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Virtual reality (VR) enables the simulation of a wide variety of complex environments, from tiny biological
structures to entirely imaginary worlds. These simulations create new possibilities for learning, training,
and interaction that go beyond the limits of the physical world. However, virtual reality (VR) realizes this
imaginary world, so it is not just a dream. VR works through the invocation of many of the senses. It
creates realistic simulations through the creation of immersive settings that combine the real and the
imagined, thereby affording special hands-on learning possibilities in a variety of subjects. This study
investigates the effectiveness of combining Histogram Gradient Boosting Classification (HGBC) with
Decision Tree Classification (DTC), the Ebola Optimization Search (EOS), and the Differential Squirrel
Search Algorithm (DSSA) to predict VR outcomes. By integrating these advanced predictive and
optimization techniques, the approach aims to enhance accuracy. Research will be conducted to ascertain
the possible uses of VR, enhance user experience, and assess the impact on industries related to training,
education, healthcare, and entertainment. In the evaluation phase, HGDS attained the highest accuracy
of 0.967 in the test phase, making it the top-performing hybrid model, while DTEO showed the lowest

accuracy of 0.907, identifying it as the weakest model.

Povzetek: Clanek predstavi bio-navdihnjen hibridni okvir za klasifikacijo uporabniskih odzivov v virtualni
resnicnosti. Zdruzuje HGBC, DTC ter optimizatorja EOS in DSSA za izboljSanje napovedne tocnosti.

Okvirjeva naloga je zanesljivo razvricati VR-podatke.

1 Introduction

VR simulation signifies a computer-created environment
where users can move around, interact with objects, and
interact with virtual characters, also implied as "agents" or
"avatars." A generic virtual setting is a 3D world [1], and,
like gravitation simulation, virtual environments
frequently aim to be as realistic as possible in both
appearance and object behavior. It must be underlined,
nonetheless, that there need to be no parallels between this
virtual environment and the actual world. One of the
advantages of virtual environments is their ability to
replicate completely unrealistic scenarios [2]. Virtual
environments, however, provide a safe space to test
scenarios that would be too dangerous or difficult to
perform in real life, and they imitate the setting where the
student will eventually work.

There are other ways of deploying VR; four typical
configurations are included below:
Desktop VR (Monoscopic or Stereoscopic)
Immersive VR (HMD, CAVE, widescreen)
Collaborative Systems
Mixed or Augmented Reality
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The desktop VR enables the user to interact with the
system using a mouse or other controlling device while
sitting in front of a desktop computer monitor, as the name
implies [3]. Immersion systems utilize a visualization
display worn on the head of the user that completely
occludes their field of view. Collaborative systems have
human-controlled avatars interacting with each other, and
they can be immersive or desktop-based systems. Second
Life is one of the most recent and most effective
collaboration systems [4]. An attempt is also being made
to use the collaborative systems for exploration. The
mixed reality systems merge computer-generated matter
with the real environment, which is viewed directly or
through a camera. This system can teach engineering and
medical skills to students, which are thought to be
impossible by this recently invented system [5].

Learning by humans requires interaction with the
environment, taking in information provided by the use of
senses and experience [6]. Through computer simulation,
VR takes the role of real-world sensory input. Reacting to
motion and common human behaviors in the actual world
offers interaction. Therefore, VR can be useful in
education since it allows pupils to experience a situation
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or scenario firsthand rather than only imagining it [7]. The
three main components that define the quality of VR
experiences are immersion, interaction, and multisensory
feedback. Immersion is being engulfed or enclosed by the
surroundings [8]. One of the advantages of immersion is
that it ensures a feeling of presence or the perception that
one is actually in the world being displayed [9].
Interactivity means the capability of the user's body
movements to affect the events happening in the
simulation and, in turn, provoke a reaction from the
simulation [10], [11].

The multisensory nature of VR allows information to
be derived from several senses, which further enhances the
experience in that this makes it both more engaging and
more convincing—increasing, as it does, the sensation of
presence because this provides redundancy of
information, which diminishes the likelihood of
misunderstanding. Information from multiple sensory
entries is reinforced by a sensory combination [12], [13].
VR enables the user to act as though they are in the actual
world by substituting a virtual environment for the current
one. A constructivist learning approach benefits from
VR's immersive features [14]. The premise of
constructivism, a theory of knowledge acquisition, is that
people build knowledge by concluding from their past
experiences. The idea, as propounded by Jean Piaget,
assumes that learners try to fit new experiences into the
world picture that they have developed earlier. Learners
change their worldview to fit the new experience when
they cannot assimilate new information into their system
effectively. Learning comes from experiences where
actions are based on assumptions about how the world
functions, only to find that it does not align with those
assumptions [15], [16], [17]. Adjusting the mental model
of how the world functions becomes necessary to account
for the new experience. The view is that learning is an
active process of testing hypotheses. In other words, this
concept contrasts with the notion of learning as something
passive in nature: the mere acquisition or assimilation of
data. VR is a powerful learning tool because it provides a
context where such hypothesis testing can occur.
According to [18], students who interact with new
material are more likely to store and recall it.

