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Power signal processing is a specialized domain within signal processing that focuses on the analysis,
interpretation, and manipulation of signals in electrical power systems. In modern smart grids, Power
Quality Disturbances (PQDs) can result in considerable operational disruptions and financial losses for
energy stakeholders. This research introduces a Short-Time Fourier Transform fused Efficient Natural
Gradient Boosting (STFT-ENGB) model for robust recognition of power quality disturbances with energy
grid applications. A comprehensive framework used for PQD identification by leveraging advanced power
signal processing techniques and time-frequency-based feature extraction. The system collects electrical
measurements from the power system includes voltage and current. The Z-score normalization is a
preprocessing technique for reducing noise. The STFT is utilized to extract discriminative, time-localized
features from the power signals. These extracted features are then combined using a late fusion strategy
to form a unified representation. The proposed method was implemented using Python 3.10.1. Extensive
experiments demonstrate that the proposed STFT-ENGB approach performs better than multimodal
baseline architectures, achieving superior results, with accuracy, F1-score, recall, and precision ranging
from 95% to 99%. These findings offer a promising solution for real-time power signal monitoring in
smart grid environments, facilitating intelligent fault diagnosis and improving the overall resilience and
responsiveness of modern electrical infrastructure.

Povzetek: Predstavljen je hibridni model STFT-ENGB, ki zdruzuje casovno-frekvencno analizo in
izboljsano gradientno pospesevanje za zaznavanje motenj kakovosti elektricne energije. Z normalizacijo,
STFT-izlocanjem znacilk in pozno fuzijo doseze dorbo napovedljivost ter omogoca zanesljivo diagnostiko
v pametnih omreZjih.

useful information from non-stationary

signals,

1 Introduction

Power signal processing is a crucial field in electrical
engineering that is important for many applications,
including effective energy management, defect detection
in electrical grids, and power quality assessment [1]. The
complexity of electrical infrastructure has raised the need
for high-performance algorithms for power signal
evaluation. Such systems require precise, accurate,
efficient power signal processing systems to both enhance
system reliability and enhance anomaly detection [2].
Time-frequency analysis (TFA) has proved to be an
effective technique for signal representation and feature
extraction, since the conventional signal processing
techniques did not consider the non-stationary nature of
power signals. TFA is an integrated method of analyzing
non-stationary power signals that fluctuate over time,
combining frequency-domain and time-domain analyses
[3]. Conventional methods tend not to be able for extract

particularly in power systems where the signal suffers
from noise, transients, harmonics, and the occurrence of
other abnormalities [4]. These methods have improved
feature recognition and system malfunction detection of
power data, particularly significant for system
performance and operational security. Most typical power
signal features include noise, transients, and harmonics
that can indicate some form of overall system malfunction
due to faulty equipment or power quality issues [5]. Using
the features present in power signals, it becomes possible
to digitalize monitoring, fault detection and diagnosis,
preventive  maintenance, and system operation
assessment. By extracting features from power data
efficiently, the system has tremendous potential to realize
the efficiencies available for quickly identifying potential
systematic issues before they develop into issues of greater
consequence [6]. More specifically, TFA techniques can
enable more accurate identification of harmonic
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distortion, frequency variations, and abrupt voltage
transitions acquired from measurements. These
techniques can also potentially provide more substantial
diagnoses, improving the power system performance and
reliability [7]. Power signal processing can greatly
improve electrical grid and microgrid monitoring and
control, particularly as the electrical grids become more
renewable energy - Smart grids. The systems can provide
more fault location, energy management, and predictive
maintenance strategies to enhance both reliability and
performance in the case of comprehensive feature
identification [8, 9]. This research aims to create a new
power signal processing method for TFA that successfully
extracts features. By addressing the challenges of dynamic
and non-stationary power signals, the method should
achieve high accuracy for detecting abnormalities,
transient phenomena, and failures in systems. [10]. The
difficulty is to find a compromise between time resolution
and frequency resolution, a common drawback of TFA
methods. Finding balance depends on the preservation of
algorithm performance in power system applications [11].
The formal research question was stated as follows;

How does the incorporation of the ENGB model increase
the classification accuracy and computational lightness of
PQD classification by conventional classifiers?

In What ways the STFT used for feature extraction to
discriminate among different types of power quality
disturbances in three-phase electrical systems?

How suitable the PQD detection model used to generalize
various datasets and industrial conditions for different
operating conditions and noise rates?

The objective of this research is to create a revolutionary
Short-Time Fourier Transform fused Efficient Natural
Gradient Boosting (STFT-ENGB) approach to enhance
power quality disturbances with energy grid applications.
The suggested approach enhances the detection of PQDs
in low SNR conditions using hybrid spectral and
probabilistic modeling. The key contributions of this
research as follows,

Dataset Collection: A three-phase power quality event
dataset was collected from Kaggle, it contains
synchronized voltage and current signals across multiple
disturbance classes.

