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Virtual reality (VR) enables the simulation of a wide variety of complex environments, from tiny biological 

structures to entirely imaginary worlds. These simulations create new possibilities for learning, training, 

and interaction that go beyond the limits of the physical world. However, virtual reality (VR) realizes this 

imaginary world, so it is not just a dream. VR works through the invocation of many of the senses. It 

creates realistic simulations through the creation of immersive settings that combine the real and the 

imagined, thereby affording special hands-on learning possibilities in a variety of subjects. This study 

investigates the effectiveness of combining Histogram Gradient Boosting Classification (HGBC) with 

Decision Tree Classification (DTC), the Ebola Optimization Search (EOS), and the Differential Squirrel 

Search Algorithm (DSSA) to predict VR outcomes. By integrating these advanced predictive and 

optimization techniques, the approach aims to enhance accuracy. Research will be conducted to ascertain 

the possible uses of VR, enhance user experience, and assess the impact on industries related to training, 

education, healthcare, and entertainment. In the evaluation phase, HGDS attained the highest accuracy 

of 0.967 in the test phase, making it the top-performing hybrid model, while DTEO showed the lowest 

accuracy of 0.907, identifying it as the weakest model. 

Povzetek: Članek predstavi bio-navdihnjen hibridni okvir za klasifikacijo uporabniških odzivov v virtualni 

resničnosti. Združuje HGBC, DTC ter optimizatorja EOS in DSSA za izboljšanje napovedne točnosti. 

Okvirjeva naloga je zanesljivo razvrščati VR-podatke. 

 

1 Introduction 
VR simulation signifies a computer-created environment 

where users can move around, interact with objects, and 

interact with virtual characters, also implied as "agents" or 

"avatars." A generic virtual setting is a 3D world [1], and, 

like gravitation simulation, virtual environments 

frequently aim to be as realistic as possible in both 

appearance and object behavior. It must be underlined, 

nonetheless, that there need to be no parallels between this 

virtual environment and the actual world. One of the 

advantages of virtual environments is their ability to 

replicate completely unrealistic scenarios [2]. Virtual 

environments, however, provide a safe space to test 

scenarios that would be too dangerous or difficult to 

perform in real life, and they imitate the setting where the 

student will eventually work. 

There are other ways of deploying VR; four typical 

configurations are included below: 

✓ Desktop VR (Monoscopic or Stereoscopic) 

✓ Immersive VR (HMD, CAVE, widescreen) 

✓ Collaborative Systems 

✓ Mixed or Augmented Reality 

 

The desktop VR enables the user to interact with the 

system using a mouse or other controlling device while 

sitting in front of a desktop computer monitor, as the name  

implies [3]. Immersion systems utilize a visualization 

display worn on the head of the user that completely 

occludes their field of view. Collaborative systems have 

human-controlled avatars interacting with each other, and 

they can be immersive or desktop-based systems. Second 

Life is one of the most recent and most effective 

collaboration systems [4]. An attempt is also being made 

to use the collaborative systems for exploration. The 

mixed reality systems merge computer-generated matter 

with the real environment, which is viewed directly or 

through a camera. This system can teach engineering and 

medical skills to students, which are thought to be 

impossible by this recently invented system [5]. 

Learning by humans requires interaction with the 

environment, taking in information provided by the use of 

senses and experience [6]. Through computer simulation, 

VR takes the role of real-world sensory input. Reacting to 

motion and common human behaviors in the actual world 

offers interaction. Therefore, VR can be useful in 

education since it allows pupils to experience a situation 
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or scenario firsthand rather than only imagining it [7]. The 

three main components that define the quality of VR 

experiences are immersion, interaction, and multisensory 

feedback. Immersion is being engulfed or enclosed by the 

surroundings [8]. One of the advantages of immersion is 

that it ensures a feeling of presence or the perception that 

one is actually in the world being displayed [9]. 

Interactivity means the capability of the user's body 

movements to affect the events happening in the 

simulation and, in turn, provoke a reaction from the 

simulation [10], [11]. 

The multisensory nature of VR allows information to 

be derived from several senses, which further enhances the 

experience in that this makes it both more engaging and 

more convincing—increasing, as it does, the sensation of 

presence because this provides redundancy of 

information, which diminishes the likelihood of 

misunderstanding. Information from multiple sensory 

entries is reinforced by a sensory combination [12], [13]. 

VR enables the user to act as though they are in the actual 

world by substituting a virtual environment for the current 

one. A constructivist learning approach benefits from 

VR's immersive features [14]. The premise of 

constructivism, a theory of knowledge acquisition, is that 

people build knowledge by concluding from their past 

experiences. The idea, as propounded by Jean Piaget, 

assumes that learners try to fit new experiences into the 

world picture that they have developed earlier. Learners 

change their worldview to fit the new experience when 

they cannot assimilate new information into their system 

effectively. Learning comes from experiences where 

actions are based on assumptions about how the world 

functions, only to find that it does not align with those 

assumptions [15], [16], [17]. Adjusting the mental model 

of how the world functions becomes necessary to account 

for the new experience. The view is that learning is an 

active process of testing hypotheses. In other words, this 

concept contrasts with the notion of learning as something 

passive in nature: the mere acquisition or assimilation of 

data. VR is a powerful learning tool because it provides a 

context where such hypothesis testing can occur. 

According to [18], students who interact with new 

material are more likely to store and recall it. 

