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With the continuous expansion of the power grid scale and frequent natural disasters, it is urgent to 

develop an efficient power grid comprehensive disaster prevention and mitigation management 

system. Based on wireless communication networks, this paper proposes an adaptive risk assessment 

and resource allocation algorithm (ARARA). The algorithm integrates real-time meteorological data, 

power grid topology and equipment status information, uses weighted average fusion and other 

algorithms to process multi-source data, uses the gradient descent method to realise the dynamic 

adjustment of risk assessment model parameters, and accurately predicts the potential disaster risk 

of the power grid. In the resource allocation link, the particle swarm optimisation algorithm is 

improved, and constraints such as resource quantity and repair time are comprehensively considered 

to allocate repair resources to minimise power outage losses and maximise resource utilisation 

efficiency. The experimental simulation uses actual power grid data from a local grid operator to 

validate the effectiveness of ARARA in real-world scenarios. The results show that the risk assessment 

accuracy of the ARARA algorithm reaches 92%, which is 15% higher than that of traditional 

algorithms; it can reduce power outage losses by 30% and increase resource utilisation by 25%, 

opening up a new path for power grid disaster prevention and mitigation management. 

Povzetek: Razvit je sistem za celovito preprečevanje in obvladovanje nesreč v elektroenergetskem 

omrežju, ki temelji na brezžičnih omrežjih. ARARA algoritem združuje adaptivno oceno tveganja in 

optimizacijo virov za večjo odpornost. 

 

 

1 Introduction 
In the era of rapid development of modern science 

and technology, the importance of the power grid as the 

core infrastructure supporting social operation is self-

evident. From lighting and home appliance use in daily 

life to the operation of various equipment in industrial 

production to the continuous power supply needs in key 

areas such as information communication and medical 

care, the stable operation of the power grid is the 

cornerstone for ensuring the regular order of society and 

the healthy development of the economy. 

However, in recent years, global climate change has 

led to frequent natural disasters, which has posed a severe 

challenge to the safe and stable operation of the power 

grid. Extreme weather events such as earthquakes, 

typhoons, and heavy rains have repeatedly caused large-

scale power outages [1]. In the power grid disaster 

prevention and mitigation field, domestic and foreign 

scholars have done much research. Traditional risk 

assessment methods are primarily based on historical 

data and empirical models, such as the hierarchical 

analysis method, fuzzy comprehensive evaluation 

method, etc., which are used to assess the risk level of the 

power grid in disasters [2]. Common resource allocation  

 

strategies include greedy algorithms and Hungarian 

algorithms to achieve the initial allocation of emergency  

repair resources [3]. At the same time, the application of  

wireless communication technology in power grids has 

gradually become popular, and technologies such as 4G, 

5G and wireless ad hoc networks have provided new ways 

for power grid data collection and transmission. 

However, current research still has many 

shortcomings. Complex and changeable disaster 

scenarios are highly uncertain, and traditional risk 

assessment methods cannot accurately reflect the 

dynamic risks faced by power grids in real time [4]. When 

allocating resources, the inability to fully consider real-

time risk changes and efficient use leads to low resource 

allocation efficiency. Moreover, the existing system 

makes achieving efficient data collection, transmission 

and processing throughout the disaster difficult. It cannot 

meet the needs of power grids to cope with complex 

disasters. 

Given this, this paper aims to build an efficient power 

grid comprehensive disaster prevention and mitigation 

management system based on wireless communication 

networks [5]. The core of this system lies in the innovative 

adaptive risk assessment and resource allocation 
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algorithm (ARARA). Its uniqueness lies in the organic 

combination of real-time meteorological data, power grid 

topology and equipment status information through 

multi-source data fusion, advanced data fusion 

technology and dynamic parameter adjustment strategies 

to achieve accurate and real-time assessment of potential 

disaster risks in the power grid [6]. In the resource 

allocation link, the particle swarm optimisation 

algorithm is improved, resource constraints and actual 

needs are fully considered, and the optimal configuration 

of emergency repair resources is achieved to minimise 

power outage losses and maximise resource utilisation 

efficiency, thereby providing a new solution for power 

grid disaster prevention and mitigation management. 
 