Data Pre-Processing and Feature Extraction: The time-
frequency analysis, Z-score normalization techniques
used as preprocessing stages to normalize the data, which
makes it ideal for smart grid applications.
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Optimized Classification Model: An STFT-ENGB model
used for identifying PQDs in a robust manner that
improves smart grid system reliability.

Real-Time Results: The simulation results evaluate the
precision, accuracy, recall, and F1 score for optimizing the
smart grid with less computation utility.

The research structure is outlined as follows: The literature
review section analyzes to provide background for the
inquiry. The materials and methods section describes the
data collection and analysis. Summarizes the findings,
emphasizing critical findings in this section, provides a
complete interpretation of the data, the concludes with an
overview of the research's ramifications and future
directions.

2 Related work

The relevant literature explores Al-driven power quality
disturbance detection systems, focusing on adaptive
boosting models, and intelligent data acquisition to
enhance real-time fault recognition, computational
efficiency, feature discriminability, and overall grid
reliability in smart energy environments.

The method for converting a microwave frequency
measuring system for utilizing TF into a TFA [12]. It also
has two TFA relationships: parallel stimulated Brillouin
scattering (SBS) for microwave TFA, and time-division
SBS for TFA with great specificity for periodic signals.
Simulations show how the system can be reconfigured in
multiple dimensions. Fault diagnostics in rolling bearings
are critical for forecasting damage and minimizing
financial losses [13]. A multi-rolling component fault
identification approach integrates the time-frequency
analysis and a vibration signal produced by multi-curve
extraction techniques, thereby improving weak periodic
fault impulses and finding homologous defects. The
experiments conducted show that TF separation (TFS) and
identification are effective. STFT-based approaches are
inadequate for processing non-stationary signal data in
fluctuating operational environments [14]. TFA technique
enhances instantancous frequency (IF) curves by
increasing initial frequency and using a synchro squeezing
operator, improving time-frequency accessibility and
feature extraction capability. Table 1 presents a summary
of related work on power quality disturbance detection.
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Table 1: A summary of related work on the power quality disturbance detection

Ref Technology Used Objective Result Challenges
[15] Time-Frequency Analysis To assess power Identified the need of Time-varying voltage
(TFA) quality affected by TFA methods to and current waveforms
nonlinear loads due to analyze time- complicate reliable
power electronics- dependent power quality
based renewables waveforms assessment
[16] Convolutional Neural To detect and monitor Achieved high Effective integration of
Network (CNN) health conditions like accuracy, precision, multiple TFA
epilepsy using EEG recall, and Fl-score approaches in
signals using 3570 EEG biomedical signal
signal pairs processing was a
challenge
[17] TF Self-Similarity To identify mechanical Improved detection Complexity in
Enhancement Network issues in nonstationary —accuracy for analyzing
(TFSSEN): includes signals from wind mechanical problems nonstationary signals
adaptive TF characterization, turbines using enhanced TF and combining
attention residual group, features global/local attention
mixed-scale TFA mechanisms
[18] Deep learning, transfer To improve efficiency Detection accuracy Required  algorithm
learning and accuracy in improved optimization for better
detecting and accuracy
identifying bolt
defects
[19] LPSVM (Least Squares To reduce Proposed model Kernel complexity
Support Vector Machine), computational  cost; achieved 0.40 times increases the
and performance of the  computational computational load;
SVM cost
[20] Interactive robot model, To enhance power Achieved ideal Conventional methods
machine learning, signal quality monitoring and prediction accuracy didn't meet accuracy
processing, electric energy prediction under without sacrificing expectations;
metering system overload conditions speed;

3 Problem statement

The challenge in several domains, including power
systems and fault diagnosis is to process nonstationary
signals, such as ECGs, vibration signals, and wind turbine
signals more effectively, by using TFA techniques [13].
Most existing TFA works have some form of the
limitations including noise sensitivity, low resolution, and
impediments in process time-varying signals. More
sophisticated techniques that can further facilitate signal
reconstruction and accuracy for detection while leveraging
even more advanced abilities for feature extraction are
needed. TFA methods might not sensitive enough to
measure quickly, and the nonlinear nature of waveforms

caused by power electronics-based renewable sources
[15]. These techniques were frequently sensitive or
flexible and it was desirable to observe faint or temporary
perturbations in different loading conditions. To overcome
these limitations, the suggested STFT-ENGB approach,
incorporate adaptive noise reduction techniques for
improved input data quality, providing better performance
robustness. The algorithm employs real-time feature
extraction using STFT to minimize computational burdens
and capture dynamic changes effectively. The flexibility in
STFT-ENGB makes it possible to fine-tune and verify it
for a variety of power systems and operating regimes.
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3.1 Methodology

The previous section reviewed recent studies on power
quality disturbance detection. These studies highlighted
shortcomings in computational efficiency, real-time
responsiveness, and adaptive data acquisition, and the
proposed model explained the research gap to address
these issues.