Control software is at the heart of this system. This 

regulates the exchange of information between the virtual 

world and the interface layer in response to user actions, 

updating the world appropriately. On display devices such 

as the haptic and visual interface, it also determines when 

the scene should be shown. With the help of additional 

tools, the control software can connect to the outside world 

through the internet, which might be an essential 

capability in systems involving collaboration or many 

users. The virtual environment module includes a model 

of real-world entities and the virtual world model. It 

includes state and position information apart from 

appearance. They could be dynamic objects, such as 

moving objects or even avatars. They could also be static 

objects. This model of the virtual environment needs to be 

refreshed at regular intervals to add dynamic objects [19]. 

The module for the virtual environment, which would 

store positions, shapes, and other attributes of all 

components of the virtual world in a database, is called the 

virtual environment module. The physics engine is one of 

the major parts of any realistic simulation. A physics 

engine comprises a set of rules that control the motion and 

interaction of dynamic objects in a virtual scene. A typical 

physics engine can include a Newtonian mechanics 

simulation and collision detection, which describes when 

two objects collide. They apply gravitational, friction, and 

impulse effects using physical rules. When two things hit 

each other, the latter effect is important [20], [21]. When 

two active entities collide, collision detection is necessary. 

The physics engine determines their terminal velocity 

using their simulated traits, such as mass, substance, and 

speed. 

1.1 Related works 

Normally, state-of-the-art reports that focus on specific 

aspects of the discipline or on specific application fields 

are available. They would mostly provide the taxonomies 

that systematically illustrate and classify the various 

methodologies involved. 

➢ While Dachselt and Hübner [22] examined the 

menus for AR and VR environments for all of the 

MR domain [23], they also presented an 

extensive taxonomy. 

➢ A taxonomy of NVEs, taking into consideration 

distribution and communication topologies, has 

been provided by Macedonia and Zyda [24]. 

Mania and Chalmers [25] have presented a 

taxonomy of platforms and communication. 

➢ Bowman has provided several taxonomies for 

both interaction methods [26] and navigation 

methods [27]. Mine's early research [28] 

identifies the essential navigation and interaction 

in virtual spaces. 

➢ Gabbard [29] provides good generalized 

overviews, presents suggested best practices in 

application design, and provides guides for 

conducting user evaluations. Livatino and 

Koeffel have also presented guidelines for 

Virtual Environments (VEs) assessment [30]. 

➢ The current tracking technology is overviewed by 

Welch and Foxlin [31], who also compare and 

contrast the respective merits and disadvantages 

of each. 

Recent work has explored innovative methods for 

classifying virtual reality (VR) using bio-inspired 

computational models. Song and DiPaola [32] introduced 

a bio-responsive VR system based on physiological data 

to enhance immersion. Zayed and Reda [33] demonstrated 

that applying neurophysiological biosignals combined 

with deep learning could classify cognitive states in VR 

with 97% accuracy. Similarly, Arslan et al. [34], [35], 

[36], [37], [38] employed emotion classification from 

biosignals and machine learning in VR, achieving 97.78% 

accuracy. These advancements are significant in areas 

such as rehabilitation, education, and psychotherapy. 

VanHorn and Çobanoğlu [35] also developed a 

biomedical image classification system within a VR-based 

environment, making AI more accessible to experts. 
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Overall, these studies emphasize how biosignals, machine 

learning, and VR can be integrated to develop advanced 

predictive models, showcasing the potential of bio-

inspired computational models to improve VR 

classification techniques. 

1.2 The study's objective  

This work examines the possible contribution that VR 

technology will make to enhance learning outcomes and 

increase student engagement in schools. In data 

classification, this study applies an HGBC model and a 

DTC model. The performance of the schemes is optimized 

by using methods such as EOS and DSSA. This research 

will explore the integration of VR within diverse 

disciplines of study to understand how it can facilitate the 

retention of both theoretical knowledge and practical 

competencies of learners, given the immersion one 

experiences in a VR environment. Possible drawbacks and 

limitations, including accessibility of resources, shall also 

be discussed to present a comprehensive overview of what 

can be expected from this educational technology. 

2 Materials and methodology 

2.1 Data gathering 

A set of users' experiences in VR settings provides the 

dataset. The information covers user preferences, 

emotional moods, and physiological reactions like skin 

conductance and heart rate. This study's dataset includes 

1000 samples, each representing a user’s VR session. 

Recorded features encompass User ID (173 unique 

values), Age (66), Gender (147), VR Headset type (61), 

Session Duration (137), Motion Sickness severity (56), 

and Immersion Level (55). These variables cover both 

demographic and behavioral data, forming a 

comprehensive basis for analysis. The Immersion Level 

serves as the target variable, indicating users' subjective 

engagement in VR, and its variability supports the creation 

of effective predictive models. 

This dataset attempts to contribute to the development of 

VR through the analysis of user experiences. An attempt 

has been made in this study to develop a better VR design 

with much more improvement in user comfort and 

customization by understanding the physical and 

emotional reactions of consumers in diverse VR 

situations. This information allows developers to work on 

boosting VR systems and creating personalized 

experiences that will enhance customers' delight and 

immersion. Fig. 1 presents a contour plot for the 

correlation of the features. 

User ID: This variable identifies every participant 

who experienced VR. Each user is assigned a unique ID 

so that their data in the dataset can be differentiated. 

Age: This variable stores the age of the subject 

participating in VR exposure. For example, this could be 

an integer representing the current user's age at the time of 

using the VR. 

Gender: This variable displays the user’s gender. The 

categories "Male," "Female," and "Other" can be utilized 

to define the user's gender identity. 

