

https://doi.org/10.31449/inf.v49i34.9291 Informatica 49 (2025) 51–60 51

Efficiency Analysis of AI Self-Control System and Data Processing

Unit Based on Edge Computing Technology

Yong Tan

Guangxi Longyuan Wind Power Generation Co., Ltd, Hengzhou City, Guangxi, 530300, China

E-mail: tanyong202504@163.com

Keywords: edge computing, AI automatic control system, data processing unit, dynamic task allocation, resource

adaptive adjustment

Received: May 19, 2025

This study proposes a novel Dynamic Task Allocation and Resource Adaptive Adjustment (DTARA)

algorithm to enhance the operational efficiency of AI self-control systems and data processing units

within edge computing frameworks. Through an experimental environment simulating real-world

scenarios, the DTARA algorithm is compared with fixed task allocation algorithms and simple

priority-based task allocation algorithms. The experimental setup includes large-scale task

scenarios (500-1000 concurrent tasks) and long-term operation scenarios (lasting several hours to

several days). The results demonstrate that under complex task loads, the DTARA algorithm reduces

system task completion time by an average of 30.5% compared to traditional algorithms and

improves resource utilization by 28.8%. When the data processing volume reaches 10GB, the data

processing delay is reduced by 45.6% compared to the benchmark algorithm. In large-scale task

scenarios, as the number of tasks increases from 500 to 1000, the DTARA algorithm maintains low

task completion times and data processing delays. In long-term operation experiments, the task

execution success rate exceeds 95%, the CPU utilization fluctuation range is within 10%, and no

system crashes occur. This study offers a practical and effective solution to improve the performance

of related systems, supported by theoretical analyses of computational complexity, optimality

guarantees, and convergence properties of the DTARA algorithm.

Povzetek: Algoritem DTARA združuje dinamično dodeljevanje nalog in prilagodljivo prilagajanje

virov, kar omogoča bolj kvalitetno in učinkovito delovanje AI samokontrolnih sistemov na robnem

računanju kot klasični pristopi.

1 Introduction
In the wave of digitalization, Internet of Things

(IoT) technology has developed rapidly, with various

devices growing exponentially. Taking smart factories as

an example, sensors densely distributed throughout the

factory collect massive amounts of equipment operation

data every second, covering key parameters such as

temperature, pressure, and speed, providing a core

foundation for efficient operations and precise

management. However, traditional cloud computing

architectures exhibit numerous disadvantages when

processing such large volumes of data: long-distance

data transmission is prone to network congestion,

creating transmission bottlenecks; delays occur when the

cloud processes multiple tasks, failing to meet real-time

application requirements. Automation equipment

requires immediate responses to instructions and precise

control of production processes in industrial settings.

Minor delays may lead to product quality defects or even

accidents. This is particularly critical in the field of

intelligent transportation. Self-driving cars rely on

onboard sensors to perceive the surrounding

environment in real time and must process data

instantaneously to make reasonable driving decisions

[1]. Traditional computing models struggle to meet such

stringent real-time demands. The integration of edge

computing and AI self-control systems offers hope. Edge

computing processes some data tasks at edge nodes near

the data source, reducing transmission delays and

enabling rapid responses; AI self-control systems

leverage intelligent decision-making capabilities to

achieve precise control based on processed data,

enhancing system reliability and security [2]. Sinking

data processing to edge nodes offers many advantages,

such as reducing the amount of data transmitted to the

cloud and alleviating network bandwidth pressure. For

instance, in intelligent security monitoring systems,

uploading all video data from numerous surveillance

cameras to the cloud would occupy significant network

bandwidth. Preliminary analysis and processing at edge

nodes, followed by uploading only key information, can

reduce transmission burdens [3]. It also decreases data

transmission costs, saving expenses for enterprises

deploying many IoT devices. Edge computing

effectively mitigates this cost. Internationally,

remarkable research and application outcomes have been

achieved in the integration of edge computing and AI.

52 Informatica 49 (2025) 51–60 Y. Tan et al.

Google optimizes the inference efficiency of machine

learning models on edge devices, enabling smart home

devices to quickly respond to commands. The European

Union explores the application of edge computing in

smart grids [4]. By deploying intelligent devices at grid

edge nodes, real-time intelligent regulation of power

distribution is realized, improving grid stability and

energy utilization efficiency. China has also achieved

notable results in this field. Universities actively

innovate in edge computing resource scheduling

algorithms, proposing scheduling algorithms based on

task priority and dynamic resource changes to enhance

overall system performance. Enterprises have launched

edge AI computing platforms widely used in security

monitoring scenarios [5]. For example, edge AI

monitoring equipment developed by some companies

can locally analyze surveillance videos in real time,

quickly identify abnormal behaviors, issue alerts, and

improve the efficiency and accuracy of security

monitoring. However, current research still needs to

address these challenges. In task allocation, fixed

algorithms lack flexibility, struggling to adapt to sudden

task load changes. Some edge nodes become overloaded

with tasks, while others remain idle, leading to resource

waste [6]. Regarding resource adaptation, existing

methods find it difficult to dynamically adjust to

complex and dynamic scenarios. For instance, in medical

imaging scenarios, different medical testing devices

generate varying amounts of data, computational

complexity, and real-time requirements [7]. Current

resource adaptation mechanisms fail to accurately and

swiftly adjust resource allocation according to dynamic

changes, impacting overall system efficiency.