Control software is at the heart of this system. This
regulates the exchange of information between the virtual
world and the interface layer in response to user actions,
updating the world appropriately. On display devices such
as the haptic and visual interface, it also determines when
the scene should be shown. With the help of additional
tools, the control software can connect to the outside world
through the internet, which might be an essential
capability in systems involving collaboration or many
users. The virtual environment module includes a model
of real-world entities and the virtual world model. It
includes state and position information apart from
appearance. They could be dynamic objects, such as
moving objects or even avatars. They could also be static
objects. This model of the virtual environment needs to be
refreshed at regular intervals to add dynamic objects [19].
The module for the virtual environment, which would
store positions, shapes, and other attributes of all

Y. Song et al.

components of the virtual world in a database, is called the
virtual environment module. The physics engine is one of
the major parts of any realistic simulation. A physics
engine comprises a set of rules that control the motion and
interaction of dynamic objects in a virtual scene. A typical
physics engine can include a Newtonian mechanics
simulation and collision detection, which describes when
two objects collide. They apply gravitational, friction, and
impulse effects using physical rules. When two things hit
each other, the latter effect is important [20], [21]. When
two active entities collide, collision detection is necessary.
The physics engine determines their terminal velocity
using their simulated traits, such as mass, substance, and
speed.

1.1 Related works

Normally, state-of-the-art reports that focus on specific
aspects of the discipline or on specific application fields
are available. They would mostly provide the taxonomies
that systematically illustrate and classify the various
methodologies involved.

» While Dachselt and Hibner [22] examined the
menus for AR and VR environments for all of the
MR domain [23], they also presented an
extensive taxonomy.

» A taxonomy of NVEs, taking into consideration
distribution and communication topologies, has
been provided by Macedonia and Zyda [24].
Mania and Chalmers [25] have presented a
taxonomy of platforms and communication.

» Bowman has provided several taxonomies for
both interaction methods [26] and navigation
methods [27]. Mine's early research [28]
identifies the essential navigation and interaction
in virtual spaces.

» Gabbard [29] provides good generalized
overviews, presents suggested best practices in
application design, and provides guides for
conducting user evaluations. Livatino and
Koeffel have also presented guidelines for
Virtual Environments (VESs) assessment [30].

» The current tracking technology is overviewed by
Welch and Foxlin [31], who also compare and
contrast the respective merits and disadvantages
of each.

Recent work has explored innovative methods for
classifying virtual reality (VR) using bio-inspired
computational models. Song and DiPaola [32] introduced
a bio-responsive VR system based on physiological data
to enhance immersion. Zayed and Reda [33] demonstrated
that applying neurophysiological biosignals combined
with deep learning could classify cognitive states in VR
with 97% accuracy. Similarly, Arslan et al. [34], [35],
[36], [37], [38] employed emotion classification from
biosignals and machine learning in VR, achieving 97.78%
accuracy. These advancements are significant in areas
such as rehabilitation, education, and psychotherapy.
VanHorn and Cobanoglu [35] also developed a
biomedical image classification system within a VR-based
environment, making Al more accessible to experts.
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Overall, these studies emphasize how biosignals, machine
learning, and VR can be integrated to develop advanced
predictive models, showcasing the potential of bio-
inspired computational models to improve VR
classification techniques.

1.2 The study's objective

This work examines the possible contribution that VR
technology will make to enhance learning outcomes and
increase student engagement in schools. In data
classification, this study applies an HGBC model and a
DTC model. The performance of the schemes is optimized
by using methods such as EOS and DSSA. This research
will explore the integration of VR within diverse
disciplines of study to understand how it can facilitate the
retention of both theoretical knowledge and practical
competencies of learners, given the immersion one
experiences in a VR environment. Possible drawbacks and
limitations, including accessibility of resources, shall also
be discussed to present a comprehensive overview of what
can be expected from this educational technology.

2 Materials and methodology

2.1 Data gathering

A set of users' experiences in VR settings provides the
dataset. The information covers user preferences,
emotional moods, and physiological reactions like skin
conductance and heart rate. This study's dataset includes
1000 samples, each representing a user’s VR session.
Recorded features encompass User ID (173 unique
values), Age (66), Gender (147), VR Headset type (61),
Session Duration (137), Motion Sickness severity (56),
and Immersion Level (55). These variables cover both
demographic and behavioral data, forming a
comprehensive basis for analysis. The Immersion Level
serves as the target variable, indicating users' subjective
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engagement in VR, and its variability supports the creation
of effective predictive models.

