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Power signal processing is a specialized domain within signal processing that focuses on the analysis, 

interpretation, and manipulation of signals in electrical power systems. In modern smart grids, Power 

Quality Disturbances (PQDs) can result in considerable operational disruptions and financial losses for 

energy stakeholders. This research introduces a Short-Time Fourier Transform fused Efficient Natural 

Gradient Boosting (STFT-ENGB) model for robust recognition of power quality disturbances with energy 

grid applications. A comprehensive framework used for PQD identification by leveraging advanced power 

signal processing techniques and time-frequency-based feature extraction. The system collects electrical 

measurements from the power system includes voltage and current. The Z-score normalization is a 

preprocessing technique for reducing noise. The STFT is utilized to extract discriminative, time-localized 

features from the power signals. These extracted features are then combined using a late fusion strategy 

to form a unified representation. The proposed method was implemented using Python 3.10.1. Extensive 

experiments demonstrate that the proposed STFT-ENGB approach performs better than multimodal 

baseline architectures, achieving superior results, with accuracy, F1-score, recall, and precision ranging 

from 95% to 99%. These findings offer a promising solution for real-time power signal monitoring in 

smart grid environments, facilitating intelligent fault diagnosis and improving the overall resilience and 

responsiveness of modern electrical infrastructure. 

Povzetek: Predstavljen je hibridni model STFT-ENGB, ki združuje časovno-frekvenčno analizo in 

izboljšano gradientno pospeševanje za zaznavanje motenj kakovosti električne energije. Z normalizacijo, 

STFT-izločanjem značilk in pozno fuzijo doseže dorbo napovedljivost ter omogoča zanesljivo diagnostiko 

v pametnih omrežjih. 

 

1 Introduction 

Power signal processing is a crucial field in electrical 

engineering that is important for many applications, 

including effective energy management, defect detection 

in electrical grids, and power quality assessment [1]. The 

complexity of electrical infrastructure has raised the need 

for high-performance algorithms for power signal 

evaluation. Such systems require precise, accurate, 

efficient power signal processing systems to both enhance 

system reliability and enhance anomaly detection [2]. 

Time-frequency analysis (TFA) has proved to be an 

effective technique for signal representation and feature 

extraction, since the conventional signal processing 

techniques did not consider the non-stationary nature of 

power signals. TFA is an integrated method of analyzing 

non-stationary power signals that fluctuate over time, 

combining frequency-domain and time-domain analyses 

[3]. Conventional methods tend not to be able for extract 

useful information from non-stationary signals, 

particularly in power systems where the signal suffers 

from noise, transients, harmonics, and the occurrence of 

other abnormalities [4]. These methods have improved 

feature recognition and system malfunction detection of 

power data, particularly significant for system 

performance and operational security. Most typical power 

signal features include noise, transients, and harmonics 

that can indicate some form of overall system malfunction 

due to faulty equipment or power quality issues [5]. Using 

the features present in power signals, it becomes possible 

to digitalize monitoring, fault detection and diagnosis, 

preventive maintenance, and system operation 

assessment. By extracting features from power data 

efficiently, the system has tremendous potential to realize 

the efficiencies available for quickly identifying potential 

systematic issues before they develop into issues of greater 

consequence [6]. More specifically, TFA techniques can 

enable more accurate identification of harmonic 
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distortion, frequency variations, and abrupt voltage 

transitions acquired from measurements. These 

techniques can also potentially provide more substantial 

diagnoses, improving the power system performance and 

reliability [7]. Power signal processing can greatly 

improve electrical grid and microgrid monitoring and 

control, particularly as the electrical grids become more 

renewable energy - Smart grids. The systems can provide 

more fault location, energy management, and predictive 

maintenance strategies to enhance both reliability and 

performance in the case of comprehensive feature 

identification [8, 9]. This research aims to create a new 

power signal processing method for TFA that successfully 

extracts features. By addressing the challenges of dynamic 

and non-stationary power signals, the method should 

achieve high accuracy for detecting abnormalities, 

transient phenomena, and failures in systems. [10]. The 

difficulty is to find a compromise between time resolution 

and frequency resolution, a common drawback of TFA 

methods. Finding balance depends on the preservation of 

algorithm performance in power system applications [11].  

The formal research question was stated as follows; 

How does the incorporation of the ENGB model increase 

the classification accuracy and computational lightness of 

PQD classification by conventional classifiers? 

In What ways the STFT used for feature extraction to 

discriminate among different types of power quality 

disturbances in three-phase electrical systems? 

How suitable the PQD detection model used to generalize 

various datasets and industrial conditions for different 

operating conditions and noise rates? 

The objective of this research is to create a revolutionary 

Short-Time Fourier Transform fused Efficient Natural 

Gradient Boosting (STFT-ENGB) approach to enhance 

power quality disturbances with energy grid applications. 

The suggested approach enhances the detection of PQDs 

in low SNR conditions using hybrid spectral and 

probabilistic modeling. The key contributions of this 

research as follows,  

Dataset Collection: A three-phase power quality event 

dataset was collected from Kaggle, it contains 

synchronized voltage and current signals across multiple 

disturbance classes. 

Data Pre-Processing and Feature Extraction: The time-

frequency analysis, Z-score normalization techniques 

used as preprocessing stages to normalize the data, which 

makes it ideal for smart grid applications. 

Optimized Classification Model: An STFT-ENGB model 

used for identifying PQDs in a robust manner that 

improves smart grid system reliability. 

