio (SNR) of the 

four models at different audio lengths was compared by 

simulating multilingual scenarios, and the results are 

shown in Figure 13. 
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Figure 13: Data SNR results at different audio lengths 

 

From Figure 13, it can be seen that when the audio 

length was 60s, the highest and lowest SNRs of the 

proposed model were 47.35dB and 29.74dB respectively. 

The highest SNR of the DNN-HMM model was 35.81dB, 

and the lowest data SNR was 24.06dB. The highest SNR 

of the proposed model was 46.05dB when the audio 

length was 100s, while the highest data SNR of the LLM 

model was 19.25dB. When the audio length was 160s, 

the SNR of the proposed model among the four models 

was still higher than that of the other three comparison 

models, and its highest data SNR reached 47.68dB. It 

could be seen that the training effect of the proposed 

model was better. The high SNR data enabled the model 

to converge faster, reduced its training time and resource 

consumption, and allowed the proposed model to achieve 

higher translation quality when dealing with complex 

sentences, professional terms, and cultural background 

differences. Finally, the study designed ablation 

experiments on isolated IGWO and GAT, and the results 

are shown in Table 7. 

 

Table 7: Ablation results 

Type of experiment Compare models F1 /% Interpretation delayed /ms 

IGWO vs GWO 
IGWO 89.2±1.1 123.4±8.3 

GWO 82.5±1.3 156.7±9.2 

GAT vs GNN 
GAT 91.3±1.2 115.5±7.7 

GCN 85.6±1.4 148.9±8.6 

There is cross attention vs 

no cross attention 

Complete pattern  89.2±1.1 123.4±8.3 

Remove cross attention 85.1±1.2 145.6±9.0 

 

In Table 7, in the IGWO vs GWO experiment, the F1 

score and interpretation delay of IGWO were both higher 

than those of GWO, indicating that the improved IGWO 

algorithm offers better accuracy and efficiency in intent 

recognition. In the GAT vs GNN experiment, GAT 

achieved an F1 score of 91.3±1.2% with an interpretation  

 

delay of 115.5±7.7ms, demonstrating superior model 

performance compared to GNN. In the cross-attention vs 

non-cross-attention experiment, the full model showed a 

higher F1 score and lower interpretation delay, 

suggesting that the cross-attention mechanism enhances 

module collaboration and optimizes the model's 
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intent-semantic interaction. 

4  Discussion 
The IGWO intent recognition algorithm 

demonstrated higher accuracy and precision on the 

MixSNIPS dataset compared to other models. IGWO’s 

classification accuracy significantly exceeded that of the 

other three algorithms, all of which scored below 80%. 

This was mainly because IGWO dynamically adjusted 

the search weight according to the fitness of the 

population by introducing a nonlinear weight allocation 

strategy, thus avoiding the problem that GWO was prone 

to fall into the local optimum in intent recognition. This 

mechanism significantly improved the global search 

ability of the model in complex intent classification tasks, 

thereby enhancing its classification accuracy. This result 

was similar to the research results of I. Kim's group [25]. 

The IGWO algorithm achieved higher recall rates across 

datasets by employing diversity maintenance strategies, 

such as random reverse learning, which prevent 

premature convergence and enable more thorough 

exploration of the intent feature space. This coincided 

with the research results of G. Leus et al. [26]. Usability 

tests show that the proposed GAT-based independent 

dynamic interaction method improves user experience. 

This is mainly due to GAT's introduction of an attention 

mechanism, which dynamically assigns weights to 

interaction nodes, allowing for a more precise capture of 

user intent and contextual information. This mechanism 

significantly reduces interaction interruptions caused by 

incomplete or misjudged information. Previous studies 

by Z. He et al. showed that combining operation fusion, 

multi-level pipelines, and graph partitioning optimization 

significantly enhances GAT performance [27]. In the 

comparison of thumb positioning effectiveness among 

four dynamic interaction methods, the GAT-based 

independent dynamic interaction method outperformed 

the other three methods. This is mainly due to GAT's 

real-time feedback mechanism, which dynamically 

adjusts interaction strategies based on user behavior. This 

result is consistent with the findings of A. Coscia et al. 

