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This study proposes a multimodal collaborative control method based on an improved whale optimization 

algorithm and iterative learning to address the issues of insufficient multimodal fusion and poor 

adaptability to dynamic environments in smart home human-machine collaborative control. Firstly, by 

introducing a dynamic learning gain mechanism to optimize the iterative learning control algorithm, the 

convergence speed and tracking accuracy of the system can be improved; Secondly, a feature level and 

decision level fusion strategy is adopted to achieve effective fusion of speech and gesture modalities; 

Finally, a complete smart home human-machine collaborative control system architecture is constructed. 

1) In terms of control accuracy, the research method achieves average control accuracy of 0.9212 and 

0.9053 in single-device and multi-device scenarios, respectively, significantly better than particle swarm 

optimization genetic algorithm (0.8751) and grey wolf optimization backpropagation network (0.8346). 

2) In terms of error indicators, the maximum mean absolute error (0.167) and root mean square error 

(0.196) are reduced by more than 50% compared to particle swarm optimization genetic algorithm 

(0.373/0.338) and grey wolf optimization backpropagation network (0.337/0.324). 3) In terms of system 

performance, the accuracy recall curve area (0.9758) is improved by 5.45%-13.68% compared to the 

comparison methods, the system resource utilization rate is 0.054%-0.131%, and the average response 

time (10.31-24.12ms) is improved by more than 30% compared to particle swarm optimization genetic 

algorithm (18.89ms) and grey wolf optimization backpropagation network (16.21ms). The research 

provides a high-precision and low latency human-machine collaborative control solution for the field of 

smart homes. 

 

Povzetek: Predlagan je multimodalni kontrolni sistem za pametne domove, ki združuje Whale Optimization 

Algorithm (WOA) z Iterative Learning Control (ILC) za izboljšanje kvalitete, odzivnosti in prilagodljivosti 

v dinamičnih okoljih.

1 Introduction
As Internet of Things (IoT) and artificial intelligence 

technology continuously develop, the intelligence level of 

home devices used in people's lives is becoming 

increasingly high [1]. Smart homes have brought great 

convenience to people's lives, reducing the pressure in 

their daily lives and deepening the dependence of different 

groups on smart homes [2]. With the increasing popularity 

of smart homes, people's control requirements for smart 

homes have become increasingly strict, and the 

convenience requirements for controlling smart homes 

have become higher. Therefore, how to design (HMCC) 

for smart homes has become a huge challenge at present. 

In traditional smart home control, machine learning and 

deep neural networks are commonly used to construct 

collaborative control models for smart homes. These 

traditional construction methods can effectively control 

smart homes and improve the convenience of smart home 

control for people [3]. The collaborative control methods 

of traditional smart homes have good control effects on a 

small number of smart homes, but have weak control 

effects on multiple types of home systems. Therefore, 

there is an urgent need for a method to achieve HMCC of 

smart home systems. Multimodal Fusion (MF) can unify 

and integrate data from different modalities, thereby 

improving the ability to process and understand 

information. It can be combined with speech and gestures 

for human-computer interaction [4]. Iterative Learning 

Control (ILC) can flexibly respond to dynamic changes in 

the system. When controlling the system, it requires fewer 

parameters to control the dynamic system and has a fast 

convergence speed. However, its collaborative control 

performance for the system is poor [5]. The Whale 

Optimization Algorithm (WOA), as a population-based 

intelligent optimization algorithm, is easy to operate and 

can greatly avoid falling into the trap of local optimal 

solutions, effectively compensating for the shortcomings 

of ILC [6-7]. In summary, the research problem lies in the 

poor performance of existing methods in multi-device 
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collaborative control, especially their insufficient 

adaptability in dynamic environments. At the same time, 

it also lies in how to effectively integrate multimodal 

inputs such as voice and gestures to improve the accuracy 

and robustness of control. Therefore, the study introduces 

the WOA for improved ILC and combines MF for HMCC 

of smart homes, hoping to improve the HMCC capability 

of smart homes. The goal of the research is to solve the 

problem of insufficient control of traditional methods in 

multi-device and dynamic environments, and to apply it to 

resource constrained embedded devices. The proposed 

method provides a reference for domestic and foreign 

scholars to study the HMCC system of smart homes, and 

promotes the continuous progress and improvement of the 

HMCC system of smart homes. 

2 Related work 
With the popularization of smart homes, research on smart 

home systems has received widespread attention from 

scholars both domestically and internationally. Dong et al. 

developed a multimodal neural processing system based 

on memristor circuits to address the issues of high 

implementation costs and high power consumption in 

traditional smart home monitoring systems. By designing 

a multimodal sensory processing module, a memristor 

crossbar array was constructed. The results indicated that 

the occupancy rate of the constructed smart home 

monitoring system was 1.25% [8]. Wei et al. proposed a 

smart home energy management method based on deep 

reinforcement learning to address the difficulty in 

designing energy management strategies for smart home 

systems. Deep reinforcement learning algorithms were 

trained using approximate strategy optimization methods, 

and device action generation was designed using strategy 

networks that output discrete and continuous actions [9]. 