Real-Time Results: The simulation results evaluate the 

precision, accuracy, recall, and F1 score for optimizing the 

smart grid with less computation utility. 

The research structure is outlined as follows: The literature 

review section analyzes to provide background for the 

inquiry. The materials and methods section describes the 

data collection and analysis. Summarizes the findings, 

emphasizing critical findings in this section, provides a 

complete interpretation of the data, the concludes with an 

overview of the research's ramifications and future 

directions. 

 

2 Related work 

The relevant literature explores AI-driven power quality 

disturbance detection systems, focusing on adaptive 

boosting models, and intelligent data acquisition to 

enhance real-time fault recognition, computational 

efficiency, feature discriminability, and overall grid 

reliability in smart energy environments. 

The method for converting a microwave frequency 

measuring system for utilizing TF into a TFA [12]. It also 

has two TFA relationships: parallel stimulated Brillouin 

scattering (SBS) for microwave TFA, and time-division 

SBS for TFA with great specificity for periodic signals. 

Simulations show how the system can be reconfigured in 

multiple dimensions. Fault diagnostics in rolling bearings 

are critical for forecasting damage and minimizing 

financial losses [13]. A multi-rolling component fault 

identification approach integrates the time-frequency 

analysis and a vibration signal produced by multi-curve 

extraction techniques, thereby improving weak periodic 

fault impulses and finding homologous defects. The 

experiments conducted show that TF separation (TFS) and 

identification are effective. STFT-based approaches are 

inadequate for processing non-stationary signal data in 

fluctuating operational environments [14]. TFA technique 

enhances instantaneous frequency (IF) curves by 

increasing initial frequency and using a synchro squeezing 

operator, improving time-frequency accessibility and 

feature extraction capability. Table 1 presents a summary 

of related work on power quality disturbance detection.  
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Table 1: A summary of related work on the power quality disturbance detection 

Ref Technology Used Objective Result Challenges 

[15] Time-Frequency Analysis 

(TFA) 

To assess power 

quality affected by 

nonlinear loads due to 

power electronics-

based renewables 

Identified the need of 

TFA methods to 

analyze time-

dependent 

waveforms 

Time-varying voltage 

and current waveforms 

complicate reliable 

power quality 

assessment 

[16] Convolutional Neural 

Network (CNN) 

To detect and monitor 

health conditions like 

epilepsy using EEG 

signals 

Achieved high 

accuracy, precision, 

recall, and F1-score 

using 3570 EEG 

signal pairs 

Effective integration of 

multiple TFA 

approaches in 

biomedical signal 

processing was a 

challenge 

[17] TF Self-Similarity 

Enhancement Network 

(TFSSEN): includes 

adaptive TF characterization, 

attention residual group, 

mixed-scale TFA 

To identify mechanical 

issues in nonstationary 

signals from wind 

turbines 

Improved detection 

accuracy for 

mechanical problems 

using enhanced TF 

features 

Complexity in 

analyzing 

nonstationary signals 

and combining 

global/local attention 

mechanisms 

[18] Deep learning, transfer 

learning 

To improve efficiency 

and accuracy in 

detecting and 

identifying bolt 

defects 

Detection accuracy 

improved 

Required algorithm 

optimization for better 

accuracy 

[19] LPSVM (Least Squares 

Support Vector Machine),  

To reduce 

computational cost; 

and performance of 

SVM 

Proposed model 

achieved 0.40 times 

the computational 

cost 

Kernel complexity 

increases the 

computational load;  

[20] Interactive robot model, 

machine learning, signal 

processing, electric energy 

metering system 

To enhance power 

quality monitoring and 

prediction under 

overload conditions 

Achieved ideal 

prediction accuracy 

without sacrificing 

speed;  

Conventional methods 

didn't meet accuracy 

expectations;  

 

3 Problem statement 

The challenge in several domains, including power 

systems and fault diagnosis is to process nonstationary 

signals, such as ECGs, vibration signals, and wind turbine 

signals more effectively, by using TFA techniques [13]. 

Most existing TFA works have some form of the 

limitations including noise sensitivity, low resolution, and 

impediments in process time-varying signals. More 

sophisticated techniques that can further facilitate signal 

reconstruction and accuracy for detection while leveraging 

even more advanced abilities for feature extraction are 

needed. TFA methods might not sensitive enough to 

measure quickly, and the nonlinear nature of waveforms 

caused by power electronics-based renewable sources 

[15]. These techniques were frequently sensitive or 

flexible and it was desirable to observe faint or temporary 

perturbations in different loading conditions. To overcome 

these limitations, the suggested STFT-ENGB approach, 

incorporate adaptive noise reduction techniques for 

improved input data quality, providing better performance 

robustness. The algorithm employs real-time feature 

extraction using STFT to minimize computational burdens 

and capture dynamic changes effectively. The flexibility in 

STFT-ENGB makes it possible to fine-tune and verify it 

for a variety of power systems and operating regimes. 
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3.1 Methodology 

The previous section reviewed recent studies on power 

quality disturbance detection. These studies highlighted 

shortcomings in computational efficiency, real-time 

responsiveness, and adaptive data acquisition, and the 

proposed model explained the research gap to address 

these issues. 

The approach combines several advanced signal 

processing methods for power quality event analysis. It 

applies Z-score normalization for data standardization, 

STFT for feature extraction, and ENGB for better feature 

extraction. The combined STFT-ENGB association 

improves the resilience and precision of power signal 

analysis, particularly in fault recognition and 

categorization. The hybrid approach maximizes signal 

processing by reducing and enhancing feature extraction. 