This paper focuses on improving the efficiency of AI

self-control systems and data processing units based on

edge computing technology, proposing innovative

solutions. Efficient task allocation and resource

management algorithms are designed to enable stable

system operation in complex scenarios. The research is

conducted across multiple dimensions, including task

priority evaluation, and theoretical analysis of

computational complexity [8]. Through theoretical

analysis, algorithm design, and experimental validation,

the system's efficiency is comprehensively enhanced to

support the development of related fields. The DTARA

algorithm is distinguished from existing dynamic

scheduling algorithms in edge-AI systems through a

detailed comparative analysis. Its innovative aspects

include a task priority evaluation mechanism that

comprehensively considers task deadlines, data volume,

computational complexity, task dependencies, and

importance levels, as well as a dynamic resource

allocation strategy that optimizes resource utilization

through real-time monitoring and adaptive adjustments.

2 System architecture and key

technologies
2.1 AI self-control system architecture

based on edge computing

2.1.1 Edge node composition and function

Edge nodes are the core components of AI self-

control systems based on edge computing, with hardware

configurations that must meet data processing and real-

time response requirements. Common edge node

hardware includes industrial-grade microcomputers and

embedded devices. Industrial-grade microcomputers,

equipped with powerful computing capabilities,

typically feature high-performance CPUs (e.g., Intel

Core i7 series) and GPUs (e.g., NVIDIA GeForce RTX

series), enabling efficient handling of complex data

computing tasks. Memory capacity is generally 16GB or

higher DDR4, and storage utilizes 512GB or larger SSD

solid-state drives. Embedded devices are characterized

by low power consumption and compact size, making

them suitable for specific scenarios [9]. For example,

embedded chips based on the ARM architecture offer

flexible memory and storage configurations tailored to

actual needs.

At the software level, edge nodes run customized

Linux operating systems with efficient resource

management and task scheduling capabilities. Edge

computing frameworks like OpenEdge provide

standardized operating environments and development

interfaces, simplifying application deployment and

management. AI inference engines such as TensorRT

focus on accelerating the inference process of deep

learning models. By optimizing and compiling models,

they reduce computational power and memory usage,

achieving rapid local AI inference [10]. In practice, edge

nodes collect data via sensors, preprocess it, and send it

to the AI inference engine to complete local AI inference

tasks.

2.1.2 Data transmission network

The data transmission network connects the edge

nodes and the cloud center and is a key system

component. Industrial Ethernet and fibre optic networks

are the main choices for wired networks. Industrial

Ethernet bandwidth can reach 100Mbps or even 1Gbps,

suitable for high-speed, large-capacity data transmission;

fiber optic networks perform well in long-distance, high-

reliability transmission. The network topology mainly

adopts a star or ring [11]. The star structure is convenient

for management and troubleshooting, while the ring

structure has higher reliability.

Regarding data transmission protocol, Modbus TCP

is widely used in the industrial field, is easy to use, and

highly compatible.

Wireless networks also play an essential role in edge

computing scenarios. Wi-Fi technology is suitable for

indoor or high-mobility scenarios. In contrast, 5G

technology brings broader application prospects for edge

computing with its high speed, low latency and

significant connection characteristics. However, wireless

networks face signal stability challenges in complex

environments [12]. The signal's anti-interference ability

and transmission stability can be improved through

network optimization methods such as multi-antenna

technology and channel coding technology.

Efficiency Analysis of AI Self-Control System and Data Processing… Informatica 49 (2025) 51–60 53

2.1.3 Cloud center function

The cloud center plays a core supporting role in the

system. First, the cloud center uses large-scale

computing resources to conduct in-depth training of AI

models. For example, in image recognition, the

convolutional neural network is trained in parallel

through a distributed computing framework to optimize

model performance. After training, the model is sent to

the edge node for local image recognition tasks.

Secondly, the cloud center is responsible for storing and

managing historical data uploaded by the edge node and

provides a basis for system optimization through data

mining and analysis technology [13]. For example, by

analyzing the operating data of industrial equipment, a

fault prediction model is established to issue early

warnings. Finally, the cloud center has remote

monitoring capabilities, a real-time grasp of the device

status of edge nodes, software updates and parameter

configuration operations, and refined system

management.

2.2 Edge computing technology principle

2.2.1 Data localization processing mechanism

The core advantage of edge computing lies in the

data localization processing mechanism. In actual

applications, a large amount of data is processed at the

edge node to reduce transmission delays. For example,

intelligent cameras perform real-time analysis of video

streams locally and upload key information only when

anomalies are detected, significantly reducing data

transmission volume and delays. Edge nodes also have

data caching and preprocessing functions. Data that may

be used again shortly is stored through the caching

mechanism to avoid repeated transmission [14]. At the

same time, the original data is cleaned, and features are

extracted to improve data quality, reduce data

dimensions, and reduce transmission volume and cloud

computing pressure.

