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With the widespread application of blockchain technology, the security of private transactions has 

become a bottleneck restricting further development. This project presents a blockchain privacy 

transaction optimization model utilizing zero-knowledge proof (ZKP). By extracting data features such 

as transaction volume, transaction frequency, and counterparty trustworthiness, the model dynamically 

assigns weights through an entropy-based framework for different transaction scenarios. It also 

adaptively modifies certificate generation and verification strategies using reinforcement learning to 

enhance efficiency and security. In terms of experiments, a blockchain simulation environment is 

constructed, and 100,000 transaction data points are used as samples to compare the DA-ZKP 

algorithm and the traditional zero-knowledge proof algorithm. The experimental results show that the 

DA-ZKP algorithm reduces the generation time by 35%, the verification time by 28%, and the memory 

overhead by 22% on average. At the same time, the algorithm has a privacy protection capability 

comparable to traditional algorithms and can resist replay and tampering attacks. The optimization 

model and algorithm proposed in this project can effectively improve the efficiency and security of 

blockchain privacy transactions and provide a new idea for developing blockchain privacy protection 

technology. 

Povzetek: Optimizacijski model DA-ZKP z entropijskimi utežmi in prilagodljivo strategijo omogoča 

bolj kvalitetne zasebne transakcije v verižnem načinu, saj zmanjša čas generiranja, preverjanja in 

pomnilniško porabo. 

 

 

1 Introduction 
Blockchain technology is transforming various 

industries through its decentralized nature, distributed 

ledger system, and cryptographic algorithms. However, 

the privacy risks associated with blockchain's 

transparency have become a significant barrier to its 

widespread adoption. This study aims to develop an 

optimized model for blockchain privacy transactions 

using zero-knowledge proof. We hypothesize that a 

dynamic adaptive zero-knowledge proof algorithm (DA-

ZKP) can significantly enhance transaction efficiency by 

35% and reduce storage overhead by 22% while 

maintaining robust privacy protection equivalent to 

traditional ZKPs. In finance, the traditional SWIFT 

international remittance process takes 3-5 working days, 

while the blockchain-based Ripple system can shorten 

the transaction confirmation time to 3-5 seconds; in 

supply chain management, Walmart uses blockchain to 

shorten the traceability time of spinach from the original 

7 days to 2.2 seconds; the medical community also uses 

blockchain technology to achieve secure sharing of 

electronic medical records. However, the openness and 

transparency of blockchain transaction data also bring 

the risk of privacy leakage. The transaction records of 

cryptocurrency are public, and attackers can track the  

 

flow of funds and determine the identity of users; in the 

supply chain finance scenario, the leakage of commercial  

sensitive information will put enterprises at a 

disadvantage in competition, and the security of privacy  

transactions has become a bottleneck restricting its large-

scale commercial application. Zero-knowledge proof 

(ZKP) is an effective way to ensure privacy protection in 

blockchain. The foreign Zcash system has constructed a 

privacy transaction protocol based on ZK-SNARK to 

achieve the anonymization of ciphertext transactions; 

based on the domestic Ant Chain Moss secure computing 

platform that combines homomorphic encryption and 

ZKP, it has carried out research on supply chain financial 

credit evaluation. However, the existing blockchain 

privacy transaction schemes have shortcomings in 

efficiency, security, storage, etc. Regarding efficiency, 

the traditional zk-Snark’s algorithm has a high 

computational complexity [1]. It takes more than 5 

seconds for a single node to generate 100,000 

transactions, and the verification overhead is huge; 

Ethereum certificate verification costs about 2 million 

Gas. Regarding security, most schemes have been proven 

to be fixed and cannot cope with changes in transaction 

scenarios [2]. Regarding storage, zk-Snark’s proof data 

occupies 30% of the storage space of blockchain nodes, 

limiting the scalability of the network. 
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To address these challenges, this paper introduces a 
blockchain privacy transaction optimization model 
grounded in zero-knowledge proof and devises a dynamic 
adaptive zero-knowledge proof algorithm (DA-ZKP). 
Unlike existing adaptive ZKP models such as modular zk-
SNARK enhancements and zk-STARK advancements, our 
algorithm innovatively extracts 12 data features in real 
time via a multi-dimensional feature analysis model. It 
then employs the entropy weight method for dynamic 
weight allocation and leverages reinforcement learning to 
adaptively adjust proof strategies, offering a more 
comprehensive solution that integrates real-time feature 
analysis with dynamic parameter optimization. Build a 
blockchain simulation test network with 500 nodes, use 
100,000 real transaction data, and conduct comparative 
tests with mainstream algorithms such as zk-SNARKs and 
Bulletproofs to validate a 35% reduction in proof 
generation time and 22% reduction in storage overhead. 