VR Headset Type: This would be a variable 

specifying the form of VR headset that a user is utilizing 

in a VR experience. Examples include Oculus Rift, HTC 

Vive, and PlayStation VR, among others. 

Duration: This variable shows the time spent in the 

VR experience in minutes. It reflects how much time was 

spent by the participant in the VR setup. 

Motion Sickness Rating: It displays the rating of the 

user's self-reported motion sickness during the VR 

experience. Higher numbers relate to a higher degree of 

motion sickness on an ascending scale ranging between 1 

and 10. 

Dependent variable: 

The degree to which a user experiences being inside a 

virtual environment quantifies the subjective degree of the 

user's feeling of immersion in the experience, with a rating 

between 1 and 5, where 5 stands for the maximum level.
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Figure 1: The contour plot with color fill illustrates the relationship between input and output variables 

Before deploying advanced computational models, 

understanding several challenges in VR classification 

systems is essential. These encompass the significant 

variability in user responses driven by individual 

physiological and psychological differences, noise in 

biometric data such as heart rate and skin conductance, 

and class imbalance across different immersion levels. 

The subjective nature of immersion also complicates 

labeling and impacts the consistency of ground truth. 

These factors result in a complex, high-dimensional 

feature space where traditional classifiers often face 

difficulties with generalization and robustness. 

Consequently, adopting adaptive hybrid machine learning 

approaches, supported by powerful metaheuristic 

optimization techniques, is crucial for effective 

classification in VR. 

2.2 Histogram gradient boosting 

classification (HGBC) 

The HGB approach is another variant of the popular GB 

[39] technique used to resolve diverse classification and 

regression-oriented machine learning (ML) problems. 

These schemes, which AdaBoost also belongs to, 

primarily try to turn weak learners into strong ones. They 

come under the category of schemes called boosting 

schemes. Boosting techniques try to keep adding and 

teaching new weak learners successively to correct their 

previously introduced weak learners about their mistakes. 

It then informs each new weak learner to avoid the 

mistakes made by its forerunner. The most common weak 

learners used are DTs. This resulted in the development of 

the HGB algorithm, a boosting methodology that 

overcame one of the major weaknesses of the GB 

algorithm, which was its very long training time when 

training on large datasets. To circumvent this problem, the 

continuous input variables are discretized or binned into a 

few hundred distinct values. In this case, the learning rate 

(LR) of the scheme is the most important hyperparameter. 

Much attention was paid to the optimization of the scheme 

through several iterations of hyperparameter tweaking. 

The implementation of HGB from sci-kit-learn 0.21.3 was 

used from the Python ML module [40]. 

2.3 Decision tree classification (DTC) 

In a DT, every internal node displays a characteristic, each 

branch is a decision rule, and each leaf node is the outcome 

[41]. The root node signifies the topmost node in a DT. To 

achieve the best discrimination among classes or results, 

it learns to split based on the value of an attribute. 

Different schemes have different criteria regarding 

making decisions. For example, some of the metrics used 

by schemes like ID3, C4.5, and CART include entropy, 

gain ratio, and Gini impurity, respectively. The problem at 

hand now is to find that characteristic at every level that 

offers the optimum split in a DT, thereby assisting 

optimum decision-making [42]. The concept can be 

mathematically understood by using the DT split based on 

entropy. The entropy H(D) of a dataset D can be calculated 

as follows: 

𝐻(𝐷) = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝑚

𝑖=1

 (1) 

2.4 Ebola optimization search (EOS) 

Driven by the diffusion of the Ebola virus, in what follows, 

EOS presents a metaheuristic scheme [43]. The EOSA 

scheme is based on the enhanced SIR scheme of the 

sickness. Its S, E, I, R, H, V, Q, and D compartments 

represent the Susceptible (S), Exposed (E), Infected (I), 

Hospitalized (H), Recovered (R), Vaccinated (V), 

Quarantine (Q), and Death (D) states, respectively. 

Because of these compartments, the composition provides 

for the construction of a search domain that best displays 

combinations of weights and biases that may be required 

by CNN. After representation, SIR is displayed by a 

mathematical scheme utilizing a system of first-order 

differential equations. Then, the new metaheuristic 

scheme was developed by combining the mathematical 
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and propagation schemes, and later, the obtained 

mathematical scheme was deployed in the design of 

EOSA-CNN for experimentation. Therefore, the 

following are the mathematical schemes: 

𝑚𝐼𝑖
𝑡+1 = 𝑚𝐼𝑖

𝑡 + 𝜌𝑀(𝐼) (2) 
𝜕𝑆(𝑡)

𝜕𝑡
= 𝜋 − (𝛽1𝐼 + 𝛽3𝐷 + 𝛽4𝑅 + 𝛽2(𝑃𝐸)𝜂)𝑆

− (𝜏𝑆 + Γ𝐼) 

(3) 

𝜕𝐼(𝑡)

𝜕𝑡
= (𝛽1𝐼 + 𝛽3𝐷 + 𝛽4𝑅 + 𝛽2(𝑃𝐸)𝜆)𝑆

− (Γ + 𝛾)𝐼 − (𝜏)𝑆 

(4) 

𝜕𝐻(𝑡)

𝜕𝑡
= 𝛼𝐼 − (𝛾 + 𝜛)𝐻 (5) 

𝜕𝑅(𝑡)

𝜕𝑡
= 𝛾𝐼 − Γ𝑅 (6) 

𝜕𝑉(𝑡)

𝜕𝑡
= 𝛾𝐼 − (𝜇 + 𝜗)𝑉 (7) 