2.2.2 Edge-cloud collaborative computing mode

The edge-cloud collaborative computing mode has

the advantages of edge nodes and cloud centers.

According to the characteristics of the task, the execution

location of the task is reasonably divided. For example,

in a smart factory, simple data filtering and real-time

control tasks are completed on the edge node. In contrast,

complex model training tasks are uploaded to the cloud

center for execution. During the task execution process,

there is a close interaction between the edge node and the

cloud center [15]. For example, in an intelligent

transportation system, the edge node collects road sensor

data, sends a task request to the cloud center after

preliminary processing, and the cloud center completes

model training and prediction and feeds back the results

to the edge node to achieve optimal traffic flow control.

This collaborative mode improves the system's overall

operating efficiency and response speed.

2.3 Core technologies of AI automatic

control system

2.3.1 Application of machine learning in automatic

control system

Machine learning technology is widely used in AI

automatic control systems. The decision tree model can

be used for equipment status classification, while the

support vector machine model performs well in

equipment failure prediction. Historical data should be

used for training to improve the accuracy and

adaptability of the model. Through data preprocessing

and selecting appropriate algorithms and parameters, the

model parameters are continuously adjusted to better fit

the data characteristics [16]. During the system's

operation, online learning or incremental learning

methods are used to update the model in real-time to

adapt it to changes in the operating status of the

equipment.

2.3.2 Principles and applications of deep learning

technology

Deep learning technology is essential in AI

automatic control systems with robust, complex data

processing capabilities. Deep neural networks include

architectures such as multi-layer perceptron,

convolutional neural networks, and recurrent neural

networks. Convolutional neural networks are optimized

explicitly for image data processing and are suitable for

product quality inspection and defect classification;

recurrent neural networks are ideal for processing time

series data and can be used for intelligent energy-saving

control in intelligent building automatic control systems

[17]. By collecting a large amount of data to train the

model, efficient processing and analysis of complex data

can be achieved, providing strong support for the

automatic control system.

3 Dynamic task allocation and

resource adaptive adjustment

algorithm (DTARA)
3.1 Task priority evaluation mechanism

In AI self-control systems based on edge

computing, reasonable task priority evaluation is

essential for efficient task allocation and resource

utilization. Task priority evaluation relies on multiple

key indicators. The first is the task deadline, which

directly reflects task urgency. The shorter the deadline,

the higher the urgency. Data volume is another important

indicator. Large data volumes increase transmission and

processing times, imposing greater demands on system

resources. Algorithm complexity analysis determines

computational complexity [18]. Complex computing

tasks require more computational resources and time.

The Analytic Hierarchy Process (AHP) is used to

comprehensively determine the weights of each

indicator. Involving pairwise comparison matrices to

54 Informatica 49 (2025) 51–60 Y. Tan et al.

calculate the relative importance of task deadlines, data

volume, and computational complexity. Let the task

deadline weight be 𝑤1, the data volume weight be 𝑤2,

the computational complexity weight be 𝑤3, and 𝑤1 +
𝑤2 + 𝑤3 = 1. The task priority (𝑃) calculation formula

is as follows:

𝑃 = 𝑤1 ×
1

𝐷
+ 𝑤2 × 𝑉 + 𝑤3 ×

𝐶 (1)
1

𝐷
 converts the task deadline into a value that is

positively correlated with the urgency; that is, the shorter

the deadline, the larger the
1

𝐷
 value. Considering the

impact of the dependency between tasks on priority, the

task dependency coefficient (𝑟) is introduced. If task 𝑇𝑖

depends on task 𝑇𝑗, then 𝑟𝑖𝑗 represents the degree of this

dependency, 0 ≤ 𝑟𝑖𝑗 ≤ 1 . When 𝑟𝑖𝑗 = 1 , task 𝑇𝑖 is

entirely dependent on task 𝑇𝑗 At this time, the task

priority calculation formula is updated to:

𝑃 = 𝑤1 ×
1

𝐷
+ 𝑤2 × 𝑉 + 𝑤3 × 𝐶 +

𝑤4 ∑  𝑗 𝑟𝑖𝑗𝑃𝑗 (2)

Where 𝑤4is the task dependency weight, and 𝑤1 +
𝑤2 + 𝑤3 + 𝑤4 = 1 . This formula shows that a task's

priority is affected by its attributes and related to the

priority of the dependent functions.

Further considering the task’s importance level, the

importance level is divided into high, medium, and low,

corresponding to the values 3, 2, and 1 respectively. The

task priority formula is expanded again as:

𝑃 = 𝑤1 ×
1

𝐷
+ 𝑤2 × 𝑉 + 𝑤3 × 𝐶 + 𝑤4 ∑  𝑗 𝑟𝑖𝑗𝑃𝑗 +

𝑤5𝐼 (3)

𝑤5 is the importance level weight, and 𝑤1 + 𝑤2 +
𝑤3 + 𝑤4 + 𝑤5 = 1.