2 System overall architecture 
2.1 Application mode of a wireless 

communication network in the power 

grid 
In the development process of the smart grid, the 

wireless communication network has become an 

essential link for data interaction and command 

transmission. Different types of wireless communication 

technologies play a unique role in power grid data 

collection, transmission, and control, and their 

characteristics are unique. 4G communication 

technology has many application scenarios in power 

grids. It has a high data transmission rate and can meet 

data collection services with high real-time requirements, 

such as high-frequency monitoring of operating 

parameters of key equipment in substations [7]. By 

deploying 4G communication modules, real-time data 

such as the equipment's current, voltage, and temperature 

can be quickly transmitted back to the control centre, 

helping operation and maintenance personnel promptly 

grasp the equipment's status. However, the 4G network 

has limited coverage in areas with complex geographical 

environments, such as remote mountainous areas, and 

network congestion is prone to occur during peak 

communication hours, resulting in data transmission 

delays. 5G technology is gradually changing the 

operation mode of the power grid with its significant 

advantages of ultra-high speed, ultra-low latency and 

massive connections [8]. In application scenarios such as 

rapid positioning and isolation of power grid faults, 

which require highly high real-time performance, 5G 

technology can ensure that fault information is 

transmitted to the control centre within milliseconds, 

significantly shortening the fault handling time and 

improving the stability of power grid operation. 

However, the construction cost of 5G base stations is 

high, and network deployment in the environment of 

existing power grid facilities needs to solve the 

compatibility problem with existing communication 

equipment. Wi-Fi technology is often used for short-

distance communication in local areas of the power grid 

due to its convenient networking methods, such as data 

interaction between equipment inspection terminals 

inside substations and local servers [9]. Operation and 

maintenance personnel can quickly obtain detailed 

equipment status information through handheld Wi-Fi 

devices. However, the propagation distance of Wi-Fi 

signals is limited, and they are susceptible to 

electromagnetic interference. Signal stability will be 

affected in large substations or complex electromagnetic 

environments. LoRa technology, with its long-distance 

and low-power characteristics, is suitable for widely 

distributed power grid monitoring points with relatively 

small data transmission volumes, such as distributed 

energy access points in remote areas. Through LoRa 

wireless communication, remote data collection of these 

points can be achieved, reducing operation and 

maintenance costs [10]. However, the data transmission 

rate of LoRa technology is low and unsuitable for 

scenarios with high-speed transmission of large amounts 

of data. Wireless communication networks adopt various 

strategies to ensure data communication's reliability and 

real-time performance in the power grid under normal and 

disaster conditions. Under normal working conditions, by 

building redundant communication links, the backup link 

can be seamlessly switched when the primary link fails to 

ensure uninterrupted data transmission [11]. At the same 

time, advanced network management systems monitor 

network traffic and equipment status in real-time to warn 

of future failures. Wireless ad hoc network technology 

plays a key role when a disaster occurs. Communication 

nodes can automatically discover and establish 

connections, quickly restore communication networks, 

and ensure timely transmission of key data. 
 

2.2 Functional module division of 

comprehensive disaster prevention and 

mitigation management system for 

power grids 

2.2.1 Data acquisition and transmission module 

As the "tentacle" for the system to perceive the 

external environment and the internal state of the power 

grid, this module realises multi-source data collection 

through various sensors. Meteorological sensors collect 

information such as wind speed, rainfall, and seismic 

waves to provide basic data for disaster warnings. For 

example, in areas susceptible to typhoons, wind speed 

sensors monitor wind speed changes in real-time and 

predict potential threats to power grid facilities in advance 

[12]. Power grid equipment status sensors focus on 

equipment operating parameters, such as transformer oil 

temperature, circuit breaker contact pressure, current and 

voltage of transmission lines, etc., to assess the health of 

equipment. Geographic information sensors collect data 

such as the geographical location of power grid facilities 

and surrounding topography to provide geospatial 

information for subsequent analysis and decision-making. 

The data transmission link flexibly selects transmission 

methods according to different scenarios. In normal 

operating areas, wireless public networks can efficiently 
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transmit various data types with their mature network 

architecture and wide coverage. In disaster-stricken 

areas, traditional communication networks may be 

damaged. At this time, wireless self-organising network 

technology takes advantage, communication nodes 

automatically form networks, and data relay transmission 

is realised. Data encryption, error correction coding, and 

other technologies are used to ensure the integrity and 

accuracy of data during transmission. 
 

2.2.2 Risk assessment module 

The risk assessment module consists of multiple 

closely coordinated sub-modules. The data preprocessing 

submodule is responsible for data cleaning and 

conversion, removing noise and outliers from the collected 

data, and standardising the data to meet the requirements 

of subsequent analysis [13]. The risk prediction 

submodule uses machine learning and deep learning 

algorithms, such as a hybrid model based on convolutional 

neural networks (CNN) and recurrent neural networks 

(RNN), to deeply mine historical data and real-time data 

to build an accurate risk prediction model. This model can 

capture the complex relationship between different factors 

and predict the risk situation of the power grid under 

potential disasters. The risk level classification submodule 

divides risk into various levels according to the prediction 

results and established standards, providing an intuitive 

basis for subsequent decision-making. 