Figure 1 depicts the methodological flow for the system 

under consideration. 

 

 

Figure 1: Flow of the recommended system for the 

proposed methodology 

 

3.2 Data gathering  

The power quality event dataset was gathered from the 

open-source Kaggle website 

https://www.kaggle.com/datasets/zoya77/three-phase-

power-quality-event-dataset. The dataset provides 

electricity measurements from a three-phase power supply 

gathered throughout time.  The dataset consists of 100 

samples per class, total of about 600 recordings. Each 

signal has a 3-phase voltage and current waveform, with 

around 10 cycle’s duration. It includes 6 event classes like 

voltage sag, swell, interruption, harmonics, flicker, and 

normal operation. The dataset was divided into training 

and testing samples, where the training samples have 

(70%) and the testing samples has (30%). Since the dataset 

was class-balanced with approximately 100 samples per 

class, no additional imbalance handling techniques like 

oversampling or class weighting were required. It was 

especially appropriate in the design and validation of 

classification models, fault detectors, and signal-

processing algorithms in smart grids. The information 

contained in the dataset used to analyze the power 

distributions. The given dataset was capable to fully assist 

the purpose of creating a trustworthy real-time PQD 

detection system. 

3.3 Data exploration 

Figure 2 illustrates the feature importance analysis of 

power signal processing via TFA. The features, such as 

voltage and current phases of the three phases (A, B, C), 

are ordered according to the impact on the analysis. 

Voltage_phase_a, voltage_phase_b, and voltage_phase_c 

is of greater importance, indicating that the voltage signals 

of different phases play an important role in the analysis. 

The existing features, like current_phase_a, 

current_phase_b, and current_phase_c, possess relatively 

lesser importance. This emphasizes the significance of 

voltage signals in the time-frequency feature extraction 

process for STFT-ENGB. 

Figure 2: Feature Importance of power signal phases 

based on TFA 

3.4 Z-score normalization using 

preprocessing technique  

Normalization is essential when the preprocessing step, 

in particular while dealing with numerical characteristics 

in datasets linked to power signal processing and TFA. 

This method alters an intersection to maintain uniformity 

across changed features. Z-score standardization was 

used to normalize the various response variables, 

including power consumption signals and measurements 

of system performance. This method supports TFA-based 

anomaly detection, as it allows the information analyzed 

by the system to be altered from the original value to a 

normalized form such that the mean value is 0 and the 

standard deviation is 1. The formula for Z-score 

normalization is presented in Formula (1). 
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x′ =
xj−Gj

std (G)
                                            (1)   

x^' = Normalization value results, x = The attribute’s 

value that has to be normalized, G_j = The attribute’s 

mean value, and std (G) = Attribute G for the standard 

deviation. Table 2 represents the output of Z-Score 

normalization.

 

Table 2: Output of Z-score normalization 

voltage_phase_

a 

voltage_phase_

b 

voltage_phase_

c 

current_phase_

a 

current_phase_

b 

current_phase_

c 

-0.00 0.17 -0.15 0.06 1.15 -1.21 

0.09 0.09 -0.16 0.79 0.50 -1.42 

0.16 -0.02 -0.11 1.22 -0.20 -0.97 

0.18 -0.15 -0.05 1.25 -1.08 -0.41 

0.10 -0.18 0.10 0.80 -1.31 0.50 

0.01 -0.17 0.18 -0.02 -1.08 1.16 

-0.10 -0.05 0.16 -0.65 -0.57 1.44 

-0.18 0.04 0.10 -1.36 0.39 1.08 

-0.16 0.15 0.05 -1.35 0.95 0.28 

-0.11 0.23 -0.09 -0.75 1.42 -0.60 
 

3.5 Feature extraction using Short-Time 

Fourier Transform (STFT) 
 

STFT provides a fixed time-frequency resolution which 

is predictable and simpler to be implemented in any 

practical setting of grid monitoring. Furthermore, a 

proper choice between the window functions and lengths, 

the consequences of spectral leakage in STFT. The SIFT 

was capable of uniformly sampling localized transient 

events with reduced processing requirements makes it an 

appealing option to the suggested power quality 

disturbance detection system. The STFT is an influential 

signal processing technique that partitions signals into 

short, overlapping segments and applies the STFT to each 

segment. This way it analyzes a signal's frequency and 

time characteristics, which is ideal for non-stationary 

signals by changing characteristics over time. An STFT 

produces a time-frequency image that presents the energy 

content in the signal as a function of time and frequency. 

STFTs are typically used in power signal processing to 

produce a time-frequency image that can be interpreted 

to identify certain characteristics by looking for patterns 

in the frequency domain. It is necessary for a wide range 

of functions, from fault detection to classification of 

signal classification. STFTs can be found in a multitude 

of applications, including speech processing, biomedical 

signal analysis, and industrial monitoring. 

An STFT on discrete-time, periodic signals in power 

signal processing, which often does not get the expected 

result of frequency response due to spectral leakage. 

Spectral leakage occurs because the energy of the signal 

spreads out across the frequency spectrum. When a finite 

segment of a signal is analyzed using a Fourier transform, 

the boundaries create discontinuities, causing the energy 

of that signal segment to be spread in the frequency 

domain. A signal's periodic extension can be misleading 

to the discontinuities punctuating the period, causing 

errors in its frequency representation. Given the role of 

spectral leakage in extracting features and analyzing 

power signals, it's important to understand and manage 

the error source, especially when analyzing signals in the 

time-frequency domain. 