This dataset attempts to contribute to the development of
VR through the analysis of user experiences. An attempt
has been made in this study to develop a better VR design
with much more improvement in user comfort and
customization by understanding the physical and
emotional reactions of consumers in diverse VR
situations. This information allows developers to work on
boosting VR systems and creating personalized
experiences that will enhance customers' delight and
immersion. Fig. 1 presents a contour plot for the
correlation of the features.

User ID: This variable identifies every participant
who experienced VR. Each user is assigned a unique 1D
so that their data in the dataset can be differentiated.

Age: This variable stores the age of the subject
participating in VR exposure. For example, this could be
an integer representing the current user's age at the time of
using the VR.

Gender: This variable displays the user’s gender. The
categories "Male," "Female," and "Other" can be utilized
to define the user's gender identity.

VR Headset Type: This would be a variable
specifying the form of VR headset that a user is utilizing
in a VR experience. Examples include Oculus Rift, HTC
Vive, and PlayStation VR, among others.

Duration: This variable shows the time spent in the
VR experience in minutes. It reflects how much time was
spent by the participant in the VR setup.

Motion Sickness Rating: It displays the rating of the
user's self-reported motion sickness during the VR
experience. Higher numbers relate to a higher degree of
motion sickness on an ascending scale ranging between 1
and 10.

Dependent variable:

The degree to which a user experiences being inside a
virtual environment quantifies the subjective degree of the
user's feeling of immersion in the experience, with a rating
between 1 and 5, where 5 stands for the maximum level.

ImmersionLevel
4.000

3.000

&
(=)

Duration
w
(=3

20 1,000

0.5000
10

0.000




272 Informatica 49 (2025) 269-284

MotionSickness

30

Duration

35

Y. Song et al.

ImmersionLevel
| 4.000

3.000

1.000

0.5000

50

40

45 55

Figure 1: The contour plot with color fill illustrates the relationship between input and output variables

Before deploying advanced computational models,
understanding several challenges in VR classification
systems is essential. These encompass the significant
variability in user responses driven by individual
physiological and psychological differences, noise in
biometric data such as heart rate and skin conductance,
and class imbalance across different immersion levels.
The subjective nature of immersion also complicates
labeling and impacts the consistency of ground truth.
These factors result in a complex, high-dimensional
feature space where traditional classifiers often face
difficulties with  generalization and  robustness.
Consequently, adopting adaptive hybrid machine learning
approaches, supported by powerful metaheuristic
optimization techniques, is crucial for effective
classification in VR.

2.2 Histogram gradient boosting
classification (HGBC)

The HGB approach is another variant of the popular GB
[39] technique used to resolve diverse classification and
regression-oriented machine learning (ML) problems.
These schemes, which AdaBoost also belongs to,
primarily try to turn weak learners into strong ones. They
come under the category of schemes called boosting
schemes. Boosting techniques try to keep adding and
teaching new weak learners successively to correct their
previously introduced weak learners about their mistakes.
It then informs each new weak learner to avoid the
mistakes made by its forerunner. The most common weak
learners used are DTs. This resulted in the development of
the HGB algorithm, a boosting methodology that
overcame one of the major weaknesses of the GB
algorithm, which was its very long training time when
training on large datasets. To circumvent this problem, the
continuous input variables are discretized or binned into a
few hundred distinct values. In this case, the learning rate
(LR) of the scheme is the most important hyperparameter.
Much attention was paid to the optimization of the scheme

through several iterations of hyperparameter tweaking.
The implementation of HGB from sci-kit-learn 0.21.3 was
used from the Python ML module [40].

2.3 Decision tree classification (DTC)

Ina DT, every internal node displays a characteristic, each
branch is a decision rule, and each leaf node is the outcome
[41]. The root node signifies the topmost node ina DT. To
achieve the best discrimination among classes or results,
it learns to split based on the value of an attribute.
Different schemes have different criteria regarding
making decisions. For example, some of the metrics used
by schemes like ID3, C4.5, and CART include entropy,
gain ratio, and Gini impurity, respectively. The problem at
hand now is to find that characteristic at every level that
offers the optimum split in a DT, thereby assisting
optimum decision-making [42]. The concept can be
mathematically understood by using the DT split based on
entropy. The entropy H(D) of a dataset D can be calculated
as follows:

