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This study proposes a novel Dynamic Task Allocation and Resource Adaptive Adjustment (DTARA) 

algorithm to enhance the operational efficiency of AI self-control systems and data processing units 

within edge computing frameworks. Through an experimental environment simulating real-world 

scenarios, the DTARA algorithm is compared with fixed task allocation algorithms and simple 

priority-based task allocation algorithms. The experimental setup includes large-scale task 

scenarios (500-1000 concurrent tasks) and long-term operation scenarios (lasting several hours to 

several days). The results demonstrate that under complex task loads, the DTARA algorithm reduces 

system task completion time by an average of 30.5% compared to traditional algorithms and 

improves resource utilization by 28.8%. When the data processing volume reaches 10GB, the data 

processing delay is reduced by 45.6% compared to the benchmark algorithm. In large-scale task 

scenarios, as the number of tasks increases from 500 to 1000, the DTARA algorithm maintains low 

task completion times and data processing delays. In long-term operation experiments, the task 

execution success rate exceeds 95%, the CPU utilization fluctuation range is within 10%, and no 

system crashes occur. This study offers a practical and effective solution to improve the performance 

of related systems, supported by theoretical analyses of computational complexity, optimality 

guarantees, and convergence properties of the DTARA algorithm. 

 

Povzetek: Algoritem DTARA združuje dinamično dodeljevanje nalog in prilagodljivo prilagajanje 

virov, kar omogoča bolj kvalitetno in učinkovito delovanje AI samokontrolnih sistemov na robnem 

računanju kot klasični pristopi.

 

1 Introduction 
In the wave of digitalization, Internet of Things 

(IoT) technology has developed rapidly, with various 

devices growing exponentially. Taking smart factories as 

an example, sensors densely distributed throughout the 

factory collect massive amounts of equipment operation 

data every second, covering key parameters such as 

temperature, pressure, and speed, providing a core 

foundation for efficient operations and precise 

management. However, traditional cloud computing 

architectures exhibit numerous disadvantages when 

processing such large volumes of data: long-distance 

data transmission is prone to network congestion, 

creating transmission bottlenecks; delays occur when the 

cloud processes multiple tasks, failing to meet real-time 

application requirements. Automation equipment 

requires immediate responses to instructions and precise 

control of production processes in industrial settings. 

Minor delays may lead to product quality defects or even 

accidents. This is particularly critical in the field of 

intelligent transportation. Self-driving cars rely on 

onboard sensors to perceive the surrounding 

environment in real time and must process data  

 

 

instantaneously to make reasonable driving decisions  

[1]. Traditional computing models struggle to meet such  

stringent real-time demands. The integration of edge 

computing and AI self-control systems offers hope. Edge 

computing processes some data tasks at edge nodes near 

the data source, reducing transmission delays and 

enabling rapid responses; AI self-control systems 

leverage intelligent decision-making capabilities to 

achieve precise control based on processed data, 

enhancing system reliability and security [2]. Sinking 

data processing to edge nodes offers many advantages, 

such as reducing the amount of data transmitted to the 

cloud and alleviating network bandwidth pressure. For 

instance, in intelligent security monitoring systems, 

uploading all video data from numerous surveillance 

cameras to the cloud would occupy significant network 

bandwidth. Preliminary analysis and processing at edge 

nodes, followed by uploading only key information, can 

reduce transmission burdens [3]. It also decreases data 

transmission costs, saving expenses for enterprises 

deploying many IoT devices. Edge computing 

effectively mitigates this cost. Internationally, 

remarkable research and application outcomes have been 

achieved in the integration of edge computing and AI. 
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Google optimizes the inference efficiency of machine 

learning models on edge devices, enabling smart home 

devices to quickly respond to commands. The European 

Union explores the application of edge computing in 

smart grids [4]. By deploying intelligent devices at grid 

edge nodes, real-time intelligent regulation of power 

distribution is realized, improving grid stability and 

energy utilization efficiency. China has also achieved 

notable results in this field. Universities actively 

innovate in edge computing resource scheduling 

algorithms, proposing scheduling algorithms based on 

task priority and dynamic resource changes to enhance 

overall system performance. Enterprises have launched 

edge AI computing platforms widely used in security 

monitoring scenarios [5]. For example, edge AI 

monitoring equipment developed by some companies 

can locally analyze surveillance videos in real time, 

quickly identify abnormal behaviors, issue alerts, and 

improve the efficiency and accuracy of security 

monitoring. However, current research still needs to 

address these challenges. In task allocation, fixed 

algorithms lack flexibility, struggling to adapt to sudden 

task load changes. Some edge nodes become overloaded 

with tasks, while others remain idle, leading to resource 

waste [6]. Regarding resource adaptation, existing 

methods find it difficult to dynamically adjust to 

complex and dynamic scenarios. For instance, in medical 

imaging scenarios, different medical testing devices 

generate varying amounts of data, computational 

complexity, and real-time requirements [7]. Current 

resource adaptation mechanisms fail to accurately and 

swiftly adjust resource allocation according to dynamic 

changes, impacting overall system efficiency. 