𝜕𝐷(𝑡)

𝜕𝑡
= (𝜏𝑆 + Γ𝐼) − 𝛿𝐷 (8) 

𝜕𝑄(𝑡)

𝜕𝑡
= (𝜋𝐼 − (𝛾𝑅 + Γ𝐷)) − 𝜉𝑄 (9) 

𝑚𝐼𝑖
𝑡+1 and 𝑚𝐼𝑖

𝑡 display the old and new situation at 

time 𝑡 and 𝑡 + 1, respectively, 𝜌 is the displacement scale 

factor of an individual in Eq. (2). The data updated here 

are Hospitalized (H), Vaccinated (V), Recovered (R), 

Infected (I), Susceptible (S), Quarantine (Q), and Dead 

(D). Eqs. (3) to (9) define a system of ordinary differential 

equations, all of the scalar functions that one can evaluate 

to float values. These are computed given initial 

conditions 𝑆 (0)  =  𝑆0, 𝐼(0)  =  𝐼0, 𝑅(0)  =  𝑅0, 𝐷(0)  =
 𝐷0, 𝑃(0)  =  𝑃0, and 𝑄(0)  =  𝑄0, 𝑡 is after the definition 

of iterations. This will then enable us to conclude the 

magnitude of vectors S, I, H, R, V, D, and Q at 𝑡. 

The pseudocode that describes the EOSA 

metaheuristic scheme is presented accordingly in steps 

below: 

❖ Define initial values for all vector and scalar 

quantities, that is, persons and parameters, 

respectively: the numbers of hospitalized (H), 

vaccinated (V), susceptible (S), infected (I), 

recovered (R), dead (D), and quarantined (Q). 

❖ 𝐼1 is created at random among vulnerable people. 

❖ The value of fitness shall be calculated at the 

index case, having set that as the current and 

global best. 

❖ If there is at least one infected person and the 

number of iterations is not reached, then: 

a) With every vulnerable individual, a standing is 

created and altered accordingly with their 

movement. Exploitation is characterized by short 

displacement; otherwise, it characterizes 

exploration. Remember that the longer an 

infected case is displaced, the more infections 

there are. 

b) Using (a), generate newly infected individuals 

𝑛𝐼. 

c) Create the new individuals and add the new 

instances in 𝐼. 

d) From the size of 𝐼 calculate how many people are 

added to H, D, R, B, V, and Q at their respective 

rates. 

e) Utilizing the new 𝐼, refine 𝑆 and 𝐼. 

f) Compare the best 𝐼 have got at the moment with 

the best in the world. 

g) If the termination condition is not reached, go 

back to step 4. 

❖ Return all solutions and the best global 

resolution. 

The design and discussion of the utilization of the 

enhancement issue defined in this paper are given in the 

following subsections.  

Fig. 2 presents the flowchart of the DTC.

 

Figure 2: The flowchart of the DTC model 
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2.5 Differential squirrel search algorithm 

(𝐃𝐒𝐒𝐀) 

𝐷𝑆𝑆𝐴, a hybrid optimizer that combines the differential 

evolution and squirrel search schemes is presented in this 

section. In SSA, the squirrels maintain the position of 

other squirrels regarding acorn or hickory trees for 

updating their position. To improve its search strategy, the 

top squirrels' position updating rules have been changed. 

The incorporation of crossover operations inspired by DE 

significantly enhances the exploration capability. 

The following is a mathematical scheme of many 

foraging techniques covered under the paradigm of DSSA. 

To justify selecting EOS and DSSA for this 

classification task, it’s crucial to highlight the problem’s 

nature: the dataset involves multiple interacting features 

with complex, nonlinear relationships, which can cause 

optimization to get stuck in local optima when using 

traditional methods. The EOS algorithm, inspired by 

epidemic modeling, employs dynamic, population-based 

exploration techniques that balance infection-driven 

diversification with recovery-focused convergence. This 

strategy is especially effective for tuning hyperparameters 

in complex models like HGBC and DTC. Its 

compartmental diffusion model efficiently captures 

multidimensional search dynamics. Meanwhile, DSSA 

mimics squirrel foraging behavior and utilizes crossover 

inspired by differential evolution, making it highly 

effective at fine-tuning solutions locally while 

maintaining overall diversity. This capability is critical in 

VR classification scenarios, where high accuracy requires 

careful adjustment of sensitive parameters to prevent 

overfitting. DSSA’s ability to retain elite solutions while 

fostering diversity helps avoid premature convergence. 

Combining EOS and DSSA offers complementary 

advantages, EOS facilitates broad exploration, while 

DSSA ensures precise convergence, together enhancing 

classification accuracy and model robustness for VR 

immersion prediction. 

2.5.1 Initialization of position and evaluation 

of fitness 

The squirrels are initially placed in the search area at 

random. Knowing the squirrels' location allows one to 

calculate their fitness, which simply replaces their position 

in the fitness function by demonstrating how good a food 

supply they could find. The best squirrel 𝑃𝑆ℎ𝑡  discovered 

in the hickory tree thus far is determined by sorting fitness 

values. It is thought that the squirrels in the acorn tree 

𝑃𝑆𝑎𝑡(1 ∶  3) are traveling in the direction of the optimal 

location in a subsequent iteration, as indicated by the 

following three best function values. The remaining 

squirrels, 𝑃𝑆𝑛𝑡(1: 𝑁𝑃 −  4), are in the typical tree and 

have not yet discovered food. 