The approach combines several advanced signal
processing methods for power quality event analysis. It
applies Z-score normalization for data standardization,
STFT for feature extraction, and ENGB for better feature
extraction. The combined STFT-ENGB association
improves the resilience and precision of power signal
analysis, particularly in fault recognition and
categorization. The hybrid approach maximizes signal
processing by reducing and enhancing feature extraction.
Figure 1 depicts the methodological flow for the system
under consideration.

Classification Method |

Figure 1: Flow of the recommended system for the
proposed methodology

3.2 Data gathering

The power quality event dataset was gathered from the
open-source Kaggle website
https://www.kaggle.com/datasets/zoya77/three-phase-

power-quality-event-dataset. The dataset provides
electricity measurements from a three-phase power supply
gathered throughout time. The dataset consists of 100
samples per class, total of about 600 recordings. Each
signal has a 3-phase voltage and current waveform, with
around 10 cycle’s duration. It includes 6 event classes like
voltage sag, swell, interruption, harmonics, flicker, and
normal operation. The dataset was divided into training
and testing samples, where the training samples have
(70%) and the testing samples has (30%). Since the dataset
was class-balanced with approximately 100 samples per
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class, no additional imbalance handling techniques like
oversampling or class weighting were required. It was
especially appropriate in the design and validation of
classification models, fault detectors, and signal-
processing algorithms in smart grids. The information
contained in the dataset used to analyze the power
distributions. The given dataset was capable to fully assist
the purpose of creating a trustworthy real-time PQD
detection system.

3.3 Data exploration

Figure 2 illustrates the feature importance analysis of
power signal processing via TFA. The features, such as
voltage and current phases of the three phases (A, B, C),
are ordered according to the impact on the analysis.
Voltage phase a, voltage phase b, and voltage phase ¢
is of greater importance, indicating that the voltage signals
of different phases play an important role in the analysis.
The  existing  features, like  current phase a,
current_phase b, and current_phase c, possess relatively
lesser importance. This emphasizes the significance of
voltage signals in the time-frequency feature extraction
process for STFT-ENGB.

Feature Importance

voltage_phase_a

voltage_phase_b

voltage_phase_c

Feature

current_phase_a

current_phase_b

current_phase_c

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Importance

Figure 2: Feature Importance of power signal phases
based on TFA

3.4 Z-score normalization

preprocessing technique

Normalization is essential when the preprocessing step,
in particular while dealing with numerical characteristics
in datasets linked to power signal processing and TFA.
This method alters an intersection to maintain uniformity
across changed features. Z-score standardization was
used to normalize the various response variables,
including power consumption signals and measurements
of system performance. This method supports TFA-based
anomaly detection, as it allows the information analyzed
by the system to be altered from the original value to a
normalized form such that the mean value is 0 and the
standard deviation is 1. The formula for Z-score
normalization is presented in Formula (1).

using
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r_ X6
X = std (G) (1)

Table 2: Output of Z-
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xN' = Normalization value results, x = The attribute’s
value that has to be normalized, G_j = The attribute’s
mean value, and std (G) = Attribute G for the standard
deviation. Table 2 represents the output of Z-Score
normalization.

score normalization

voltage phase | voltage phase_ | voltage phase_ | current_phase | current_phase | current phase_
a b ¢ a b ¢
-0.00 0.17 -0.15 0.06 1.15 -1.21
0.09 0.09 -0.16 0.79 0.50 -1.42
0.16 -0.02 -0.11 1.22 -0.20 -0.97
0.18 -0.15 -0.05 1.25 -1.08 -0.41
0.10 -0.18 0.10 0.80 -1.31 0.50
0.01 -0.17 0.18 -0.02 -1.08 1.16
-0.10 -0.05 0.16 -0.65 -0.57 1.44
-0.18 0.04 0.10 -1.36 0.39 1.08
-0.16 0.15 0.05 -1.35 0.95 0.28
-0.11 0.23 -0.09 -0.75 1.42 -0.60

3.5 Feature extraction using Short-Time
Fourier Transform (STFT)

STFT provides a fixed time-frequency resolution which
is predictable and simpler to be implemented in any
practical setting of grid monitoring. Furthermore, a
proper choice between the window functions and lengths,
the consequences of spectral leakage in STFT. The SIFT
was capable of uniformly sampling localized transient
events with reduced processing requirements makes it an
appealing option to the suggested power quality
disturbance detection system. The STFT is an influential
signal processing technique that partitions signals into
short, overlapping segments and applies the STFT to each
segment. This way it analyzes a signal's frequency and
time characteristics, which is ideal for non-stationary
signals by changing characteristics over time. An STFT
produces a time-frequency image that presents the energy
content in the signal as a function of time and frequency.
STFTs are typically used in power signal processing to
produce a time-frequency image that can be interpreted
to identify certain characteristics by looking for patterns
in the frequency domain. It is necessary for a wide range
of functions, from fault detection to classification of
signal classification. STFTs can be found in a multitude
of applications, including speech processing, biomedical
signal analysis, and industrial monitoring.