2 Blockchain privacy transaction 

optimization model based on zero-

knowledge proof 
2.1 Model design goals and principles 

Blockchain privacy transactions face the problem of 

balancing efficiency and security. In high-concurrency 

scenarios, traditional transaction confirmation methods 

are slow due to complex calculations, and a large amount 

of privacy data storage increases the resource burden of 

nodes and limits the system's scalability [3]. To this end, 

this project intends to establish an efficient, secure, 

scalable blockchain privacy transaction optimization 

model. This project intends to conduct research around 

three core goals: First, improve transaction efficiency. 

For high-frequency financial transaction scenarios, 

optimize the zero-knowledge proof process and shorten 

the transaction confirmation time from seconds to 

milliseconds; second, strengthen privacy protection to 

ensure the confidentiality and integrity of transaction 

information throughout the life cycle in scenarios such as 

supply chain finance and medical data sharing; third, 

reduce computing and storage costs, reduce node 

burdens and reduce system operating costs through 

algorithm and architecture innovations. The model 

design should follow three principles to achieve the goal 

[4]. In terms of security, using quantum-resistant 

cryptographic algorithms and strict verification 

mechanisms can resist various attacks and ensure 

transaction information security. In terms of efficiency, 

this project intends to introduce a dynamic adaptive 

strategy to adjust the verification strategy according to 

real-time transaction characteristics, and combine 

parallel computing to reduce time complexity. In terms 

of scalability, this project intends to adopt a modular 

architecture to support the dynamic growth of blockchain 

network nodes and transaction volumes in a standardized 

interface interaction method to adapt to various 

application scenarios [5]. In terms of security 

quantitative evaluation, define the security strength 

function S 

𝑆 = 𝛼 ⋅ 𝑃enc + 𝛽 ⋅ 𝑃𝑣𝑒𝑟 + 𝛾 ⋅ 𝑃ano                         (1) 

where Penc is the encryption strength, Pver is the 
verification reliability, and Penc is the anonymity 
degree.Among them, Penc  represents the information 
encryption strength, which is measured by the key length of 
the cryptographic algorithm, anti-attack, and other factors; 
Pver  represents the verification reliability, which is 
calculated based on the success rate of the verification 
mechanism to resist attacks; 𝑃ano represents the degree of 
anonymity, which is evaluated according to the degree of 
hiding of transaction information. 𝛼, 𝛽, 𝛾  are weight 
coefficients, and 𝛼 + 𝛽 + 𝛾 = 1are dynamically adjusted 

for scenarios: e.g., α =0.5 for financial transactions to 

prioritize encryption, and γ=0.4 for supply chain use cases 

to emphasize anonymity. Different application scenarios 
can adjust the weights according to needs. Efficiency is 
measured by transaction processing speed 𝑇𝑝: 

𝑇𝑝 =
1

𝑡gen +𝑡𝑣𝑒𝑟
                                                (2) 

Among them, 𝑡𝑔𝑒𝑛   is the proof generation time, and 

𝑡𝑣𝑒𝑟 is the verification time. This indicator directly reflects 
the efficiency of the model in processing transactions. The 
storage cost 𝐶𝑠  is calculated as follows: 

𝐶𝑠 = ∑  𝑛
𝑖=1 𝑠𝑖 ⋅ 𝑤𝑖                                            (3) 

Among them, 𝑠𝑖  is the storage size of the 𝑖 data item, 
and 𝑤𝑖   is its weight. The weight can be set according to 
factors such as the importance and frequency of access to 
the data. 