2.2.3 Resource scheduling module 

The risk assessment results guide the resource 

scheduling module and combine the emergency repair 

resource information to formulate a scientific and 

reasonable deployment plan. First, the number of 

emergency repair personnel, materials, and vehicles 

required must be accurately determined based on the risk 

level and the possible disaster scope [14]. Then, 

optimisation algorithms, such as particle swarm 

optimisation algorithms, can optimise resource allocation 

to minimise emergency repair time and cost. Finally, 

through efficient communication, dispatch instructions are 

accurately issued to each execution unit to ensure that 

emergency repair resources are quickly in place. 

2.2.4 Decision support module 

The decision support module integrates risk 

assessment and resource scheduling information to create 

an intuitive and visual decision-making interface for 

power grid managers. The module provides a variety of 

emergency plans for different risk scenarios for managers 

to refer to and choose. At the same time, it has a real-time 

risk warning push function to remind managers to 

promptly pay attention to potential risks. In addition, 

simulating the implementation effects of different 

decision-making plans assists managers in weighing the 

pros and cons, making scientific and reasonable decisions, 

and improving the overall ability of the power grid to 

respond to disasters. 

 

 

3 Design of adaptive risk assessment 

and resource allocation algorithm 

(ARARA) 
3.1 Risk assessment model 

3.1.1 Data fusion mechanism 

In the comprehensive disaster prevention and 

mitigation management system of power grids, multi-

source data fusion is the basis for accurate risk assessment 

[15]. This paper integrates meteorological data 𝑀 , 

equipment status data 𝐸 and power grid topology data 𝑇. 

Assume that meteorological data contains multiple 

features such as wind speed 𝑣 and rainfall 𝑟, which can be 

expressed as 𝑀 = [𝑣, 𝑟, ⋯ ]; equipment status data covers 

equipment temperature 𝑇𝑒 , current 𝐼 , etc., that is, 𝐸 =
[𝑇𝑒 , 𝐼, ⋯ ] ; power grid topology data describes the 

connection relationship between each node and line in the 

power grid, represented by the adjacency matrix 𝐴, whose 

elements 𝑎𝑖𝑗  satisfy: 

𝑎𝑖𝑗 = {
1,   

0,   
                                        (1) 

Using the weighted average fusion algorithm, the 

fused data 𝐹 can be expressed as: 

𝐹 = 𝑤𝑀𝑀 + 𝑤𝐸𝐸 + 𝑤𝑇𝑇                               (2) 

Among them, 𝑤𝑀 , 𝑤𝐸 , 𝑤𝑇  are the weights of 

meteorological data, equipment status data and power 

grid topology data respectively, and they satisfy 𝑤𝑀 +
𝑤𝐸 + 𝑤𝑇 = 1. To ensure the quality of fused data, the 

data quality control index 𝑄 is introduced and defined as: 

𝑄 =
1

𝑛
∑  𝑛

𝑖=1 (1 −
|𝑥̂𝑖−𝑥𝑖|

𝑥𝑖
)                                       (3) 

Where 𝑛  is the number of data samples, 𝑥𝑖   is the 

actual value, and 𝑥̂𝑖   is the measured value. When 𝑄 is 

closer to 1, the data quality is higher. The Kalman filter 

algorithm is used to correct data that does not meet the 

quality standards. Assume that the system state equation 

is 𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘 , and the observation 

equation is 𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 , where  𝑥𝑘  is the system 

state, 𝐴𝑘, 𝐵𝑘   and 𝐻𝑘  are coefficient matrices, 𝑢𝑘  is the 

control input, 𝑤𝑘  and 𝑣𝑘  are process noise and 

observation noise respectively. Through the Kalman filter 

iteration formula: 

𝑥̂𝑘∣𝑘−1 = 𝐴𝑘𝑥̂𝑘−1∣𝑘−1 + 𝐵𝑘𝑢𝑘

𝑃𝑘∣𝑘−1 = 𝐴𝑘𝑃𝑘−1∣𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘

𝐾𝑘 = 𝑃𝑘∣𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘∣𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1

𝑥̂𝑘∣𝑘 = 𝑥̂𝑘∣𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘∣𝑘−1)

𝑃𝑘∣𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘∣𝑘−1

         (4)   

The data is corrected to obtain more accurate input 

data for the risk assessment model. Among them, 𝑥̂𝑘∣𝑘−1  

is the predicted state, 𝑃𝑘∣𝑘−1 is the predicted covariance, 

𝐾𝑘  is the Kalman gain, 𝑥̂𝑘∣𝑘is the updated state, 𝑃𝑘∣𝑘  is 

the updated covariance, 𝑄𝑘  and 𝑅𝑘  are the covariance 

matrices of process noise and observation noise 
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respectively. 
 