Ameer et al. developed a role-based attribute based access 

control model to address the challenges faced by smart 

homes in terms of access control. By combining a family 

centered approach with an attribute centered approach, an 

IoT access control model was explained, and a hybrid 

model was used to construct an access control system [10]. 

Perumal et al. developed an IoT-based smart home 

recognition system to address the lack of visualization 

capabilities in smart home recognition systems. By 

tracking activity data in smart home environments, real-

time data collected by system sensors were transmitted to 

IoT edge servers [11]. 

In addition, research on MF has also received 

widespread attention from scholars both domestically and 

internationally. Zhou et al. developed a multi-task 

perception network based on hierarchical MF to improve 

the fusion and segmentation accuracy of multimodal 

features in assisted driving. An MF module was 

constructed to enhance feature fusion and an advanced 

semantic module was built for extracting semantic 

information. The experiment findings denoted that the 

accuracy of the proposed method reached 91.32% [12]. 

Chen et al. proposed an MF strategy based on graph neural 

networks to address the issue of heterogeneity between 

modalities in traditional multimodal detection methods for 

severe depression. Modal features were extracted by 

constructing a modal specific graph neural network 

architecture and a reconstruction network was utilized to 

determine individual modal fidelity [13]. Lu et al. 

developed an internal defect detection method based on 

MF convolutional neural network to address the issue of 

low accuracy in magnetic tile manufacturing. An end-to-

end approach was utilized for network training and 

features were extracted from modal data. The findings 

showed that the internal defect detection accuracy of the 

proposed method reached 94.32% [14]. Fang et al. 

developed an MF model based on multi-attention 

mechanism to design an efficient and robust depression 

detection model. Long short-term memory networks were 

utilized for learning audio and visual features, and MF was 

utilized for feature delivery. The results indicates that the 

Root Mean Square Error (RMSE) of the detection model 

designed by the research was only 0.468 [15]. Dalila C et 

al. designed a multimodal feature fusion method based on 

artificial neural networks to achieve the best level of 

security for human recognition and identification. This 

method integrated biometric features such as facial 

recognition, voice recognition, and fingerprint 

recognition. The research results showed that compared 

with K-nearest neighbor classifiers and recent methods, 

the research method had superiority in recognition rate 

and equal error rate [16]. Following the above literature 

summary, Table 1 is compiled. 

From the current research status of scholars at home 

and abroad, it can be seen that the efficiency and 

practicality of HMCC in the field of smart homes are 

relatively low. Therefore, the study introduces MF for 

HMCC in smart homes, hoping to improve the efficiency 

of intelligent collaborative control and enhance the 

convenience of using smart homes. 

3 Design of a smart home control 

model that integrates multimodal 

and collaborative control 

3.1 Construction of control model for 

smart home human machine system 

based on iterative control algorithm 

With the continuous improvement of artificial intelligence 

technology, the technology applied to HMCC in smart 

homes has become increasingly mature. However, when 

using traditional control algorithms for smart home 

collaborative control, the control effect is poor. To address 

this issue, ILC algorithms are introduced for collaborative 

control of smart homes. ILC algorithm, as an algorithm 

that continuously executes the same instructions and steps, 

and controls through iteration of new and old variables, 

can make the system output approximate the ideal output. 

It only requires less computation and parameters for 

system control. Iterative control has both open-loop 

control ( , )Ou t k  and closed-loop control ( , )Cu t k , and its 

mathematical expression is shown in equation (1). 
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Table 1: Summary of literature results. 

Author Research contents  Research findings Limitation 

Dong et al. 

Design a multimodal perception 

processing module and construct 

a cross array of memristors 

System occupancy rate of 1.25%, 
supporting multimodal sensing 

Dependent on dedicated hardware 

(memristors), low deployment 

flexibility 

Wei et al. 

Train deep reinforcement learning 

algorithms using approximate 

strategy optimization methods 
and design strategy networks to 

generate device actions 

Dynamically adjust equipment 

energy consumption 

High training computation cost, 

control delay (200-500ms) 

Ameer et al. 

Build a hybrid model by 

combining the family centered 
method and attribute centered 

method 

Support fine-grained permission 
management 

Not involving actual control 

performance, only focusing on the 

safety aspect 

Perumal et al. 

By tracking activity data in smart 
home environments, real-time 

data is transmitted to IoT edge 

servers 

Recognition accuracy 82.3%, 

delay 100-300ms 

Only supports sensor modes, with 

a single interaction method 

Chen et al. 
Building multimodal fusion 
modules and advanced semantic 

modules 

Fusion accuracy 91.32% 
High computational complexity, 
unverified applicability in smart 

homes 

Zhou et al. 