An STFT on discrete-time, periodic signals in power
signal processing, which often does not get the expected
result of frequency response due to spectral leakage.
Spectral leakage occurs because the energy of the signal
spreads out across the frequency spectrum. When a finite
segment of a signal is analyzed using a Fourier transform,
the boundaries create discontinuities, causing the energy
of that signal segment to be spread in the frequency

domain. A signal's periodic extension can be misleading
to the discontinuities punctuating the period, causing
errors in its frequency representation. Given the role of
spectral leakage in extracting features and analyzing
power signals, it's important to understand and manage
the error source, especially when analyzing signals in the
time-frequency domain.

The functions are vital in power signal processing for
analyzing discrete-time signals and reducing spectral or
frequency leaking that occurs because of signal
discontinuities that ensue at the limitations of data
segments. Most electrical component functions decay to
zero at the edges, accordingly to these window functions'
properties, overlapping power signals should be used to
not interfering with the data loss that occurs. To calculate
the STFT of a discrete-time signal w(m), a window
function x(m) is applied to each segment, and its
frequency content is analyzed between time intervals.
The STFT Formula (2) is given by:

STFT(m, ) = ¥M=1 w(m)x(m — nG)d" ™ (2)

When m is the sample index, 1 the frequency index, M the
window length, x(m) the power signal function, n the
power signal location, and G the hop size between
consecutive electrical component systems. This is
required for accurate feature extraction and time-
frequency analysis in power applications that use signal
processing.
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3.6 Late fusion strategy

Late fusion strategy describes the combining outputs
process of high-level feature representations from
multiple modalities, after each modality has been
processed independently through extracted features. The
modalities were independently classified by using this
approach, which constitutes the characteristics of each
modality. Every modality was classified separately when
the attributes had been integrated. This method has the
benefit that each modality might learn its features by
using the classifier. Vectors were then fused to generate
the multimodal representation on equation (3), which
conveyed a weighted combination. Where, F represents
the attention modules.

F=Fusion (A,V) 3)

3.7 Efficient natural
(ENGB)

gradient boosting

The ENGB classifier using the electrical component for
TFA in power signal processing relies on accurate feature
extraction from complicated information. The ENGB
model was used to increase its flexibility of variables'
time-frequency representation exemplified by STFT. In
specific, the losses will be customized to deal more
adequately with the issue of class imbalance, and
mechanisms of weighting features were integrated to
draw more weight on transient-sensitive features. The
ENGB model's hyperparameters were tuned by STFT.
The associated notions and computation of time-
frequency distributions are highly complicated, posing
obstacles for use in practical engineering applications.
The enhanced approach to generating TFA features
establishes a connection between conventional signal
processing approaches and TFA, utilizing sophisticated
mathematical approaches. A scoring function T(6,z_j ) is
calculated using Shannon information from signal
characteristics subscripts [ z] _j, followed by Formula

.

T(Q,Z]) = —IOQOQ(Z]) 4)

When O 6 (z j ) is the probability value of z_j, and 0 is
the characteristic vector of the prediction distribution.
Let -logO 6 (z j ) = e ( 8 ) and accomplish a Taylor
expansion on e ( 0 + c"). The third- and higher-level terms
have been eliminated to simplify the calculation using
Formula (5).

e(0+c) =f(0) + 5Dy

lchM(M)S ¢ 9

2 0 6 )
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Where, e(0) indicates the error function, and ¢’ depicts
the transpose vector; V it represents the ENGB. Convert
the Euclidean space to a statistical manifold, and utilize
Formula (6) to extract signal features:

Cox = [ 0p(z5) * (e(0 + ") — e(0)c(z,) = [ 0g

9e(8) 1 ,c0de(d) (9e(0)\S
(zs)*(c’s 5 +Ec’5 5 (9 ) c’)c(zs)

(6)

Following the integral calculation rule, Formula
(7) can be divided into two portions for separate
calculations. The first portion is simplified as:

J77 002 (5 252) c(z) = (¢ %52) « 0,
(z5) f:: 0¢(2z5)c(zs) (7N

The second part could potentially be expressed as Formula
®):

Cx = f:: 0g(z) * (C’S@ +

S [oe]
1 5 9e(8) (ae(e)) C,> c(z,) = i 'S f_+m 0,

2 0 0
,5 0e(8) (9e(0)\5 i1, /
(2) + (3¢ 292 (22) Yez) w= ¢ 2 “p(0)e
(3)

The Riemann metric of the statistical manifold at 0 is
Y(0), which characterizes the Fisher details received from
04(z,), using Formula (9).