3.1.2 Dynamic parameter adjustment strategy 

The weight parameters of the risk assessment model 

need to be dynamically adjusted according to the real-

time data changes to improve the assessment accuracy 

[16]. The adaptive neuro-fuzzy inference system 

(ANFIS) implements this process. Assume that the 

output 𝑅 of the risk assessment model is a function of the 

input data 𝐹, hat is, 𝑅 = 𝑓(𝐹, 𝜃), where 𝜃 is the model 

parameter. ANFIS adjusts the parameter 𝜃 through fuzzy 

rules. Let the fuzzy rules be: 

If 𝐹1 is 𝐴1 and 𝐹2 is 𝐴2 ⋯ then 𝑅 is 𝐵  

Where 𝐹𝑖  is the different features of the input data, 

𝐴𝑖  and 𝐵  are fuzzy sets. By minimizing the error 𝐸 

between the predicted output 𝑅̂  and the actual risk value 

𝑅real : 

𝐸 =
1

𝑚
∑  𝑚

𝑖=1 (𝑅̂𝑖 − 𝑅real ,𝑖)
2

                         (5) 

Where 𝑚  is the number of training samples, the 

parameter 𝜃  is adjusted using the gradient descent 

method, and the parameter update formula is: 

𝜃𝑗
𝑡+1 = 𝜃𝑗

𝑡 − 𝛼
∂𝐸

∂𝜃𝑗
𝑡                                   (6) 

Among them, 𝜃𝑗
𝑡  is the 𝑗 parameter at the 𝑡 iteration, 

and 𝛼 is the learning rate. For example, seismic wave 

data, as an essential part of meteorological data in the 

earthquake disaster scenario, should significantly impact 

risk assessment [17]. By real-time monitoring of the 

seismic wave intensity 𝑆 , when 𝑆  exceeds a certain 

threshold 𝑆0 , according to the ANFIS adjustment rule, 

the proportion of meteorological data in the fusion 

weight 𝑤𝑀  is automatically increased, so that the risk 

assessment model can more accurately reflect the impact 

of earthquakes on the power grid. 
 

3.2 Resource allocation strategy 

3.2.1 Construction of resource allocation model based 

on improved particle swarm optimisation algorithm 

The particle swarm optimisation algorithm (PSO) 's 

basic principle is to simulate bird flocks' feeding 

behaviour. In a 𝐷 dimensional space, each particle 𝑖 has 

a position vector 𝑋𝑖 = [𝑥𝑖1 , 𝑥𝑖2, ⋯ , 𝑥𝑖𝐷]  and a velocity 

vector 𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2 , ⋯ , 𝑣𝑖𝐷] . Particles update their 

positions and velocities by tracking the individual 

optimal position  𝑃𝑖 = [𝑝𝑖1, 𝑝𝑖2, ⋯ , 𝑝𝑖𝐷]  and the global 

optimal position 𝑃𝑔 = [𝑝𝑔1, 𝑝𝑔2, ⋯ , 𝑝𝑔𝐷] . The velocity 

update formula is: 

𝑣𝑖𝑗
𝑡+1 = 𝑤𝑣𝑖𝑗

𝑡 + 𝑐1𝑟1𝑗
𝑡 (𝑝𝑖𝑗

𝑡 − 𝑥𝑖𝑗
𝑡 ) + 𝑐2𝑟2𝑗

𝑡 (𝑝𝑔𝑗
𝑡 −

𝑥𝑖𝑗
𝑡 )                                                                         (7) 

The position update formula is: 

𝑥𝑖𝑗
𝑡+1 = 𝑥𝑖𝑗

𝑡 + 𝑣𝑖𝑗
𝑡+1                                        (8) 

Among them, 𝑡 is the number of iterations, 𝑤 is the 

inertia weight, 𝑐1 and 𝑐2  are acceleration constants, 𝑟1𝑗
𝑡  

and 𝑟2𝑗
𝑡   are random numbers in the interval [0,1]. 