2.2 Model architecture design 

The model adopts a hierarchical modular architecture 

consisting of four modules: transaction initiation, zero-

knowledge proof generation, transaction verification, and 

data storage. The entire transaction process is completed 

collaboratively [6]. The transaction initiation module is 

the entrance to user interaction. The data is first verified 

for legitimacy and format when receiving a transaction 

request. Then the private key signature is used to ensure 

the data's non-repudiation, and the transaction's priority is 

marked. The zero-knowledge proof generation module is 

based on transaction data and uses a dynamic adaptive 

algorithm to protect user privacy. The method first 

conducts a deep analysis of the data, uses the entropy 

weight method to determine the weight, and combines 

elliptic curve cryptography and bilinear peer technology 

to construct a zero-knowledge proof that meets the 

requirements of high efficiency and security, and 

improves the generation speed through pipeline parallel 

processing [7]. The transaction verification module is a 

multiple verification of transaction data and proofs. The 

hash method is used to verify the integrity of the data, the 

public key decryption method is used to verify the validity 

of the signature, and the proof verification function is 

used for verification. The transaction is considered legal 

only after the entire process is completed. The data 

storage module adopts a distributed structure, stores data 

in multiple nodes, compresses the data, implements the 

cold and hot data separation strategy, reduces storage 

overhead, and uses indexing and query functions to 

ensure fast data retrieval. 
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2.3 Analysis of the core modules of the 

model 

2.3.1 Zero-knowledge proof generation module 

The zero-knowledge proof generation module is the 
core component of the model, and its performance directly 
impacts transaction efficiency and privacy protection. This 
module employs a dynamic adaptive zero-knowledge 
proof algorithm (DA-ZKP) that dynamically adjusts the 
proof generation strategy based on real-time transaction 
data characteristics, such as transaction amount, frequency, 
and counterparty credibility. This adaptive adjustment is 
enabled by an entropy weight-based feature analysis and 
reinforcement learning, reducing proof generation time by 
over 30% compared to traditional zk-Snark’s algorithms. 
First, the transaction data is feature extracted to construct 

a feature vector 𝐹⃗ = [𝑓1, 𝑓2, ⋯ , 𝑓𝑚]. These features cover 
multiple dimensions such as transaction amount, 
transaction frequency, credibility of both parties, and 
transaction time [8]. Taking the transaction amount as an 
example, transactions with larger amounts may require 
higher levels of privacy protection, so there should be a 
focus on the proof generation strategy; users with high 
transaction frequencies may have special transaction 
patterns, and the proof parameters also need to be adjusted 
in a targeted manner. The weights  𝜔𝑖of each feature are 
calculated using the entropy method: 

𝜔𝑖 =
1−𝑒𝑖

∑  𝑚
𝑗=1  (1−𝑒𝑗)

                                                  (4) 

Among them, 𝑒𝑖  is the abstract value of the 𝑖 feature. 
The smaller the entropy value, the higher the information 
value of the feature, and the larger the corresponding 
weight. According to the calculated feature weight, the 
adaptive parameter adjustment function 𝜑  is used to 
determine the proof generation parameter 𝜃: 

𝜃 = 𝜑(𝐹⃗, 𝜔)                                                      (5) 

This function comprehensively considers the 
characteristics and weights of transaction data. It 
dynamically selects the optimal proof generation 
parameters, such as elliptic curve parameters, the number 
of bilinear pairings, etc., through machine learning 
algorithms or preset rule bases [9]. In the proof generation 
process, based on elliptic curve cryptography (ECC) and 
bilinear pairing technology, a zero-knowledge proof 
generation function Π is constructed 

Π(𝐹⃗, 𝜃) = {𝜋1, 𝜋2, ⋯ , 𝜋𝑘}                                (6) 

Among them, 𝜋𝑖   is the generated proof component. 
Specifically, according to the parameter 𝜃 , a suitable 
elliptic curve is selected to create a public and private key 
pair. Secondly, the key information in the transaction data 
is mapped to the elliptic curve using a hash function and 
combined with the private key to generate a series of proof 
components [10]. These components can prove the 
transaction's legitimacy to the verifier without leaking 
specific transaction information. The research results of 
this project will effectively reduce the amount of 

calculation and time overhead in the proof generation 
process while ensuring user privacy, reducing it by more 
than 30% compared with traditional algorithms. 

2.3.2 Transaction verification module 

The transaction verification module is responsible for 
verifying the transaction's legitimacy and the validity of the 
zero-knowledge proof. The accuracy and efficiency of its 
verification process are directly related to the security and 
stability of the blockchain network [11]. The verification 
process is divided into two stages. 

First, verify the integrity of the transaction data and the 
validity of the signature. Use the hash function 𝐻 to process 
the transaction data 𝑇𝑥 to obtain the hash value 𝐻(𝑇𝑥). At 
the same time, the public key PubKey of the transaction 
initiator is used to decrypt the digital signature Sig to obtain 
the original hash value. Compare it through the digital 
signature verification algorithm 𝑉: 

𝑉(𝐻(𝑇𝑥), Sig , PubKey ) =

{
 true,  if valid 

 false,  otherwise 
        (7) 

Suppose the decrypted hash value is consistent with the 
calculated hash value. In that case, the transaction data has 
not been tampered with during the transmission process and 
is indeed initiated by a legitimate user. 