(6) = F,r0 [VT(8,2))VT(6,2)" ©)

The natural gradient VT(O, Z]-) can be estimated using the
general ENGB as follows, by Formula (10):
VT(0,2) = ¢(6)"*VT(6, z) (10)
This strategy improves signal feature extraction through
TFA by using the ENGB technique, which aligns the
Euclidean gradient with the statistical manifold of signal
occurrences. To develop an enhanced technique for power
signal processing based on TFA in the different phases
below. Use 6° as the initial parameter vector for signal
characteristics. Generate the signal feature z;and its
accompanying parameter vector 7'~ iusing the ordinary
gradient in the n* iteration. To upgrade the parameter
vector, determine the natural gradient V T (771, z;) and,

build a different set of base learners along this gradient.
The update rule for parameters were expressed in equation

(11):
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Here, 6° indicates the initial model parameters, and S
represents the global learning rate. In the context of power
signal processing, while the general procedure of power
signal fluctuations is non-Gaussian, the suggests that each
sample point should follow an electrical power system.

3.8 Short-time Fourier transform fused
efficient natural gradient boosting (STFT-
ENGB)

The STFT-ENGB hybrid is an integration of the STFT with
TFA and ENGB to improve feature extraction in power
signal processing. STFT segments signal to overlapping
windows for comprehensive frequency and temporal
analysis, whereas ENGB maximizes the extraction of
signal features by matching gradients with the statistical
manifold. The STFT-ENGB model achieves better signal
processing strength, particularly when dealing with
involved, non-stationary power signals. STFT-ENGB
hybrid method used to perform better PQD because it uses
both time-frequency analysis and machine learning
models. STFT is the time-varying and localized
characteristic of non-stationary power signals, hence
appropriate when tracking transient and dynamic
disturbances. ENGB increases the accuracy of the
classification process by dealing with the non-linear and
intricate patterns of the features. This combination
guarantees a high detection rate, resistance to noises and
applicability to different kinds of PQD. Moreover, the
hybrid model was computationally efficient to allow
monitoring in real time of the smart grid environment.
Algorithm 1 shows the proposed STFT-ENGB model
working procedure.

Algorithm 1: STFT-ENGB
import numpy as np

import pandas as pd

import scipy.signal as signal

from sklearn.model_selection import train_test_split

from sklearn. preprocessing import StandardScaler
from lightgbm import LGBMClassifier

from sklearn.metrics import classification_report

X _signals = np.load("signals.npy")
y_labels = np.load("labels.npy")
scaler = StandardScaler()
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X _scaled = scaler. fit_transform(X_signals)
def extract_stft_features(signal_data):
features = []
for sig in signal_data:
fit,Zxx = signal.stft(sig, nperseg = 128)
power = np.abs(Zxx) xx 2
mean_power = power.mean(axis = 1)
features. append (mean_power)
return np. array(features)
X_features = extract_stft_features(X_scaled)
X_train, X_test,y_train,y_test = train_test_split(
X_features,y_labels, test_size = 0.2, stratify =
y_labels,random_state = 42)
model = LGBMClassifier(boosting_type =
'gbdt',n_estimators = 100)
model. fit(X_train, y_train)
y_pred = model.predict(X_test)
print(classification_report(y_test,y_pred))

4 Results

The proposed model’s strategy and its applications in
enhancing power quality monitoring through the
integration of STFT-ENGB were described previously.
This model effectively addresses disturbance detection
by leveraging time-frequency feature extraction and
adaptive boosting, offering a robust and real-time
approach tailored to dynamic grid signal variations.

4.1 Experimental configuration

The system configurations with Python setups are
employed for TFA is used to process power signals and
extract features. The signal-piloted gain device acts as a
triggering device which continuously checks the
incoming power signals as per the occurrence of
anomalies. It also triggers feature extraction and data
acquisition when it recognizes an unusual variation in the
regular activities. It was useful for avoiding the
unnecessary data and efficiency of computation. Figure3
represents the Signal-Piloted Gain Device of Voltage
Phase.

280 ¢

Signal-Piloted Gain Device Simulation on Voltage Phase A

E

Voltage (V)
g

¢

130
200 00 500 200 1000

Sample index
Figure 3: Signal-piloted gain device of voltage phase
The process can be implemented with a light-weight
embedded microcontroller or digital signal processor
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(DSP) and programmed with threshold-based detection
algorithms. Hardware/software details was illustrated in
Table 3.