This paper focuses on improving the efficiency of AI 

self-control systems and data processing units based on 

edge computing technology, proposing innovative 

solutions. Efficient task allocation and resource 

management algorithms are designed to enable stable 

system operation in complex scenarios. The research is 

conducted across multiple dimensions, including task 

priority evaluation, and theoretical analysis of 

computational complexity [8]. Through theoretical 

analysis, algorithm design, and experimental validation, 

the system's efficiency is comprehensively enhanced to 

support the development of related fields. The DTARA 

algorithm is distinguished from existing dynamic 

scheduling algorithms in edge-AI systems through a 

detailed comparative analysis. Its innovative aspects 

include a task priority evaluation mechanism that 

comprehensively considers task deadlines, data volume, 

computational complexity, task dependencies, and 

importance levels, as well as a dynamic resource 

allocation strategy that optimizes resource utilization 

through real-time monitoring and adaptive adjustments. 

2 System architecture and key 

technologies 
2.1 AI self-control system architecture 

based on edge computing 

2.1.1 Edge node composition and function 

Edge nodes are the core components of AI self-

control systems based on edge computing, with hardware 

configurations that must meet data processing and real-

time response requirements. Common edge node 

hardware includes industrial-grade microcomputers and 

embedded devices. Industrial-grade microcomputers, 

equipped with powerful computing capabilities, 

typically feature high-performance CPUs (e.g., Intel 

Core i7 series) and GPUs (e.g., NVIDIA GeForce RTX 

series), enabling efficient handling of complex data 

computing tasks. Memory capacity is generally 16GB or 

higher DDR4, and storage utilizes 512GB or larger SSD 

solid-state drives. Embedded devices are characterized 

by low power consumption and compact size, making 

them suitable for specific scenarios [9]. For example, 

embedded chips based on the ARM architecture offer 

flexible memory and storage configurations tailored to 

actual needs. 

At the software level, edge nodes run customized 

Linux operating systems with efficient resource 

management and task scheduling capabilities. Edge 

computing frameworks like OpenEdge provide 

standardized operating environments and development 

interfaces, simplifying application deployment and 

management. AI inference engines such as TensorRT 

focus on accelerating the inference process of deep 

learning models. By optimizing and compiling models, 

they reduce computational power and memory usage, 

achieving rapid local AI inference [10]. In practice, edge 

nodes collect data via sensors, preprocess it, and send it 

to the AI inference engine to complete local AI inference 

tasks. 

2.1.2 Data transmission network 

The data transmission network connects the edge 

nodes and the cloud center and is a key system 

component. Industrial Ethernet and fibre optic networks 

are the main choices for wired networks. Industrial 

Ethernet bandwidth can reach 100Mbps or even 1Gbps, 

suitable for high-speed, large-capacity data transmission; 

fiber optic networks perform well in long-distance, high-

reliability transmission. The network topology mainly 

adopts a star or ring [11]. The star structure is convenient 

for management and troubleshooting, while the ring 

structure has higher reliability.  

Regarding data transmission protocol, Modbus TCP 

is widely used in the industrial field, is easy to use, and 

highly compatible. 

Wireless networks also play an essential role in edge 

computing scenarios. Wi-Fi technology is suitable for 

indoor or high-mobility scenarios. In contrast, 5G 

technology brings broader application prospects for edge 

computing with its high speed, low latency and 

significant connection characteristics. However, wireless 

networks face signal stability challenges in complex 

environments [12]. The signal's anti-interference ability 

and transmission stability can be improved through 

network optimization methods such as multi-antenna 

technology and channel coding technology. 
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2.1.3 Cloud center function 

The cloud center plays a core supporting role in the 

system. First, the cloud center uses large-scale 

computing resources to conduct in-depth training of AI 

models. For example, in image recognition, the 

convolutional neural network is trained in parallel 

through a distributed computing framework to optimize 

model performance. After training, the model is sent to 

the edge node for local image recognition tasks. 

Secondly, the cloud center is responsible for storing and 

managing historical data uploaded by the edge node and 

provides a basis for system optimization through data 

mining and analysis technology [13]. For example, by 

analyzing the operating data of industrial equipment, a 

fault prediction model is established to issue early 

warnings. Finally, the cloud center has remote 

monitoring capabilities, a real-time grasp of the device 

status of edge nodes, software updates and parameter 

configuration operations, and refined system 

management. 

 

2.2 Edge computing technology principle 

2.2.1 Data localization processing mechanism 

The core advantage of edge computing lies in the 

data localization processing mechanism. In actual 

applications, a large amount of data is processed at the 

edge node to reduce transmission delays. For example, 

intelligent cameras perform real-time analysis of video 

streams locally and upload key information only when 

anomalies are detected, significantly reducing data 

transmission volume and delays. Edge nodes also have 

data caching and preprocessing functions. Data that may 

be used again shortly is stored through the caching 

mechanism to avoid repeated transmission [14]. At the 

same time, the original data is cleaned, and features are 

extracted to improve data quality, reduce data 

dimensions, and reduce transmission volume and cloud 

computing pressure. 

 

2.2.2 Edge-cloud collaborative computing mode 

The edge-cloud collaborative computing mode has 

the advantages of edge nodes and cloud centers. 