Secondly, the validity of the zero-knowledge proof must 

be verified. Combined with the transaction data feature 𝐹⃗ 
and the generated parameter 𝜃, verify the authenticity of the 
proof: 

Ψ(Π, 𝐹⃗, 𝜃) = {
 true,  if valid 

 false,  otherwise 
                  (8) 

 

3 Dynamic adaptive zero-knowledge 

proof algorithm (DA-ZKP) 
3.1 Algorithm design idea 

In the dynamic weight allocation mechanism, the 

transaction amount 𝐴, transaction frequency 𝐹 , and the 

credibility of both parties 𝑅1  and 𝑅2 are selected as core 

features based on a deep analysis of the blockchain 

privacy transaction requirements. To reasonably map the 

continuous variable of the transaction amount to the 

weight calculation interval, the logistic mapping function 

𝜙𝐴(𝐴)is introduced to normalize transaction amounts to 

the [0,1] interval: 

𝐴̃ = 𝜙𝐴(𝐴) =
1

1+𝑒−𝑘𝐴(𝐴−𝜇𝐴)
                            (9) 

Among them, the parameter 𝑘𝐴   determines the 
steepness of the function curve, and 𝜇𝐴  is the center point. 

When the transaction amount 𝐴 is much larger than 𝜇𝐴, 𝐴̃ 
approaches 1, indicating that the transaction requires high 
privacy protection; conversely, when 𝐴  is much smaller 

than 𝜇𝐴, 𝐴̃ approaches 0, which means that the protection 
level can be appropriately reduced. 

For the transaction frequency F, in high-frequency 
trading scenarios such as high-frequency quantitative 
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trading of digital currencies, if the traditional high-
complexity proof algorithm is used, it will cause 
transaction confirmation delays and seriously affect the 
execution effect of the trading strategy. Therefore, it is 
mapped to the [0,1] interval through the linear 
normalization function 𝜙𝐹(𝐹): 

𝐹̃ = 𝜙𝐹(𝐹) =
𝐹−𝐹min

𝐹max−𝐹min
                                (10) 

This enables high-frequency trading to adapt to 
efficient proof strategies. The comprehensive evaluation of 
the credibility of both parties to the transaction, 𝑅1 and 𝑅2, 
provides a basis for transaction risk control. In supply 
chain finance, a more stringent verification process is 
required when trading with companies with lower 

credibility. The comprehensive credibility  𝑅̃is calculated 
by the weighted average formula: 

𝑅̃ =
𝛼𝑅1+𝛽𝑅2

𝛼+𝛽
                                             (11) 

Among them, α and β can be dynamically adjusted 
according to the transaction type and scenario. For 
example, the reputation weight can be appropriately 
increased in risk-sensitive transactions. 

Regarding the adaptive strategy adjustment 
mechanism, the strategy decision function Γ  is the 
"intelligent center" of the algorithm [12]. It takes the 
dynamic weight vector 𝜔⃗⃗⃗ = [𝜔𝐴 , 𝜔𝐹 , 𝜔𝑅]   as input, and 
outputs the optimal proof generation parameter  𝜃   and 
verification parameter ϑ through machine learning or 
heuristic rules: 

𝜃, 𝜗 = Γ(𝜔⃗⃗⃗)                                            (12) 

For example, when the transaction amount weight 𝜔𝐴 
is high and the transaction frequency weight 𝜔𝐹  is low, the 
algorithm may choose zk-SNARK to adjust its elliptic 
curve parameters to enhance security; when 𝜔𝐹  is 
dominant, it switches to the Bulletproofs protocol to reduce 
the proof generation and verification time and achieve 
efficiency first. 

 

3.2 Algorithm process 

3.2.1 Transaction data preprocessing 

This link is crucial for data preprocessing, transforming 
raw data into standardized inputs via cleaning, formatting, 
and feature extraction. The term "data preprocessing 
module" replaces non-technical phrasing, ensuring clarity 
in academic writing[13]. Outlier detection uses the 
interquartile range (IQR) method, as described in equation 
(13), to correct anomalies and maintain data quality. 