G. Yang et al.

Table 3: Hardware-software configuration for power signal detection

Component Type Details

Hardware Microcontroller / DSP ARM Cortex-M series / DSP for real-time signal

Platform processing

Signal Input ADC (Analog-to-Digital 16-bit, high-speed ADC for sampling voltage and

Interface Converter) current waveforms

Triggering Logic =~ Comparator/Threshold Monitors signal amplitude/frequency changes to
Detector detect disturbances

Feature Signal Processing Library STFT implementation via CMSIS-DSP or similar

Extraction optimized math libraries

4.2 Confusion matrix in power signal

processing and feature extraction

Figure 4 depicts the confusion matrix for measuring the
classification accuracy of a power signal processing
model based on TFA. It indicates how accurately the
model classifies four different classes, as labeled rows
(True labels) and columns (Predicted labels). The
diagonal values (74, 75, 75, and 69) represent the count
of correct predictions for each class, which signifies that
the model classifies with high accuracy. Where x — plane
indicates the predicted label and y- plane indicates the
True label. It was particularly useful for imbalanced
datasets, where simple accuracy might be misleading. It
assists in figuring out the model's operational efficiency
and potential areas for improvement.

Confusion Matrix

True label

Predicted label

Figure 4: Confusion matrix showing classification
performance for power signal processing using TFA

4.3 Current distribution and TFA across

phases and classes in power signal processing
The analysis of the time series and distribution of current
in Phase A among emphasizes central
predisposition and variability uniformity, as well as
differences in oscillations between classes and phases.
These characteristics are essential for power signal
processing with TFA for efficient classification of different
behaviors performed in STFT-ENGB.

classes,

4.3.1 Voltage distribution and TFA across classes in
power signal processing using TFA

The voltage pattern and time series analysis of Phase A for
varying classes show marked differences in the values of
voltages, each with a distinct pattern for different classes.
Such amplitude and phase differences are significant for
feature extraction in power signal processing with TFA to
discriminate operational conditions.

4.3.2 Voltage phase a distribution by class

Figure5 shows the distribution of voltage values for Phase
A within four classes, which represent the IQR, with the
median voltage value represented. This demonstrates that
the different voltage values appear to vary widely across
the classes. As an example, class 0 and class 1 appear to
yield voltage values that are mainly between 220V and
240V. Here, the x- axis indicates the class label ranges
from O to 3, and the y- axis illustrates the voltage (V)
ranges from 180V to 280V. It is important to recognize
that the difference in voltage across the classes is important
to differentiate between different operational states or
behaviors, when the power signal processing model STFT-
ENGB is based on TFA.



STFT-ENGB: A Hybrid Time Frequency and Gradient Boosting...

Voltage Phase A Distribution by Class
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Figure 5: Voltage phase distribution across different
classes in power signal processing using TFA

4.3.3 Voltage time series for each phase and class

Figure 6 shows the time series voltage for each phase (A,
B, and C) in four classes (0 to 3) for the first 500 samples.
Here, the x — plane illustrates the sample index, and y-
plane indicates the voltage (V), ranges from 180V to
280V. Each coloured line represents a class, and the
oscillating patterns of voltage are noticeable across the
three phases. Where, blue line depicts class 0, orange line
indicates the class 1, green line depicts the class 2 and red
line represents the class 3. The differences in voltage
values in time across phases and classes can be leveraged
for feature extraction from power signals using TFA,
which can distinguish distinct operational states or
operational behaviors, STFT-ENGB, depending on voltage
discrepancies.

0

Voltage_phase_a Time Saries for Each Class (first

EEEE

i ANATAAAAAAAANNS R A Y Y AYAYAVAVAY Vo

o = 190 1% we @0
Sampia Index

Voltage_phase b Time Series for Each Class (first 500 samples)

Samea index
woltage_phase,c Time Series for Each Elass (first 560 samples)

H AAAAAA. AN B A AN A A

sample index

Figure 6: Voltage time series for each phase and class in
power signal processing TFA
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4.3.4 Current phase a distribution by class

Figure 7 presents the distribution of the current (in
amperes, A) in Phase A, partitioned into four class labels.
The interquartile range (IQR) is represented by each box,
with the value of the median. This indicates that the central
tendency and variability of the current values are fairly
uniform between the classes. Where x —plane depicts the
class label ranges from 0 to 3, and y- plane depicts the
current in ampere (A), ranging from 8.54 to 11.5A. This
indicates that the central tendency and variability of the
current values are fairly uniform between the classes. The
data range, and there are no outliers, based on this analysis,
the current in Phase A has comparable features for different
classes and can be considered an important feature for the
power signal processing model.