Constructing a modal specific 
graph neural network architecture 

and utilizing reconstruction 

networks to determine individual 
modal fidelity 

The accuracy rate of depression 
detection is 88.6% 

Relying on high-dimensional 

physiological signals makes it 
difficult to migrate to smart home 

scenarios 

Lu et al. 

Using end-to-end methods for 

network training to extract 
features from modal data 

Defect detection accuracy rate 

94.32% 

Industrial scenario specific, real-

time performance not optimized 

Fang et al. 

Using Long Short Term Memory 

Networks to Learn Audio and 

Visual Features, Multimodal 
Fusion for Feature Transfer 

RMSE=0.468 
High computational cost, delay 

not reported 

Dalila C et al. 

Integrate multiple biometric 

features such as facial 
recognition, speech recognition, 

and fingerprint recognition 

Recognition rate better than KNN 

Not involving control tasks, only 

applicable to identity verification 

scenarios 

 

( , ) ( , 1) ( ) ( , 1)
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O

C
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u t k u t k L k e t k

= − + −

= − +
 (1) 

In equation (1), t  and k  respectively represent the 

time and number of control iterations, and ( , )e t k  

represents the iteration error. ( , )u t k  and ( )L k  

respectively represent the control input and learning gain 

matrix at the k  iteration. ILC is mainly used for system 

control by calculating trajectory updates in the time 

domain of the system, as expressed in equation (2). 

1i u i e iu L u L e+ = +   (2) 

In equation (2), u  represents the vector of the timing 

signal within a certain period. 
uL  and 

eL  are the 

proportional gain matrix of the control input and the gain 

matrix of the error signal, respectively. 
iu  and 

ie  are the 

control input and tracking error at the i  iteration. The 

principle structure of ILC is shown in Figure 1. 

From Figure 1, iterative learning is used for control, 

with the system providing the desired input. When the 

controller receives the output signal, the ILC algorithm 

repeats the output iteration and uses the alternation of new 

and old data to eliminate errors. The input signal after 

repeated iterations is transmitted to the controlled object 

and output. The error correction of ILC algorithm can be 

expressed in mathematical form, as shown in equation (3). 

1i u i e iu L u L e+ = +   (3) 

In equation (3), 
DK  represents the learning gain of 

the parameter during iterative learning, and 
ie  represents 

the derivative of the difference between the true output 

value and the ideal output value of the system. The 

mathematical expression of the error iteration update rule 

of the ILC algorithm during error iteration update is shown 

in equation (4). 

       1

0

n

k k P k I k

m

u n u n K e n K t e m+

=

= + +   (4) 

In equation (4), a fixed sampling interval t  is used 

to discretize the time into ( )0,1,...,t n t n N=  = ;  ku n  

corresponds to the control input of the n  time step in the 

k  iteration;  ke n  represents the error signal between the 

expected output and the actual output, while  
0

n

k

m

e m
=

  is 

the discrete approximation of the integral term. 
PK  and 

IK  are proportional gain and integral gain, respectively. 

ILC has a small control error when controlling smart home 

systems, but its collaborative control effect on smart 

homes is poor [17]. To compensate for the poor 

performance of ILC in system collaborative control, the 

WOA is introduced to improve the ILC algorithm. The 
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WOA, as a population-based intelligent optimization 

algorithm that mimics the  
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Figure 1: The basic principle and structure of ILC. 
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Figure 2: Implementation process of WOA. 

hunting of humpback whale populations in nature, is 

easy to operate and less prone to falling into local optimal 

solution traps. The implementation process of the WOA is 

shown in Figure 2. 

In Figure 2, the WOA first sets the initial input 

parameters and determines the population range and 

iteration times during optimization. Subsequently, the 

population is initialized and the objective function is 

solved for the independent individuals of the population. 

Finally, the population location is updated and the results 

are output. The WOA for population initialization can be 

expressed mathematically, as shown in equation (5). 

, ,( ) (0,1) ( )i j j i j j jX initial Lb rand Ub Lb= +  −   (5) 

In equation (5), Lb  means the lower bound position 

of the search space in the WOA, Ub  means the upper 

bound position of the search space in the algorithm, and 

, (0,1)i jrand  represents a random number with a value 

range of , (0,1) [0,1]i jrand  . The process of updating 

individual positions using the WOA can be expressed 

mathematically, as shown in equation (6). 
*( 1) ( ) ( ) ( )X t X t A C X t X t+ = −   −   (6) 

In equation (6), ( )X t  means the vector of the 

position of the individual whale, * ( )X t  means the 

position vector found by the leader whale of the whale 

population, and A  and C  denote the coefficient vectors. 