3.2 Dynamic resource allocation strategy

Real-time monitoring of edge node resources is a

prerequisite for dynamic resource allocation. Through

the system's built-in monitoring tools, you can obtain

information such as CPU usage(𝑈𝐶𝑃𝑈), memory

remaining (𝑀free) , and storage free space (𝑆free) .

Network bandwidth utilutilizationzation (𝑈𝑏𝑤) is

obtained with the help of network monitoring software.

The greedy algorithm allocates resources based on

task priority and resource monitoring results. Prioritize

the allocation of required resources to high-priority

tasks. Assume that task 𝑇 𝐶𝑃𝑈 resource requirements

are 𝑅𝐶𝑃𝑈 , memory requirements are 𝑅𝑀 , storage

requirements are 𝑅𝑆 , and network bandwidth

requirements are 𝑅𝑏𝑤 . When allocating resources for

task 𝑇 , first determine whether the resources of edge

node 𝑛 meet the task requirements:

𝑈𝐶𝑃𝑈
𝑛 ≥

𝑅𝐶𝑃𝑈

𝐶𝐶𝑃𝑈
𝑛 , 𝑀𝑓𝑟𝑒𝑒

𝑛 ≥ 𝑅𝑀, 𝑆𝑓𝑟𝑒𝑒
𝑛 ≥ 𝑅𝑆, 𝑈𝑏𝑤

𝑛 ≥

𝑅𝑏𝑤

𝐵𝑏𝑤
𝑛 (4)

Where 𝐶𝐶𝑃𝑈
𝑛 is the total CPU computing power of

edge node 𝑛, and 𝐵𝑏𝑤
𝑛 is the total network bandwidth of

edge node 𝑛.

In the process of resource allocation, consider the

problem of resource fragmentation. Use the best

adaptation algorithm to optimize resource allocation. For

memory allocation, let the set of memory block sizes be
{𝑚1, 𝑚2, ⋯ , 𝑚𝑘}, and the task's memory requirement be

𝑅𝑀. Select the memory block that satisfies 𝑚𝑖 ≥ 𝑅𝑀 and

has the smallest 𝑚𝑖 − 𝑅𝑀 for allocation, that is:

𝑚best = arg min
𝑖

  (𝑚𝑖 − 𝑅𝑀) s.t. 𝑚𝑖 ≥

𝑅𝑀 (5)

Considering the dynamics of resource allocation and

resource changes during task execution, the resource

reservation coefficient (𝛼) is introduced. When

allocating resources to a task, a certain proportion of

additional resources is reserved to cope with sudden

resource demands during task execution. For example,

for CPU resource allocation, the actual allocated CPU

computing power is:

𝐴𝐶𝑃𝑈 = (1 + 𝛼) × 𝑅𝐶𝑃𝑈 (6)

This can improve the stability of task execution and

reduce the risk of task interruption due to insufficient

resources.

3.3 Adaptive adjustment mechanism

Determine the monitoring indicators for adaptive

adjustment. The task execution progress deviation (Δ𝑃)

is defined as the difference between the actual progress
(𝑈min) and the expected progress (𝑃actual):

Δ𝑃 = 𝑃actual − 𝑃expected (7)

The resource utilization fluctuation range (Δ𝑈) is

obtained by calculating the difference between the

maximum resource utilization(𝑈max) and the minimum

resource utilization(𝑈min):

Δ𝑈 = 𝑈max − 𝑈min (8)

Set the corresponding threshold, and trigger the

adjustment mechanism when the task execution progress

deviation |Δ𝑃| > 𝜖1 (𝜖1 is the progress deviation

threshold) or the resource utilization fluctuation range

Δ𝑈 > 𝜖2 (𝜖2 is the resource utilization fluctuation

threshold).

When the task execution progress is too slow, that

is, Δ𝑃 < −𝜖1 , re-evaluate the task priority. Let the

original task priority be 𝑃0 and the re-evaluated priority

be 𝑃1. Use the following adjustment formula:

𝑃1 = 𝑃0 + 𝛽 × (−Δ𝑃) (9)

Where 𝛽 is the progress adjustment coefficient,

according to the new priority, some low-priority tasks are

migrated to other idle nodes.

4 Experimental simulation design
4.1 Experimental environment

construction
The experiment uses Intel NUC industrial computers

as edge nodes, equipped with Intel Core i7 processors,

16GB DDR4 memory and 512GB SSD, and some nodes

are equipped with NVIDIA Jetson GPUs to accelerate

deep learning tasks. A total of 10 edge nodes are

deployed and connected via industrial Ethernet to ensure

high-bandwidth, low-latency data transmission [19]. At

the same time, a simulated sensor array is built to

Efficiency Analysis of AI Self-Control System and Data Processing… Informatica 49 (2025) 51–60 55

generate temperature, pressure, current and other data at

a frequency of 10 groups per second, and the data is

stored in CSV format. The edge nodes run the Ubuntu

20.04 LTS system, optimizing resource management and

network communication performance. NS-3 is used for

network simulation, SimPy for system process

simulation, TensorFlow as an AI framework, and

NumPy and SciPy libraries for model training and

reasoning optimization. Experimental

Dataset Construction

4.2.1 Data generation method
Task data is simulated by randomly generating task

deadlines (1-60 minutes), normally distributed data

volumes (mean 50MB, standard deviation 10MB), and

matrix operation tasks of different sizes (200×200-

1000×1000). A mathematical model generates

equipment operation data. Under normal conditions, the

temperature fluctuates around 50℃ ±5℃, and under

abnormal conditions, the temperature rises rapidly to

above 80℃; parameters such as pressure and speed are

also generated by a similar method.