2.5.2 Position update 

The squirrels in an acorn tree, following the current best, 

𝑃𝑆ℎ𝑡, renew the position, and move in the direction of the 

best source when there is no predator. The squirrels of a 

usual tree follow the ones in an acorn or hickory tree to 

renew their position. If there is the presence of a predator, 

then the squirrels change direction randomly while 

foraging. These are the mathematical schemes that are 

used to update the squirrel's position. 

As in Eq. (10) now, the posture of squirrels on acorn 

trees changes based on the postures of others.

𝑃𝑆𝑎𝑡
𝑛𝑒𝑤 = {

𝑃𝑆𝑎𝑡
𝑜𝑙𝑑 + 𝑑𝑔 × 𝐺𝑐(𝑃𝑆ℎ𝑡

𝑜𝑙𝑑 − 𝑃𝑆𝑎𝑡
𝑜𝑙𝑑 − 𝑃𝑎𝑣𝑔),   𝑟1 ≥ 𝑃𝑑𝑝

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 

whereas 𝑃𝑎𝑣𝑔 is the mean location of every squirrel in 

the current population. 

It also employs the crossover mechanism of DE in a 

way that ensures diversity among squirrels to the 

maximum while minimizing the possibility of trapping in 

local minima. Applied to the squirrel's current position and 

the new position as obtained by Eq. (11): 

𝑃𝑆𝑎𝑡,𝑖,𝑗
𝑐𝑟

= {
𝑃𝑆𝑎𝑡,𝑖,𝑗

𝑛𝑒𝑤 ,   𝑖𝑓(𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑟) 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑃𝑆𝑎𝑡,𝑖,𝑗
𝑜𝑙𝑑 ,    𝑖𝑓(𝑟𝑎𝑛𝑑𝑗 > 𝐶𝑟)𝑜𝑟 𝑗 ≠ 𝑗𝑟𝑎𝑛𝑑

, 𝑗

= 1, 2, 3, … , 𝐷 

(11) 

In this context, NP displays the population size, with 

𝑖 ranging from 1, 2, 3, … , 𝑁𝑃. For acorn or normal trees, 

𝑃𝑆𝑎𝑡;𝑖;𝑗
𝑐𝑟    indicates the updated positions of the squirrels 

following the crossover operation. 𝑃𝑆𝑎𝑡;𝑖;𝑗
𝑛𝑒𝑤   and 𝑃𝑆𝑎𝑡;𝑖;𝑗

𝑜𝑙𝑑  

correspond to the new and previous positions of the 

squirrels. 𝐷 refers to the dimensionality of the problem, 

and 𝐶𝑟 displays the crossover rate, which is set to 0.5. The 

index 𝑗𝑟𝑎𝑛𝑑 is randomly selected from the range [1, 𝐷], 
and 𝑟𝑎𝑛𝑑𝑗 denotes the 𝑗𝑡ℎ random number, uniformly 

generated within this range. 

Some of the squirrels on regular trees do the 

placement of acorn tree squirrels, after which they relocate 

to their new locations. 

𝑃𝑆𝑛𝑡
𝑛𝑒𝑤

= {
𝑃𝑆𝑛𝑡

𝑜𝑙𝑑 + 𝑑𝑔 × 𝐺𝑐(𝑃𝑆𝑎𝑡
𝑜𝑙𝑑 − 𝑃𝑆𝑛𝑡

𝑜𝑙𝑑), 𝑟2 ≥ 𝑃𝑑𝑝

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑖𝑜𝑛,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(12) 

where the random integer 𝑟2 is uniformly distributed 

between 0 and 1. 

In normal trees, the survivors cling on to the best 

move on view, and their new positions are shown below: 

𝑃𝑆𝑛𝑡
𝑛𝑒𝑤

= {
𝑃𝑆𝑛𝑡

𝑜𝑙𝑑 + 𝑑𝑔 × 𝐺𝑐(𝑃𝑆ℎ𝑡
𝑜𝑙𝑑 − 𝑃𝑆𝑛𝑡

𝑜𝑙𝑑), 𝑟3 ≥ 𝑃𝑑𝑝

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑖𝑜𝑛,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(13) 

The following crossover procedure is also given for 

typical tree squirrels: 

𝑃𝑆𝑛𝑡,𝑖,𝑗
𝑐𝑟

= {
𝑃𝑆𝑛𝑡,𝑖,𝑗

𝑛𝑒𝑤 ,   𝑖𝑓(𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑟)𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑃𝑆𝑛𝑡,𝑖,𝑗
𝑜𝑙𝑑 ,   𝑖𝑓(𝑟𝑎𝑛𝑑𝑗 > 𝐶𝑟)𝑜𝑟 𝑗 ≠ 𝑗𝑟𝑎𝑛𝑑

 ,

𝑗 = 1, 2, 3, … , 𝐷 

(14) 

The convergence speed may be raised by permitting 

the hickory tree squirrel to update her location in relation 
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to the average position of the squirrels in the tree. This can 

be done as follows: 

𝑃𝑆ℎ𝑡
𝑛𝑒𝑤 = 𝑃𝑆ℎ𝑡

𝑜𝑙𝑑 + 𝑑𝑔 × 𝐺𝑐(𝑃𝑆ℎ𝑡
𝑜𝑙𝑑 − 𝑃𝑆𝑎𝑡

𝑎𝑣𝑔
) (15) 

In this instance, 𝑃𝑆𝑎𝑣𝑔 displays the average of all 

squirrel locations within the acorn trees. 

In order to participate in the next generation of people, 

the best aspects of the new work, as well as its crossover 

roles, are then contrasted with the old jobs. 