The WOA simulates the spiral movement of whales 

during hunting to complete the pursuit of prey, and its 

mathematical expression is shown in equation (7). 
*( 1) cos(2 ) ( )blX t D e l X t+ = +   (7) 

In equation (7), D  means the distance between the 

individual whale and its prey, and b  represents the 

constant coefficient of the whale's spiral motion. The ILC 

algorithm improved by the WOA can comprehensively 

control the system and effectively process the system 

control data. Therefore, the study utilized the WOA-ILC 

algorithm to construct a smart home human-machine 

control system and established a smart home human-

machine control model. The specific structure is shown in 

Figure 3. 

Figure 3 shows the specific implementation 

architecture of WOA-ILC in smart homes, whose core is 

to convert algorithm outputs into physical operation 

instructions for heterogeneous devices through a unified 

control bus. This architecture mainly consists of three 

parts: data acquisition module, controller based on WOA-

ILC algorithm, and smart home devices. The data 

acquisition module is responsible for collecting various 

data in the smart home environment, such as indoor 

temperature, humidity, light intensity, etc., and sending 

the collected data to the WOA-ILC controller. The 

controller based on the WOA-ILC algorithm calculates the 

optimal control input and uses the optimized control signal 

to regulate the operating status of smart home devices. 
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Smart home devices adjust their operating status based on 

the output signal of the WOA-ILC controller to achieve 

control over the smart home environment. The  
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Figure 3: Smart home human-machine control system model. 
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Figure 4: MF structure diagram. 

controller is the core component of smart home 

devices, responsible for centralized management and 

coordination of various smart terminal devices, achieving 

automation and intelligent control of the home 

environment. Specifically, the integration mechanism of 

WOA and ILC is as follows: first, the parameters of the 

ILC algorithm and the WOA are initialized. Secondly, the 

WOA dynamically adjusts the learning gain in the ILC 

algorithm, namely 
PK , 

IK , and 
DK , through its 

population search capability. In each iteration, the WOA 

updates the learning gain based on the current population 

position and objective function. Then the control input 

changes in the ILC algorithm are updated and finally the 

above process is repeated to guide the realization of a 

predetermined number of iterations or error convergence 

to a satisfactory value. Based on the above content, it can 

be seen that the design of the WOA-ILC algorithm mainly 

focuses on unimodal control performance, such as 

temperature control and humidity control. When voice 

commands and gesture commands are input 

simultaneously, the single error signal of this method 

cannot distinguish the modal source, resulting in control 

conflicts. 



154 Informatica 49 (2025) 149–162 X Zhu et al. 

Multi sensor Data collection Modal feature extraction Data transmission

Speech recognition

Gesture recognition 

Construction of Gesture 

Recognition model

Construction of Speech 

Recognition Model
Step 1

Step 2Construction of 

collaborative control model

 

Figure 5: Optimization process of multimodal smart home collaborative control model. 
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Figure 6: A human-machine collaborative control model combining MF. 

3.2 Optimization of smart home 

collaborative control model combining 

MF 

The smart home collaborative control model constructed 

using the WOA-ILC algorithm can ensure the intelligent 

control of the home system and is easy to operate. 

However, the control model constructed by the WOA-ILC 

algorithm has poor control effect on multiple modalities. 

Therefore, the study introduced MF to optimize the smart 

home collaborative control model. MF technology can 

fuse data through multiple sensors and eliminate the 

repulsion between different data modalities, thereby 

achieving data fusion. Its structure is shown in Figure 4. 

In Figure 4, MF combines different single modalities 

and integrates data between them, mainly focusing on the 

fusion of features between speech and text data. After the 

feature extraction of speech and text data is completed, 

feature level fusion can be performed through tensor 

concatenation operation in equation (8), and then decision 

level MF can be performed using attention weighted 

fusion in equation (11). When performing MF, the weight 

tensor is used to linearly expand the modality, and the 

mathematical representation of vector generation is 

obtained using the input tensor, as shown in equation (8). 

1

M

m
m

Z z
=

=    (8) 

In equation (8), Z  represents the input tensor 

generated by MF. 
mz  represents the feature tensor of the 

m  mode, and M  represents the total number of modes. 

MF decomposes data weights into different modal factors, 

and its mathematical expression is shown in equation (9). 

1 , ,

1

( )
R

M

m m k m k

k

W W=

=

=    (9) 

In equation (9), m  represents the modal factor and R  

represents the minimum tensor rank. ,m k  represents the 

contribution weight of the m  modality in the k  factor, 

and ,m kW  represents the k  factor weight of the m  

modality. The optimization process of the smart home 

collaborative control model using multimodality is shown 

in Figure 5. 