According to the characteristics of the task, the execution 

location of the task is reasonably divided. For example, 

in a smart factory, simple data filtering and real-time 

control tasks are completed on the edge node. In contrast, 

complex model training tasks are uploaded to the cloud 

center for execution. During the task execution process, 

there is a close interaction between the edge node and the 

cloud center [15]. For example, in an intelligent 

transportation system, the edge node collects road sensor 

data, sends a task request to the cloud center after 

preliminary processing, and the cloud center completes 

model training and prediction and feeds back the results 

to the edge node to achieve optimal traffic flow control. 

This collaborative mode improves the system's overall 

operating efficiency and response speed. 

 

2.3 Core technologies of AI automatic 

control system 

2.3.1 Application of machine learning in automatic 

control system 

Machine learning technology is widely used in AI 

automatic control systems. The decision tree model can 

be used for equipment status classification, while the 

support vector machine model performs well in 

equipment failure prediction. Historical data should be 

used for training to improve the accuracy and 

adaptability of the model. Through data preprocessing 

and selecting appropriate algorithms and parameters, the 

model parameters are continuously adjusted to better fit 

the data characteristics [16]. During the system's 

operation, online learning or incremental learning 

methods are used to update the model in real-time to 

adapt it to changes in the operating status of the 

equipment. 

 

2.3.2 Principles and applications of deep learning 

technology 

Deep learning technology is essential in AI 

automatic control systems with robust, complex data 

processing capabilities. Deep neural networks include 

architectures such as multi-layer perceptron, 

convolutional neural networks, and recurrent neural 

networks. Convolutional neural networks are optimized 

explicitly for image data processing and are suitable for 

product quality inspection and defect classification; 

recurrent neural networks are ideal for processing time 

series data and can be used for intelligent energy-saving 

control in intelligent building automatic control systems 

[17]. By collecting a large amount of data to train the 

model, efficient processing and analysis of complex data 

can be achieved, providing strong support for the 

automatic control system. 

 

3 Dynamic task allocation and 

resource adaptive adjustment 

algorithm (DTARA) 
3.1 Task priority evaluation mechanism 

In AI self-control systems based on edge 

computing, reasonable task priority evaluation is 

essential for efficient task allocation and resource 

utilization. Task priority evaluation relies on multiple 

key indicators. The first is the task deadline, which 

directly reflects task urgency. The shorter the deadline, 

the higher the urgency. Data volume is another important 

indicator. Large data volumes increase transmission and 

processing times, imposing greater demands on system 

resources. Algorithm complexity analysis determines 

computational complexity [18]. Complex computing 

tasks require more computational resources and time. 

The Analytic Hierarchy Process (AHP) is used to 

comprehensively determine the weights of each 

indicator. Involving pairwise comparison matrices to 
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calculate the relative importance of task deadlines, data 

volume, and computational complexity. Let the task 

deadline weight be 𝑤1, the data volume weight be 𝑤2, 

the computational complexity weight be 𝑤3, and  𝑤1 +
𝑤2 + 𝑤3 = 1. The task priority (𝑃) calculation formula 

is as follows: 

𝑃 = 𝑤1 ×
1

𝐷
+ 𝑤2 × 𝑉 + 𝑤3 ×

𝐶                                  (1) 
1

𝐷
  converts the task deadline into a value that is 

positively correlated with the urgency; that is, the shorter 

the deadline, the larger the 
1

𝐷
  value. Considering the 

impact of the dependency between tasks on priority, the 

task dependency coefficient (𝑟) is introduced. If task 𝑇𝑖   

depends on task 𝑇𝑗, then  𝑟𝑖𝑗   represents the degree of this 

dependency, 0 ≤ 𝑟𝑖𝑗 ≤ 1 . When 𝑟𝑖𝑗 = 1 , task 𝑇𝑖   is 

entirely dependent on task 𝑇𝑗   At this time, the task 

priority calculation formula is updated to: 

𝑃 = 𝑤1 ×
1

𝐷
+ 𝑤2 × 𝑉 + 𝑤3 × 𝐶 +

𝑤4 ∑  𝑗 𝑟𝑖𝑗𝑃𝑗            (2) 

Where 𝑤4is the task dependency weight, and 𝑤1 +
𝑤2 + 𝑤3 + 𝑤4 = 1 . This formula shows that a task's 

priority is affected by its attributes and related to the 

priority of the dependent functions. 

Further considering the task’s importance level, the 

importance level is divided into high, medium, and low, 

corresponding to the values 3, 2, and 1 respectively. The 

task priority formula is expanded again as: 

𝑃 = 𝑤1 ×
1

𝐷
+ 𝑤2 × 𝑉 + 𝑤3 × 𝐶 + 𝑤4 ∑  𝑗 𝑟𝑖𝑗𝑃𝑗 +

𝑤5𝐼                                                                              (3) 

𝑤5  is the importance level weight, and 𝑤1 + 𝑤2 +
𝑤3 + 𝑤4 + 𝑤5 = 1. 

 

3.2 Dynamic resource allocation strategy 

Real-time monitoring of edge node resources is a 

prerequisite for dynamic resource allocation. Through 

the system's built-in monitoring tools, you can obtain 

information such as CPU usage( 𝑈𝐶𝑃𝑈  ), memory 

remaining (𝑀free ) , and storage free space  (𝑆free ) . 