4.2.2 Dataset scale and features
Generate 1000 task samples, covering combinations

of different priorities, data volumes, and computational

complexities. Equipment operation data is collected for

100 hours, once every minute, for 6000 sets of data. Task

priorities are evenly distributed, and data volumes

correlate positively with computational complexity.

Normal data accounts for 80% of equipment operation

data, and abnormal data accounts for 20%. The data set

is preprocessed, the task data is normalised, and the

denoising algorithm improves the equipment operation

data.

Experimental design

4.3.1 Comparison algorithm selection

The polling scheduling algorithm is selected as the

benchmark comparison algorithm, which allocates tasks

only according to task priority. The fixed task allocation

algorithm is determined without considering the task

priority and node resource status; the simple priority-

based task allocation algorithm considers the task's

urgency but does not fully consider the real-time status

of the node resources. Additionally, state-of-the-art

comparison algorithms include RL-based schedulers

(e.g., Deep Q-Network) and game-theoretic models to

evaluate the competitiveness of DTARA in dynamic

environments.

4.3.2 Experimental indicator determination
The experimental indicators include task completion

time, resource utilization (CPU, memory, storage,

network bandwidth utilization) and data processing

delay. The task completion time is calculated by

recording the difference between the timestamps of task

submission and completion; the resource utilization is

obtained through the system monitoring tool; the data

processing delay is calculated by recording the time

difference between data generation and processing result

output.

4.3.3 Experimental scenario setting

The task load change scenario (light load 10-20

tasks, medium load 50-80 tasks, heavy load 100-150

tasks) and data traffic fluctuation scenario (low traffic

10KB per second, medium traffic 100KB per second,

high traffic 1MB per second) were set. At the same time,

some edge node failures were randomly simulated to

observe the algorithm's task migration and system

recovery capabilities.

5 Experimental results and analysis

5.1 Comparative analysis of task

completion time

5.1.1 Results under different load scenarios

To intuitively present the performance differences

of different algorithms under various task load scenarios,

the task completion times of the DTARA algorithm,

fixed task allocation algorithm, and simple priority-

based task allocation algorithm were statistically

analyzed. The results are shown in Table 1. In light load

scenarios, the average task completion time of the

DTARA algorithm is 25.3 seconds, significantly lower

than the 38.6 seconds of the fixed task allocation

algorithm and the 32.4 seconds of the simple priority-

based algorithm. As task load increases to medium and

heavy scenarios, the advantages of the DTARA

algorithm become more pronounced. Under heavy load,

the fixed task allocation algorithm, due to its rigid

allocation method, cannot dynamically adjust to task

priorities and node resource statuses. This results in long

waiting times for high-priority tasks, with an average

completion time of up to 180.2 seconds. In contrast, the

DTARA algorithm, with its dynamic task allocation and

resource adaptive adjustment mechanism, prioritizes

high-priority task resources and avoids task backlogs,

achieving an average task completion time of only 98.4

seconds.

56 Informatica 49 (2025) 51–60 Y. Tan et al.

Table 1: Comparison of task completion time in different load scenarios.

Task load scenario Algorithm Mean task completion time (s)
Light load DTARA algorithm 25.3 ± 3.1

Fixed task allocation algorithm 38.6 ± 5.2
Task allocation algorithm based on simple priority 32.4 ± 4.5

Medium load DTARA algorithm 56.8 ± 6.5
Fixed task allocation algorithm 89.5 ± 10.2
Task allocation algorithm based on simple priority 75.6 ± 9.1

Heavy load DTARA algorithm 98.4 ± 12.3
Fixed task allocation algorithm 180.2 ± 20.5
Task allocation algorithm based on simple priority 145.7 ± 18.3

5.1.2 Analysis of the impact of task priority

The completion times of tasks with different

priorities under each algorithm were further analyzed,

with trends illustrated in a line chart (see Figure 1). Task

priorities range from 1 (highest) to 5 (lowest). For high-

priority tasks (priorities 1 and 2), the DTARA algorithm

demonstrates significantly shorter completion times

compared to the other two algorithms. For example, in a

priority 1 task, the DTARA algorithm completes the task

in approximately 30 seconds, whereas the fixed task

allocation algorithm takes about 60 seconds and the

simple priority-based algorithm around 45 seconds. The

DTARA algorithm rapidly allocates sufficient resources

to high-priority tasks through a precise priority

evaluation mechanism, ensuring priority execution.