In Figure 5, MF technology mainly collects data 

through multiple data sensors and extracts features from 

different data modalities. After the feature extraction of 

different data modalities is completed, it can be processed 

through a collaborative control model, which can 

comprehensively process multiple inputs and output 

control decisions. In the smart home control model, data 

collection and transmission of speech recognition and 

gesture recognition are carried out through multiple 

sensors, and the data information of speech and gesture is 

preprocessed to reduce the loss of speech and gesture 

information, ensuring the integrity of speech and gesture 

information [18-20]. When collecting speech data 
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information, a speech recognition model is first 

established to preprocess the language information to 

improve the decoding efficiency of the decoder for 

language information. For language data collection in 

speech information, the probability of word sequence 

occurrence is calculated, and the calculation of word 

generation probability can be expressed mathematically, 

as shown in equation (10). 

1

1 1
1

( ) ( ) ( )
K

K k

k
k

p W p w p w w −

=

= =    (10) 

In equation (10), K  means the total number of words 

contained in the recognized speech information, and 
kw  

represents the k th word string in the number of 

recognized words. The construction of a collaborative 

control model for smart home human-machine system 

using WOA-ILC combined with MF is shown in Figure 6. 

As shown in Figure 6, firstly, the collected 

multimodal data is sent to the feature extraction module. 

Secondly, key features are extracted and transmitted to the 

MF module. The fused feature vectors are used for 

subsequent control or decision-making. Based on the 

fused feature data, the optimal control input is calculated 

using the WOA-ILC algorithm, and the optimized control 

signal is sent to the actuator. Finally, the operating status 

of the smart home device is adjusted based on the output 

signal of the controller. The MF for gesture and speech 

recognition can be expressed mathematically, as shown in 

equation (11). 

( ) ( )  

1

,
N

v g

voice gesture i v i g i

i

h Attention Z Z W z W z
=

= =  ‖   (11) 

In equation (11), 
 voiceZ  and  gestureZ  are the feature 

sequences of the speech modality and gesture modality, 

vW  and gW  are the projection matrices of the 

corresponding modalities, 
i  represents the attention 

weight of the time step, h  is the fused feature 

representation, and ‖  represents vector concatenation. 

The data feature extraction of voice information and 

gesture recognition information can be represented by 

mathematical expressions, as shown in equation (12). 

( ) ( ) ( ) ( )

( ) 1

(1) (1) (1)

1

n
t t t t

k k k k
n k

ab n

rk rk rk

k

D S C Z

R

a b z

=

=

=



  (12) 

In equation (12), 
( )t

abR  represents the correlation 

between voice nodes and gesture nodes at different times, 

and n  represents the number of intermediate nodes 

between gesture nodes and voice nodes. 
( )t

kD , 
( )t

kS , 
( )t

kC , 

and 
( )t

kZ  represent the data matrix, state matrix, context 

matrix, and feature vector of the k  feature at time t . 
(1)

rka  

and 
(1)

rkb  are the weights of the r  speech node and gesture 

node on the k  feature, respectively. 
(1)

rkz  represents the 

feature value of the r  node on the k  feature. 

4 Empirical analysis of integrating 

multimodal smart home control 

models 

4.1 Performance validation of improved 

iterative control model 

To validate the performance of the improved iterative 

control model, model control experiments were conducted 

in Matlab software using Windows 11 system, Intel i5-

12600KF processor, and NVIDIA GTX1070 graphics 

card model. Different types of smart homes, including 

smart air conditioners, smart refrigerators, and smart 

washing machines, were collected from the network, and 

the collected data was divided into training data and 

testing data. The voice commands were sourced from 

home environment recordings with a sample size of 8000, 

including background noise. The gesture trajectories were 

sourced from infrared depth cameras with a sample size of 

6500, including 10 control gestures. The device status was 

sourced from smart home device logs with a sample size 

of 12000, featuring real-time recording of temperature, 

humidity, and power consumption. The dataset was 

divided into a training set and a testing set according to 

7:3. The collection and use of personal data complied with 

privacy protection regulations and ethical requirements. 

The experimental parameters are set as follows: the 

population size, helix coefficient, and maximum iteration 

number of the WOA algorithm were set to 50, 1.0, and 

200, respectively. The initial learning gain, differential 

gain, integral gain, and sampling interval in the ILC 

algorithm were 0.5, 0.05, 0.01, and 10ms, respectively. 

The backbone network of the speech recognition model 

adopted a two-layer bidirectional long short-term memory 

network and a 1-layer convolutional neural network, with 

the former having a hidden layer of 256 and the latter 

having 3 * 3, 64 channels. The training was 50 cycles 

(early stop), Batch=32, and the optimizer was AdamW. 

The architecture of the gesture recognition model is as 

follows: with a 1D convolutional neural network as the 

backbone network, Kernel=5, Stride=2, 64 → 128 → 256 

channels, combined with the max pooling layer. The 

optimizer selected stochastic gradient descent. To verify 

the effectiveness of the WOA-ILC model, it was 

experimentally compared with the Particle Swarm 

Optimization-Genetic Algorithm (PSO-WA) model, the 

Grey Wolf Optimization-Back Propagation Neural 

Network (GWO-BP) model, and the Deep Reinforcement 

Learning (DRL) model. The DRL strategy network is a 3-

layer fully connected network, and the value network 

adopts a symmetrical structure with the strategy network. 