Current Phase A Distribution by Class
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H
85
H 1

Class Label

Figure 7: Distribution of current phase by the class label
in power signal processing using TFA

4.3.5 Current time series for each phase and class
Figure 8 shows the existing time series for three phases (A,
B, and C) of every class (0 to 3) using the first 500 samples.
The time series of every phase is plotted separately, and
every class is shown; the oscillations in the current are well
apparent across all phases, and the amplitude and phase are
slightly different between classes. The current phases a,
band c¢ was illustrated in Figure5. Here, the x — plane
indicates the sample size, and y- plane indicates the current
in ampere (A), ranges from 8.54 to 11.54. Where, blue
line depicts the class 0, orange line indicates the class 1,
green line represents the class 2 and red line represents the
class 3. The TFA strategy can be employed to derive
meaningful features distinguishing such classes efficiently
to be classified in STFT-ENGB for further operations.
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current_phase_a Time Series for Each Class {first 500 samples)
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Figure 8: Current time series for each phase (A, B, C) and
class in power signal processing using analysis TFA

4.4 Multiclass ROC and precision-recall

curves

Figure 9 shows both the multiclass ROC (receiver
operating characteristic) curves and precision-recall
curves for a power signal processing model from a TFA
understanding. For the ROC curve, each class is plotted for
the true positive rate (TPR) against the false positive rate
(FPR). The ROC and PR curve discrepancies reveal the
Classes 3 and 0 to perform, and the relative Classes 1 and
2 reveal intrinsic class level. In contrast, the classes 1 and
2 have perfect scores and represented in terms of features
that were stronger and easily distinguishable. Class 3 and
0 predictions were negatively affected by noise or intra-
class variability. In left side, it indicates the multiclass
ROC curves and right side it represents the multiclass
precision-recall curves. In multiclass ROC curves, the x-
plane depicts the false positive rates and y- plane depicts
the true positive rates. In multiclass precision-recall
curves, the x- plane illustrates the recall score, which
ranges from 0 to 1, and y-plane indicates the precision
score, ranges from 0 to 1. These observations indicate that
target data augmentation or class-by-class tuning.

G. Yang et al.

Multiclass Precision-Recall Curves

Multiclass ROC Curves
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Figure 9: Multiclass ROC and precision-recall curves for
power signal processing based on TFA

4.5 Statistical test significance

The statically significance McNemar test yields a chi-
squared statistic of 3.27 and a p-value of 0.0704, indicating
an observed improvement that was not statistically
significant at the 0.05 level. When the accuracy gain
appears, it equates 7 correct classifications per 1,000
instances, which can be critical for timely and accurate
detection of power quality disturbances in real-time smart
grid environments.

The comparison of Training Time vs Inference Latency
was illustrated, in Figurel0. This plot shows a comparison
between the training time and the inference latency of two
models; SVM and STFT- ENGB. The fastest training
achieved by SVM was 0.017s and the lowest latency of
inference was 0.00044s, which suits light weight, real-time
applications. STFT + ENGB took 1.223s to train, which is
indicative of the more elaborate learning procedure and
had low latency of 0.00123s. STFT-ENGB model was easy
to train and hence the expensive training costs was less.
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Figure 10: Training time vs inference latency

The scalability test enables to conclude the data point
changes, and the training time increases with gradual
changes; with 1.1 s size with 800--1000 samples increases
gradually to 1.2 s, which proves its linear scalability. The
inference latency is with 0.01s size with 800-1000
samples increases gradually to 0.014 s, which proves its
linear scalability, confirming the predictive potential of the
model in real-time. These outcomes show that the STFT -
ENGB model was effective and resistant to load. The
scalability criteria and the real time feasibility used to
accomplish power quality disturbances was illustrated in
Figurell.

__Figure 1a: Scalability Test (Time vs Sample Size)

‘Training Time (s} inference Latency (s)

Figure 11: Output of scalability test
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4.6 Metrics for evaluating the effectiveness of
the proposed model

e Accuracy: Measures the overall rate of correct
predictions. This indicator shows how
successfully the system detects various categories
of power quality problems within the smart grid
setting

e  Precision: It indicates how many actual positive
cases exist within all the predicted positive
outcomes. This metric helps the system to detect
true PQD events correctly and the false alarms are
kept at a low level.

e Recall: Measures the model’s ability to detect all
actual instances of a class. It attributes the
strength exhibited by the model in response to
different transient and fluctuation patterns of
voltages.

e F1-Score: Balances precision and recall using
their harmonic mean. The metric shows the
balanced performance in real-time tradeoff
between sensitivity and specificity.