Network bandwidth utilutilizationzation (𝑈𝑏𝑤)  is 

obtained with the help of network monitoring software. 

The greedy algorithm allocates resources based on 

task priority and resource monitoring results. Prioritize 

the allocation of required resources to high-priority 

tasks. Assume that task 𝑇  𝐶𝑃𝑈  resource requirements 

are 𝑅𝐶𝑃𝑈 , memory requirements are 𝑅𝑀 , storage 

requirements are 𝑅𝑆 , and network bandwidth 

requirements are 𝑅𝑏𝑤 . When allocating resources for 

task 𝑇 , first determine whether the resources of edge 

node 𝑛 meet the task requirements: 

𝑈𝐶𝑃𝑈
𝑛 ≥

𝑅𝐶𝑃𝑈

𝐶𝐶𝑃𝑈
𝑛 , 𝑀𝑓𝑟𝑒𝑒

𝑛 ≥ 𝑅𝑀, 𝑆𝑓𝑟𝑒𝑒
𝑛 ≥ 𝑅𝑆, 𝑈𝑏𝑤

𝑛 ≥

𝑅𝑏𝑤

𝐵𝑏𝑤
𝑛                                                                         (4) 

Where  𝐶𝐶𝑃𝑈
𝑛  is the total CPU computing power of 

edge node 𝑛, and 𝐵𝑏𝑤
𝑛   is the total network bandwidth of 

edge node 𝑛. 

In the process of resource allocation, consider the 

problem of resource fragmentation. Use the best 

adaptation algorithm to optimize resource allocation. For 

memory allocation, let the set of memory block sizes be 
{𝑚1, 𝑚2, ⋯ , 𝑚𝑘}, and the task's memory requirement be 

𝑅𝑀. Select the memory block that satisfies 𝑚𝑖 ≥ 𝑅𝑀 and 

has the smallest  𝑚𝑖 − 𝑅𝑀 for allocation, that is: 

𝑚best = arg min
𝑖

  (𝑚𝑖 − 𝑅𝑀) s.t. 𝑚𝑖 ≥

𝑅𝑀                  (5) 

Considering the dynamics of resource allocation and 

resource changes during task execution, the resource 

reservation coefficient ( 𝛼  ) is introduced. When 

allocating resources to a task, a certain proportion of 

additional resources is reserved to cope with sudden 

resource demands during task execution. For example, 

for CPU resource allocation, the actual allocated CPU 

computing power is: 

𝐴𝐶𝑃𝑈 = (1 + 𝛼) × 𝑅𝐶𝑃𝑈                                        (6) 

This can improve the stability of task execution and 

reduce the risk of task interruption due to insufficient 

resources. 

 

3.3 Adaptive adjustment mechanism 

Determine the monitoring indicators for adaptive 

adjustment. The task execution progress deviation (Δ𝑃)  

is defined as the difference between the actual progress  
(𝑈min)  and the expected progress ( 𝑃actual  ): 

Δ𝑃 = 𝑃actual − 𝑃expected                                          (7) 

The resource utilization fluctuation range (Δ𝑈)  is 

obtained by calculating the difference between the 

maximum resource utilization(𝑈max)  and the minimum 

resource utilization(𝑈min): 

Δ𝑈 = 𝑈max − 𝑈min                                              (8) 

Set the corresponding threshold, and trigger the 

adjustment mechanism when the task execution progress 

deviation |Δ𝑃| > 𝜖1 ( 𝜖1  is the progress deviation 

threshold) or the resource utilization fluctuation range 

Δ𝑈 > 𝜖2 ( 𝜖2   is the resource utilization fluctuation 

threshold). 

When the task execution progress is too slow, that 

is, Δ𝑃 < −𝜖1 , re-evaluate the task priority. Let the 

original task priority be 𝑃0 and the re-evaluated priority 

be 𝑃1. Use the following adjustment formula: 

𝑃1 = 𝑃0 + 𝛽 × (−Δ𝑃)                                           (9) 

Where 𝛽  is the progress adjustment coefficient, 

according to the new priority, some low-priority tasks are 

migrated to other idle nodes. 

4 Experimental simulation design 
4.1 Experimental environment 

construction 
The experiment uses Intel NUC industrial computers 

as edge nodes, equipped with Intel Core i7 processors, 

16GB DDR4 memory and 512GB SSD, and some nodes 

are equipped with NVIDIA Jetson GPUs to accelerate 

deep learning tasks. A total of 10 edge nodes are 

deployed and connected via industrial Ethernet to ensure 

high-bandwidth, low-latency data transmission [19]. At 

the same time, a simulated sensor array is built to 
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generate temperature, pressure, current and other data at 

a frequency of 10 groups per second, and the data is 

stored in CSV format. The edge nodes run the Ubuntu 

20.04 LTS system, optimizing resource management and 

network communication performance. NS-3 is used for 

network simulation, SimPy for system process 

simulation, TensorFlow as an AI framework, and 

NumPy and SciPy libraries for model training and 

reasoning optimization. Experimental  

 

Dataset Construction 

 

4.2.1 Data generation method 
Task data is simulated by randomly generating task 

deadlines (1-60 minutes), normally distributed data 

volumes (mean 50MB, standard deviation 10MB), and 

matrix operation tasks of different sizes (200×200-

1000×1000). A mathematical model generates 

equipment operation data. Under normal conditions, the 

temperature fluctuates around 50℃ ±5℃, and under 

abnormal conditions, the temperature rises rapidly to 

above 80℃; parameters such as pressure and speed are 

also generated by a similar method. 