Figure 3 illustrates the flowchart of the proposed 

hybrid models (such as HGDS and DTEO), detailing the 

sequential phases that encompass data input, model 

development, optimizer-centric hyperparameter 

optimization, training, and final assessment. This diagram 

delineates the interaction between machine learning 

models and metaheuristic optimizers within the hybrid 

structure. 

 
 

 

Figure 3: The process flowchart of the proposed hybrid models
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2.6 Performance evaluators  

Accuracy depends on how many correctly projected 

positive and negative instances there are of the total, 

defined by True Positives (TP), True Negatives (TN)—

correctly projected negative cases, False Positives (FP)-

incorrectly projected as positive, and False Negatives 

(FN)—incorrectly projected as negative. Using TP and FP 

as the relevant measures, precision gauges the percentage 

of TP projections out of all the positive projections the 

model has made. Smaller amounts of false positives imply 

higher precision. Recall is the measure of the share of TP 

projections from all real positive instances, using True 

Positives and False Negatives; it indicates that the model 

will detect all relevant positive cases. The fewer false 

negatives there are, the higher the recall. A simple statistic 

that balances the trade-off between Precision and Recall is 

the F1 score. It combines the two. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∶  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (16) 

Precision ∶  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (17) 

Recall ∶  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (18) 

F1 − score = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (19) 

The F1-score is a single measure that balances the 

accuracy and recall; it is the harmonic mean of both. It is 

very useful when considering false negatives and false 

positives. The greater the F1 score, the better balanced the 

recall and accuracy. 

3 Results and discussion 

3.1 Hyperparameters tuning and 

convergence curve analysis 

The presented table displays the tuned hyperparameters 

for four different hybrid models: HGEO, HGDS, DTEO, 

and DTDS. Seven key hyperparameters were considered 

to optimize these models' performance: learning_rate, 

max_leaf_nodes, max_depth, min_samples_leaf, 

max_bins, min_samples_split, and a second instance of 

max_leaf_nodes (listed separately for different model 

types). The HGEO and HGDS models, based on the 

HGBR algorithm, have specified values for learning_rate, 

max_leaf_nodes, max_depth, min_samples_leaf, and 

max_bins. For example, the HGEO model has a 

learning_rate of 0.709, max_leaf_nodes of 278, 

max_depth of 100, min_samples_leaf of 10, and max_bins 

of 27. In the HGDS model, these values are learning_rate 

of 0.148, max_leaf_nodes of 557, max_depth of 893, 

min_samples_leaf of 7, and max_bins of 102. Conversely, 

the DTEO and DTDS models, which are based on decision 

tree algorithms, do not include values for learning_rate, 

max_leaf_nodes, or max_bins in the first part of the table. 

However, they include defined values for max_depth, 

min_samples_leaf, min_samples_split, and 

max_leaf_nodes in the second part. For instance, the 

DTEO model has max_depth of 741, min_samples_leaf of 

0.00025, min_samples_split of 0.0275, and 

max_leaf_nodes of 2710. Similarly, the DTDS model 

features max_depth of 597, min_samples_leaf of 0.00025, 

min_samples_split of 0.0005, and max_leaf_nodes of 

1789. Overall, the table indicates that hyperparameters are 

selectively tuned for each model based on its structure, 

with parameter values chosen according to each model's 

specific characteristics and requirements. 

Fig. 4 displays a 3D waterfall plot illustrating the 

convergence curves of four hybrid schemes: HGDS, 

HGEO, DTDS, and DTEO. The plot effectively visualizes 

the different convergence rates and final performance 

levels of the schemes, demonstrating the varying degrees 

of effectiveness in the optimization process. This 

comparison emphasizes the significance of the number of 

iterations and initial accuracy in determining the overall 

success of each hybrid model. The HGDS model starts 

with an accuracy of 0.6 and gradually improves over 200 

iterations, ultimately reaching a peak accuracy of 0.967, 

making it the highest-performing model among the four. 

The other three schemes begin with a lower accuracy of 

0.4 and converge more quickly than HGDS, reaching their 

final accuracy in fewer iterations. Among these schemes, 

DTEO is identified as the weakest hybrid model, with a 

final accuracy of 0.908 after its iterations. 

Table 1: Hyperparameter tuning for four models 

Hyperparameters 
Models 

HGEO HGDS DTEO DTDS 

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 0.709 0.148 - - 

𝑚𝑎𝑥_𝑙𝑒𝑎𝑓_𝑛𝑜𝑑𝑒𝑠 278 557 - - 

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ 100 893 741 597 

𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 10 7 0.00025 0.00025 

𝑚𝑎𝑥_𝑏𝑖𝑛𝑠 27 102 - - 

𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 - - 0.0275 0.0005 

𝑚𝑎𝑥_𝑙𝑒𝑎𝑓_𝑛𝑜𝑑𝑒𝑠 - - 2710 1789 
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Figure 4: 3D waterfall plot for the convergence curve of the hybrid schemes 