Outlier detection is the key to ensuring data quality in 
the data cleaning stage. Taking the interquartile range 
(IGR) method to process the transaction amount as an 
example, first calculate the first quartile 𝑄1 and the third 
quartile 𝑄3 , and then get the interquartile range IQR =
𝑄3 − 𝑄1: 

IQR = 𝑄3 − 𝑄1                                              (13) 

For the correction of outliers, the following rules are 

adopted: 

𝐴corrected =

{

𝑄1 − 1.5 ⋅ IQR,  if 𝐴 < 𝑄1 − 1.5 ⋅ IQR
𝐴,  if 𝑄1 − 1.5 ⋅ IQR ≤ 𝐴 ≤ 𝑄3 + 1.5 ⋅ IQR
𝑄3 + 1.5 ⋅ IQR,  if 𝐴 > 𝑄3 + 1.5 ⋅ IQR

(14) 

For example, in a supply chain blockchain system, this 
method successfully identified and corrected abnormal 
transaction amounts caused by data entry errors, avoiding 
subsequent algorithm misjudgment. 

In the feature extraction stage, it is of great significance 
to use the sliding window algorithm to calculate the 
transaction frequency 𝐹. Taking the time window size Δ𝑡 
as an example, the number of transactions 𝑛  is counted 

within the window, and the transaction frequency 𝐹 =
𝑛

Δ𝑡
. 

At the same time, the credibility 𝑅1and𝑅2 of both parties to 
the transaction is obtained from the built-in reputation 
evaluation system of the blockchain or the external trusted 

data source. Finally, the feature vector 𝐹⃗ = [𝐴̃, 𝐹̃, 𝑅̃]  is 
constructed. 

 

3.2.2 Dynamic weight calculation 

The dynamic weight calculation adopts the entropy 
weight-hierarchical analysis hybrid algorithm, which 
combines the advantages of objective data drive and 
subjective experience judgment. Calculation of information 
entropy  𝐸𝑖: 

𝐸𝑖 = −
1

ln 𝑛
∑  𝑛

𝑗=1 𝑝𝑖𝑗 ln 𝑝𝑖𝑗                              (15) 

It reflects the degree of discreteness of feature data. The 
smaller the entropy value, the higher the information value 
of the feature [14]. For example, when analyzing a large 
amount of transaction data, it is found that the entropy value 
of the transaction amount feature is relatively low, 
indicating that it has significant value in distinguishing 
transaction types and risk levels. 

Calculate entropy weight 𝑤𝑒𝑖
 based on information 

entropy: 

𝑤𝑒𝑖
=

1−𝐸𝑖

∑  𝑚
𝑘=1  (1−𝐸𝑘)

                                          (16) 

At the same time, the analytic hierarchy process (AHP) 
is used to determine the subjective weight 𝑤𝑠𝑖

 through 

expert scoring or historical data analysis. Finally, the two 
are combined through the fusion coefficient 𝜆: 

𝜔𝑖 = 𝜆𝑤𝑒𝑖
+ (1 − 𝜆)𝑤𝑠𝑖

                                     (17) 

The lambda value can be adjusted according to different 
scenarios in practical applications. For example, in 
scenarios with strict financial supervision, the entropy 
weight ratio can be appropriately increased to enhance the 
objectivity of weight calculation; in emerging business 
scenarios, the subjective weight ratio can be increased to 
respond to business needs quickly. 
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3.2.3 Zero-knowledge proof generation 

The zero-knowledge proof generation link is the core 
step of the algorithm to achieve privacy protection. The 
protocol selection function Ω selects the optimal protocol 
from the predefined protocol library  {Π1, Π2, ⋯ , Π𝑁}  
based on the weighted scoring mechanism: 

Πopt = arg max
Π𝑖

∑  3
𝑗=1 𝜔𝑗 ⋅ Score(𝛱𝑖 , 𝑓𝑗)                (18) 

Among them, Score (Π𝑖 , 𝑓𝑗) covers the scores of the 

protocol in multiple dimensions such as security, 
efficiency, and storage overhead. For example, when 
evaluating the Water-SNARKs protocol, it scored high in 
security, but low in efficiency and storage overhead, while 
the Bulletproofs protocol performed well in efficiency. 

After selecting the protocol, the proof generation 
parameters are optimized through the adaptive parameter 
adjustment function 𝜃 = Γgen (𝜔⃗⃗⃗). Taking the zk SNARKs 

protocol as an example, the parameters of the elliptic 
curve, such as the curve type, base point selection, etc., and 
the number of constraints, are dynamically adjusted. The 
adjustment of these parameters directly affects the proof's 
generation time, verification time, and security [15]. By 
continuously optimizing the parameters, the generated 

zero-knowledge proof 𝜋 = Πopt(𝐹⃗, 𝜃)  can minimize the 

consumption of computing and storage resources while 
meeting the privacy protection requirements. 