 

4.2.2 Dataset scale and features 
Generate 1000 task samples, covering combinations 

of different priorities, data volumes, and computational 

complexities. Equipment operation data is collected for 

100 hours, once every minute, for 6000 sets of data. Task 

priorities are evenly distributed, and data volumes 

correlate positively with computational complexity. 

Normal data accounts for 80% of equipment operation 

data, and abnormal data accounts for 20%. The data set 

is preprocessed, the task data is normalised, and the 

denoising algorithm improves the equipment operation 

data. 

Experimental design 

 

4.3.1 Comparison algorithm selection 

The polling scheduling algorithm is selected as the 

benchmark comparison algorithm, which allocates tasks 

only according to task priority. The fixed task allocation 

algorithm is determined without considering the task 

priority and node resource status; the simple priority-

based task allocation algorithm considers the task's 

urgency but does not fully consider the real-time status 

of the node resources. Additionally, state-of-the-art 

comparison algorithms include RL-based schedulers 

(e.g., Deep Q-Network) and game-theoretic models to 

evaluate the competitiveness of DTARA in dynamic 

environments. 

 

4.3.2 Experimental indicator determination 
The experimental indicators include task completion 

time, resource utilization (CPU, memory, storage, 

network bandwidth utilization) and data processing 

delay. The task completion time is calculated by 

recording the difference between the timestamps of task 

submission and completion; the resource utilization is 

obtained through the system monitoring tool; the data 

processing delay is calculated by recording the time 

difference between data generation and processing result 

output. 

4.3.3 Experimental scenario setting 

The task load change scenario (light load 10-20 

tasks, medium load 50-80 tasks, heavy load 100-150 

tasks) and data traffic fluctuation scenario (low traffic 

10KB per second, medium traffic 100KB per second, 

high traffic 1MB per second) were set. At the same time, 

some edge node failures were randomly simulated to 

observe the algorithm's task migration and system 

recovery capabilities. 

5 Experimental results and analysis 

5.1 Comparative analysis of task 

completion time 

5.1.1 Results under different load scenarios 

To intuitively present the performance differences 

of different algorithms under various task load scenarios, 

the task completion times of the DTARA algorithm, 

fixed task allocation algorithm, and simple priority-

based task allocation algorithm were statistically 

analyzed. The results are shown in Table 1. In light load 

scenarios, the average task completion time of the 

DTARA algorithm is 25.3 seconds, significantly lower 

than the 38.6 seconds of the fixed task allocation 

algorithm and the 32.4 seconds of the simple priority-

based algorithm. As task load increases to medium and 

heavy scenarios, the advantages of the DTARA 

algorithm become more pronounced. Under heavy load, 

the fixed task allocation algorithm, due to its rigid 

allocation method, cannot dynamically adjust to task 

priorities and node resource statuses. This results in long 

waiting times for high-priority tasks, with an average 

completion time of up to 180.2 seconds. In contrast, the 

DTARA algorithm, with its dynamic task allocation and 

resource adaptive adjustment mechanism, prioritizes 

high-priority task resources and avoids task backlogs, 

achieving an average task completion time of only 98.4 

seconds.

 

 

 

 

 

 



 

 

56 Informatica 49 (2025) 51–60 Y. Tan et al. 

 

 

 

Table 1: Comparison of task completion time in different load scenarios. 

 
Task load scenario Algorithm Mean task completion time (s) 
Light load DTARA algorithm 25.3 ± 3.1 

Fixed task allocation algorithm 38.6 ± 5.2 
Task allocation algorithm based on simple priority 32.4 ± 4.5 

Medium load DTARA algorithm 56.8 ± 6.5 
Fixed task allocation algorithm 89.5 ± 10.2 
Task allocation algorithm based on simple priority 75.6 ± 9.1 

Heavy load DTARA algorithm 98.4 ± 12.3 
Fixed task allocation algorithm 180.2 ± 20.5 
Task allocation algorithm based on simple priority 145.7 ± 18.3 

5.1.2 Analysis of the impact of task priority 

The completion times of tasks with different 

priorities under each algorithm were further analyzed, 

with trends illustrated in a line chart (see Figure 1). Task 

priorities range from 1 (highest) to 5 (lowest). For high-

priority tasks (priorities 1 and 2), the DTARA algorithm 

demonstrates significantly shorter completion times 

compared to the other two algorithms. For example, in a 

priority 1 task, the DTARA algorithm completes the task 

in approximately 30 seconds, whereas the fixed task 

allocation algorithm takes about 60 seconds and the 

simple priority-based algorithm around 45 seconds. The 

DTARA algorithm rapidly allocates sufficient resources 

to high-priority tasks through a precise priority 

evaluation mechanism, ensuring priority execution. 