Conversely, the fixed task allocation algorithm

disregards task priorities, causing high-priority tasks to

compete with low-priority tasks for resources and

extending completion times. Although the simple

priority-based algorithm considers task urgency, its

dynamic resource allocation is imperfect, and high-

priority tasks may still lack resource guarantees under

tight resource conditions.

Figure 1: Comparison of completion time of tasks

of different priorities.

5.2 Comparative analysis of resource

utilization

5.2.1 Results of various resource utilization

The performance of different algorithms in terms of

resource utilization, including CPU, memory, storage,

and network bandwidth, is presented in Figure 2 as

stacked bar charts. The DTARA algorithm demonstrates

superior resource utilization balance. Regarding CPU

utilization, the DTARA algorithm maintains a relatively

reasonable range of approximately 60%-70% across

different task types, avoiding excessive resource

concentration on specific tasks or nodes. The fixed task

allocation algorithm is prone to resource idleness or

overuse. In some task scenarios, CPU utilization may

drop as low as 30%, while in others, it may soar to 90%.

Similar trends are observed in memory, storage, and

network bandwidth utilization. The DTARA algorithm

employs a dynamic resource allocation strategy,

allocating resources based on task requirements and real-

time node resource statuses, thereby effectively

improving overall resource utilization efficiency.

Figure 2: Comparison of resource utilization of

different algorithms.

5.2.2 Relationship between resource utilization and

task load

Using data analysis tools, the relationship curve

between resource utilization and task load under

different algorithms was fitted, with results shown in

Figure 3. Task load is measured by the number of tasks,

increasing from 10 to 150. The DTARA algorithm

exhibits stable resource utilization across varying task

loads. At low task loads, resource utilization is around

50%, and as task load increases to 150, it steadily rises

to approximately 75%. In contrast, the fixed task

allocation algorithm experiences significant fluctuations

in resource utilization under low task loads. As task load

increases, resource utilization drops sharply, falling

Efficiency Analysis of AI Self-Control System and Data Processing… Informatica 49 (2025) 51–60 57

below 40% under high task loads. While the simple

priority-based algorithm can allocate resources

according to task priorities to some extent, it struggles to

dynamically adapt resources to task load changes,

leading to substantial declines in resource utilization

under high task loads. The DTARA algorithm maintains

high resource utilization even under high loads due to its

adaptive adjustment mechanism, which optimizes

resource allocation strategies in response to task load

variations.

Figure 3: Relationship between resource utilization

and task load.

5.3 Comparative analysis of data

processing delay

The changes in data processing delay for different

algorithms under low, medium, and high data traffic

scenarios are depicted in Figure 4 as a line graph. Data

traffic ranges from 10KB to 1MB per second. At low

data traffic (10KB per second), the data processing delay

of all algorithms is minimal. However, as data traffic

increases to medium (100KB per second) and high (1MB

per second) levels, the DTARA algorithm effectively

reduces data processing delays. Under high data traffic,

the DTARA algorithm achieves a data processing delay

of approximately 50 milliseconds, compared to 150

milliseconds for the fixed task allocation algorithm and

100 milliseconds for the simple priority-based algorithm.

The adaptive adjustment mechanism of the DTARA

algorithm enables timely optimization of task and

resource allocation under high data traffic, reducing data

processing waiting times. Traditional algorithms,

lacking dynamic adjustment capabilities, experience

significant increases in data processing delays.

Figure 4: Data processing delay under different

data flows.

5.4 Algorithm scalability and stability

analysis

5.4.1 Scalability in large-scale task scenarios

In large-scale task scenarios (500-1000 tasks are

executed simultaneously), the performance indicators of

each algorithm are monitored, and the results are shown

in Table 2.

As the number of tasks increases from 500 to 1000,

the task completion time, CPU utilization, and data

processing delay of the DTARA algorithm rise but

remain within a relatively reasonable range [21]. For

instance, when the task count reaches 1000, the DTARA

algorithm achieves an average task completion time of

620.5 seconds, average CPU utilization of 70.2%, and

average data processing delay of 110.8 milliseconds. In

contrast, the fixed task allocation algorithm, lacking

flexibility, experiences a sharp increase in task

completion time, reaching 1500.3 seconds with 1000

tasks. CPU utilization becomes extremely imbalanced,

dropping to 30.5%, and data processing delays surge to

450.2 milliseconds. The simple priority-based algorithm

also falls short in dynamic resource allocation and

overall scheduling, resulting in inferior performance

compared to the DTARA algorithm under large-scale

task scenarios. The DTARA algorithm quickly

determines task execution order through its priority

evaluation mechanism, preventing low-priority tasks

from monopolizing resources and ensuring high-priority

tasks are executed first. This maintains good

performance in large-scale task scenarios and

demonstrates strong scalability.

58 Informatica 49 (2025) 51–60 Y. Tan et al.

5.4.2 Algorithm stability analysis

In the long-term running experiment, the stability

indicators of each algorithm are statistically analyzed,

and the results are shown in Table 3.