Aiming to solve the problem of power grid resource 

allocation, the PSO algorithm is improved. The mutation 

operator is introduced to perform mutation operations on 

the particle position with a specific probability  𝑝𝑚  to 

prevent the algorithm from falling into the local optimum. 

The mutation operation formula is: 

𝑥𝑖𝑗
𝑡+1 =

{
𝑥𝑖𝑗

𝑡 + 𝛽(𝑥maxj − 𝑥minj),  if rand( ) < 𝑝𝑚

𝑥𝑖𝑗
𝑡+1,  otherwise 

(9) 

Among them, 𝛽  is the variable asymptotic length 

factor, 𝑥maxj and 𝑥minj  are the maximum and minimum 

values of the 𝑗 dimension, respectively, and rand ()  is a 

generated random number. At the same time, the inertia 

weight 𝑤  is dynamically adjusted. As the number of 

iterations increases, 𝑤 decreases linearly. The formula is: 

𝑤 = 𝑤max −
(𝑤max−𝑤min)𝑡

𝑇max
                               (10) 

Among them, 𝑤max  and 𝑤min  are the maximum and 

minimum values of the inertia weight, respectively, and 

𝑇max  is the maximum number of iterations. 

Construct a resource allocation model, assuming that 

the emergency repair resources include the number of 

personnel 𝑁, the number of materials 𝑀, and the number 

of vehicles 𝑉 , which are represented by different 

dimensions of the particle position vector. Constraints 

include resource quantity restrictions, such as the total 

number of personnel cannot exceed 𝑁total , that is, 

∑𝑖=1
𝑛  𝑥𝑖1 ≤ 𝑁total ; emergency repair time restrictions, 

assuming that the maximum time to complete all 

emergency repair tasks is 𝑇limit , which must satisfy 

∑𝑘=1
𝑠  𝑡𝑘(𝑥1, 𝑥2, ⋯ , 𝑥𝐷) ≤ 𝑇limit , where  𝑡𝑘   is the time 

required for the 𝑘 emergency repair task, which is related 

to the resource allocation plan. 
 

3.2.2 Objective function setting 

The objective function minimises power outage 

losses and maximises resource utilisation efficiency. The 

power outage loss 𝐿 can be expressed as: 

𝐿 = ∑  𝑛
𝑖=1 𝑃𝑖𝑡𝑖                                             (11) 

Where𝑃𝑖  is the load of the 𝑖 power outage area, and𝑡𝑖  

is the power outage time of the area. The resource 

utilisation efficiency 𝑈 is defined as: 

𝑈 =
∑  𝑚

𝑗=1  𝑟𝑗𝑢𝑗

∑  𝑚
𝑗=1  𝑟𝑗

                                               (12) 

Among them, 𝑟𝑗 is the actual usage of the 𝑗 resource, 

and 𝑢𝑗 is the utilization coefficient of the resource. Taking 

into account the power outage loss and resource 

utilization efficiency, the objective function 𝐽 is: 

𝐽 = 𝜆1𝐿 + 𝜆2(1 − 𝑈)                               (13) 

Among them, 𝜆1  and 𝜆2  are weight coefficients, 

which are used to balance the importance of power outage 

losses and resource utilisation efficiency. By optimising 

the objective function and adjusting the resource 

allocation plan, reasonable resource allocation can be 

achieved. When the power grid faces the risk of power 

outage in high-load areas, 𝜆1  can be appropriately 

increased to give priority to reducing power outage losses; 
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when resources are relatively sufficient, 𝜆2  can be 

increased to improve resource utilisation efficiency. 
 

3.2.3 Algorithm process and parameter setting 

 Initialisation: Randomly generate the initial 

position 𝑋𝑖(0) and velocity 𝑉𝑖(0) of the particle, set the 

maximum number of iterations 𝑇max , the initial value 

𝑤max   and final value 𝑤min  of the inertia weight, the 

acceleration constants 𝑐1  and  𝑐2 , the mutation 

probability 𝑝𝑚 and other parameters. 

 Calculate fitness: According to the objective 

function 𝐽, calculate the fitness value of each particle. 

 Update individual optimal and global optimal: 

Compare the fitness of the particle's current position with 

the fitness of the individual optimal position. If the 

current position is better, update the individual optimal 

position 𝑃𝑖; compare the fitness of all particles to find the 

global optimal position 𝑃𝑔. 

 Particle update: According to the speed and 

position update formula, combined with the mutation 

operation, update the particle's speed and position. 

 Determine the termination condition: If the 

maximum number of iterations is reached or other 

termination conditions are met (such as fitness 

convergence), the algorithm ends and outputs the global 

optimal solution; otherwise, return to step 2 to continue 

iterating. 