The functions are vital in power signal processing for 

analyzing discrete-time signals and reducing spectral or 

frequency leaking that occurs because of signal 

discontinuities that ensue at the limitations of data 

segments. Most electrical component functions decay to 

zero at the edges, accordingly to these window functions' 

properties, overlapping power signals should be used to 

not interfering with the data loss that occurs. To calculate 

the STFT of a discrete-time signal w(m), a window 

function x(m) is applied to each segment, and its 

frequency content is analyzed between time intervals. 

The STFT Formula (2) is given by: 

 

STFT(m, l) = ∑ w(m)x(m − nG)d−i
2π

M
lmM−1

m=0   (2) 

 

When m is the sample index, l the frequency index, M the 

window length, x(m) the power signal function, n the 

power signal location, and G the hop size between 

consecutive electrical component systems. This is 

required for accurate feature extraction and time-

frequency analysis in power applications that use signal 

processing.  
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3.6 Late fusion strategy  

 

Late fusion strategy describes the combining outputs 

process of high-level feature representations from 

multiple modalities, after each modality has been 

processed independently through extracted features. The 

modalities were independently classified by using this 

approach, which constitutes the characteristics of each 

modality. Every modality was classified separately when 

the attributes had been integrated. This method has the 

benefit that each modality might learn its features by 

using the classifier. Vectors were then fused to generate 

the multimodal representation on equation (3), which 

conveyed a weighted combination. Where, F represents 

the attention modules.  

 

 F=Fusion (A,V)                                                          (3) 

 

3.7 Efficient natural gradient boosting 

(ENGB) 

 

The ENGB classifier using the electrical component for 

TFA in power signal processing relies on accurate feature 

extraction from complicated information. The ENGB 

model was used to increase its flexibility of variables' 

time-frequency representation exemplified by STFT. In 

specific, the losses will be customized to deal more 

adequately with the issue of class imbalance, and 

mechanisms of weighting features were integrated to 

draw more weight on transient-sensitive features. The 

ENGB model's hyperparameters were tuned by STFT. 

The associated notions and computation of time-

frequency distributions are highly complicated, posing 

obstacles for use in practical engineering applications. 

The enhanced approach to generating TFA features 

establishes a connection between conventional signal 

processing approaches and TFA, utilizing sophisticated 

mathematical approaches. A scoring function T(θ,z_j ) is 

calculated using Shannon information from signal 

characteristics subscripts〖 z〗_j, followed by Formula 

(4).   

 

𝑇(𝜃, 𝑧𝑗) = −𝑙𝑜𝑔𝑂𝜃(𝑧𝑗)   (4) 

 

When O_θ (z_j ) is the probability value of z_j, and θ is 

the characteristic vector of the prediction distribution. 

Let -logO_θ (z_j ) = e ( θ ) and accomplish a Taylor 

expansion on e ( θ + c '). The third- and higher-level terms 

have been eliminated to simplify the calculation using 

Formula (5). 

 

𝑒(𝜃 + 𝑐′) = 𝑓(𝜃) + 𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
+

1

2
𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
(

𝜕𝑒(𝜃)

𝜃
)

𝑆

𝑐′    (5) 

Where, e(θ) indicates the error function, and c’ depicts 

the transpose vector; ∇ ̃ it represents the ENGB. Convert 

the Euclidean space to a statistical manifold, and utilize 

Formula (6) to extract signal features: 

 

𝐶𝐿𝐾 = ∫ 𝑂𝜃(𝑧𝑠) ∗ (𝑒(𝜃 + 𝑐′) − 𝑒(𝜃)𝑐(𝑧𝑠) =
+∞

−∞
∫ 𝑂𝜃

+∞

−∞

(𝑧𝑠) ∗ (𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
+

1

2
𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
(

𝜕𝑒(𝜃)

𝜃
)

𝑆

𝑐′) 𝑐(𝑧𝑠)  

 (6) 

 

 

Following the integral calculation rule, Formula 

(7) can be divided into two portions for separate 

calculations. The first portion is simplified as: 

 

∫ 𝑂𝜃(𝑧𝑠)
+∞

−∞
∗ (𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
) 𝑐(𝑧𝑠) = (𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
) ∗ 𝑂𝜃

(𝑧𝑠) ∫ 𝑂𝜃(𝑧𝑠)𝑐(𝑧𝑠)
+∞

−∞
    (7) 

 

The second part could potentially be expressed as Formula 

(8): 

𝐶𝐿𝐾 = ∫ 𝑂𝜃(𝑧𝑠) ∗ (𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
+

+∞

−∞

1

2
𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
(

𝜕𝑒(𝜃)

𝜃
)

𝑆

𝑐′) 𝑐(𝑧𝑠) =
1

2
𝑐′𝑆 ∗ ∫ 𝑂𝜃

+∞

−∞

(𝑧𝑠) ∗ (
1

2
𝑐′𝑆 𝜕𝑒(𝜃)

𝜃
(

𝜕𝑒(𝜃)

𝜃
)

𝑆

) 𝑐(𝑧𝑠) ∗= 𝑐′
1

2
𝑐′𝑆

𝜓(θ)𝑐′ 

     (8) 

 

The Riemann metric of the statistical manifold at 𝜃 is 

𝜓(θ), which characterizes the Fisher details received from 

𝑂𝜃(𝑧𝑠), using Formula (9). 