H(D) = - ) pilog,p 6
i=1

2.4 Ebola optimization search (EOS)

Driven by the diffusion of the Ebola virus, in what follows,
EOS presents a metaheuristic scheme [43]. The EOSA
scheme is based on the enhanced SIR scheme of the
sickness. Its S, E, I, R, H, V, Q, and D compartments
represent the Susceptible (S), Exposed (E), Infected (1),
Hospitalized (H), Recovered (R), Vaccinated (V),
Quarantine (Q), and Death (D) states, respectively.
Because of these compartments, the composition provides
for the construction of a search domain that best displays
combinations of weights and biases that may be required
by CNN. After representation, SIR is displayed by a
mathematical scheme utilizing a system of first-order
differential equations. Then, the new metaheuristic
scheme was developed by combining the mathematical
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and propagation schemes, and later, the obtained
mathematical scheme was deployed in the design of
EOSA-CNN for experimentation. Therefore, the
following are the mathematical schemes:

mIftt = miIf + pM(D) )
as(t)
T =m — (B1] + B3D + B4R + B, (PEIN)S (3)
— (TS +TD)
I(t)
—T+YI-@)S
PO —at = 4wyt ©)
dR(t)
a{;tt =yl —TR (6)
'Oy~ o)y %
agf) = (tS+TI) - 6D (8)
a%it) = (rnl — (yR +TD)) — £Q 9)

miIf*t and mi} display the old and new situation at
time t and t + 1, respectively, p is the displacement scale
factor of an individual in Eq. (2). The data updated here
are Hospitalized (H), Vaccinated (V), Recovered (R),
Infected (1), Susceptible (S), Quarantine (Q), and Dead
(D). Egs. (3) to (9) define a system of ordinary differential
equations, all of the scalar functions that one can evaluate
to float values. These are computed given initial
conditions S (0) = S,,1(0) = I,,R(0) = Ry, D(0) =
Dy, P(0) = Py,and Q(0) = Q,, t is after the definition
of iterations. This will then enable us to conclude the
magnitude of vectors S, I, H, R, V, D, and Q at t.

The pseudocode that describes the EOSA
metaheuristic scheme is presented accordingly in steps
below:

v ¥ ¥
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« Define initial values for all vector and scalar
guantities, that is, persons and parameters,
respectively: the numbers of hospitalized (H),
vaccinated (V), susceptible (S), infected (1),
recovered (R), dead (D), and quarantined (Q).

I, is created at random among vulnerable people.
The value of fitness shall be calculated at the
index case, having set that as the current and
global best.

«» If there is at least one infected person and the
number of iterations is not reached, then:

a) With every vulnerable individual, a standing is
created and altered accordingly with their
movement. Exploitation is characterized by short
displacement;  otherwise, it characterizes
exploration. Remember that the longer an
infected case is displaced, the more infections
there are.

b) Using (a), generate newly infected individuals
nl.

c) Create the new individuals and add the new
instances in I.

d) From the size of I calculate how many people are
added to H, D, R, B, V, and Q at their respective
rates.

e) Utilizing the new I, refine S and I.

f) Compare the best I have got at the moment with
the best in the world.

g) If the termination condition is not reached, go
back to step 4.

< Return all solutions and the best global
resolution.

The design and discussion of the utilization of the
enhancement issue defined in this paper are given in the
following subsections.

Fig. 2 presents the flowchart of the DTC.

0.0

K2
0‘0

Figure 2: The flowchart of the DTC model
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2.5 Differential squirrel search algorithm
(DSSA)

DSSA, a hybrid optimizer that combines the differential
evolution and squirrel search schemes is presented in this
section. In SSA, the squirrels maintain the position of
other squirrels regarding acorn or hickory trees for
updating their position. To improve its search strategy, the
top squirrels' position updating rules have been changed.
The incorporation of crossover operations inspired by DE

significantly enhances the exploration capability.
The following is a mathematical scheme of many
foraging techniques covered under the paradigm of DSSA.
To justify selecting EOS and DSSA for this
classification task, it’s crucial to highlight the problem’s
nature: the dataset involves multiple interacting features
with complex, nonlinear relationships, which can cause
optimization to get stuck in local optima when using
traditional methods. The EOS algorithm, inspired by
epidemic modeling, employs dynamic, population-based
exploration techniques that balance infection-driven
diversification with recovery-focused convergence. This
strategy is especially effective for tuning hyperparameters
in complex models like HGBC and DTC. Its
compartmental diffusion model efficiently captures
multidimensional search dynamics. Meanwhile, DSSA
mimics squirrel foraging behavior and utilizes crossover
inspired by differential evolution, making it highly
effective at fine-tuning solutions locally while
maintaining overall diversity. This capability is critical in
VR classification scenarios, where high accuracy requires
careful adjustment of sensitive parameters to prevent
overfitting. DSSA’s ability to retain elite solutions while
fostering diversity helps avoid premature convergence.
psnew — {psggd +dg X G.(PSpi* — PSGI* — Payg), T
random position, otherwise

whereas F,,, 4 is the mean location of every squirrel in
the current population.