The training cycle is 50000 steps (early stop strategy), and 

its end-to-end optimization characteristics are suitable as 

a performance upper limit reference. The input layer, 

hidden layer, and output layer of GWO-BP  
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Figure 7: Comparison of control accuracy of different models. 

were 8, 24, and 4, respectively. The population size and 

maximum iteration times were 50 and 200, respectively. 

Its interpretability and stability reflected the advantages 

and disadvantages of traditional methods. The crossover 

probability and mutation probability of the PSO-WA 

model were 0.85 and 0.02, respectively, making it suitable 

as a representative of metaheuristic algorithms. The 

comparison results are shown in Figure 7. 

Figures 7 (a)-7 (c) correspond to the control accuracy 

tests of different models under single-device control, 

multi-device collaborative control, and noisy 

environments. According to Figure 7 (a), WOA-ILC had 

the highest control accuracy for smart homes, with an 

average control accuracy of 0.9212 and a maximum 

control accuracy of 0.9387. Moreover, the control 

accuracy for smart homes was not affected by changes in 

time span. The highest control accuracy of the PSO-WA 

model reached 0.8751, which was 0.0636 lower than the 

WOA-ILC model. From Figure 7 (b), the WOA-ILC 

model continuously improved its control accuracy for 

smart homes over time, with the highest control accuracy 

reaching 0.9412 and the average control accuracy being 

0.9053. For the GWO-BP model, it could not perform well 

in controlling smart homes at the beginning, and over 

time, the control accuracy of smart homes slowly 

increased. Compared with the WOA-ILC model, the 

highest control progress was reduced by 0.1045. From 

Figure 7 (c), the control accuracy of the WOA-ILC model 

slowly increased with time and maintained a certain 

balance. Its average control accuracy was 0.8976, which 

was 0.2742 higher than that of the DRL model. The above 

outcomes denoted that the WOA-ILC model had higher 

precision in smart home control compared to other control 

models, and could perform high-precision control of smart 

homes well. The above results may be due to the fact that 

the WOA can dynamically adjust the search range and 

direction during the iteration process, which can 

effectively avoid getting stuck in local optima. To verify 

the control accuracy error of the WOA-ILC model on 

smart homes, RMSE and Mean Absolute Error (MAE) 

were used as experimental indicators. Different models 

were compared using the same dataset, and the 

experimental outcomes are indicated in Figure 8. 

Figures 8 (a)-8 (c) correspond to the control error 

results of the WOA-ILC model, PSO-WA model, and 

GWO-BP model. From Figure 8 (a), the highest MAE 

value of the WOA-ILC model was 0.167, and the highest 

RMSE was 0.196. At the beginning of smart home control, 

the error value generated by controlling the home was 

relatively small, and over time, the control error of the 

smart home gradually decreased. When the control time 

reached 45 minutes, the MAE value for smart home 

control was the lowest, which was 0.094, and the lowest 

RMSE was 0.112. According to Figure 8 (b), the highest 

MAE of the PSO-WA model was 0.373, and the highest 

RMSE was 0.338. Overall, as time goes  
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Figure 8: Comparison of control errors between different models. 
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Figure 9: Comparison of PR curves for different control models. 

on, the error value of the PSO-WA control model 

fluctuated to some extent and reached its minimum value 

at 30 minutes before increasing again. When the control 

time was 30 minutes, the RMSE reached a minimum of 

0.216, which was 0.104 higher than the WOA-ILC model. 

The minimum MAE was 0.151, which was 0.057 higher 

than the WOA-ILC model. From Figure 8 (c), the control 

error of the GWO-BP model gradually decreased with 

time. The highest MAE was 0.337, which was 0.17 higher 

than the WOA-ILC model. The highest RMSE was 0.324, 

which was 0.128 higher than the WOA-ILC model. The 

above results indicated that the WOA-ILC model had a 

small control error for smart homes and performed well in 

controlling smart homes. This is because WOA can 

dynamically adjust the learning gain based on the current 

population position and objective function, so that it can 

better approximate the ideal output in each iteration. This 

dynamic adjustment mechanism significantly improves 

the convergence speed and control accuracy of the system. 

To further validate the control performance of the control 

model, an experimental comparison was conducted on its 

precision-recall (PR) curve, and the results are shown in 

Figure 9. 

Comparison of PR curves for different methods in the 

cases of few-batch and multi-batch corresponds to Figure 

9 (a) and Figure 9 (b). According to Figure 9 (a), when the 

WOA-ILC model was used to control small batch smart 

homes, the PR curve area was 0.9758, which was higher 

than the other three control models. The offline area of the 

PR curve of the PSO-WA control model was 0.9213, 

which was 0.0545 lower than that of the WOA-ILC model. 