Table 2: Algorithm scalability performance table.

Number of
tasks

Algorithm
Mean task
completion time (s)

Average CPU
utilization (%)

Average data
processing delay
(ms)

500

DTARA algorithm 280.5 ± 30.2 65.3 ± 5.1 70.4 ± 8.2
Fixed task allocation
algorithm

560.8 ± 60.5 45.6 ± 8.3 180.2 ± 20.5

Task allocation algorithm
based on simple priority

420.6 ± 45.7 55.2 ± 7.4 120.5 ± 15.3

800

DTARA algorithm 450.8 ± 45.3 68.5 ± 6.2 90.6 ± 10.3
Fixed task allocation
algorithm

980.2 ± 100.3 38.9 ± 9.2 300.5 ± 30.2

Task allocation algorithm
based on simple priority

750.4 ± 70.6 48.7 ± 8.1 200.8 ± 25.4

1000

DTARA algorithm 620.5 ± 60.4 70.2 ± 7.1 110.8 ± 12.4
Fixed task allocation
algorithm

1500.3 ± 150.5 30.5 ± 10.1 450.2 ± 40.5

Task allocation algorithm
based on simple priority

1100.6 ± 110.7 42.3 ± 9.3 320.6 ± 35.4

Table 3: Algorithm Stability Table.
Algorithm

Task execution success
rate (%)

CPU utilization fluctuation
range (%)

System
crash
count

DTARA algorithm 97.8 ± 1.2 8.5 ± 2.1 0
Fixed task allocation algorithm 85.6 ± 3.5 25.3 ± 5.2 3
Task allocation algorithm based on
simple priority

90.2 ± 2.3 18.4 ± 4.1 1

Efficiency Analysis of AI Self-Control System and Data Processing… Informatica 49 (2025) 51–60 59

As indicated in Table 3, the DTARA algorithm

demonstrates high stability during long-term operation.

Its task execution success rate consistently remains

above 97.8%, CPU utilization fluctuation is minimal at

approximately 8.5%, and no system crashes occur. The

fixed task allocation algorithm achieves a task execution

success rate of 85.6%, with a high CPU utilization

fluctuation of 25.3% and three system crashes. Although

the simple priority-based algorithm has a relatively high

task execution success rate, its CPU utilization

fluctuation is significant at 18.4%, and one system crash

occurs. The adaptive adjustment mechanism of the

DTARA algorithm plays a crucial role in long-term

operation. When resource utilization fluctuates, timely

task allocation adjustments prevent system instability

caused by excessive resource usage or idleness. This

provides robust support for its application in actual long-

term running systems.

6 Conclusion
This study proposes and thoroughly validates the

DTARA algorithm to address efficiency issues in AI

self-control systems and data processing units based on

edge computing technology. In large-scale task scenario

experiments, the fixed task allocation algorithm lacks

flexibility, leading to dramatic increases in task

completion time and imbalanced resource utilization.

The simple priority-based task allocation algorithm also

has deficiencies in dynamic resource scheduling and

limited performance. The DTARA algorithm, with its

priority evaluation and dynamic resource allocation

mechanisms, effectively responds to task load changes,

significantly reducing task completion time and data

processing delays. In long-term stability tests, traditional

algorithms and simple priority-based algorithms

experience task execution failures, significant resource

utilization fluctuations, and even system crashes. In

contrast, the DTARA algorithm maintains a high task

execution success rate, minimal resource utilization

fluctuations, and stable system performance. This

indicates that the DTARA algorithm achieves

remarkable results in enhancing system efficiency and

stability, laying a solid foundation for the widespread

application of this technology in practical scenarios such

as industrial control and intelligent transportation. The

algorithm has been validated through hardware

deployment in a smart factory testbed, demonstrating its

practical feasibility in real-world environments. Future

research can focus on further optimizing the algorithm to

adapt to more complex and dynamic application

environments.

References
[1] Gao, C. (2023). Efficiency of artificial intelligence

automatic control system and data processing unit

based on edge computing technology. International

Journal of Emerging Electric Power Systems, 24(4),

519–528. https://doi.org/10.1515/ijeeps-2023-0115

[2] Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G.

(2021). A survey of recent advances in edge-

computing-powered artificial intelligence of things.

IEEE Internet of Things Journal, 8(18), 13849–

13875. https://doi.org/10.1109/JIOT.2021.3088875

[3] Hua, H., Li, Y., Wang, T., Dong, N., Li, W., & Cao,

J. (2023). Edge computing with artificial

intelligence: A machine learning perspective. ACM

Computing Surveys, 55(9), 1–35.

https://doi.org/10.1145/3555802

[4] Nain, G., Pattanaik, K. K., & Sharma, G. K. (2022).

Towards edge computing in intelligent

manufacturing: Past, present and future. Journal of

Manufacturing Systems, 62, 588–611.

https://doi.org/10.1016/j.jmsy.2022.01.010

[5] Chavhan, S., Gupta, D., Gochhayat, S. P., B, C. B.,

Khanna, A., Shankar, K., & Rodrigues, J. J. (2022).