It also employs the crossover mechanism of DE in a
way that ensures diversity among squirrels to the
maximum while minimizing the possibility of trapping in
local minima. Applied to the squirrel's current position and
the new position as obtained by Eq. (11):

P cr

at,i,j

{Psgf,{v,-, if (rand; < Cr) 07 j = jrana (11)

PSc(l)tlij' L'f(randj > Cr)orj ¢jrand’
=1,23,..,D

In this context, NP displays the population size, with
i ranging from 1,2, 3, ..., NP. For acorn or normal trees,
PSgt,i;; indicates the updated positions of the squirrels
following the crossover operation. PS;Y; and PSg%;
correspond to the new and previous positions of the
squirrels. D refers to the dimensionality of the problem,
and Cr displays the crossover rate, which is set to 0.5. The
index j,qnq 1S randomly selected from the range [1, D],
and rand; denotes the jth random number, uniformly

generated within this range.

>
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Combining EOS and DSSA offers complementary
advantages, EOS facilitates broad exploration, while
DSSA ensures precise convergence, together enhancing
classification accuracy and model robustness for VR
immersion prediction.

2.5.1 Initialization of position and evaluation
of fitness

The squirrels are initially placed in the search area at
random. Knowing the squirrels' location allows one to
calculate their fitness, which simply replaces their position
in the fitness function by demonstrating how good a food
supply they could find. The best squirrel PS;,; discovered
in the hickory tree thus far is determined by sorting fitness
values. It is thought that the squirrels in the acorn tree
PS,.(1: 3) are traveling in the direction of the optimal
location in a subsequent iteration, as indicated by the
following three best function values. The remaining
squirrels, PS,;(1: NP — 4), are in the typical tree and
have not yet discovered food.

2.5.2 Position update

The squirrels in an acorn tree, following the current best,
PSy;, renew the position, and move in the direction of the
best source when there is no predator. The squirrels of a
usual tree follow the ones in an acorn or hickory tree to
renew their position. If there is the presence of a predator,
then the squirrels change direction randomly while
foraging. These are the mathematical schemes that are
used to update the squirrel's position.

As in Eg. (10) now, the posture of squirrels on acorn
trees changes based on the postures of others.

Fay (10)

Some of the squirrels on regular trees do the
placement of acorn tree squirrels, after which they relocate
to their new locations.

PSRE”
_ [PSHt +dy X G (PS* — PSH™), 15 = Py,
B random posiion, otherwise
where the random integer r, is uniformly distributed
between 0 and 1.
In normal trees, the survivors cling on to the best
move on view, and their new positions are shown below:
PSHE”
B {ps;;gd +dg X G (PSP — PS3H*), 15 = Py
random posiion, otherwise

The following crossover procedure is also given for

typical tree squirrels:
P cr

(12)

(13)

nt,i,j
{Ps;};;”,-, if (rand; < Cr)or j = jrana (14)
PSaeiy if (rand; > Cr)or j # jrana *
j = 1’2,3,...,D

The convergence speed may be raised by permitting
the hickory tree squirrel to update her location in relation
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to the average position of the squirrels in the tree. This can Figure 3 illustrates the flowchart of the proposed
be done as follows: hybrid models (such as HGDS and DTEO), detailing the
PS;eY = PSPI® + dy X G, (PSPi® — PS.° (15)  sequential phases that encompass data input, model
In this instance, PS,,, displays the average of all ~development, ~  optimizer-centric  hyperparameter
squirrel locations within the acorn trees. optimization, training, and final assessment. This diagram

In order to participate in the next generation of people, ~ delineates the interaction between machine learning
the best aspects of the new work, as well as its crossover models and metaheuristic optimizers within the hybrid

roles, are then contrasted with the old jobs. structure.

Initialization of scalar parameters

¥

Index value creation

4

Estimation of fitness function

NO

Yes Return the best outcome

1.

Stages for exploration and exploitation

4

Up gradation of population

Randomly initialize the artificial super-
organisms, the parameters Pl & P2 and
iteration count

|

Evaluate the fitness for each super-organism

|

Find new stop over sites using three
mutation strategies for all super-organisms

|

If the stop-over sites are better to stop based
on fitness, super-organisms will relocate and No
further continue the search.
Check for termination criterion

lYes

Output the best solution and final super-
organism

Figure 3: The process flowchart of the proposed hybrid models
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2.6 Performance evaluators

Accuracy depends on how many correctly projected
positive and negative instances there are of the total,
defined by True Positives (TP), True Negatives (TN)—
correctly projected negative cases, False Positives (FP)-
incorrectly projected as positive, and False Negatives
(FN)—incorrectly projected as negative. Using TP and FP
as the relevant measures, precision gauges the percentage
of TP projections out of all the positive projections the
model has made. Smaller amounts of false positives imply
higher precision. Recall is the measure of the share of TP
projections from all real positive instances, using True
Positives and False Negatives; it indicates that the model
will detect all relevant positive cases. The fewer false
negatives there are, the higher the recall. A simple statistic
that balances the trade-off between Precision and Recall is
the F1 score. It combines the two.
TP+ TN

: 16

Accuracy TP L FP+FN +TN (16)

isi i —— 17

Precision 77:5 TP (17)

. 18

Recall TPTFN (18)
Precision X Recall

F1 —score = 2 X (19)

_ Precision + Recall
The F1-score is a single measure that balances the

accuracy and recall; it is the harmonic mean of both. It is
very useful when considering false negatives and false
positives. The greater the F1 score, the better balanced the
recall and accuracy.