Compared with the DRL model, the PR curve area of the 

WOA-ILC model increased by 0.2471. From Figure 9 (b), 

when performing multi-batch  



158 Informatica 49 (2025) 149–162 X Zhu et al. 

Table 2: Statistical test results. 

Comparison group MF-WOA-ILC vs PSO-GA MF-WOA-ILC vs DRL MF-WOA-ILC vs GWO-BP 

Experimental group mean 0.9387 0.9387 0.9387 

Control group mean 0.8751 0.8234 0.8346 

t-values 7.82 9.15 8.37 

p-value <0.001 <0.001 <0.001 

Cohen's d 1.24 1.53 1.41 

Table 3: Actual deployment of equipment. 

Types of home furnishings Number of data Model Brand 

Smart refrigerator 50 XQS70-128 Meiling refrigerator 

Air conditioning 50 KFR-50GW/N1A1 Xiaomi air conditioner 

Washing machine 50 EG100MATESL6 Haier washing machine 

Smart TV 50 KD-75X9000F Sony TV 
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Figure 10: Comparison of system occupancy between different control models. 

smart home control, the PR curve area of the WOA-ILC 

model decreased, but it was still significantly higher than 

the other three models at 0.9645, which was 0.0753 higher 

than the PSO-WA model and 0.1368 higher than the 

GWO-BP model. To further quantify the performance of 

the comparative methods, statistical tests were conducted, 

and the results are shown in Table 2. 

According to Table 2, the experimental group showed 

a statistically significant advantage (p<0.001) in all 

comparisons, and an effect size exceeding 1.2 indicated 

that the differences in research methods were of practical 

significance. The F-value of the three groups' repeated 

cross validation was 46.37, (p<0.001). 

4.2 Practical effect analysis of MF smart 

home collaborative control model 

To analyze the practical effect of WOA-ILC smart home 

control combined with MF, different types of smart home 

control modes, including speech recognition and gesture 

recognition, were collected from different households for 

experimental verification. 200 sets of data were collected 

from the network. Due to the low complexity of research 

methods, there is no need for a large amount of training 

data to learn model parameters. In this case, less training 

data may already be sufficient, while more testing data can 

better evaluate the model's generalization ability. At the 

same time, to ensure that the testing set has sufficient 

sample size to evaluate the model's performance, 50 sets  
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Figure 11: Comparison of response times of different models. 

of data were used as the training set and 150 sets of data 

were used as the testing set. The actual deployed 

equipment is shown in Table 3. 

To verify the system occupancy rate of the WOA-ILC 

control model combined with MF, different home control 

system occupancy rate experiments were compared with 

the PSO-WA model and GWO-BP model. The 

experimental results are shown in Figure 10. 

According to Figure 10 (a), when the MF-WOA-ILC 

control model was used for intelligent refrigerator control, 

the system occupancy rate was 0.131%, the system 

occupancy rate for smart air conditioner control was 

0.095%, the system occupancy rate for smart washing 

machine control was 0.061, and the system occupancy rate 

for smart air conditioner was 0.054. From Figure 10 (b), 

when the PSO-WA model was used for intelligent 

refrigerator control, the system occupancy rate reached 

0.72%, which was 0.041% higher than the occupancy rate 

of the MF-WOA-ILC model. The system occupancy rate 

during smart TV control was 0.116, which was 0.088 

higher than the MF-WOA-ILC model. The system 

occupancy rates of smart air conditioner and smart 

washing machine reached 0.159% and 0.149% 

respectively. From Figure 10 (c), the GWO-BP model 

achieved occupancy rates of 0.184%, 0.178%, 0.219%, 

and 0.141% for the four types of smart home control 

systems, respectively. Compared with the MF-WOA-ILC 

control model, the system occupancy rate for smart air 

conditioner control increased by 0.088%, and the system 

occupancy rate for smart washing machine control 

increased by 0.117. This is because MF technology can 

more comprehensively reflect the user's intention and 

environmental status by fusing data from different 

modalities, thereby improving the control accuracy of the 

system. Simultaneously, through tensor concatenation and 

attention weighted fusion, the features of speech and 

gesture modalities are effectively integrated. This can 

preserve more useful information, reduce information 

loss, and thus improve the quality of data representation. 

To verify the system response time of the MF-WOA-ILC 

HMCC model, it was experimentally compared with the 

PSO-WA model and GWO-BP model, and the results are 

shown in Figure 11. 

In Figure 11 (a), the MF-WOA-ILC control model 

required less response time and had a fast response speed. 

Under 25 sets of data conditions, the average response 

speed was 10.31ms. As the data increased, the response 

time decreased and the response speed slowly accelerated. 