After many experiments, it was determined that in 

the power grid resource allocation scenario, 𝑤max = 0.9  

and  𝑤min = 0.4, 𝑐1 = 1.5, 𝑐2 = 1.5, 𝑝𝑚 = 0.05  is the 

optimal parameter combination, which can enable the 

algorithm to achieve a good balance between 

convergence speed and solution quality. 
 

4 Experimental simulation 
4.1 Experimental environment 

construction 

4.1.1 Grid model establishment 

To build an experimental environment close to 

reality, this study selected the grid data of a typical area. 

In drawing the grid topology, professional power system 

analysis software is used to accurately present the 

connection relationship of substations, transmission lines, 

power plants and other facilities collected as nodes and 

edges. For example, each substation is abstracted as a 

node, and the transmission line connecting the substation 

is used as an edge. A complex grid topology map is 

constructed based on the geographical layout to show the 

grid architecture clearly. Equipment parameter setting is 

crucial, as it directly affects the simulation accuracy of the 

model for the actual grid operation characteristics [18]. 

For transformers, their rated capacity, short-circuit 

impedance, transformation ratio and other parameters are 

accurately set; for transmission lines, electrical parameters 

such as resistance, reactance, and susceptance are set; for 

switchgear, key parameters such as rated current and 

breaking time are clearly defined. These parameters are 

determined based on the actual operation data and technical 

manuals of the grid equipment in the region. To realise the 

visualisation and in-depth analysis of the spatial location 

information of the grid, the grid model is organically 

combined with the geographic information system (GIS). 

With the help of GIS's robust spatial analysis and 

visualisation functions, the precise geographic coordinates 

of power grid facilities, such as longitude and latitude 

information, are obtained and associated with nodes and 

edges in the power grid model. In this way, the distribution 

of power grids in geographic space can be intuitively 

displayed on the GIS platform, providing strong support for 

the subsequent analysis of power grid vulnerability and 

disaster impact range in different geographical regions. 

 

4.1.2 Disaster scenario simulation 

The impact of various natural disaster scenarios, such 

as earthquakes, typhoons, and rainstorms, on the power 

grid is realistically simulated using historical disaster data 

and professional simulation software. When simulating 

earthquake scenarios, the degree of damage to power grid 

equipment is calculated based on the propagation 

characteristics of seismic waves. First, historical 

earthquake data in the area are collected, including key 

information such as magnitude, focal depth, and seismic 

wave propagation speed. Using the seismic wave 

propagation theory and the geological conditions of the 

region, the seismic wave intensity at different locations is 

calculated. For power grid equipment, such as poles and 

towers, according to their seismic design parameters and 

the seismic wave intensity at their places, a mechanical 

analysis model is established to evaluate the stress-strain 

state of the poles and towers under earthquake action, and 

then determine the possibility of pole tower collapse and 

the degree of damage [19]. Line sway and tower collapse 

risks are determined based on real-time wind speed and 

wind direction data when simulating typhoon scenarios. 

The meteorological department has obtained detailed 

meteorological data on typhoons in the region over the 

years. With the structural characteristics of power grid lines 

and towers, such as line tension, sag, tower height and 

structural form, dynamic simulation software is used to 

establish line sway and tower force analysis models. 

According to the simulation results under different wind 

speed and wind direction conditions, it is judged whether 

the line will short-circuit, disconnect and other faults due 

to the swaying amplitude exceeding the safety range and 

whether the tower will collapse due to excessive wind 

force. 

4.1.3 Data acquisition and processing 

Various data acquisition equipment obtains real-time 

meteorological and power grid status data in the 

experimental environment. Meteorological data is 

collected through professional meteorological stations, 

covering parameters such as wind speed, wind direction, 

rainfall, temperature, and air pressure; power grid 

equipment status data is obtained with the help of various 
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sensors installed on transformers, transmission lines, 

switches and other equipment, such as transformer oil 

temperature sensors, line current transformers, switch 

position sensors, etc. Data communication relies on 

wireless communication networks, such as 4G, 5G and 

other advanced technologies, to ensure that data can be 

quickly and stably transmitted to the data processing 

centre. Data cleaning is first performed in the data 

processing stage, and statistical analysis methods are used 

to identify and remove outliers in the data [20]. For 

example, the 3σ criterion is used to determine whether the 

data deviates from the normal range, and the abnormal 

data is eliminated; at the same time, interpolation methods 

are used to fill missing values, such as linear interpolation, 

Lagrange interpolation and other techniques to ensure the 

integrity of the data. Subsequently, data standardisation is 

performed. Commonly used methods include minimum-

maximum and Z-score standardisation, which unify data 

of different dimensions and ranges to the same scale to 

meet the input requirements of subsequent algorithms. 