3.2.4 Proof verification process 

The proof verification process is the last line of defense 
to ensure the legitimacy and privacy of transactions. After 

receiving the transaction data, feature vector𝐹⃗ and zero-
knowledge proof π, the verifier first recalculates the 
dynamic weight 𝜔⃗⃗⃗′   according to the same data 
preprocessing and weight calculation method [16]. This 
step is crucial. It can detect whether the transaction data 
has been tampered with during transmission. If 𝜔⃗⃗⃗′ is 
significantly different from the weight calculated by the 
sender, the transaction is directly rejected. 

The proof is then verified by the verification function 
Ψ: 

Ψ(𝜋, 𝐹⃗, 𝜔⃗⃗⃗′) =

{
 true,  if Verify (Πopt(𝐹⃗, 𝜃′), 𝜋) =  true 

 false,  otherwise 
(19) 

Among them, 𝜃′ = Γver(𝜔⃗⃗⃗′) is the adaptive parameter 
of the verification phase. During the verification process, 
the verifier performs rigorous mathematical verification on 
the proof based on the selected protocol and parameters. 

 

4 Experimental simulation and 

result analysis 
4.1 Experimental environment and data 

set 

This project takes the optimization of privacy 

transactions in blockchain as the research object, and 

simulates the actual operating environment by building an 

experimental environment. In terms of hardware, the 

paper chooses Dell's PowerEdge R750 server, which uses 

a 32-core Intel Platinum 8380 processor, 256 GB DDR4 

memory, and 10 TB NVMe SSD to ensure complex 

operations, data reading and writing, and transmission 

between nodes [17]. This project is based on the Ethernet 

Go language (Gethv1.11.1), builds a 50-node alliance 

chain, and uses the Byzantine Fault Tolerance algorithm 

(PBFT) to improve the consensus speed and shorten the 

transaction confirmation time. Go, Python, and Solidity 

are used together. Go builds the underlying network, 

Python processes and analyzes the data, and Solidity 

writes smart contracts; based on Truffle and Web3.js, the 

entire contract development and deployment are realized. 
This project is based on public blockchain and 

simulation data, covering nearly 100,000 transactions and 
application scenarios such as financial payment and supply 
chain traceability. Financial payments include cross-border 
remittances, large and small remittances; supply chain 
traceability involves procurement and production processes 
[18]. The data types are rich, with both structured and semi-
structured coexisting; in the range of 1 yuan to 1 million 
yuan, high-frequency small orders account for 40%, low-
frequency large orders account for 30%, and regular 
transactions account for 30%. 

4.2 Experimental indicator setting 

This experiment constructs a multi-dimensional evaluation 

indicator system to comprehensively evaluate algorithm 

performance from computing efficiency, storage overhead, 

and security. 
Computational efficiency is measured by proof 

generation time and verification time, directly affecting the 
speed of blockchain transaction processing. The experiment 
uses a high-precision timer to accurately time each 
transaction's proof generation and verification process [19]. 
Considering the randomness of transactions, the average of 
1,000 transaction time data statistics is taken to reduce the 
interference of accidental factors and accurately reflect the 
actual efficiency of the algorithm. 

Storage overhead is measured by the proof data storage 
size (bytes) to evaluate the algorithm's consumption of 
storage resources. The experiment thoroughly counts the 
space occupied by zero-knowledge proof data in each 
block. It calculates the average storage overhead by 
integrating all block data to clarify the storage requirements 
of different algorithms when processing large-scale 
transactions. It provides a reference for blockchain storage 
optimization. 

Security is the key to blockchain privacy transactions. 
The experiment evaluates the algorithm's privacy protection 
by simulating replay and forgery attacks. For replay attacks, 
an automated script is designed to send transaction data 
repeatedly, and the proportion of successful attacks 
measures the attack success rate; for forgery attacks, a large 
amount of false transaction data and a proof submission 
verification system are constructed, and the forgery attack 
interception rate characterizes the algorithm's security. The 
higher the interception rate, the stronger the algorithm's 
ability to resist forgery attacks. Through these two 
indicators, the privacy protection effect of the algorithm in 
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the face of common attacks can be effectively evaluated, 
ensuring that the experimental results are reliable and 
practical. 