Conversely, the fixed task allocation algorithm 

disregards task priorities, causing high-priority tasks to 

compete with low-priority tasks for resources and 

extending completion times. Although the simple 

priority-based algorithm considers task urgency, its 

dynamic resource allocation is imperfect, and high-

priority tasks may still lack resource guarantees under 

tight resource conditions. 

 
Figure 1:  Comparison of completion time of tasks 

of different priorities. 

 

5.2 Comparative analysis of resource 

utilization 

5.2.1 Results of various resource utilization 

The performance of different algorithms in terms of 

resource utilization, including CPU, memory, storage,  

 

and network bandwidth, is presented in Figure 2 as 

stacked bar charts. The DTARA algorithm demonstrates 

superior resource utilization balance. Regarding CPU 

utilization, the DTARA algorithm maintains a relatively 

reasonable range of approximately 60%-70% across 

different task types, avoiding excessive resource 

concentration on specific tasks or nodes. The fixed task 

allocation algorithm is prone to resource idleness or 

overuse. In some task scenarios, CPU utilization may 

drop as low as 30%, while in others, it may soar to 90%. 

Similar trends are observed in memory, storage, and 

network bandwidth utilization. The DTARA algorithm 

employs a dynamic resource allocation strategy, 

allocating resources based on task requirements and real-

time node resource statuses, thereby effectively 

improving overall resource utilization efficiency. 

 

 
Figure 2:  Comparison of resource utilization of 

different algorithms. 

5.2.2 Relationship between resource utilization and 

task load 

Using data analysis tools, the relationship curve 

between resource utilization and task load under 

different algorithms was fitted, with results shown in 

Figure 3. Task load is measured by the number of tasks, 

increasing from 10 to 150. The DTARA algorithm 

exhibits stable resource utilization across varying task 

loads. At low task loads, resource utilization is around 

50%, and as task load increases to 150, it steadily rises 

to approximately 75%. In contrast, the fixed task 

allocation algorithm experiences significant fluctuations 

in resource utilization under low task loads. As task load 

increases, resource utilization drops sharply, falling 
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below 40% under high task loads. While the simple 

priority-based algorithm can allocate resources 

according to task priorities to some extent, it struggles to 

dynamically adapt resources to task load changes, 

leading to substantial declines in resource utilization 

under high task loads. The DTARA algorithm maintains 

high resource utilization even under high loads due to its 

adaptive adjustment mechanism, which optimizes 

resource allocation strategies in response to task load 

variations. 

 
Figure 3:  Relationship between resource utilization 

and task load. 

 

5.3 Comparative analysis of data 

processing delay 

The changes in data processing delay for different 

algorithms under low, medium, and high data traffic 

scenarios are depicted in Figure 4 as a line graph. Data 

traffic ranges from 10KB to 1MB per second. At low 

data traffic (10KB per second), the data processing delay 

of all algorithms is minimal. However, as data traffic 

increases to medium (100KB per second) and high (1MB 

per second) levels, the DTARA algorithm effectively 

reduces data processing delays. Under high data traffic, 

the DTARA algorithm achieves a data processing delay 

of approximately 50 milliseconds, compared to 150 

milliseconds for the fixed task allocation algorithm and 

100 milliseconds for the simple priority-based algorithm. 

The adaptive adjustment mechanism of the DTARA 

algorithm enables timely optimization of task and 

resource allocation under high data traffic, reducing data 

processing waiting times. Traditional algorithms, 

lacking dynamic adjustment capabilities, experience 

significant increases in data processing delays. 

 

 
Figure 4:  Data processing delay under different 

data flows. 

 

5.4 Algorithm scalability and stability 

analysis 

5.4.1 Scalability in large-scale task scenarios 

In large-scale task scenarios (500-1000 tasks are 

executed simultaneously), the performance indicators of 

each algorithm are monitored, and the results are shown 

in Table 2. 

As the number of tasks increases from 500 to 1000, 

the task completion time, CPU utilization, and data 

processing delay of the DTARA algorithm rise but 

remain within a relatively reasonable range [21]. For 

instance, when the task count reaches 1000, the DTARA 

algorithm achieves an average task completion time of 

620.5 seconds, average CPU utilization of 70.2%, and 

average data processing delay of 110.8 milliseconds. In 

contrast, the fixed task allocation algorithm, lacking 

flexibility, experiences a sharp increase in task 

completion time, reaching 1500.3 seconds with 1000 

tasks. CPU utilization becomes extremely imbalanced, 

dropping to 30.5%, and data processing delays surge to 

450.2 milliseconds. The simple priority-based algorithm 

also falls short in dynamic resource allocation and 

overall scheduling, resulting in inferior performance 

compared to the DTARA algorithm under large-scale 

task scenarios. The DTARA algorithm quickly 

determines task execution order through its priority 

evaluation mechanism, preventing low-priority tasks 

from monopolizing resources and ensuring high-priority 

tasks are executed first. This maintains good 

performance in large-scale task scenarios and 

demonstrates strong scalability. 
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5.4.2 Algorithm stability analysis 

In the long-term running experiment, the stability 

indicators of each algorithm are statistically analyzed, 

and the results are shown in Table 3. 

 

Table 2: Algorithm scalability performance table. 