The performance results of the proposed method are
discussed in this section. The outcomes are contrasted with
the other approaches, Support vector machine (SVM) [21],
and Random Forest [22]. The Comparative performance of
STFT-ENGB models, precision, F1l-score, accuracy, and
recall, was illustrated in Table 4 and Figurell.

Table 4: Comparative performance of STFT-ENGB models, precision, F1-score, accuracy, and recall.

Methods F1-Score (%) Precision (%) Accuracy (%) Recall (%)
SVM [21] - - 98.05 -

RF [22] 95.5 95.5 95.5 95.5
STFT-ENGB [Proposed] 98.62 98.65 98.75 98.6
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Figure 11: Evaluation of STFT-ENGB models, (a)
accuracy and (b) recall, precision, and F1-score for
enhancing power quality distribution detection.

The proposed STFT-ENGB approach is used for power
quality monitoring through efficient time-frequency
feature extraction and adaptive boosting classification.
The system achieves an accuracy of 98.75%, showcasing
its strong capability in correctly identifying power
quality disturbances across various scenarios. With a
precision of 98.65% and a recall of 98.6%, it reliably
identifies disturbance patterns while minimizing false
positives and missed events. Furthermore, the F1-score
of 98.62% validates the model’s robust and superior
performance in a balanced way. These metrics validate
that the STFT-ENGB approach has an effective solution
for real-time smart grid disturbance detection.

5 Discussion

Power signal processing improves electrical grid and
microgrid monitoring and control, particularly on the
electrical grids due to more renewable energy. TFA
methods might not sensitive enough to measure quickly,
and the nonlinear nature of waveforms caused by power
electronics-based renewable sources [15]. These
techniques were frequently sensitive or flexible and it
was desirable to observe faint or temporary perturbations
in different loading conditions. The SVM model [21]
based on power signal processing and feature extraction
algorithm with TFA are its sensitivity to input data quality
and levels of noise, which has performance metrics
accuracy of (98.05%). The dependence of the model on
pre-defined feature extraction methods can fail to
completely reflect dynamic variations. RF models could
involve heavy computations of building numerous
decision trees, not suitable in real-time smart grid
applications [22]. RF models have performance metrics
accuracy of (95.05%), for modeling complex
dimensional temporal dependencies in time-series PQD
data. The RF algorithm can be affected by its
performance when using imbalanced datasets in PQD
settings. Furthermore, the effectiveness of the model
highly relies on feature engineering and prevents the
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ability to adapt to unprecedented disturbances without
retraining. Spectral leakage was commonly mitigated
through windowing methods which minimize distortion
in frequency analysis at the risk of sharp signal states.
The cultured measures used to minimize leakage, used in
real-time systems, might be heavier load on the delays.
Feature robustness plays an essential role in excessive
filtering to control leakage for accurate classification.
The trade-off was extremely crucial in power signal
analysis and smart grid applications.

To overcome these limitations, the suggested STFT-
ENGB approach, incorporates adaptive noise reduction
techniques for improved input data quality, providing
better performance robustness. The algorithm employs
real-time feature extraction using STFT to minimize
computational burdens and capture dynamic changes
effectively. The flexibility in STFT-ENGB makes it
possible to fine-tune and verify it for a variety of power
systems and operating regimes.

6 Conclusion

Power signal processing using the TFA method for
evaluating non-stationary signals, which decomposes the
signal into the transient system as well as frequency
domains. TFA enables a composite representation of a
signal's frequency spectrum over time, allowing it to
efficiently record transient and time-dependent incidents.
The dataset was collected from Kaggle. A normalization
technique of z-score used for preprocessing the noise
reduction. The power signals were subjected to
discriminative, time-localized feature extraction using
the STFT. To create a single representation, these
extracted features were joined by using a late fusion
technique. The STFT-ENGB model for enhancing the
recognition of power quality disturbances with energy
grid applications. Extensive experiments demonstrated
that the proposed STFT-ENGB model outperforms
baseline architectures, achieving superior results in terms
of accuracy (98.75%), Fl-score (98.62%), recall
(98.6%), and precision (98.65%) to ensure the
distribution of power qualities. These findings offer a
promising solution for real-time power signal monitoring
in smart grid environments, facilitating intelligent fault
diagnosis and improving the overall resilience and
responsiveness of modern electrical infrastructure. The
TFA signal processing and feature extraction algorithm
does not deliver the expected performance in the
presence of noise and rapidly varying signals, or cannot
be computationally feasible for systems with restricted
resources. Future research can investigate the
incorporation of sophisticated ML methods for the real-
time processing of power signals, improving the
efficiency and accuracy of feature extraction algorithms.
The use of TFA-based algorithms in smart grid and
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Internet of Things (IoT) applications has the potential to
enhance energy management and fault detection.
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