 

𝜓(θ) = F𝑧ɾO [∇T(θ, 𝑧𝑗)∇T(θ, 𝑧𝑗)
𝑆

]  (9) 

 

The natural gradient ∇̃𝑇(θ, 𝑧𝑗) can be estimated using the 

general ENGB as follows, by Formula (10): 

 

∇̃𝑇(θ, 𝑧𝑗) = 𝜓(θ)−1∇T(θ, 𝑧𝑗)    (10) 

 

This strategy improves signal feature extraction through 

TFA by using the ENGB technique, which aligns the 

Euclidean gradient with the statistical manifold of signal 

occurrences. To develop an enhanced technique for power 

signal processing based on TFA in the different phases 

below. Use 𝜃0 as the initial parameter vector for signal 

characteristics. Generate the signal feature 𝑧𝑗  and its 

accompanying parameter vector 𝜃𝑠
𝑛−1 iusing the ordinary 

gradient in the 𝑛𝑡ℎ iteration. To upgrade the parameter 

vector, determine the natural gradient 𝛻̃ 𝑇  ( 𝜃𝑠
𝑛−1, 𝑧𝑗) and, 

build a different set of base learners along this gradient. 

The update rule for parameters were expressed in equation 

(11): 
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𝜃 = 𝜃0 − 𝛽 ∑ 𝛼𝑛𝛽𝑛𝑁
𝑛=1     (11) 

 

Here, 𝜃0 indicates the initial model parameters, and 𝛽 

represents the global learning rate. In the context of power 

signal processing, while the general procedure of power 

signal fluctuations is non-Gaussian, the suggests that each 

sample point should follow an electrical power system.  

 

3.8 Short-time Fourier transform fused 

efficient natural gradient boosting (STFT-

ENGB) 

 

The STFT-ENGB hybrid is an integration of the STFT with 

TFA and ENGB to improve feature extraction in power 

signal processing. STFT segments signal to overlapping 

windows for comprehensive frequency and temporal 

analysis, whereas ENGB maximizes the extraction of 

signal features by matching gradients with the statistical 

manifold. The STFT-ENGB model achieves better signal 

processing strength, particularly when dealing with 

involved, non-stationary power signals. STFT-ENGB 

hybrid method used to perform better PQD because it uses 

both time-frequency analysis and machine learning 

models. STFT is the time-varying and localized 

characteristic of non-stationary power signals, hence 

appropriate when tracking transient and dynamic 

disturbances. ENGB increases the accuracy of the 

classification process by dealing with the non-linear and 

intricate patterns of the features. This combination 

guarantees a high detection rate, resistance to noises and 

applicability to different kinds of PQD. Moreover, the 

hybrid model was computationally efficient to allow 

monitoring in real time of the smart grid environment. 

Algorithm 1 shows the proposed STFT-ENGB model 

working procedure. 

 

Algorithm 1: STFT-ENGB  

 𝑖𝑚𝑝𝑜𝑟𝑡 𝑛𝑢𝑚𝑝𝑦 𝑎𝑠 𝑛𝑝 

 𝑖𝑚𝑝𝑜𝑟𝑡 𝑝𝑎𝑛𝑑𝑎𝑠 𝑎𝑠 𝑝𝑑 

 𝑖𝑚𝑝𝑜𝑟𝑡 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑠 𝑠𝑖𝑔𝑛𝑎𝑙 

 

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 

 

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑚𝑝𝑜𝑟𝑡 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑟 

 𝑓𝑟𝑜𝑚 𝑙𝑖𝑔ℎ𝑡𝑔𝑏𝑚 𝑖𝑚𝑝𝑜𝑟𝑡 𝐿𝐺𝐵𝑀𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 

 

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡 

𝑋_𝑠𝑖𝑔𝑛𝑎𝑙𝑠 =  𝑛𝑝. 𝑙𝑜𝑎𝑑("𝑠𝑖𝑔𝑛𝑎𝑙𝑠. 𝑛𝑝𝑦")          

 𝑦_𝑙𝑎𝑏𝑒𝑙𝑠 =  𝑛𝑝. 𝑙𝑜𝑎𝑑("𝑙𝑎𝑏𝑒𝑙𝑠. 𝑛𝑝𝑦")            

 𝑠𝑐𝑎𝑙𝑒𝑟 =  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑟() 

 𝑋_𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑠𝑐𝑎𝑙𝑒𝑟. 𝑓𝑖𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑋_𝑠𝑖𝑔𝑛𝑎𝑙𝑠) 

 𝑑𝑒𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑓𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑠𝑖𝑔𝑛𝑎𝑙_𝑑𝑎𝑡𝑎): 

    𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  [] 

    𝑓𝑜𝑟 𝑠𝑖𝑔 𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑙_𝑑𝑎𝑡𝑎: 

        𝑓, 𝑡, 𝑍𝑥𝑥 =  𝑠𝑖𝑔𝑛𝑎𝑙. 𝑠𝑡𝑓𝑡(𝑠𝑖𝑔, 𝑛𝑝𝑒𝑟𝑠𝑒𝑔 = 128) 

        𝑝𝑜𝑤𝑒𝑟 =  𝑛𝑝. 𝑎𝑏𝑠(𝑍𝑥𝑥)  ∗∗  2 

        𝑚𝑒𝑎𝑛_𝑝𝑜𝑤𝑒𝑟 =  𝑝𝑜𝑤𝑒𝑟. 𝑚𝑒𝑎𝑛(𝑎𝑥𝑖𝑠 = 1) 

        𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑒𝑎𝑛_𝑝𝑜𝑤𝑒𝑟)   

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑝. 𝑎𝑟𝑟𝑎𝑦(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 𝑋_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑓𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑋_𝑠𝑐𝑎𝑙𝑒𝑑) 

 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑒𝑠𝑡 =  𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡( 

    𝑋_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑦_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒 = 0.2, 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦 =

𝑦_𝑙𝑎𝑏𝑒𝑙𝑠, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42) 

 𝑚𝑜𝑑𝑒𝑙 =  𝐿𝐺𝐵𝑀𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑏𝑜𝑜𝑠𝑡𝑖𝑛𝑔_𝑡𝑦𝑝𝑒 =

′𝑔𝑏𝑑𝑡′, 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100) 

 𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

 𝑦_𝑝𝑟𝑒𝑑 =  𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) 

 𝑝𝑟𝑖𝑛𝑡(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡(𝑦_𝑡𝑒𝑠𝑡, 𝑦_𝑝𝑟𝑒𝑑)) 

 

4  Results 
 

The proposed model’s strategy and its applications in 

enhancing power quality monitoring through the 

integration of STFT-ENGB were described previously. 

This model effectively addresses disturbance detection 

by leveraging time-frequency feature extraction and 

adaptive boosting, offering a robust and real-time 

approach tailored to dynamic grid signal variations.  

 

4.1 Experimental configuration 
 

The system configurations with Python setups are 

employed for TFA is used to process power signals and 

extract features. The signal-piloted gain device acts as a 

triggering device which continuously checks the 

incoming power signals as per the occurrence of 

anomalies. It also triggers feature extraction and data 

acquisition when it recognizes an unusual variation in the 

regular activities. It was useful for avoiding the 

unnecessary data and efficiency of computation. Figure3 

represents the Signal-Piloted Gain Device of Voltage 

Phase. 

 
Figure 3: Signal-piloted gain device of voltage phase 

The process can be implemented with a light-weight 

embedded microcontroller or digital signal processor 
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(DSP) and programmed with threshold-based detection 

algorithms. Hardware/software details was illustrated in 

Table 3. 

Table 3: Hardware-software configuration for power signal detection 

Component Type Details 

Hardware 

Platform 

Microcontroller / DSP ARM Cortex-M series / DSP for real-time signal 

processing 

Signal Input 

Interface 

ADC (Analog-to-Digital 

Converter) 

16-bit, high-speed ADC for sampling voltage and 

current waveforms 

Triggering Logic Comparator/Threshold 

Detector 

Monitors signal amplitude/frequency changes to 

detect disturbances 

Feature 

Extraction 

Signal Processing Library STFT implementation via CMSIS-DSP or similar 

optimized math libraries 

 

4.2 Confusion matrix in power signal 

processing and feature extraction 
Figure 4 depicts the confusion matrix for measuring the 

classification accuracy of a power signal processing 

model based on TFA. It indicates how accurately the 

model classifies four different classes, as labeled rows 

(True labels) and columns (Predicted labels). The 

diagonal values (74, 75, 75, and 69) represent the count 

of correct predictions for each class, which signifies that 

the model classifies with high accuracy. Where x – plane 

indicates the predicted label and y- plane indicates the 

True label. It was particularly useful for imbalanced 

datasets, where simple accuracy might be misleading. It 

assists in figuring out the model's operational efficiency 

and potential areas for improvement. 

 
 

 

Figure 4: Confusion matrix showing classification 

performance for power signal processing using TFA 

 

 

4.3 Current distribution and TFA across 

phases and classes in power signal processing 

The analysis of the time series and distribution of current 

in Phase A among classes, emphasizes central 

predisposition and variability uniformity, as well as 

differences in oscillations between classes and phases. 

These characteristics are essential for power signal 

processing with TFA for efficient classification of different 

behaviors performed in STFT-ENGB. 

 

4.3.1 Voltage distribution and TFA across classes in 

power signal processing using TFA 

The voltage pattern and time series analysis of Phase A for 

varying classes show marked differences in the values of 

voltages, each with a distinct pattern for different classes. 

Such amplitude and phase differences are significant for 

feature extraction in power signal processing with TFA to 

discriminate operational conditions. 

 

4.3.2 Voltage phase a distribution by class 

Figure5 shows the distribution of voltage values for Phase 

A within four classes, which represent the IQR, with the 

median voltage value represented. This demonstrates that 

the different voltage values appear to vary widely across 

the classes. As an example, class 0 and class 1 appear to 

yield voltage values that are mainly between 220V and 

240V. Here, the 𝑥- axis indicates the class label ranges 

from 0 to 3, and the 𝑦- axis illustrates the voltage (V) 

ranges from 180𝑉 to 280𝑉. It is important to recognize 

that the difference in voltage across the classes is important 

to differentiate between different operational states or 

behaviors, when the power signal processing model STFT-

ENGB is based on TFA.  
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Figure 5: Voltage phase distribution across different 

classes in power signal processing using TFA 

 

4.3.3 Voltage time series for each phase and class 

Figure 6 shows the time series voltage for each phase (A, 

B, and C) in four classes (0 to 3) for the first 500 samples. 