3.2 Schemes performance comparison 

Fig. 5 presents a doughnut plot, providing an intuitive 

representation of the schemes' performance and 

facilitating a clearer comparison across different 

evaluation metrics. The performance results of six hybrid 

schemes evaluated using accuracy, precision, recall, and 

F1 scores across training, testing, and overall sections 

have been presented. Among these, HGDS emerges as the 

best-performing model, with an impressive accuracy of 

0.967 in the test section. Conversely, DTEO, with an 

accuracy of 0.907, is the weakest model. HGDS 

outperforms HGEO by 0.17 in accuracy, establishing itself 

as the top model. Nevertheless, HGEO still demonstrates 

strong performance, securing the second-best position 

overall. This comparison underscores the varying 

strengths of each model, with HGDS leading in accuracy 

and other performance metrics, while HGEO, despite its 

lower accuracy, remains a competitive alternative. The 

results emphasize that even schemes with slightly lower 

accuracy can still offer valuable performance in certain 

contexts. 
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Figure 5: A connected doughnut plot employed for the visual evaluation of the schemes' performance 

Additionally, Table 2 provides a summary of the 

performance of six schemes across five levels regarding 

precision, recall, and F1 score. The hybrid model HGDS 

stands out at level 1, achieving the highest precision of 

0.990. Additionally, HGDS excels in both recall and F1-

score, outperforming all other schemes and demonstrating 

its overall robustness. In contrast, DTEO shows weaker 

recall performance compared to the other schemes, 

although it surpasses DTC in this metric. Regarding the 

F1-score, DTEO records a value of 0.922, which is lower 

than the top-performing schemes. Nonetheless, it 

outperforms both DTDS and CTC by margins of 0.013 

and 0.010, respectively. While DTEO's F1-score may not 

be the highest, it still demonstrates competitive 

performance relative to other schemes. These findings 

indicate that HGDS is the most well-rounded and effective 

model overall, while DTEO, despite its limitations in 

recall and F1 score, delivers superior performance in 

specific areas.  

Table 2: Schemes’ evaluation results through different immersion levels 

Evaluators Schemes 
Immersion Levels 

Level 1 Level 2 Level 3 Level 4 Level 5 

Precision 

HGBC 0.946 0.946 0.909 0.925 0.973 

HGEO 0.941 0.995 0.907 0.951 0.974 

HGDS 0.974 0.990 0.981 0.945 0.943 

DTC 0.988 0.938 0.825 0.909 0.822 

DTEO 0.973 0.929 0.847 0.923 0.878 

DTDS 0.906 0.939 0.873 0.914 0.983 

Recall 

HGBC 0.951 0.933 0.928 0.952 0.932 

HGEO 0.946 0.947 0.959 0.947 0.969 

HGDS 0.960 0.971 0.985 0.956 0.963 

DTC 0.847 0.875 0.953 0.869 0.916 

DTEO 0.876 0.885 0.948 0.927 0.906 

DTDS 0.911 0.894 0.964 0.927 0.911 

F1-score 

HGBC 0.948 0.94 0.918 0.938 0.952 

HGEO 0.943 0.97 0.932 0.949 0.971 

HGDS 0.975 0.976 0.965 0.949 0.971 

DTC 0.912 0.906 0.885 0.888 0.866 

DTEO 0.922 0.906 0.895 0.925 0.892 

DTDS 0.909 0.916 0.916 0.921 0.946 

 

Fig. 6 displays the ROC (Receiver Operating 

Characteristic) curves of the hybrid model across five 

immersion levels. The ROC curve plots the True Positive 

Rate (TPR) against the False Positive Rate (FPR) at 

various thresholds, offering a visual assessment of the 

model’s ability to distinguish between classes. A higher 

Area Under the Curve (AUC) signifies better 

performance. Among the five levels, Level 1 has the 

highest AUC, indicating greater confidence and fewer 

classification uncertainties at this stage. Conversely, Level 

5 shows the weakest ROC performance, likely due to 

increased data overlap and less feature separation at higher 
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immersion ratings. This suggests that as responses become 

more subtle at deeper immersion levels, the model's ability 

to differentiate between classes slightly diminishes, 

resulting in more false positives and a lower true positive 

rate. These differences illustrate the model’s changing 

confidence in classification across varying immersion 

levels. Level 1 is considered the best projection level, 

characterized by the highest true positive rate and the 

lowest false positive rate. At this level, the true positive 

rate starts at 0.0 and gradually increases to 1.0, while the 

false positive rate begins at 0.0 and rises to 0.1. On the 

other hand, Level 5 displays the worst projection 

performance, with the true positive rate reaching 1.0, 

indicating a decrease in projection accuracy and an 

increase in false positive rate. This shows a decline in 

overall predictive quality as the level increases.

 

Figure 6: ROC curves for the hybrid classification model across five immersion levels. 

3.3 Comparison of the measured and 

projected values 

Fig. 7 displays a 3D bar plot illustrating the correlation 

between observed and projected values across five levels, 

highlighting each model's predictive accuracy. Among 

these, the HGDS model stands out with the best 

performance, particularly in level 1, where it achieves 194 

accurate projections, establishing it as the top-performing 

model. This high correlation between observed and 

projected values underscores HGDS's strong overall 

reliability. Conversely, the DTEO model shows the 

weakest performance, with only 177 accurate projections, 

making it the least effective model overall. While certain 

schemes may perform poorly in specific conditions, 

DTEO consistently underperforms across all levels, 

indicating significant limitations in its predictive 

accuracy. 

  

Figure 7: A 3D bar plot is generated to depict the correlation between observed and projected values 

Fig. 8 shows the projection errors across six schemes, 

focusing on correct projections versus mistakes. Among 

these, the HGDS stands out for its higher accuracy. In 

level 1, it correctly projected 192 out of 194 cases, 
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resulting in only two errors. Similarly, in level 2, HGDS 

achieved 198 correct projections out of 202, with just four 

mistakes. This accuracy highlights its strong performance 

in comparison to the other schemes. In contrast, the DTEO 

model demonstrates weaker predictive accuracy. In level 

1, it recorded five errors out of 177 projections. Its 

performance was similarly low in level 2, where it made 

14 mistakes out of 184 projections. This high error rate 

marks DTEO as the least effective among the schemes 

analyzed. Overall, while HGDS exhibits consistent 

accuracy in both levels, DTEO's elevated error rate 

suggests limitations in its predictive reliability. 