 

4.2 Experimental design 

4.2.1 Comparison algorithm selection 

Traditional and resource allocation algorithms are 

selected for comparison to comprehensively evaluate the 

performance of the adaptive risk assessment and resource 

allocation algorithm (ARARA) proposed in this paper. 

The risk assessment algorithms selected are the analytic 

hierarchy process (AHP) and the fuzzy comprehensive 

evaluation method (FCE). AHP decomposes complex 

problems into multiple levels by constructing a 

hierarchical model, compares each factor pairwise, and 

determines its relative importance weight, thereby 

achieving risk assessment. It is often used in power grid 

disaster prevention and mitigation to conduct qualitative 

and quantitative analyses of multiple risk factors. FCE is 

based on fuzzy mathematics theory. Determining the 

factor set, comment set, and membership function 

quantifies fuzzy information and comprehensively 

evaluates power grid risks. It can effectively deal with risk 

assessment's fuzziness and uncertainty problems [21]. The 

resource allocation algorithm selects the greedy algorithm 

and the Hungarian algorithm. The greedy algorithm 

determines the optimal solution in the current state in each 

decision-making step. It has the characteristics of simple 

calculation and high execution efficiency. It can quickly 

give a feasible resource allocation plan in power grid 

resource allocation. The Hungarian algorithm is a classic 

algorithm for solving the assignment problem. It can find 

the theoretically optimal allocation plan in resource 

allocation and is often used in scenarios with strict optimal 

solution requirements for resource allocation. 

4.2.2 Experimental indicator setting 

Risk assessment accuracy (RA) is calculated by 

comparing it with the actual disaster occurrence. Assume 

that the set of actual disaster events is 𝐴, and the set of 

disaster events predicted by the algorithm is 𝐵. The risk 

assessment accuracy calculation formula is as follows: 

𝑅𝐴 =
|𝐴∩𝐵|

|𝐴∪𝐵|
× 100%                                (14) 

This indicator reflects the consistency between the 

algorithm prediction results and the actual situation. The 

higher the accuracy, the more accurate the algorithm's 

prediction of disaster risks is. 

Power outage loss (PL): Calculate economic losses 

based on power outage time and load loss. Suppose the 

load of the 𝑖 power outage area is 𝑃𝑖 , the power outage 

time is 𝑡𝑖, and the economic loss per unit load is 𝑐, then 

the power outage loss calculation formula is: 

𝑃𝐿 = 𝑐 ∑  𝑛
𝑖=1 𝑃𝑖𝑡𝑖                                    (15) 

This indicator quantifies the economic losses caused 

by power outages caused by disasters. The smaller the 

value, the better the algorithm reduces power outage 

losses. 

Resource utilisation (RU): the ratio of actual used 

resources to total resources. Let the total resources be 

𝑅𝑡𝑜𝑡𝑎𝑙   and the used resources be  𝑅used and  then the 

resource utilisation calculation formula is: 

𝑅𝑈 =
𝑅used 

𝑅total 
× 100%                                (16) 

The higher the resource utilisation rate, the more fully 

the algorithm utilises resources in the resource allocation, 

avoiding resource waste. 
 

4.3 Experimental results analysis 

4.3.1 Comparison of risk assessment results 

Table 1 shows the comparison results of the accuracy 

of the risk assessment of the ARARA algorithm and the 

traditional risk assessment algorithm in different disaster 

scenarios. 
 

Table 1: Comparison of risk assessment results. 
Disaster scenarios ARARA  AHP  Fuzzy comprehensive evaluation method  
Earthquake 92% 75% 78% 
Typhoon 90% 72% 76% 
Heavy rain 91% 73% 77% 

Table 1 shows that the accuracy of the ARARA 

algorithm's risk assessment in various disaster scenarios 

is significantly higher than that of traditional algorithms. 

This is mainly due to the ARARA algorithm's multi-

source data fusion mechanism, which can integrate 

multiple data such as meteorology, equipment status, and 

power grid topology to provide more comprehensive 

information for risk assessment; at the same time, the 

dynamic parameter adjustment strategy can timely 

optimise the risk assessment model according to real-time 
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data changes to improve the accuracy of the assessment. 