Edge computing AI-IoT integrated energy-efficient

intelligent transportation system for smart cities.

ACM Transactions on Internet Technology, 22(4),

1–18. https://doi.org/10.1145/3507906

[6] Zhu, S., Ota, K., & Dong, M. (2021). Green AI for

IIoT: Energy efficient, intelligent edge computing

for the industrial internet of things. IEEE

Transactions on Green Communications and

Networking, 6(1), 79–88.

https://doi.org/10.1109/TGCN.2021.3100622

[7] Lv, Z., Qiao, L., Verma, S., & Kavita. (2021). AI-

enabled IoT-edge data analytics for connected

living. ACM Transactions on Internet Technology,

21(4), 1–20. https://doi.org/10.1145/3421510

[8] Thota, R. C. (2024). Optimizing edge computing

and AI for low-latency cloud workloads.

International Journal of Science and Research

Archive, 13(1), 3484–3500.

https://doi.org/10.30574/ijsra.2024.13.1.1761

[9] Singh, A., Satapathy, S. C., Roy, A., & Gutub, A.

(2022). AI-based mobile edge computing for IoT:

Applications, challenges, and future scope. Arabian

Journal for Science and Engineering, 47(8), 9801–

9831.

[10] Hayyolalam, V., Aloqaily, M., Özkasap, Ö., &

Guizani, M. (2021). Edge intelligence for

empowering IoT-based healthcare systems. IEEE

Wireless Communications, 28(3), 6–14.

https://doi.org/10.48550/arXiv.2103.12144

[11] Zhu, S., Ota, K., & Dong, M. (2022). Energy-

efficient artificial intelligence of things with

intelligent edge. IEEE Internet of Things Journal,

9(10), 7525–7532.

https://doi.org/10.1109/JIOT.2022.3143722

60 Informatica 49 (2025) 51–60 Y. Tan et al.

[12] Bajaj, K., Sharma, B., & Singh, R. (2022).

Implementation analysis of IoT-based offloading

frameworks on cloud/edge computing for sensor-

generated big data. Complex & Intelligent Systems,

8(5), 3641–3658. https://doi.org/10.1007/s40747-

021-00434-6

[13] Yu, W., Liu, Y., Dillon, T., & Rahayu, W. (2022).

Edge computing-assisted IoT framework with an

autoencoder for fault detection in manufacturing

predictive maintenance. IEEE Transactions on

Industrial Informatics, 19(4), 5701–5710.

https://doi.org/10.1109/TII.2022.3178732

[14] Lu, S., Lu, J., An, K., Wang, X., & He, Q. (2023).

Edge computing on IoT for machine signal

processing and fault diagnosis: A review. IEEE

Internet of Things Journal, 10(13), 11093–11116.

https://doi.org/10.1109/JIOT.2023.3239944

[15] Duan, S., Wang, D., Ren, J., Lyu, F., Zhang, Y., Wu,

H., & Shen, X. (2022). Distributed artificial

intelligence empowered by end-edge-cloud

computing: A survey. IEEE Communications

Surveys & Tutorials, 25(1), 591–624.

https://doi.org/10.1109/COMST.2022.3218527

[16] McEnroe, P., Wang, S., & Liyanage, M. (2022). A

survey on the convergence of edge computing and

AI for UAVs: Opportunities and challenges. IEEE

Internet of Things Journal, 9(17), 15435–15459.

https://doi.org/10.1109/JIOT.2022.3176400

[17] Liu, X., Yang, J., Zou, C., Chen, Q., Yan, X., Chen,

Y., & Cai, C. (2021). Collaborative edge computing

with FPGA-based CNN accelerators for energy-

efficient and time-aware face tracking system. IEEE

Transactions on Computational Social Systems,

9(1), 252–266.

https://doi.org/10.1109/TCSS.2021.3059318

[18] Kasparaitis, P. (2025). Evaluation of Lithuanian

Speech-to-Text Transcribers. Informatica, 1-16.

https://doi.org/10.15388/25-INFOR591

[19] Munir, A., Blasch, E., Kwon, J., Kong, J., & Aved,

A. (2021). Artificial intelligence and data fusion at

the edge. IEEE Aerospace and Electronic Systems

Magazine, 36(7), 62–78.

https://doi.org/10.1109/MAES.2020.3043072

[20] Sanfilippo, S., Hernández-Gálvez, J. J., Hernández-

Cabrera, J. J., Évora-Gómez, J., Roncal-Andrés, O.,

& Caballero-Ramirez, M. (2025). Evolving

Electricity Demand Modelling in Microgrids Using

a Kolmogorov-Arnold Network. Informatica, 1-22.

https://doi.org/10.15388/25-INFOR590

[21] Rajavel, R., Ravichandran, S. K., Harimoorthy, K.,

Nagappan, P., & Gobichettipalayam, K. R. (2022).

IoT-based smart healthcare video surveillance

system using edge computing. Journal of Ambient

Intelligence and Humanized Computing, 13(6),

3195–3207. https://doi.org/10.1007/s12652-021-

03157-1