  

  

  

Figure 8: Confusion matrix illustrating the accuracy of the schemes under four specified conditions 
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• Sensitivity analysis 

Table 3 displays the results of a sensitivity analysis 

using one-way ANOVA to determine if model 

performance differences across various VR immersion 

levels are statistically significant. The F-value indicates 

the ratio of variance between groups to within groups, 

while the P-value shows the likelihood that observed 

differences are due to chance. A P-value below 0.05 is 

generally considered significant. Of the six models 

evaluated, the DTC model had the highest F-value of 

2.923 and a P-value of 0.088. Although close to 

significance, this result remains statistically non-

significant, implying only marginal performance 

differences that do not meet the 95% confidence threshold. 

The HGBC, HGEO, HGDS, DTEO, and DTDS models 

recorded much lower F-values—0.021, 0.006, 0.031, 

1.015, and 0.074—with P-values of 0.886, 0.937, 0.861, 

0.314, and 0.786. These findings indicate no statistically 

significant performance differences across immersion 

levels. Notably, the HGDS model—identified earlier as 

the most accurate with a test accuracy of 0.967—showed 

a low F-value of 0.031 and a high P-value of 0.861, 

confirming its stable performance across all conditions. 

Overall, the ANOVA results suggest that none of the 

models exhibit statistically significant performance 

variations across immersion levels, highlighting the 

robustness of the proposed models and particularly 

validating the consistent performance of HGDS under 

different experimental scenarios. 

Table 3: Sensitivity analysis based on ANOVA 

Models name F-value P-value Models name F-value P-value 

HGBC 0.021 0.886 DTC 2.923 0.088 

HGEO 0.006 0.937 DTEO 1.015 0.314 

HGDS 0.031 0.861 DTDS 0.074 0.786 

 

3.4 Limitations and directions for future 

research 

While the hybrid classification framework demonstrates 

encouraging results in predicting VR immersion levels, 

there are some limitations to address. First, the dataset is 

relatively small and was collected in a controlled 

experimental setting, raising questions about how well the 

models will perform in real-world or commercial VR 

environments with more diverse users. Second, the 

computational cost of metaheuristic algorithms like EOS 

and DSSA can increase substantially with larger dataset 

dimensions, which may affect real-time or low-latency 

VR applications. More research is needed to evaluate their 

scalability and efficiency in live systems. Third, although 

the models were optimized for accuracy, aspects like 

interpretability and user feedback were not thoroughly 

explored. Transparency could be especially important for 

applications in education or healthcare. Future research 

will focus on: (1) expanding the dataset to include 

multimodal user feedback (e.g., eye tracking, EEG), (2) 

comparing our framework with common models such as 

SVM, Random Forest, and Neural Networks, and (3) 

creating lightweight or approximate versions of EOS and 

DSSA suitable for real-time immersive use. Additionally, 

we aim to test the models across various VR fields, 

including rehabilitation, industrial training, and 

personalized learning, to ensure their robustness in 

different operational contexts. 

4 Conclusion  
VR simulation immerses users in a dynamic, visually 

engaging virtual environment where they can navigate, 

manipulate virtual objects, and interact with digital agents. 

A defining feature of VR worlds is their three-dimensional 

nature, often coupled with realistic elements, not only in 

their visual representation but also in how objects behave. 

For instance, VR simulations may include natural forces 

like gravity. These environments are not always designed 

to mirror the real world; in fact, they often present 

fantastical or even impossible scenarios. This unique 

capability allows VR to simulate complex or hazardous 

situations safely, making it especially useful in training 

and educational contexts. In such settings, VR can expose 

learners to potentially risky situations they might 

encounter in reality, allowing them to experience and 

practice without the associated risks. Advancements in 

technology have greatly enhanced the capabilities of VR, 

allowing for more immersive and realistic simulations. 

Additionally, the integration of sophisticated 

classification schemes, such as DTC and HGBC, is 

transforming digital experiences. These schemes, along 

with optimizations from techniques like the EOS and 

DSSA, contribute to the improvement of VR systems. In 

testing, the hybrid HGDS approach has proven to be 

highly effective, achieving an accuracy rate of 0.967, 

making it the top performer among various schemes. On 

the other hand, the DTEO approach, with an accuracy of 

0.907, was identified as the least effective. Additionally, 

although this study concentrated on the new EOS and 

DSSA algorithms because of their innovative hybrid 

search abilities, future research will include implementing 

and comparing more traditional and popular optimizers 

like Particle Swarm Optimization (PSO), Genetic 

Algorithms (GA), and Bayesian Optimization. This will 

enable a more comprehensive assessment of optimization 

efficiency and adaptability across different learning 

scenarios.  Although this study concentrated on hybrid 

variants within our optimization framework, future 

research will include benchmarking with models like 

Random Forest, Support Vector Machines, XGBoost, and 

Neural Networks. This will contextualize our models' 

performance against recognized standards and strengthen 

the validation of our methodology.   Despite this, the 
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hybrid approach often outperformed both DTC and DTDS 

in certain metrics, demonstrating the potential of 

combining these innovative techniques for enhancing VR-

based applications.  
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