3 Results and discussion

3.1 Hyperparameters tuning and
convergence curve analysis

The presented table displays the tuned hyperparameters
for four different hybrid models: HGEO, HGDS, DTEOQ,
and DTDS. Seven key hyperparameters were considered
to optimize these models' performance: learning_rate,
max_leaf _nodes, max_depth, min_samples_leaf,
max_hins, min_samples_split, and a second instance of
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max_leaf nodes (listed separately for different model
types). The HGEO and HGDS models, based on the
HGBR algorithm, have specified values for learning_rate,
max_leaf_nodes, max_depth, min_samples_leaf, and
max_bins. For example, the HGEO model has a
learning_rate of 0.709, max_leaf nodes of 278,
max_depth of 100, min_samples_leaf of 10, and max_bins
of 27. In the HGDS model, these values are learning_rate
of 0.148, max_leaf nodes of 557, max_depth of 893,
min_samples_leaf of 7, and max_bins of 102. Conversely,
the DTEO and DTDS models, which are based on decision
tree algorithms, do not include values for learning_rate,
max_leaf _nodes, or max_bins in the first part of the table.
However, they include defined values for max_depth,
min_samples_|leaf, min_samples_split, and
max_leaf_nodes in the second part. For instance, the
DTEO model has max_depth of 741, min_samples_leaf of
0.00025, min_samples_split  of  0.0275, and
max_leaf_nodes of 2710. Similarly, the DTDS model
features max_depth of 597, min_samples_leaf of 0.00025,
min_samples_split of 0.0005, and max_leaf nodes of
1789. Overall, the table indicates that hyperparameters are
selectively tuned for each model based on its structure,
with parameter values chosen according to each model's
specific characteristics and requirements.

Fig. 4 displays a 3D waterfall plot illustrating the
convergence curves of four hybrid schemes: HGDS,
HGEO, DTDS, and DTEO. The plot effectively visualizes
the different convergence rates and final performance
levels of the schemes, demonstrating the varying degrees
of effectiveness in the optimization process. This
comparison emphasizes the significance of the number of
iterations and initial accuracy in determining the overall
success of each hybrid model. The HGDS model starts
with an accuracy of 0.6 and gradually improves over 200
iterations, ultimately reaching a peak accuracy of 0.967,
making it the highest-performing model among the four.
The other three schemes begin with a lower accuracy of
0.4 and converge more quickly than HGDS, reaching their
final accuracy in fewer iterations. Among these schemes,
DTEO is identified as the weakest hybrid model, with a
final accuracy of 0.908 after its iterations.

Table 1: Hyperparameter tuning for four models

Hyperparameters Models
HGEO HGDS DTEO DTDS
learning_rate 0.709 0.148 - -
max_leaf _nodes 278 557 - -
max_depth 100 893 741 597
min_samples_leaf 10 7 0.00025 0.00025
max_bins 27 102 - -
min_samples_split - - 0.0275 0.0005
max_leaf _nodes - - 2710 1789
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Figure 4: 3D waterfall plot for the convergence curve of the hybrid schemes

3.2 Schemes performance comparison

Fig. 5 presents a doughnut plot, providing an intuitive
representation of the schemes' performance and
facilitating a clearer comparison across different
evaluation metrics. The performance results of six hybrid
schemes evaluated using accuracy, precision, recall, and
F1 scores across training, testing, and overall sections
have been presented. Among these, HGDS emerges as the
best-performing model, with an impressive accuracy of
0.967 in the test section. Conversely, DTEO, with an

accuracy of 0.907, is the weakest model. HGDS
outperforms HGEO by 0.17 in accuracy, establishing itself
as the top model. Nevertheless, HGEO still demonstrates
strong performance, securing the second-best position
overall. This comparison underscores the varying
strengths of each model, with HGDS leading in accuracy
and other performance metrics, while HGEO, despite its
lower accuracy, remains a competitive alternative. The
results emphasize that even schemes with slightly lower
accuracy can still offer valuable performance in certain
contexts.
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Figure 5: A connected doughnut plot employed for the visual evaluation of the schemes' performance

Additionally, Table 2 provides a summary of the
performance of six schemes across five levels regarding
precision, recall, and F1 score. The hybrid model HGDS
stands out at level 1, achieving the highest precision of
0.990. Additionally, HGDS excels in both recall and F1-
score, outperforming all other schemes and demonstrating
its overall robustness. In contrast, DTEO shows weaker
recall performance compared to the other schemes,
although it surpasses DTC in this metric. Regarding the
F1-score, DTEO records a value of 0.922, which is lower

than the top-performing schemes. Nonetheless, it
outperforms both DTDS and CTC by margins of 0.013
and 0.010, respectively. While DTEO's F1-score may not
be the highest, it still demonstrates competitive
performance relative to other schemes. These findings
indicate that HGDS is the most well-rounded and effective
model overall, while DTEO, despite its limitations in
recall and F1 score, delivers superior performance in
specific areas.