Number of 
tasks 

Algorithm 
Mean task 
completion time (s) 

Average CPU 
utilization (%) 

Average data 
processing delay 
(ms) 

500 

DTARA algorithm 280.5 ± 30.2 65.3 ± 5.1 70.4 ± 8.2 
Fixed task allocation 
algorithm 

560.8 ± 60.5 45.6 ± 8.3 180.2 ± 20.5 

Task allocation algorithm 
based on simple priority 

420.6 ± 45.7 55.2 ± 7.4 120.5 ± 15.3 

800 

DTARA algorithm 450.8 ± 45.3 68.5 ± 6.2 90.6 ± 10.3 
Fixed task allocation 
algorithm 

980.2 ± 100.3 38.9 ± 9.2 300.5 ± 30.2 

Task allocation algorithm 
based on simple priority 

750.4 ± 70.6 48.7 ± 8.1 200.8 ± 25.4 

1000 

DTARA algorithm 620.5 ± 60.4 70.2 ± 7.1 110.8 ± 12.4 
Fixed task allocation 
algorithm 

1500.3 ± 150.5 30.5 ± 10.1 450.2 ± 40.5 

Task allocation algorithm 
based on simple priority 

1100.6 ± 110.7 42.3 ± 9.3 320.6 ± 35.4 

 

 

Table 3: Algorithm Stability Table. 
Algorithm 

Task execution success 
rate (%) 

CPU utilization fluctuation 
range (%) 

System 
crash 
count 

DTARA algorithm 97.8 ± 1.2 8.5 ± 2.1 0 
Fixed task allocation algorithm 85.6 ± 3.5 25.3 ± 5.2 3 
Task allocation algorithm based on 
simple priority 

90.2 ± 2.3 18.4 ± 4.1 1 
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As indicated in Table 3, the DTARA algorithm 

demonstrates high stability during long-term operation. 

Its task execution success rate consistently remains 

above 97.8%, CPU utilization fluctuation is minimal at 

approximately 8.5%, and no system crashes occur. The 

fixed task allocation algorithm achieves a task execution 

success rate of 85.6%, with a high CPU utilization 

fluctuation of 25.3% and three system crashes. Although 

the simple priority-based algorithm has a relatively high 

task execution success rate, its CPU utilization 

fluctuation is significant at 18.4%, and one system crash 

occurs. The adaptive adjustment mechanism of the 

DTARA algorithm plays a crucial role in long-term 

operation. When resource utilization fluctuates, timely 

task allocation adjustments prevent system instability 

caused by excessive resource usage or idleness. This 

provides robust support for its application in actual long-

term running systems. 

6 Conclusion 
This study proposes and thoroughly validates the 

DTARA algorithm to address efficiency issues in AI 

self-control systems and data processing units based on 

edge computing technology. In large-scale task scenario 

experiments, the fixed task allocation algorithm lacks 

flexibility, leading to dramatic increases in task 

completion time and imbalanced resource utilization. 

The simple priority-based task allocation algorithm also 

has deficiencies in dynamic resource scheduling and 

limited performance. The DTARA algorithm, with its 

priority evaluation and dynamic resource allocation 

mechanisms, effectively responds to task load changes, 

significantly reducing task completion time and data 

processing delays. In long-term stability tests, traditional 

algorithms and simple priority-based algorithms 

experience task execution failures, significant resource 

utilization fluctuations, and even system crashes. In 

contrast, the DTARA algorithm maintains a high task 

execution success rate, minimal resource utilization 

fluctuations, and stable system performance. This 

indicates that the DTARA algorithm achieves 

remarkable results in enhancing system efficiency and 

stability, laying a solid foundation for the widespread 

application of this technology in practical scenarios such 

as industrial control and intelligent transportation. The 

algorithm has been validated through hardware 

deployment in a smart factory testbed, demonstrating its 

practical feasibility in real-world environments. Future 

research can focus on further optimizing the algorithm to 

adapt to more complex and dynamic application 

environments. 

 

 

 

 

 

References 
[1] Gao, C. (2023). Efficiency of artificial intelligence 

automatic control system and data processing unit 

based on edge computing technology. International 

Journal of Emerging Electric Power Systems, 24(4), 

519–528. https://doi.org/10.1515/ijeeps-2023-0115 

[2] Chang, Z., Liu, S., Xiong, X., Cai, Z., & Tu, G. 

(2021). A survey of recent advances in edge-

computing-powered artificial intelligence of things. 

IEEE Internet of Things Journal, 8(18), 13849–

13875. https://doi.org/10.1109/JIOT.2021.3088875 

[3] Hua, H., Li, Y., Wang, T., Dong, N., Li, W., & Cao, 

J. (2023). Edge computing with artificial 

intelligence: A machine learning perspective. ACM 

Computing Surveys, 55(9), 1–35. 

https://doi.org/10.1145/3555802 

[4] Nain, G., Pattanaik, K. K., & Sharma, G. K. (2022). 

Towards edge computing in intelligent 

manufacturing: Past, present and future. Journal of 

Manufacturing Systems, 62, 588–611. 

https://doi.org/10.1016/j.jmsy.2022.01.010 

[5] Chavhan, S., Gupta, D., Gochhayat, S. P., B, C. B., 

Khanna, A., Shankar, K., & Rodrigues, J. J. (2022). 

Edge computing AI-IoT integrated energy-efficient 

intelligent transportation system for smart cities. 