When the number of data reached 50, the average response 

speed reached a maximum of 24.12ms. The PSO-WA 

model necessitated a longer system reaction time than the 

suggested model, as seen in Figure 11(b). Its average 

response speed, when tested on 25 data sets, was 5.35 ms, 

4.96 ms faster than the MF-WOA-ILC model. Its average 

response time, when 50 sets of data were included, was 

18.89 ms, 5.23 ms faster than the MF-WOA-ILC model. 

The GWO-BP model had average response speeds of 4.48 

ms and 16.21 ms, respectively, when there were 25 and 50 

sets of data. This was 5.83 ms and 7.91 ms faster than the 

MF-WOA-ILC model, as shown in Figure 11 (c). To test 

the effectiveness of different parts of the MF-WOA-ILC 

model in practical  
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Table 4: The effectiveness of different parts of the MF-WOA-ILC model in practical applications. 

Evaluation Single voice Single gesture MF-WOA-ILC model 

Inference time/ms 6.2 3.5 2.1 

Memory usage/% 58.3 42.1 16.4 

CPU utilization rate/% 12.7 8.9 5.2 

 

applications, the study introduced inference time, memory 

usage, and CPU utilization for evaluation. The results are 

shown in Table 4. 

Table 4 shows that the speech recognition module had 

the highest time consumption, at 6.2ms, mainly due to its 

bidirectional LSTM network needing to process temporal 

signals. The gesture recognition module has reduced its 

time consumption by 44%. After being processed by MF 

technology, the time consumption was only 2.1ms. In the 

fusion stage, WOA's population parallel computing was 

used to achieve an ultra-low occupancy of 5.2%. In 

addition, the research method could increase market share 

by 8% in terms of energy-saving benefits, maintenance 

costs, and annual single household benefits retained by 

users, which were 320-450%, 150-200%, and 12%-15%, 

respectively. 

4.3 Discussion 

The MF-WOA-ILC model was designed to address the 

challenges of HMCC in smart home environments. The 

experimental results showed that, firstly in terms of 

accuracy, the research model achieved high control 

accuracy in smart home control, with an average control 

accuracy of 0.9212 and a maximum control accuracy of 

0.9387. Meanwhile, its maximum RMSE was 0.196 and 

maximum mean absolute error was 0.167, significantly 

better than the RMSE of 0.468 in reference [15]. This 

indicates that the research method can achieve more 

accurate HMCC when dealing with smart home control 

tasks in complex dynamic environments. 

Secondly, in terms of controlling latency, the MF-

WOA-ILC model had an average response time of 

10.31ms under 25 data conditions and a response time of 

24.12ms under 50 data conditions. This fast response 

capability enabled it to better adapt to tasks in smart home 

environments that require high real-time performance, 

such as real-time control and feedback of smart devices. 

Most existing literature has not quantitatively analyzed 

control delay. 

In terms of system occupancy rate, the system 

occupancy rate in reference [8] was 1.25%. The MF-

WOA-ILC model had significantly lower system 

occupancy rates in different smart home device controls, 

which were 0.131% for smart refrigerators, 0.095% for 

smart air conditioners, 0.061% for smart washing 

machines, and 0.054% for smart TVs. This indicates that 

the method proposed in this article has significant 

advantages in resource utilization efficiency, can 

effectively reduce system resource consumption, and is 

suitable for application on embedded devices with limited 

resources. 

Finally, in terms of the scope of multimodal 

integration, the research results of references [12] - [16] 

focused on a single application scenario and did not 

involve the application scenario of collaborative control. 

However, the MF-WOA-ILC model could significantly 

improve the flexibility and adaptability of smart home 

control. In summary, the research methods have 

significant advantages in various aspects, providing new 

ideas and technical support for the research and 

application in this field. 

5 Conclusion 
Aiming at the problem that traditional smart home control 

methods cannot achieve good HMCC, a method was 

proposed to improve the construction of a smart home 

HMCC model by combining ILC with MF. ILC was 

improved to determine the input and output of the control 

system, and errors in home data were iteratively reduced, 

and finally MF was combined to fuse speech and gesture 

modalities for multimodal HMCC. The experimental 

results showed that the MF-WOA-ILC model had a 

maximum MAE of 0.167 and a maximum RMSE of 0.196 

when performing smart home collaborative control, with 

a control accuracy of 0.9387 and an average control 

accuracy of 0.9212. In practical applications, the proposed 

control model had a system occupancy rate of 0.131%, 

demonstrating high accuracy and good control 

performance. In summary, the proposed model could 

effectively carry out HMCC of smart homes, with high 

control accuracy. However, there are still certain 

limitations in the research, as the research method only 

integrates speech and gesture modalities, which limits the 

system's adaptability in multiple scenarios. Therefore, in 

future research, facial expressions, EEG signals, eye 

tracking and other modalities can be introduced to 

enhance the robustness of the system. 
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