[28]. When examining the dynamic interaction latency 

across different interaction objects, the proposed method 

showed lower latency. By integrating multimodal data 

such as visual and tactile information, the GAT method 

was able to more comprehensively analyze the behavior 

features of the interaction objects, reducing the latency 

caused by the insufficiency of a single data source. 

Meanwhile, Y. Li et al. found in 2023 that the GAT 

structure design is interpretable, with simulations 

showing its near-optimal performance and real-time 

computation support [29]. Based on training and 

validation loss values, the proposed model demonstrates 

strong data fitting ability, primarily driven by IGWO’s 

efficient intent recognition and effective resource 

optimization. This coincided with the results obtained by 

K. Jang et al. in 2025 [30]. Compared with the research 

conducted by J. Torres Gómez's team in 2023 [31], the 

interpretation accuracy of the four models in different 

data sets showed the highest interpretation accuracy. This 

improvement results from integrating multimodal data 

like speech and text, enabling more comprehensive 

analysis of user intent and context while reducing 

translation bias from limited data sources. Through the 

data signal-to-noise ratio results of the four models at 

different audio lengths, it was found that the training 

effect of the proposed model was better and had higher 

signal-to-noise ratio data. This was mainly because the 

model dynamically adjusted the interaction strategy 

according to user behavior combined with the real-time 

feedback mechanism, and further optimized the 

anti-noise effect. This result was similar to the research 

conducted by M. Sajid et al. in 2024 [32]. Traditional 

GWO tends to fall into local optima in complex 

multilingual environments, while standard GAT struggles 

with feature differentiation due to high node similarity 

when processing long multilingual sequences. However, 

the proposed model demonstrates a higher SNR across 

various audio lengths compared to the other three models, 

with its highest SNR reaching 47.68dB. Moreover, the 

proposed model achieves higher translation quality when 

handling multilingual differences, accurately capturing 

and converting the meaning of the source language into 

the target language in translation tasks. This research 

considers the potential of multimodal interpretation and 

plans to incorporate gesture and visual information 

integration in future work. In the future, it will 

incorporate gestures and visual information integration. It 

plans to collect video data of interpretation with gestures 

and design a multimodal feature extraction module to 

explore the integration mechanism of visual, audio, and 

text features. By optimizing dynamic interaction 

strategies, it aims to adapt to more realistic interpretation 

scenarios. 

In summary, the interpretation model based on 

IGWO intention recognition and GAT independent 

dynamic interaction made significant contributions to 

improving the accuracy of intention recognition, 

enhancing the ability to capture contextual information, 

achieving real-time feedback and adaptive adjustment, 

and promoting the development of interpretation 

technology. These contributions provided a new 

theoretical framework and practical methods for 

interpretation technology, promoted the application and 

development of artificial intelligence in the field of 

interpretation, and offered an important reference for 

future interpretation research and practice. 

5  Conclusion 
The existing interpretation models suffer from low 

translation accuracy and weak sensitivity to data bias. To 

address these limitations, this study proposed a new 

interpretation model combining the IGWO-based intent 

recognition algorithm and the GAT-based independent 

dynamic interaction. By constructing a dynamic graph 

model to capture the relationship between intent and 

context, the model enhances intent recognition accuracy 

and enables a more comprehensive semantic 

understanding. The results showed that IGWO's 

classification accuracy was significantly higher than that 
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of the other three intent recognition algorithms, with 

HMM having the lowest classification accuracy. The 

proposed model demonstrated good performance in 

terms of data SNR, loss values, and dynamic interaction 

stop counts across different audio lengths. Overall, the 

proposed integrated model exhibited excellent 

classification accuracy and translation performance. Its 

capabilities in speech recognition, language conversion, 

and contextual understanding enable it to efficiently and 

accurately complete translation tasks. Although the 

current model shows excellent classification and 

translation accuracy, future work will focus on reducing 

model complexity and enhancing robustness in extreme 

scenarios to further improve performance. 
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