Table 2: Schemes’ evaluation results through different immersion levels

Evaluators Schemes Immersion Levels
Level 1 Level 2 Level 3 Level 4 Level 5
HGBC 0.946 0.946 0.909 0.925 0.973
HGEO 0.941 0.995 0.907 0.951 0.974
Precision HGDS 0.974 0.990 0.981 0.945 0.943
DTC 0.988 0.938 0.825 0.909 0.822
DTEO 0.973 0.929 0.847 0.923 0.878
DTDS 0.906 0.939 0.873 0.914 0.983
HGBC 0.951 0.933 0.928 0.952 0.932
HGEO 0.946 0.947 0.959 0.947 0.969
Recall HGDS 0.960 0.971 0.985 0.956 0.963
DTC 0.847 0.875 0.953 0.869 0.916
DTEO 0.876 0.885 0.948 0.927 0.906
DTDS 0.911 0.894 0.964 0.927 0.911
HGBC 0.948 0.94 0.918 0.938 0.952
HGEO 0.943 0.97 0.932 0.949 0.971
F1-score HGDS 0.975 0.976 0.965 0.949 0.971
DTC 0.912 0.906 0.885 0.888 0.866
DTEO 0.922 0.906 0.895 0.925 0.892
DTDS 0.909 0.916 0.916 0.921 0.946
Fig. 6 displays the ROC (Receiver Operating Area Under the Curve (AUC) signifies better

Characteristic) curves of the hybrid model across five
immersion levels. The ROC curve plots the True Positive
Rate (TPR) against the False Positive Rate (FPR) at
various thresholds, offering a visual assessment of the
model’s ability to distinguish between classes. A higher

performance. Among the five levels, Level 1 has the
highest AUC, indicating greater confidence and fewer
classification uncertainties at this stage. Conversely, Level
5 shows the weakest ROC performance, likely due to
increased data overlap and less feature separation at higher
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immersion ratings. This suggests that as responses become
more subtle at deeper immersion levels, the model's ability
to differentiate between classes slightly diminishes,
resulting in more false positives and a lower true positive
rate. These differences illustrate the model’s changing
confidence in classification across varying immersion

Y. Song et al.

lowest false positive rate. At this level, the true positive
rate starts at 0.0 and gradually increases to 1.0, while the
false positive rate begins at 0.0 and rises to 0.1. On the
other hand, Level 5 displays the worst projection
performance, with the true positive rate reaching 1.0,
indicating a decrease in projection accuracy and an

levels. Level 1 is considered the best projection level, increase in false positive rate. This shows a decline in
characterized by the highest true positive rate and the  overall predictive quality as the level increases.
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Figure 6: ROC curves for the hybrid classification model across five immersion levels.

3.3 Comparison of the measured and
projected values

Fig. 7 displays a 3D bar plot illustrating the correlation
between observed and projected values across five levels,
highlighting each model's predictive accuracy. Among
these, the HGDS model stands out with the best
performance, particularly in level 1, where it achieves 194
accurate projections, establishing it as the top-performing

W
14

model. This high correlation between observed and
projected values underscores HGDS's strong overall
reliability. Conversely, the DTEO model shows the
weakest performance, with only 177 accurate projections,
making it the least effective model overall. While certain
schemes may perform poorly in specific conditions,
DTEO consistently underperforms across all levels,
indicating significant limitations in its predictive
accuracy.

o~
L

I~

L

Figure 7: A 3D bar plot is generated to depict the correlation between observed and projected values

Fig. 8 shows the projection errors across six schemes,
focusing on correct projections versus mistakes. Among

these, the HGDS stands out for its higher accuracy. In
level 1, it correctly projected 192 out of 194 cases,



A Cutting-Edge Bio-Inspired Computational Framework for Advanced...

resulting in only two errors. Similarly, in level 2, HGDS
achieved 198 correct projections out of 202, with just four
mistakes. This accuracy highlights its strong performance
in comparison to the other schemes. In contrast, the DTEO
model demonstrates weaker predictive accuracy. In level
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performance was similarly low in level 2, where it made
14 mistakes out of 184 projections. This high error rate
marks DTEO as the least effective among the schemes
analyzed. Overall, while HGDS exhibits consistent
accuracy in both levels, DTEO's elevated error rate
suggests limitations in its predictive reliability. .
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Figure 8: Confusion matrix illustrating the accuracy of the schemes under four specified conditions
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e Sensitivity analysis

Table 3 displays the results of a sensitivity analysis
using one-way ANOVA to determine if model
performance differences across various VR immersion
levels are statistically significant. The F-value indicates
the ratio of variance between groups to within groups,
while the P-value shows the likelihood that observed
differences are due to chance. A P-value below 0.05 is
generally considered significant. Of the six models
evaluated, the DTC model had the highest F-value of
2.923 and a P-value of 0.088. Although close to
significance, this result remains statistically non-
significant, implying only marginal performance
differences that do not meet the 95% confidence threshold.