 

4.3 Comparative experimental design 

To verify the superiority of the DA-ZKP algorithm in 

blockchain privacy transactions, the experiment selects 

three mainstream zero-knowledge proof algorithms, zk-

SNARKs, Bulletproofs, and Groth16, as comparison 

objects. Zk-SNARKs are simple, efficient, and widely 

used, which can reduce transmission and storage 

overhead; Bulletproofs are good at reducing the size of 

proofs; Groth16 has the advantage of short verification 

time. 
The experiment strictly unifies the environment and 

data set to ensure accurate and fair results. The transaction 
data is input into the system in batches of 1,000, and the 
proof generation time, verification time, and storage 
overhead of the DA-ZKP algorithm and the comparison 
algorithm are recorded. To reduce the experimental error, 
each group of experiments is repeated 10 times, and the 
average value is taken as the final result. 

In the security testing phase, 1,000 replay attacks and 
1,000 forgery attacks are simulated for each algorithm, and 
the real attack scenarios are simulated through automated 
scripts. The number of successful attacks and interceptions 
is recorded, and the privacy protection capabilities of each 
algorithm are compared and analyzed with the attack 
success rate and interception rate as indicators [20]. This 
experimental design fully demonstrates the advantages and 
improvements of the DA-ZKP algorithm over traditional 
algorithms in terms of performance indicators such as 
efficiency, storage, and security. 

 

4.4 Experimental results 

4.4.1 Computational efficiency comparison 

Table 1 shows the computational efficiency 
comparison data of the DA-ZKP and traditional 
algorithms. The results show that the DA-ZKP algorithm 
is significantly better than the three comparison algorithms 
in terms of proof generation and verification time. The 
average proof generation time of the DA-ZKP algorithm is 
128 milliseconds [21], representing a 35% reduction 
compared to zk-SNARKs (197 ms), 18% compared to 
Bulletproofs (156 ms), and 9% compared to Groth16 (141 
ms). These results are based on Experiment Set 1, which 
involves 10,000 transaction data points derived from real-
world financial and supply chain transactions with 100 
distributed nodes (32-core Intel Platinum 8380 processor, 
256 GB DDR4 memory). Regarding verification time, the 
DA-ZKP algorithm only takes 89 milliseconds on average. 
In comparison, the zk-SNARKs algorithm takes 135 
milliseconds, the Bulletproofs algorithm takes 112 
milliseconds, and the Groth16 algorithm takes 124 
milliseconds. 

 

 

 

 

 

Table 1: Comparison of computational efficiency of 

the DA-ZKP algorithm and traditional algorithms. 

Algorithm 
Name 

Proof 
generation time 
(milliseconds) 

Verification 
time 
(milliseconds) 

DA-ZKP 128 89 
zk-SNARKs 197 135 
Bulletproofs 156 112 
Groth16 141 124 

 

Figure 1 shows the trend of proof generation time for 
different algorithms when the transaction scale increases 
from 1,000 to 10,000. The proof generation time of the DA-
ZKP algorithm rises relatively slowly, and its advantages 
become more evident as the transaction scale increases. In 
contrast, the proof generation time of the zk-SNARKs 
algorithm increases rapidly, showing a steeper upward 
trend. The proof generation time of the Bulletproofs 
algorithm and the Groth16 algorithm also indicates 
different degrees of growth. Still, the DA-ZKP algorithm 
always maintains a low proof generation time, which 
suggests that the DA-ZKP algorithm is more efficient in 
processing large-scale transactions, can effectively cope 
with the increase in transaction scale, and provides more 
efficient support for blockchain privacy transactions. 

 

 

Figure 1: Trends in proof generation time for different 
algorithms when the transaction size increases from 1,000 

to 10,000. 

4.4.2 Comparison of storage overhead 

Figure 2 depicts the trend of storage overhead of 
different algorithms as the number of transactions 
increases. The storage overhead of the DA-ZKP algorithm 
grows slowly and is always lower than that of other 
algorithms. This shows that the DA-ZKP algorithm can 
effectively control the consumption of storage resources 
when processing large-scale transactions. In contrast, the 
storage overhead of the zk-SNARKs algorithm and the 
Groth16 algorithm grows faster, while the storage overhead 
of the Bulletproofs algorithm grows most significantly.  
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The DA-ZKP algorithm optimizes the parameters 
through dynamic weights. It simplifies unnecessary proof 
components for different types of transactions, thereby 
minimizing storage requirements while ensuring 
transaction security, significantly alleviating the storage 
pressure of blockchain nodes, and improving the system's 
scalability. 