Here, the 𝑥 – plane illustrates the sample index, and 𝑦- 

plane indicates the voltage (V), ranges from 180𝑉 to 

280𝑉. Each coloured line represents a class, and the 

oscillating patterns of voltage are noticeable across the 

three phases. Where, blue line depicts class 0, orange line 

indicates the class 1, green line depicts the class 2 and red 

line represents the class 3.  The differences in voltage 

values in time across phases and classes can be leveraged 

for feature extraction from power signals using TFA, 

which can distinguish distinct operational states or 

operational behaviors, STFT-ENGB, depending on voltage 

discrepancies. 

 
 

Figure 6: Voltage time series for each phase and class in 

power signal processing TFA 

 

 

4.3.4 Current phase a distribution by class 

Figure 7 presents the distribution of the current (in 

amperes, A) in Phase A, partitioned into four class labels. 

The interquartile range (IQR) is represented by each box, 

with the value of the median. This indicates that the central 

tendency and variability of the current values are fairly 

uniform between the classes. Where 𝑥 –plane depicts the 

class label ranges from 0 to 3, and 𝑦- plane depicts the 

current in ampere (A), ranging from 8.5𝐴 to 11.5𝐴. This 

indicates that the central tendency and variability of the 

current values are fairly uniform between the classes. The 

data range, and there are no outliers, based on this analysis, 

the current in Phase A has comparable features for different 

classes and can be considered an important feature for the 

power signal processing model. 

 

  

 

Figure 7: Distribution of current phase by the class label 

in power signal processing using TFA 

 

4.3.5 Current time series for each phase and class 

Figure 8 shows the existing time series for three phases (A, 

B, and C) of every class (0 to 3) using the first 500 samples. 

The time series of every phase is plotted separately, and 

every class is shown; the oscillations in the current are well 

apparent across all phases, and the amplitude and phase are 

slightly different between classes. The current phases a, 

band c was illustrated in Figure5. Here, the 𝑥 – plane 

indicates the sample size, and 𝑦- plane indicates the current 

in ampere (A), ranges from 8.5𝐴 to 11.5𝐴. Where, blue 

line depicts the class 0, orange line indicates the class 1, 

green line represents the class 2 and red line represents the 

class 3. The TFA strategy can be employed to derive 

meaningful features distinguishing such classes efficiently 

to be classified in STFT-ENGB for further operations. 
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Figure 8: Current time series for each phase (A, B, C) and 

class in power signal processing using analysis TFA 

 

4.4 Multiclass ROC and precision-recall 

curves 

Figure 9 shows both the multiclass ROC (receiver 

operating characteristic) curves and precision-recall 

curves for a power signal processing model from a TFA 

understanding. For the ROC curve, each class is plotted for 

the true positive rate (TPR) against the false positive rate 

(FPR). The ROC and PR curve discrepancies reveal the 

Classes 3 and 0 to perform, and the relative Classes 1 and 

2 reveal intrinsic class level. In contrast, the classes 1 and 

2 have perfect scores and represented in terms of features 

that were stronger and easily distinguishable. Class 3 and 

0 predictions were negatively affected by noise or intra-

class variability. In left side, it indicates the multiclass 

ROC curves and right side it represents the multiclass 

precision-recall curves. In multiclass ROC curves, the 𝑥- 

plane depicts the false positive rates and 𝑦- plane depicts 

the true positive rates. In multiclass precision-recall 

curves, the 𝑥- plane illustrates the recall score, which 

ranges from 0 to 1, and y-plane indicates the precision 

score, ranges from 0 to 1. These observations indicate that 

target data augmentation or class-by-class tuning.  

 

 
 

Figure 9: Multiclass ROC and precision-recall curves for 

power signal processing based on TFA 

 

4.5 Statistical test significance 

The statically significance McNemar test yields a chi-

squared statistic of 3.27 and a p-value of 0.0704, indicating 

an observed improvement that was not statistically 

significant at the 0.05 level. When the accuracy gain 

appears, it equates 7 correct classifications per 1,000 

instances, which can be critical for timely and accurate 

detection of power quality disturbances in real-time smart 

grid environments.  

The comparison of Training Time vs Inference Latency 

was illustrated, in Figure10. This plot shows a comparison 

between the training time and the inference latency of two 

models; SVM and STFT- ENGB. The fastest training 

achieved by SVM was 0.017s and the lowest latency of 

inference was 0.00044s, which suits light weight, real-time 

applications. STFT + ENGB took 1.223s to train, which is 

indicative of the more elaborate learning procedure and 

had low latency of 0.00123s. STFT-ENGB model was easy 

to train and hence the expensive training costs was less. 
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Figure 10: Training time vs inference latency 

The scalability test enables to conclude the data point 

changes, and the training time increases with gradual 

changes; with 1.1 s size with 800--1000 samples increases 

gradually to 1.2 s, which proves its linear scalability. The 

inference latency is with 0.01 s size with 800-1000 

samples increases gradually to 0.014 s, which proves its 

linear scalability, confirming the predictive potential of the 

model in real-time. These outcomes show that the STFT -

ENGB model was effective and resistant to load. The 

scalability criteria and the real time feasibility used to 

accomplish power quality disturbances was illustrated in 

Figure11. 

 
 

Figure 11: Output of scalability test 

 

4.6 Metrics for evaluating the effectiveness of 

the proposed model 

• Accuracy: Measures the overall rate of correct 

predictions. This indicator shows how 

successfully the system detects various categories 

of power quality problems within the smart grid 

setting 

• Precision: It indicates how many actual positive 

cases exist within all the predicted positive 

outcomes. This metric helps the system to detect 

true PQD events correctly and the false alarms are 

kept at a low level. 