Y. Song et al.

The HGBC, HGEO, HGDS, DTEO, and DTDS models
recorded much lower F-values—0.021, 0.006, 0.031,
1.015, and 0.074—with P-values of 0.886, 0.937, 0.861,
0.314, and 0.786. These findings indicate no statistically
significant performance differences across immersion
levels. Notably, the HGDS model—identified earlier as
the most accurate with a test accuracy of 0.967—showed
a low F-value of 0.031 and a high P-value of 0.861,
confirming its stable performance across all conditions.
Overall, the ANOVA results suggest that none of the
models exhibit statistically significant performance
variations across immersion levels, highlighting the
robustness of the proposed models and particularly
validating the consistent performance of HGDS under
different experimental scenarios.

Table 3: Sensitivity analysis based on ANOVA

Models name F-value P-value Models name F-value P-value
HGBC 0.021 0.886 DTC 2.923 0.088
HGEOQO 0.006 0.937 DTEO 1.015 0.314
HGDS 0.031 0.861 DTDS 0.074 0.786

3.4 Limitations and directions for future
research

While the hybrid classification framework demonstrates
encouraging results in predicting VR immersion levels,
there are some limitations to address. First, the dataset is
relatively small and was collected in a controlled
experimental setting, raising questions about how well the
models will perform in real-world or commercial VR
environments with more diverse users. Second, the
computational cost of metaheuristic algorithms like EOS
and DSSA can increase substantially with larger dataset
dimensions, which may affect real-time or low-latency
VR applications. More research is needed to evaluate their
scalability and efficiency in live systems. Third, although
the models were optimized for accuracy, aspects like
interpretability and user feedback were not thoroughly
explored. Transparency could be especially important for
applications in education or healthcare. Future research
will focus on: (1) expanding the dataset to include
multimodal user feedback (e.g., eye tracking, EEG), (2)
comparing our framework with common models such as
SVM, Random Forest, and Neural Networks, and (3)
creating lightweight or approximate versions of EOS and
DSSA suitable for real-time immersive use. Additionally,
we aim to test the models across various VR fields,
including rehabilitation, industrial training, and
personalized learning, to ensure their robustness in
different operational contexts.

4 Conclusion

VR simulation immerses users in a dynamic, visually
engaging virtual environment where they can navigate,
manipulate virtual objects, and interact with digital agents.
A defining feature of VR worlds is their three-dimensional
nature, often coupled with realistic elements, not only in

their visual representation but also in how objects behave.
For instance, VR simulations may include natural forces
like gravity. These environments are not always designed
to mirror the real world; in fact, they often present
fantastical or even impossible scenarios. This unique
capability allows VR to simulate complex or hazardous
situations safely, making it especially useful in training
and educational contexts. In such settings, VR can expose
learners to potentially risky situations they might
encounter in reality, allowing them to experience and
practice without the associated risks. Advancements in
technology have greatly enhanced the capabilities of VR,
allowing for more immersive and realistic simulations.
Additionally, the integration of  sophisticated
classification schemes, such as DTC and HGBC, is
transforming digital experiences. These schemes, along
with optimizations from techniques like the EOS and
DSSA, contribute to the improvement of VR systems. In
testing, the hybrid HGDS approach has proven to be
highly effective, achieving an accuracy rate of 0.967,
making it the top performer among various schemes. On
the other hand, the DTEO approach, with an accuracy of
0.907, was identified as the least effective. Additionally,
although this study concentrated on the new EOS and
DSSA algorithms because of their innovative hybrid
search abilities, future research will include implementing
and comparing more traditional and popular optimizers
like Particle Swarm Optimization (PSO), Genetic
Algorithms (GA), and Bayesian Optimization. This will
enable a more comprehensive assessment of optimization
efficiency and adaptability across different learning
scenarios. Although this study concentrated on hybrid
variants within our optimization framework, future
research will include benchmarking with models like
Random Forest, Support Vector Machines, XGBoost, and
Neural Networks. This will contextualize our models'
performance against recognized standards and strengthen
the validation of our methodology. Despite this, the
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hybrid approach often outperformed both DTC and DTDS
in certain metrics, demonstrating the potential of
combining these innovative techniques for enhancing VR-
based applications.
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