 

 

Figure 2: Storage overhead of different algorithms as 
the number of transactions increases. 

4.4.3 Security analysis 

In the replay attack simulation experiment, the DA-
ZKP algorithm and the three traditional algorithms showed 
strong resistance, achieving a 100% interception rate, 
effectively preventing attackers from attempting illegal 
benefits by repeatedly sending transaction data. In forgery 
attack tests, DA-ZKP achieved a 99.8% interception rate, 
outperforming zk-SNARKs (99.5%), Bulletproofs 
(99.3%), and Groth16 (99.6%). Security Test Set 2 
simulated attack intensities from 100 to 1,000 TPS, where 
DA-ZKP’s double verification mechanism-combining data 
integrity checks and proof validity verification-ensured 
consistent performance, maintaining >99.5% interception 
even at peak loads. 

Table 2: Security data. 

Algorithm 
Name 

Replay attack 
interception 
rate 

Forged attack 
interception 
rate 

DA-ZKP 100% 99.80% 
zk-SNARKs 100% 99.50% 
Bulletproofs 100% 99.30% 
Groth16 100% 99.60% 

 

Figure 3 shows the interception performance of each 
algorithm against replay attacks under different attack 
intensities. The DA-ZKP algorithm, zk-SNARKs 
algorithm, Bulletproofs algorithm, and Groth16 algorithm 
achieved a 100% interception rate, demonstrating strong 
resistance. This shows that regarding replay attacks, the 
DA-ZKP algorithm can effectively prevent attackers from 
attempting to obtain illegal benefits by repeatedly sending 
transaction data, providing reliable security protection for 
blockchain privacy transactions. As the attack intensity 
increases, the DA-ZKP algorithm maintains stable and 
excellent security performance, fully verifying its 
reliability in ensuring transaction security. 

 

 

Figure 3: Interception performance of each algorithm 
against replay attacks at different attack intensities. 

Figure 4 shows the interception performance of each 
algorithm against forgery attacks at different attack 
intensities. The forgery attack interception rate of the DA-
ZKP algorithm reached 99.8%, which is higher than the 
99.5% of the zk-SNARKs algorithm, the 99.3% of the 
Bulletproofs algorithm, and the 99.6% of the Groth16 
algorithm. As the attack intensity increases, the DA-ZKP 
algorithm maintains stable and excellent security 
performance. This is mainly due to the double verification 
mechanism adopted by the DA-ZKP algorithm in the 
verification stage, which can effectively identify forged 
transactions and prevent them from passing verification, 
thereby providing more reliable security protection for 
blockchain privacy transactions, and fully verifying the 
effectiveness and superiority of the DA-ZKP algorithm in 
ensuring transaction security. 

 

Figure 4: Interception performance of each algorithm 
for forgery attack under different attack intensities. 

5 Conclusion 
This paper aims to address the efficiency and security 

issues of blockchain privacy transactions, constructs an 

optimization model based on zero-knowledge proof, and 

designs the DA-ZKP algorithm. Through theoretical 

derivation and experimental verification, the algorithm 

significantly improves transaction efficiency. It reduces 

storage overhead while ensuring privacy and security by 

relying on dynamic weight allocation and an adaptive 

adjustment strategy. Experimental data show that 

compared with traditional algorithms, its proof generation 
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time is reduced by 35%, verification time by 28%, 

storage overhead by 22%, and security performance is 

good. The research results provide a new solution for 

blockchain privacy transaction technology and are of 

great significance to promoting the development of the 

blockchain industry. However, our research has several 

limitations. First, experiments were conducted in 

controlled simulation environments, and the algorithm's 

stability in complex real-world networks-particularly 

under adversarial conditions-requires validation. Second, 

the learning-based parameter adjustment introduces a 

5ms latency per transaction, which may impact systems 

with ultra-high throughput (e.g., >10,000 TPS). Third, 

storage overhead for dynamic parameters is 15% higher 

than static zk-SNARKs in Ethereum-like networks. 

Future work will expand scenarios to include cross-chain 

environments and integrate homomorphic encryption to 

mitigate these constraints. In the future, the experimental 

scenarios will be expanded, the adaptability of the 

algorithm will be optimized, and the integration with 

technologies such as homomorphic encryption will be 

explored further to improve the comprehensive 

performance of blockchain privacy transactions. 
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