ACM Transactions on Internet Technology, 22(4), 

1–18. https://doi.org/10.1145/3507906 

[6] Zhu, S., Ota, K., & Dong, M. (2021). Green AI for 

IIoT: Energy efficient, intelligent edge computing 

for the industrial internet of things. IEEE 

Transactions on Green Communications and 

Networking, 6(1), 79–88. 

https://doi.org/10.1109/TGCN.2021.3100622 

[7] Lv, Z., Qiao, L., Verma, S., & Kavita. (2021). AI-

enabled IoT-edge data analytics for connected 

living. ACM Transactions on Internet Technology, 

21(4), 1–20. https://doi.org/10.1145/3421510 

[8] Thota, R. C. (2024). Optimizing edge computing 

and AI for low-latency cloud workloads. 

International Journal of Science and Research 

Archive, 13(1), 3484–3500. 

https://doi.org/10.30574/ijsra.2024.13.1.1761 

[9] Singh, A., Satapathy, S. C., Roy, A., & Gutub, A. 

(2022). AI-based mobile edge computing for IoT: 

Applications, challenges, and future scope. Arabian 

Journal for Science and Engineering, 47(8), 9801–

9831. 

[10] Hayyolalam, V., Aloqaily, M., Özkasap, Ö., & 

Guizani, M. (2021). Edge intelligence for 

empowering IoT-based healthcare systems. IEEE 

Wireless Communications, 28(3), 6–14. 

https://doi.org/10.48550/arXiv.2103.12144 

[11] Zhu, S., Ota, K., & Dong, M. (2022). Energy-

efficient artificial intelligence of things with 

intelligent edge. IEEE Internet of Things Journal, 

9(10), 7525–7532. 

https://doi.org/10.1109/JIOT.2022.3143722 



 

 

60 Informatica 49 (2025) 51–60 Y. Tan et al. 

 

 

 

[12] Bajaj, K., Sharma, B., & Singh, R. (2022). 

Implementation analysis of IoT-based offloading 

frameworks on cloud/edge computing for sensor-

generated big data. Complex & Intelligent Systems, 

8(5), 3641–3658. https://doi.org/10.1007/s40747-

021-00434-6 

[13] Yu, W., Liu, Y., Dillon, T., & Rahayu, W. (2022). 

Edge computing-assisted IoT framework with an 

autoencoder for fault detection in manufacturing 

predictive maintenance. IEEE Transactions on 

Industrial Informatics, 19(4), 5701–5710. 

https://doi.org/10.1109/TII.2022.3178732 

[14] Lu, S., Lu, J., An, K., Wang, X., & He, Q. (2023). 

Edge computing on IoT for machine signal 

processing and fault diagnosis: A review. IEEE 

Internet of Things Journal, 10(13), 11093–11116. 

https://doi.org/10.1109/JIOT.2023.3239944 

[15] Duan, S., Wang, D., Ren, J., Lyu, F., Zhang, Y., Wu, 

H., & Shen, X. (2022). Distributed artificial 

intelligence empowered by end-edge-cloud 

computing: A survey. IEEE Communications 

Surveys & Tutorials, 25(1), 591–624. 

https://doi.org/10.1109/COMST.2022.3218527 

[16] McEnroe, P., Wang, S., & Liyanage, M. (2022). A 

survey on the convergence of edge computing and 

AI for UAVs: Opportunities and challenges. IEEE 

Internet of Things Journal, 9(17), 15435–15459. 

https://doi.org/10.1109/JIOT.2022.3176400 

[17] Liu, X., Yang, J., Zou, C., Chen, Q., Yan, X., Chen, 

Y., & Cai, C. (2021). Collaborative edge computing 

with FPGA-based CNN accelerators for energy-

efficient and time-aware face tracking system. IEEE 

Transactions on Computational Social Systems, 

9(1), 252–266. 

https://doi.org/10.1109/TCSS.2021.3059318 

[18] Kasparaitis, P. (2025). Evaluation of Lithuanian 

Speech-to-Text Transcribers. Informatica, 1-16. 

https://doi.org/10.15388/25-INFOR591 

[19] Munir, A., Blasch, E., Kwon, J., Kong, J., & Aved, 

A. (2021). Artificial intelligence and data fusion at 

the edge. IEEE Aerospace and Electronic Systems 

Magazine, 36(7), 62–78. 

https://doi.org/10.1109/MAES.2020.3043072 

[20] Sanfilippo, S., Hernández-Gálvez, J. J., Hernández-

Cabrera, J. J., Évora-Gómez, J., Roncal-Andrés, O., 

& Caballero-Ramirez, M. (2025). Evolving 

Electricity Demand Modelling in Microgrids Using 

a Kolmogorov-Arnold Network. Informatica, 1-22. 

https://doi.org/10.15388/25-INFOR590 

[21] Rajavel, R., Ravichandran, S. K., Harimoorthy, K., 

Nagappan, P., & Gobichettipalayam, K. R. (2022). 

IoT-based smart healthcare video surveillance 

system using edge computing. Journal of Ambient 

Intelligence and Humanized Computing, 13(6), 

3195–3207. https://doi.org/10.1007/s12652-021-

03157-1 