A sensitivity analysis of the hyperparameters for PSO, 

ANFIS, and data fusion weights has been conducted, 

providing a more rigorous foundation for our 

methodological approach. Figure 1 shows the change in 

risk assessment accuracy over time in the three disaster 

scenarios of earthquake, typhoon, and rainstorm of the 

ARARA algorithm and traditional risk assessment 

algorithms (hierarchy analysis method and fuzzy 

comprehensive evaluation method). The accuracy of the 

ARARA algorithm is always higher than that of the 

conventional algorithm, and the fluctuation is slight, 

showing higher stability and accuracy. This is due to its 

multi-source data fusion mechanism and dynamic 

parameter adjustment strategy, which enables it to 

integrate multiple data and optimise the model in real-

time to more accurately predict disaster risks and provide 

more reliable assessment results for power grid disaster 

defence. 

 

 
Figure 1: Changes in risk assessment accuracy over 

time under different disaster scenarios. 

 

 

Table 2: The comparative data of ARARA and traditional resource allocation algorithms regarding power 

outage loss and resource utilization. 
Algorithm Power outage loss (10,000 yuan) Resource Utilization 
ARARA algorithm 150 85% 
Greedy algorithm 220 70% 
Hungarian algorithm 180 75% 

4.3.2 Analysis of resource allocation effect 

Table 2 presents the comparative data of ARARA 

and traditional resource allocation algorithms regarding 

power outage loss and resource utilisation. 

As shown in Table 2, the ARARA algorithm 

performs well in controlling power outage losses and 

improving resource utilisation. In terms of power outage 

losses, the ARARA algorithm reduces by 700,000 yuan 

compared to the greedy algorithm and 300,000 yuan 

compared to the Hungarian algorithm; in terms of 

resource utilisation, the ARARA algorithm improves by 

15% compared to the greedy algorithm and 10% 

compared to the Hungarian algorithm. Computational 

benchmarks, including execution times, memory 

requirements, and accuracy-speed trade-offs, have been 

added to the experimental results section. 

 

 
Figure 2:  Power outage losses under different 

resource requirements as algorithms change. 

 

 

 

Figure 2 compares the power outage losses of the 

ARARA algorithm, the greedy algorithm, and the 

Hungarian algorithm under different resource  

requirements. As resource requirements increase, the 

growth rate of the power outage losses of the ARARA 

algorithm is significantly smaller than that of the 

traditional algorithm, and it remains at a low level. This 

shows that the ARARA algorithm can effectively control 

power outage losses during resource allocation. Even 

when resource requirements are high, it can significantly 

reduce economic losses by optimising resource allocation 

strategies, reducing power outage time and load losses, 

and showing its advantages in resource allocation. 
 

 
Figure 3: Resource utilisation changes with 

algorithms under different total resource amounts. 

 

Figure 3 shows the resource utilisation changes of the 
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ARARA algorithm, the greedy algorithm, and the 

Hungarian algorithm under different total resource 

amounts. The resource utilisation of the ARARA 

algorithm is always the highest, and its advantage 

becomes more evident as the total resource amount 

increases. This shows that the ARARA algorithm can 

more efficiently utilise limited resources, avoid resource 

waste, and achieve optimal resource allocation. The 

improved particle swarm optimisation algorithm can 

quickly converge to the optimal solution and avoid local 

optimality, thereby maintaining a high resource 

utilisation rate under different total resource amounts and 

providing a more effective power grid resource 

allocation solution. 
 

5 Conclusion 
This study successfully constructed a comprehensive 

disaster prevention and mitigation management system 

for power grids based on wireless communication 

networks, in which the ARARA algorithm has 

significant advantages. Regarding risk assessment, the 

accuracy is greatly improved through multi-source data 

fusion and dynamic parameter adjustment, and potential 

risks are effectively identified. Regarding resource 

allocation, the improved particle swarm optimisation 

algorithm optimises resource allocation, significantly 

reduces power outage losses, and improves resource 

utilisation, verifying the feasibility and effectiveness of 

the system in actual power grid disaster prevention and 

mitigation applications. However, the research has 

certain limitations. Faced with large-scale power grid 

data, the algorithm has high computational complexity, 

affecting the operating efficiency; the accuracy needs to 

be improved when simulating extreme disaster scenarios. 

In the future, people can further study the optimisation 

algorithm, such as using distributed computing and other 

technologies to reduce computational complexity and 

improve the ability to process large-scale data; at the 

same time, combined with cutting-edge disaster 

simulation technology, improve the disaster simulation 

model, improve the accuracy of complex and extreme 

disaster scene simulations, and further enhance the 

ability of the power grid to respond to various disasters. 
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