• Recall: Measures the model’s ability to detect all 

actual instances of a class. It attributes the 

strength exhibited by the model in response to 

different transient and fluctuation patterns of 

voltages. 

• F1-Score: Balances precision and recall using 

their harmonic mean. The metric shows the 

balanced performance in real-time tradeoff 

between sensitivity and specificity. 

The performance results of the proposed method are 

discussed in this section. The outcomes are contrasted with 

the other approaches, Support vector machine (SVM) [21], 

and Random Forest [22]. The Comparative performance of 

STFT-ENGB models, precision, F1-score, accuracy, and 

recall, was illustrated in Table 4 and Figure11.  

 

Table 4: Comparative performance of STFT-ENGB models, precision, F1-score, accuracy, and recall. 

Methods F1-Score (%) Precision (%) Accuracy (%) Recall (%) 

SVM [21] - - 98.05 - 

RF [22] 95.5 95.5 95.5 95.5 

STFT-ENGB [Proposed] 98.62 98.65 98.75 98.6 
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Figure 11: Evaluation of STFT-ENGB models, (a) 

accuracy and (b) recall, precision, and F1-score for 

enhancing power quality distribution detection. 

 

The proposed STFT-ENGB approach is used for power 

quality monitoring through efficient time-frequency 

feature extraction and adaptive boosting classification.  

The system achieves an accuracy of 98.75%, showcasing 

its strong capability in correctly identifying power 

quality disturbances across various scenarios. With a 

precision of 98.65% and a recall of 98.6%, it reliably 

identifies disturbance patterns while minimizing false 

positives and missed events. Furthermore, the F1-score 

of 98.62% validates the model’s robust and superior 

performance in a balanced way. These metrics validate 

that the STFT-ENGB approach has an effective solution 

for real-time smart grid disturbance detection. 

 

5  Discussion 
Power signal processing improves electrical grid and 

microgrid monitoring and control, particularly on the 

electrical grids due to more renewable energy. TFA 

methods might not sensitive enough to measure quickly, 

and the nonlinear nature of waveforms caused by power 

electronics-based renewable sources [15]. These 

techniques were frequently sensitive or flexible and it 

was desirable to observe faint or temporary perturbations 

in different loading conditions. The SVM model [21] 

based on power signal processing and feature extraction 

algorithm with TFA are its sensitivity to input data quality 

and levels of noise, which has performance metrics 

accuracy of (98.05%). The dependence of the model on 

pre-defined feature extraction methods can fail to 

completely reflect dynamic variations. RF models could 

involve heavy computations of building numerous 

decision trees, not suitable in real-time smart grid 

applications [22]. RF models have performance metrics 

accuracy of (95.05%), for modeling complex 

dimensional temporal dependencies in time-series PQD 

data. The RF algorithm can be affected by its 

performance when using imbalanced datasets in PQD 

settings. Furthermore, the effectiveness of the model 

highly relies on feature engineering and prevents the 

ability to adapt to unprecedented disturbances without 

retraining. Spectral leakage was commonly mitigated 

through windowing methods which minimize distortion 

in frequency analysis at the risk of sharp signal states. 

The cultured measures used to minimize leakage, used in 

real-time systems, might be heavier load on the delays. 

Feature robustness plays an essential role in excessive 

filtering to control leakage for accurate classification. 

The trade-off was extremely crucial in power signal 

analysis and smart grid applications.   

To overcome these limitations, the suggested STFT-

ENGB approach, incorporates adaptive noise reduction 

techniques for improved input data quality, providing 

better performance robustness. The algorithm employs 

real-time feature extraction using STFT to minimize 

computational burdens and capture dynamic changes 

effectively. The flexibility in STFT-ENGB makes it 

possible to fine-tune and verify it for a variety of power 

systems and operating regimes. 

 

6  Conclusion  
Power signal processing using the TFA method for 

evaluating non-stationary signals, which decomposes the 

signal into the transient system as well as frequency 

domains. TFA enables a composite representation of a 

signal's frequency spectrum over time, allowing it to 

efficiently record transient and time-dependent incidents. 

The dataset was collected from Kaggle. A normalization 

technique of z-score used for preprocessing the noise 

reduction. The power signals were subjected to 

discriminative, time-localized feature extraction using 

the STFT. To create a single representation, these 

extracted features were joined by using a late fusion 

technique. The STFT-ENGB model for enhancing the 

recognition of power quality disturbances with energy 

grid applications. Extensive experiments demonstrated 

that the proposed STFT-ENGB model outperforms 

baseline architectures, achieving superior results in terms 

of accuracy (98.75%), F1-score (98.62%), recall 

(98.6%), and precision (98.65%) to ensure the 

distribution of power qualities. These findings offer a 

promising solution for real-time power signal monitoring 

in smart grid environments, facilitating intelligent fault 

diagnosis and improving the overall resilience and 

responsiveness of modern electrical infrastructure. The 

TFA signal processing and feature extraction algorithm 

does not deliver the expected performance in the 

presence of noise and rapidly varying signals, or cannot 

be computationally feasible for systems with restricted 

resources. Future research can investigate the 

incorporation of sophisticated ML methods for the real-

time processing of power signals, improving the 

efficiency and accuracy of feature extraction algorithms. 

The use of TFA-based algorithms in smart grid and 
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Internet of Things (IoT) applications has the potential to 

enhance energy management and fault detection. 
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